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Abstract— Cross-individual pain assessment models based
on electroencephalography (EEG) allow pain assessment in
individuals who cannot report pain (e.g., unresponsive patients).
The main obstacle to the generalisation of pain assessment
models is the individual variation of brain responses to pain.
Hence, we took the individual variation into account in cross-
individual model development. We developed two convolutional
neural networks (CNN) sharing an encoder architecture. One
CNN predicts pain, while the other predicts the identity of an
individual. We performed a leave-one-out (LOO) test with the
exclusion of each subject and applied evidence accumulation
to it for validating the pain prediction model’s performance,
where the binary classifier involves the states of pain (Hot) and
resting state (Eyes-open). The mean accuracy produced by the
LOO tests was 57.81% (max: 73.33%), and the mean accuracy
of evidence accumulation achieved 69.75% (max: 100.00%). The
individual recognition model achieved an accuracy of 99.63%.
Nevertheless, when we acquired the most similar subject to
a novel subject using the individual recognition model, where
the most similar subject was used to train a subject-wise pain
prediction model. The accuracy of predicting the pain-related
conditions of the novel subject by the subject-wise model was
only 53.73% (max: 79.50%). Therefore, the approach to utilising
the features related to individual variation extracted by the
CNN model needs more investigation for improving cross-
individual pain assessment.

Clinical relevance— This model can be applied to assess pain
from EEG signals at the bedside with future improvement,
which can help caretakers of unresponsive patients.

I. INTRODUCTION

Pain is defined as the sensory or emotional unpleasantness
associated with actual or potential tissue damage [1]. In
keeping with the protective function of pain, the clinicians
or patients’ caretakers can rely on the patient’s pain reports
when attending to the patient’s health. However, unrespon-
sive patients cannot report pain through communication.
Technical advances in machine learning allow us to de-
code brain activity recorded through electroencephalography
(EEG), thus enabling us to identify the experience of pain in
unresponsive patients using EEG signals at the bedside [2].
A recent review established that machine learning models
can achieve prediction accuracy between 62% and 100%
[3]. Among pain assessment models, most were developed
for subjects who also provided labelled data for training.
However, unresponsive patients are unable to provide labels
for training. This bottleneck means that we can only utilise
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the labelled data from responsive individuals to train the
model, and generalise such models to predict pain in novel
individuals not involved in the training phase. Importantly,
the past research rarely reported effective generalisation of
pain prediction models [3]. Yet, in some cases researchers
reported optimal generalisation across individuals, e.g. 83%
accuracy for three-class classification in [4] and 95.33%
accuracy for binary classification in [5].

Cross-individual pain assessment is a cross-domain trans-
fer learning application, in which each individual is a do-
main [6]. Although many cross-domain transfer learning
approaches for various purposes were proposed, the lack
of robust cross-individual models is not surprising in EEG-
based research. Such a limitation is not specific to pain
assessment - unfortunately, the individual variation negates
EEG-based machine learning models’ generalisation in many
brain states [7]. Pain is even more challenging because
the neural responses to pain can be very different across
individuals, so it is difficult to expose those features that are
unspecific to single individuals [8]. Schulz et al. suggested
that the individual sensitivity to pain is correlated with the
alpha (8−10Hz) and gamma (≤ 80Hz) bands, both of which
have strong cross-individual variation [9]. Therefore, we can
utilise such features related to individual variation to build
the models, which is suggested key in the cross-domain
transfer learning, i.e., cross-individual pain assessment model
in this work [10].

In most cases, transfer learning requires deep learning
architectures, but deep learning has not been widely im-
plemented yet in the context of pain assessment [3]. Here
we aimed to apply deep learning advancements, like the
AutoTransfer framework [11], to develop a model sensitive
to pain-related conditions as well as to individual variation.

We implemented a convolutional neural network (CNN)
to predict pain using phase-based functional connectivity
(FC) features in the alpha band, which fit the nature of
FC represented by two-dimensional measures [12]. This
model yielded ideal accuracy above 90% when applied to the
subjects involved in model training, but did not achieve high
accuracy when applied to novel subjects (61%). To develop a
cross-individual pain assessment model, at least two method-
ological features must be considered: pain specificity and
individual differences. Here, we aimed to test whether FC
patterns within the alpha frequency band could be combined
to quantify individual specificity [8], [13]. Accordingly, our
study had two goals: improving CNN model generalisation
through architecture or evidence accumulation, and exploring
the use of alpha-phase FC in individual recognition. If



successful, the individual recognition model would identify
the most similar subject to a novel subject, and predict the
pain status of the novel subject using labelled data from the
most similar subject.

Fig. 1: The pipeline of subject-transfer pain prediction
model. The testing set of both classifiers on the figure is all
the data of the excluded subject. The individual recognition
model predicted the ’most similar’ subject to the input.
Then the pain-related labels were predicted by the subject-
wise model trained with the most similar subject (i.e., Pain
Classifier k). In the meanwhile, the data from the excluded
subject was input into the LOO pain classifier, which also
predicted the pain-related labels

Fig. 2: An example of the evidence accumulation involving
5 trials. (The values are only examples instead of the real
predictions) The red trial represents the target. The numbers
0 and 1 represent two classes, and [x, y] mean the prediction
scores of classes 0 and 1. The prediction based on each
paradigm was shown at top right. The original prediction
means the prediction from the target trial only.

II. METHODS

A. Subjects and Experimental Paradigm

This study was approved by the ethics committee of the
University of Essex. Forty-three healthy individuals par-
ticipated in the experiment (21 males, mean age=25.36).
We excluded seven subjects’ data from the analysis due to
procedural or technical issues, so the final sample contained
36 subjects.

We involved five conditions in the study, including two
thermal stimulus conditions (hot and warm), two resting
states (eyes-closed and eyes-open), and one reference sound
condition. The experimental procedure can be found in [14].

Toward the aim to classify pain and non-pain conditions,
since the subjects kept their eyes open in the thermal condi-
tions, we only involved the thermal stimulus inducing pain
(Hot [H]) and the controlled resting state (eyes-open [O]).
The recording lasted 5 minutes for each condition in each
subject. The detailed experimental progress can be found in
[14].

The signals were recorded with a 62-channel EEG system
(Easycap, BrainProducts GmbH, Gliching, Germany). We
only used 32 channels for feature extraction, which highly
contributed to pain assessment declared in [12].

B. Data Pre-processing and Feature Extraction

The sampling rate in EEG recording was 1000 Hz, and
it was down-sampled to 500 Hz before further processing.
Independent component analysis (ICA) and current source
density (CSD) were applied to reduce artefacts and volume
conduction, respectively (See details in [14] for ICA).

For feature extraction, the signals were filtered into the
alpha band (8-12 Hz). Fraschini et al. suggested that the
phase-based FC measures tend to converge to a fixed value
with the trial-length above 4 seconds, so we segmented the
filtered signals into 5-second trials with 50% overlap between
the neighbouring trials [15].

We extracted the inter-site phase clustering (ISPC) as the
representation of phase-based FC [16]. Each ISPC value
represents the FC between two channels within the single
trial, which follows the formula:

ISPCC1,C2 = |1
n

n

∑
t=1

ei(φC1(t)−φC2(t))| (1)

where C1 and C2 represent two EEG channels, φC1 is
the phase produced by Hilbert transform from the signals
recorded in channel C1 in the trial. Then the ISPC values
extracted from the same trial were re-organised into a 32×32
square matrix, whose rows and columns represent the EEG
channels in the same order.

C. Classification Model and Validation

1) Convolutional Neural Network (CNN) Model: We built
two CNN models, one binary classifier for pain classifica-
tion, and one multi-classification model for recognising the
individual. The two models shared an encoder architecture
for feature extraction, containing hidden layers and batch
normalisation (Table Ia). The design of dropout layers,
activation functions, and fully connected layers differed for
each purpose, their architectures are shown in Table Ib and
Table Ic.

2) Training and Validation: We used Adam optimiser
in the training, with a learning rate of 10−3. The decay
rates were set with β1 = 0.9 and β2 = 0.99, the L2 penalty
was 0.01. The batch size was 256 and 100 epochs were
trained in each classification. In the validation, the pain
assessment models were the concatenation of the encoder and
the architecture in Table Ib, and the individual recognition
models contained the encoder and the layers in Table Ic. The
mean accuracy among all the testing sets in each validation



TABLE I: Architecture of the two CNN models

(a) The encoder’s architecture for feature extraction

No. Layer Size/Parameter Output
1 2D Convolution 1 (7×7)×128 (26×26)×128
2 Batch Normalisation 1 128 (26×26)×128
3 2D Convolution 2 (5×5)×64 (22×22)×64
4 Batch Normalisation 2 64 (22×22)×64
5 2D Convolution 3 (3×3)×32 (20×20)×32
6 Batch Normalisation 3 32 (20×20)×32

(b) The architecture for the classifying pain and non-pain conditions

No. Layer Size/Parameter Output
7-1 2D Dropout 0.2 (20×20)×32
8-1 Flatten 1 - 12800
9-1 Fully Connected 1 100 100
10-1 Activation (ReLU) - 100
11-1 Flatten 2 - 100
12-1 Activation (sigmoid) - 100
13-1 Fully Connected 2 2 2
14-1 Softmax - 2

(c) The architecture for recognising individuals (Number of subjects:
N)

No. Layer Size/Parameter Output
8-2 Flatten 1 - 12800
9-2 Fully Connected 1 N N

10-2 Softmax - N

mode was analysed: a) in the leave-one-out (LOO) validation
of pain assessment, each testing set represents the data
from one excluded subject, b) and in the subject-mixture
validation, each testing set contained the data from one fold
of the cross-validation. The maximum individual accuracy of
the test from an excluded subject was also analysed in the
LOO tests.
- Individual Recognition

• All-mixed: Data from all subjects were mixed. The data
were split into training and testing sets, with a ratio of
35:1 in each fold of cross-validation.

• LOO training: Thirty-six independent models were
trained and validated with the exclusion of each subject.
Within the data from 35 remained subjects for each
model, 80% data from the remained subjects were used
for training while the other 20% were the testing set.

- Pain Assessment
• Within-subject assessment: We used the data from each

individual separately to train 36 individual-wise classi-
fiers. The data of each subject was split into the training
and testing sets, with the ratio of 80% and 20%.

• Subject-mixed: To make the size of data consistent
with the further LOO test, 36-fold cross-validation was
applied to the mixture of all the data for training and
evaluation.

• LOO testing: In each test, one subject was excluded, and
the classification model was trained by the remaining
35 subjects’data. Then we tested each model with the
excluded subject.

• Subject-based transfer assessment: In each test, we
input the data from each excluded subject to the LOO
subject recognition model trained with the other sub-
jects. The individual recognition model’s most common
prediction (i.e., subject k) was identified as the most

Fig. 3: The curves of mean accuracy versus the time
duration of classification between pain and non-pain
with evidence accumulation. The curves represent the mean
accuracy across excluded subjects from the two paradigms
based on evidence accumulation, and the original curves
represent the accuracy produced by only the target trial in
the corresponding test.

similar subject to the excluded subject. Following this,
we exclusively used the model that was trained on data
from subject k, to predict the pain condition of the
individual who was excluded. The pipeline is shown
in Fig. 1.

3) Evidence Accumulation: The time duration required
for assessing pain should be considered for bed-side
applications[17]. Accordingly, we tested the accuracy associ-
ated with evidence accumulation over time. Because the trial
length was 5 seconds and the overlapping ratio was 50 %,
the involved time duration increased by 2.5 seconds with one
more trial included in the assessment. We tested the effects
of trial numbers from 2 to 109 (7.5 to 275.0 seconds). Two
paradigms were used for the predictions. One of them is
based on the mean prediction scores of each class across the
involved trials. And the other is based on a voting system
that will identify the most frequent class among the trial-
based predictions. Fig. 2 shows an example involving five
trials.

TABLE II: Accuracy produced by the individual recognition
and pain assessment models under different validation modes

Model Validation Mean Accuracy (%) Max Individual
Accuracy (%)

Individual recognition All-mixed 99.63±0.23
Leave-one-out 99.55±0.22

Pain assessment Within-subject 91.86±1.30 100.00
Subject-mixed 96.52±1.02

Leave-one-out (original) 57.81±7.48 73.33
Leave-one-out (max., mean) 69.56±14.72 100.00
Leave-one-out (max., vote) 69.75±14.59 99.43

Subject-based transfer (original) 53.73±10.59 79.50
Subject-based transfer (max., mean) 58.41±15.32 100.00
Subject-based transfer (max., vote) 58.83±14.92 100.00

III. RESULTS AND DISCUSSION
The mean and maximum accuracy produced by each

validation mode is shown in Table II, where the mean



accuracy (column ’Mean Accuracy’) produced with all the
data is from the folds in cross-validation, and the LOO results
are across excluded subjects. Since the performance was
seriously diverse across subjects, the maximum accuracy of a
single excluded subject (column ’Max Individual Accuracy’
in Table II) from the LOO tests was also shown as the
highest level achieved by an individual, which can show the
potentially best accuracy achieved by the model.

The within-subject (91.86%) and subject-mixed (96.52%)
validations suggested ideal performances of this model in the
labelled data. This equated the benchmark across several fre-
quency bands, for example, max accuracy of 97.37% in [18].
For generalisation, some work revealed that specific mea-
sures representing the integration across different brain re-
gions or frequency bands are correlated to pain [2]. However,
the cross-individual models typically used time-frequency
features within specific channel or frequency band, but did
not sufficiently utilise measures of integrations, such as FC
[4], [5], [19]. Although we could not improve the accuracy of
predicting pain with a single trial compared to our previous
machine learning implementation [12], the use of evidence
accumulation optimised the performance (69.75%). Ten of
thirty-six subjects produced accuracy above 80% with the
evidence accumulation, and the best subject reached 100%.
Despite the average accuracy of cross-individual prediction
was worse than the benchmark (89.45%; [5]), the large
standard deviation suggested some of them can be predicted
with ideal accuracy. The important difference between the
mean and maximum accuracy also suggests the relevance of
the effects associated with inter-individual variation.

The FC features extracted from the alpha band showed
good performances in the recognition task, which is consis-
tent with the correlation between individual pain sensitivity
and the alpha band. The accuracy in classifying the 36
subjects reached 99.63%, and the mean accuracy for each
participant subset was 99.55%. With such robustness, we
can theoretically rely on the individuals with labelled data to
predict their similar novel subject’s pain. Therefore, we im-
plemented the subject-based transfer paradigm as described
in Section II-C.2 and Fig. 1. Nevertheless, the accuracy of
the subject-based transfer test was worse than the models
trained with 35 subjects (Fig. 3a). This may be expected due
to the number of samples used in training each individual-
wise model (i.e., 1/35 of the data used for training the
respective LOO model). One strategy to capitalise on the
similar subjects to predict the pain in a novel individual may
entail increasing the number of samples within a generative
adversarial network (GAN) [20], or building an adversarial
learning model that will contrast a pain assessment network
and an individual recognition network [21].
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