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Abstract—The data heterogeneity across clients and the limited
communication resources, e.g., bandwidth and energy, are two
of the main bottlenecks for wireless federated learning (FL). To
tackle these challenges, we first devise a novel FL framework
with partial model aggregation (PMA). This approach aggregates
the lower layers of neural networks, responsible for feature
extraction, at the parameter server while keeping the upper
layers, responsible for complex pattern recognition, at clients for
personalization. The proposed PMA-FL is able to address the
data heterogeneity and reduce the transmitted information in
wireless channels. Then, we derive a convergence bound of the
framework under a non-convex loss function setting to reveal
the role of unbalanced data size in the learning performance. On
this basis, we maximize the scheduled data size to minimize the
global loss function through jointly optimize the client selection,
bandwidth allocation, computation and communication time
division policies with the assistance of Lyapunov optimization.
Our analysis reveals that the optimal time division is achieved
when the communication and computation parts of PMA-FL have
the same power. We also develop a bisection method to solve the
optimal bandwidth allocation policy and use the set expansion
algorithm to address the client scheduling policy. Compared
with the benchmark schemes, the proposed PMA-FL improves
3.13% and 11.8% absolute accuracy on two typical datasets
with heterogeneous data distribution settings, i.e., MINIST and
CIFAR-10, respectively. In addition, the proposed joint dynamic
client selection and resource management approach achieve
slightly higher accuracy than the considered benchmarks, but
they provide a satisfactory energy and time reduction: 29%
energy or 20% time reduction on the MNIST; and 25% energy
or 12.5% time reduction on the CIFAR-10.

Index Terms—Client selection, federated Learning, Lyapunov
optimization, resource management
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I. INTRODUCTION

Federated learning (FL) is a promising distributed learning
approach for protecting data privacy. In FL, edge clients
collaboratively train a model under the orchestration of a pa-
rameter server (PS), which only requires clients to upload local
models instead of local private data [2]. FL operations can be
divided into two parts, namely the communication part and the
computation part. For the communication part, the learning
performance is constrained by the limited communication
resources, e.g., bandwidth and energy. The inadequate wireless
resources hinder more clients devoted to the FL process,
thus negatively affecting the convergence speed and learning
accuracy [3]. For the computation part, the model accuracy is
degraded by non-independent and identically distributed (non-
IID) data samples. Since the PS aggregates models learned
from the different clients, the data heterogeneity presented on
different clients may lead to weak generalization ability of the
trained global model, even resulting in an unstable training
process of FL [2]. Therefore, FL needs well-designed solutions
to address these two challenges.

A. Related Works

From the communication perspective, efficient resource
management and client selection schemes can enable ad-
ditional clients to participate in the FL process and thus
enhancing learning performance. To this end, existing works
focus on resource optimization [4]–[6], client selection [7]–
[10], and alternating direction method of multipliers to re-
duce the communication rounds of training [11]. The energy-
efficient workload partitioning scheme in [4] balances the
computation between the central processing unit and graphics
processing unit in the FL system. The time-sharing-based
transmission scheme in [5] can improve the communication
efficiency of FL. The work in [6] introduced an energy-
efficient transmission and computation resource allocation
approach for energy consumption minimization of FL system
under a latency constraint. The joint client scheduling and
resource allocation policy in [7] maximizes the model accu-
racy in latency-constrained FL. The joint client selection and
resource optimization approach in [8] maximizes the seleted
client number while adhering to clients’ energy restrictions.
In [9], a gradient norm approximation method can assist the
client scheduling for boosting the training performance of
FL. A joint learning and resource allocation problem has
been investigated in [10] to minimize an FL loss function.
Although these works have devised different client selection
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and resource management policies to facilitate FL, the joint
optimization of communication and computation in FL has
been rarely explored.

From the computation perspective, the emerging per-
sonalized FL techniques are promising to tackle the data
heterogeneity-related challenges, which adapt the collabora-
tively learned global model for individual clients [12]. Existing
works toward this direction utilize various techniques to im-
plement model personalization, including multi-task learning
[13], [14], meta-learning [15], model regularization [16], and
model interpolation [17]. More specifically, it has been shown
in [13] that multi-task learning is a natural choice for building
personalized federated models. The work in [14] proposed a
personalized federated multi-task learning over wireless fading
channels and analyzed the convergence behaviour based on
the bilevel optimization method. However, the multi-task FL
heavily relies on the full participation of clients in each
round. The federated meta-learning algorithm in [15] can
improve the model accuracy of FL, which maps the meta-
training to the federated training process and meta-testing to
FL personalization. A proximal term is introduced in [16]
to limit the impact of local updates, achieving convergence
stability and improving model generalization. The adaptive
personalized FL algorithm in [17] can find the optimal com-
bination of global and local models in a communication
efficient manner. However, the above techniques require more
computation or memory resources than the conventional FL
algorithms that solely train a global model, e.g., Federated
Averaging (FedAvg) [18]. In addition to the above works, the
partial model aggregation approach in [19]–[21] effectively
address the data heterogeneity in FL, in which the learning
model is decoupled into two parts, i.e., feature extractor and
predictor parts, and clients learn a shared feature extractor and
unique local predictors. However, the approaches in [19], [20]
requires to separately train the feature extractor and predictor
in the local training process or full client participation in the
learning process. The separate training may waste computation
resources since both the feature extractor and predictor update
require complete computation on the whole learning model,
and the full client participation may restrict their practical
implementation in wireless networks due to limited wireless
resources. In addition, [20] did not analyze the convergence
behaviour, while the convergence analysis in [19] is based
on the linear model and quadratic loss functions that are
not satisfied by most practical machine learning models.
The work in [21] investigated both the separate and parallel
training schemes among feature extractor and predictor and
analyzed the convergence bound based on general machine
learning models. However, it presupposed a balanced data size
distribution among clients. It is worth mentioning that some
existing works, e.g., [22]–[24], investigated another partial
model aggregation mechanism, which allows devices to train
a portion of the global model to fit their communication and
computation capabilities. However, these approaches mainly
focused on learning a shared global model for all devices.
In practical wireless networks, the data distributions among
devices are generally heterogeneous, and the shared global
model may show lower performance on specific devices than

personalized local models. Thus, this work mainly focused on
personalized federated learning to mitigate the data hetero-
geneity issues.

B. Motivations and Contributions
Although the resource allocation and client selection

schemes in [4]–[11] effectively alleviate the communication
burden for FL in wireless networks, they are all operated
by averaging local models for global aggregation and are
hard to cope with the data heterogeneity nature of FL. In
addition, the personalized FL algorithms in [13], [15]–[17]
require more computation or memory resources than the con-
ventional weight averaging-based FL algorithms. Motivated
by this, this work aims to devise an efficient FL approach that
simultaneously tackles data heterogeneity and communication
resource limitations for FL in wireless networks. Inspired by
the success of centralized learning, different learning tasks
often share the lower layers of neural networks responsible for
feature extraction while the heterogeneity mainly focuses on
the upper layers corresponding to complex pattern recognition
[25], [26]. We propose a novel FL framework that partially
aggregates local model parameters of the clients in the learning
process to learn a shared feature extractor, while the label
predictor part are localized at clients for personalization. Note
that, unlike [19]–[21], this work trains the feature extractor
and predictor simultaneously in the local training process.
We analyze the convergence bound of the proposed method
under a general non-convex loss function, unbalanced data size
setting, and partial client participation scenario. In addition,
in view of the clients’ limited wireless resources and energy
budget, we devise a joint client selection, wireless bandwidth,
and computation resources allocation scheme to improve the
learning performance of FL in practical wireless networks. The
main contributions of this paper are summarized as follows:

• To tackle the data heterogeneity across clients in the
FL system, we devise a novel federated learning frame-
work, namely partial model aggregation-FL (PMA-FL),
in which clients only collaboratively train the lower layers
of the neural networks while the upper layers are indi-
vidually trained by each client for personalization. This
design significantly improves the learning performance
in data heterogeneity scenarios. Note that, unlike the
existing personalized FL works, e.g., [12], [13], [15]–
[17], PMA-FL does not necessitate additional computa-
tional or memory resources than conventional Federated
Learning algorithms that solely train a global model, such
as FedAvg.

• To facilitate efficient FL in practical networks, we mini-
mize the global loss function while simultaneously con-
sidering clients’ long-term energy budget, bandwidth lim-
itation, and latency constraints. However, it is intractable
to minimize the global loss due to its inexplicit form.
To this end, we theoretically analyze the convergence
behaviour of PMA-FL, finding a new objective function,
termed scheduled data sample volume, which is in an ex-
plicit form for the client selection decision. The minimum
global loss function can be obtained by maximizing this
metric.
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Fig. 1. Illustrating the federated learning system and mechanism: (a) shows
the traditional federated learning mechanism which trains a global model
(including feature extractor and predictor); and (b) presents the federated
learning mechanism with collaboratively train a feature extractor while the
predictor is trained by each client itself for personalization.

• To maximize the scheduled data sample volume, we
formulate a joint client selection, wireless bandwidth
allocation, and computation-communication-time division
optimization problem, which is a mixed-integer nonlinear
programming problem and is challenging to solve. We
first decouple the long-term stochastic problem into a
deterministic one by using the Lyapunov optimization
framework. Next, we solve the optimal solution for
time division policies through convex optimization tech-
niques, develop a bisection method to address the optimal
bandwidth allocation policy, and use the set expansion
algorithm to achieve the client scheduling policy.

• Experiments on the MNIST and CIFAR-10 datasets show
that the proposed PMA approach converges faster than
the benchmark schemes, and improves 3.13% and 11.8%
accuracy on these two datasets, respectively. Moreover,
our developed joint client scheduling and resource man-
agement scheme can reduce around 29% energy budget
or 20% time budget and is able to achieve higher accu-
racies than the considered benchmarks under the MNIST
dataset. For CIFAR-10, the proposed algorithm can obtain
slightly higher accuracies than the benchmark schemes
and reduce the 25% energy budget or 12.5% time budget.

C. Organization
The remainder of this work is organized as follows: Section

II introduces the FL system and problem formulation. In
Section III, we analyze the convergence of PMA-FL and
transform the original problem into a tractable one. Section IV
provides the solution for joint time division, client selection,
and bandwidth allocation problem. Section V evaluates the
proposed approach by simulations. Section VI concludes this
work.

II. SYSTEM MODEL

A. Federated Learning System
In this work, we consider a typical FL system consisting

of one PS and N clients indexed by N = {1, 2, · · · , N}. The

Fig. 2. The test accuracy and global loss versus the number of layers of xf
t

(i.e., k): from without sharing parameters (each client solely train the model
by using its own dataset) to sharing entire model parameters (FedAvg).

client n (n ∈ N ) holds its local dataset Dn with Dn = |Dn|
data samples. The whole dataset, D = ∪{Dn}Nn=1, is with
total number of samples D =

∑N
n=1 Dn.

Given a data sample (s, y) ∈ D, where s ∈ Rd represents
the input vector, and y ∈ R is the corresponding label. Let
α ∈ Rp be the latent feature of s. The machine learning model
parameterized by x = [xf ,xp] consists of two components: a
feature extractor s → α parameterized by xf and a predictor
α → ŷ parameterized by xp. Denote l(s, y;x) as the sample-
wise loss function. The local loss function of client n (n ∈ N )
is

Ln(xn) = Ln(x
f
n,x

p
n) =

1

Dn

∑
(s,y)∈Dn

l(s, y;xn), (1)

where xn is client n’s local model; xf
n and xp

n correspond to
the feature extractor and predictor, respectively. Accordingly,
the global loss function is

L(x1, · · · ,xN ) =
1

D

∑N

n=1
DnLn(xn). (2)

The federated learning process is done by solving the follow-
ing problem

min
(x1,···,xN )

(
L(x1, · · · ,xN ) =

1

D

∑N

n=1
DnLn(xn)

)
. (3)

Note that the formulation in (3) is widely used to characterize
the personalized FL problem [20]. The main objective of the
typical federated learning algorithms, such as the FedAvg [18],
is to find an optimal shared global model x∗ = x∗

n (∀n ∈ N )
that minimizes the global loss function L(x1, · · · ,xN ), as
shown in Fig. 1(a). However, the data distributions among
different clients in real-world FL systems are often heteroge-
neous. In this presence, the local optimal models may drift
significantly from each other, and thus solely optimizing for
the global model’s accuracy leads to a poor generalization
of each client. To tackle this issue, this work designs a
personalized FL approach for solving problem (3), in which
each client learns a specific local model to fit its local dataset
and capture the knowledge from other clients.
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B. Federated Learning with Partial Model Aggregation

The success of centralized learning in training multiple tasks
or learning multiple classes simultaneously has shown that
data often shares a global feature representation (i.e., xf ),
while the statistical heterogeneity across clients or tasks is
mainly located at the labels’ predictor (i.e., xp) [25], [26].
Thus, this work proposes PMA in the FL training process,
in which clients collaboratively learn a shared global feature
extractor xf and each client n (n ∈ N ) learns a personalized
label predictor xp

n in the training process, as shown in Fig.
1(b). For the sake of analysis, we use Xp = (xp

1 ,x
p
2 , · · · ,x

p
N )

denotes all the clients’ predictors throughout this paper. Con-
sequently, the global loss function defined in (2) can be written
as L(x1, · · · ,xN ) = L(xf ,Xp). The learning process consists
of T rounds, and each round includes the following steps:

• Client Selection: The PS determines the set of selected
clients in the current round, denoted by St. Let βn,t ∈ {0, 1}
represent the selecting indicator of client n in round t, where
βn,t=1 represents that client n is selected, βn,t=0 otherwise.
Thus, St={n : βn,t = 1,∀n ∈ N}.

• Global Feature Extractor Broadcasting: The PS broad-
casts its current global feature extractor xf

t to the clients in St.
• Local Model Training: Each client n (n ∈ St) updates

its local model after receiving the global feature extractor xf
t.

Specifically, its local feature extractor is updated as

xf
n,t+1 = xf

t − βn,tηf∇fLn(x
f
t,x

p
n,t), (4)

and the corresponding predictor updates its parameters via

xp
n,t+1 = xp

n,t − βn,tηp∇pLn(x
f
t,x

p
n,t), (5)

where ηf and ηp represent the learning rate of xf and xp,
respectively.

• Global Feature Extractor Aggregation: After finishing
the local training, all scheduled clients upload their updated
local feature extractors to the PS for aggregation. Specifically,
the PS computes the global shared feature extractor as follows:

xf
t+1 =

∑N
n=1 βn,tDnx

f
n,t+1∑N

n=1 βn,tDn

. (6)

To better illustrate the benefits of partial sharing the model
parameters, we provide an experiment on both MNIST and
CIFAR-10 datasets in Fig. 2, where the data distribution of
each client is non-IID. Specifically, each client has no more
than two classes of data and participates in the training in each
round. The MNIST dataset is trained by a 4-layers multi-layer
perceptron (MLP) model, and the CIFAR-10 dataset is trained
by a 5-layers convolutional neural network (CNN) model. The
detailed configurations are shown in the experimental setting
part in Section V. Fig. 2 shows that the MLP with only sharing
the first two layers (k = 2) in the training process obtains the
highest accuracy and the CNN achieves the highest accuracy
by aggregating the first four layers (k = 4). One interesting
result is that for both MLP and CNN, the global trained model
(k = 4 for the MLP and k = 5 for the CNN) is less accurate
than the local models of clients (k = 0 for both the MLP
and CNN) trained by their local datasets. Thus, aggregating
the feature extractor with sufficient feature extracting ability

in the training process is an efficient method to obtain better
performance in the non-IID data distribution scenarios, instead
of aggregating the entire model or solely training models on
clients’ local datasets.

C. Computation Cost
In each round t, the selected clients will update its local

model after receiving the global feature extractor, xf
t, then up-

loading the trained local feature extractor parameters, xf
n,t+1

(∀n ∈ St), to the PS for aggregation. Let fn,t denote the CPU
frequency of client n. Based on [27], the local computation
energy consumption of each client n is proportional to the
square of its CPU frequency. Employing dynamic voltage
and frequency scaling techniques [28], client n can reduce
the energy consumption of computation by reducing the CPU
frequency. Denote fn,max the maximum CPU frequency of
client n. For any given machine learning model, the number of
floating-point operations for one sample to calculate gradient
can be estimated, denoted by G [29]. Let ζn denote the number
of CPU cycles required to process one floating-point operation,
which depends on the CPU. Thus, the required CPU cycles
to process one data sample at client n is represented by
Cn = ζnG. Given the computation time restriction, TL

n,t, the
most energy efficient CPU frequency is fn,t =

τDnCn

TL
n,t

, where
τ is the the number of local iterations. The corresponding
energy consumption of client n to perform local training is

EL
n,t = κτDnCnf

2
n,t =

κτ3D3
nC

3
n

(TL
n,t)

2
, (7)

where κ denotes the clients’ energy coefficient that hinges
on chip architecture. Since the CPU frequency of client n is
restricted by fn,max, the computation time should satisfy

TL
n,t ≥

τDnCn

fn,max
. (8)

It is worth noting that, we have ignored the global feature
extractor aggregation cost, because the PS usually has strong
computation capability with negligible aggregation delay.

D. Communication Cost
Similar to [4], [6]–[8], this work uses the frequency-division

multiple access (FDMA) techniques with B Hz bandwidth
for clients to upload local feature extractors xf

n,t. Let θn,t
(0 ≤ θn,t ≤ 1) represent the ratio of bandwidth allocated
to client n and pn,t denote the transmit power of client n
(n ∈ N ). We assume that the channel gain, hn,t, between
client n and the PS remains unchanged within one round
but varies independently and identically over rounds [6]–[8].
Consequently, the achievable uplink rate for client n in round
t is rn,t = θn,tB log(1 +

pn,thn,t

θn,tBN0
), where N0 is the power

density of noise. Denote Q by the number of parameters of
feature extractor (xf

n,t,∀n ∈ N ,∀t), where each parameter
is quantized by q bits. Given the maximum communication
time TU

n,t, the most energy efficient transmission method is
rn,t =

Qq
TU
n,t

[30]. Thus, the transmit power is

pn,t =
θn,tBN0

hn,t

(
2

Qq

θn,tBTU
n,t − 1

)
. (9)
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The corresponding energy consumption is EU
n,t = pn,tT

U
n,t.

Thus, the total energy consumption of client n in round t for
both computation and communication is En,t = EL

n,t + EU
n,t.

Let pn,max denote the maximum transmit power of client n,
then 0 ≤ pn,t ≤ pn,max. Thus, the communication time of
client n should satisfy

TU
n,t ≥

Qq

θn,tB log
(
1 +

pn,maxhn,t

θn,tBN0

) . (10)

Similar to many existing works, e.g., [5]–[9], we ignore the
global feature extractor broadcasting cost and mainly focus on
the performance bottleneck of the battery and communication-
constrained edge clients because the PS usually supplied by
the grid is energy-sufficient. Moreover, the whole bandwidth
can be used for broadcasting and the transmit power of the
PS is usually large, the transmission delay is negligible. In
addition, our proposed solution in Section IV can be directly
generalized to the case of considering broadcasting delay
by simply subtracting broadcasting delay from the latency
constraint Tmax in problem (11), since the global broadcasting
delay is a constant and uniform for the selected clients in each
round.

E. Problem Formulation

The objective of this work is to minimize the expected
global loss after T rounds of training, i.e., E[L(xf

T ,X
p
T )],

where xf
T is the global feature extractor after T rounds of

training and Xp
T = (xp

1,T , · · · ,x
p
N,T ) is the label predictors of

all clients. The expectation E[L(xf
T ,X

p
T ] is taken over the ran-

domness of channel noise and client scheduling in each round.
To this end, we jointly optimize the client scheduling, band-
width allocation, computation time, and communication time
allocation policy. Denote θt = (θ1,t, θ2,t, · · · , θN,t) as the pro-
portions of the bandwidth for different clients in round t. Let
T L
t = (TL

1,t, T
L
2,t, · · · , TL

N,t) and TU
t = (TU

1,t, T
U
2,t, · · · , TU

N,t)
denote the computation time and communication time for all
clients in round t, respectively. We formulate the problem as
follows:

P : min
{St,θt,TL

t ,T U
t ,}T−1

t=0

E
[
L(xf

T ,X
p
T )

]
(11)

s. t. (8), (10), (11a)∑T−1

t=0
En,t ≤En,∀n ∈ N , (11b)

βn,t ∈ {0, 1} ,∀n ∈ N ,∀t, (11c)∑N

n=1
θn,t ≤ 1,∀t, (11d)

0 ≤ θn,t ≤ 1,∀n ∈ N ,∀t, (11e)

TL
n,t + TU

n,t ≤ Tmax,∀n ∈ N ,∀t. (11f)

In problem P , (11a) restricts the computation and communica-
tion time. (11b) indicates that for each client, the total energy
consumption for both computation and communication over
T global rounds cannot exceed its given budget. (11c) is the
client scheduling policy restriction. (11d) and (11e) impose
restrictions on the wireless bandwidth resource allocated to
all clients and each client. (11f) stipulates that the completion

time for the participating clients in one round cannot exceed
its maximum allowable delay Tmax.

Solving problem P confronts two main challenges as fol-
lows: 1) Inexplicit form of the objective function: Since
the evolutions of the feature extractor xf

t and predictors xp
n,t

are complex in the training process, it is intractable to solve
the close-form expression of E

[
F (xf

T ,X
p
T )

]
. 2) Unknown

future information: The optimal solution of P requires exact
channel state and clients’ energy status information in the
entire learning process at the beginning of FL, which is
impractical in real-world systems. To tackle these challenges,
we first analyze the convergence bound of the considered
PMA-FL algorithm and transform problem P into optimizing
the convergence bound in Section III.

III. CONVERGENCE ANALYSIS AND PROBLEM
TRANSFORMATION

This section investigates the convergence behaviour of
PMA-FL, which shows that the per-round scheduled data
volume is a key factor in the learning performance of PMA-
FL. Based on this, we introduce a new objective function, i.e.,
the scheduled data volumes, to instruct the design of client
scheduling, bandwidth allocation, computation time, and com-
munication time allocation. Then, we transform the inexplicit
optimization problem P into maximizing this new objective
function for global loss minimization. In addition, to address
the challenge brought by the long-term energy constraint, we
further transform the problem into a deterministic problem in
each round with the assistance of the Lyapunov optimization
framework.

A. Convergence Anaysis

In this subsection, we analyze the convergence bound of
PMA-FL. To this end, we introduce some assumptions on the
loss functions L(·) as follows:
Assumption 1. For all loss function Ln(x

f ,xp
n), there exist

constants ℓf , ℓp, ℓfp, and ℓpf such that:
• ∇fLn(x

f ,xp
n) is ℓf -Lipschitz continuous with xf and ℓfp-

Lipschitz continuous with xp
n, that is,∥∥∇fLn(x̄

f ,xp
n)−∇fLn(x̂

f ,xp
n)
∥∥ ≤ ℓf

∥∥x̄f − x̂f
∥∥ ,

(12)

and∥∥∇fLn(x
f , x̄p

n)−∇fLn(x
f , x̂p

n)
∥∥ ≤ ℓfp ∥x̄p

n − x̂p
n∥ .

(13)

• ∇pLn(x
f ,xp

n) is ℓp-Lipschitz continuous with xp
n and

ℓpf -Lipschitz continuous with xf .
Assumption 2. There exist δ ≥ 0 and ρ ≥ 0, for all xf and
V , we have∥∥∇fLn(x

f ,xp
n)
∥∥2 ≤ δ2 + ρ2

∥∥∇fL(xf ,Xp)
∥∥2 . (14)

Assumption 1 is not stringent, which is satisfied by most
deep neural networks [31]–[33]. Assumption 2 is commonly
used for the FL convergence analysis, e.g., [10], [15]. We first
provide a key lemma in the following, proved in Appendix A.
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Lemma 1. Let Assumption 1 holds, we have

L(xf
t+1,X

p
t+1)− L(xf

t,X
p
t )

≤
〈
∇fL(xf

t,X
p
t ),x

f
t+1 − xf

t

〉
+

1 + χ

2
ℓf
∥∥xf

t+1 − xf
t

∥∥2
+

1

D

∑N

n=1
Dn

( 〈
∇pLn(x

f
t,x

p
n,t),x

p
n,t+1 − xp

n,t

〉
+

1 + χ

2
ℓp
∥∥xp

n,t+1 − xp
n,t

∥∥2), (15)

where χ = max {ℓfp, ℓpf} /
√
ℓfℓp.

Based on Lemma 1, the one-round global loss reduction
bound is derived in Appendix B, which is summarized in the
following Lemma.

Lemma 2. Let the above two assumptions hold, and the
learning rate satisfy ηf ≤ 1

(χ+1)ℓf
, ηp ≤ 2

(χ+1)ℓp
, we have

E
[
L
(
xf
t+1,X

p
t+1

)
− L(xf

t,X
p
t )
]

≤ 1

2
ηf

( 4

D2
(D −

N∑
n=1

βn,tDn)
2ρ2 − 1

)
E
∥∥∇fL(xf

t,X
p
t )
∥∥2

+ 2ηf

(
D −

∑N
n=1 βn,tDn

)2

δ2

D2
. (16)

According to Lemma 2, the number of data samples sched-
uled in each round, i.e.,

∑N
n=1 βn,tDn, is the main factor that

affects the learning performance. In the following theorem, we
derive the T -rounds convergence bound of PMA-FL, proved
in Appendix C.

Theorem 1. Let Assumption 1 and Assumption 2 hold. The
learning rate satisfy ηf ≤ 1

(χ+1)ℓf
, ηp ≤ 2

(χ+1)ℓp
, the

convergence bound in the T -th global round is given by

E
[
L(xf

T ,X
p
T )− L(xf,∗,Xp,∗)

]
≤

(
E
[
L(xf

0,X
p
0 )− L(xf,∗,Xp,∗)

] )∏T−1

t=0
At

+
∑T−1

t=0

2ηfδ
2

D2

(
D −

∑N

n=1
βn,tDn

)2 ∏T−1

j=t+1
Aj , (17)

where At = 1 + ηfℓf(
4
D2 (D −

∑N
n=1 βn,tDn)

2
ρ2 − 1).

From Theorem 1, we can conclude when t trends to
infinity with 0 < ρ < 1

2 (i.e., 0 < At < 1): 1) The FL
training converges since

∏T−1
t=0 At turns to 0 as T increases,

resulting in the first term in the right-hand side (RHS) of
(17) converges to zero and the second term in the RHS
of (17) approaches to be fixed. 2) A gap, i.e., the second
term in the RHS of (17), exists between L(xf

T ,X
p
T ) and

L(xf,∗,Xp,∗). Particularly, At and the second term in the RHS
of (17) affect the convergence speed and learning accuracy,
respectively. A small At induces a fast learning speed, and a
small

∑T−1
t=0

2ηfδ
2

D2 (D−
∑N

n=1 βn,tDn)
2
∏T−1

j=t+1 Aj results in
a small loss function and high learning accuracy. Increasing∑N

n=1 βn,tDn in each round helps
∏T−1

t=0 At approach 0 faster
and decreases the second term in the RHS of (17). These
observations motivate us to maximize

∑N
n=1 βn,tDn in each

round to improve the learning performance of PMA-FL. Note
that, Theorem 1 reveals the impact of unbalanced data on the

convergence performance of PMA-FL and builds the bridge
between the scheduled data samples maximization and the
global loss minimization from a theoretical perspective.

B. Problem Transformation

Motivated by Theorem 1, we maximize the overall sched-
uled data size, i.e.,

∑T−1
t=0

∑N
n=1 βn,tDn, for the global loss

function minimization. Thus, similar to [9], [10], we transform
problem P into maximizing

∑T−1
t=0

∑N
n=1 βn,tDn as follows:

P1 : max
{St,TL

t ,T U
t ,θt}T−1

t=0

∑T−1

t=0

∑N

n=1
βn,tDn (18)

s. t. (8), (10), (11b), (11c), (11d), (11e), (11f).

Directly solving problem P1 requires exact channel state
and clients’ energy status information of the entire learning
process at the start of FL, which is impractical. To enable
online dynamic scheduling for clients only based on the
current-round information of clients, we construct a virtual
queue qn,t for each client n to indicate the gap between the
cumulative energy consumption till round t and the budget,
evolving according to

qn,t+1 = max
{
qn,t + βn,tEn,t −

En
T

, 0
}
, (19)

with an initial value qn,0 = 0 for all clients. According to
the virtual queues of clients, the long-term energy constraint
(11b) and the objective function (18) can be transformed
into Lyapunov drift-plus-penalty ratio function based on the
Lyapunov drift-plus-penalty algorithm [34]. Then, problem
P1 is transformed into minimizing the drift-plus-penalty ratio
function as follows:

P2 : min
St,TL

t ,T U
t ,θt

− V
N∑

n=1

βn,tDn +

N∑
n=1

qn,tβn,tEn,t (20)

s. t. (8), (10), (11c), (11d), (11e), (11f).

where V ≥ 0 is an adjustable weight parameter to balance
scheduled data size and energy consumption. A large V
indicates that the optimization objective emphasizes more on
the scheduled data size for improving the learning performance
and less on energy consumption minimization, and vice versa.

IV. ENERGY-EFFICIENT DYNAMIC CLIENT SELECTION
AND RESOURCE MANAGEMENT

In this section, we solve the deterministic combinatorial
problems P2 in each communication round. Note that the
developed client selection and resource allocation solutions
in this section can be readily generalized to other FL systems,
such as the case of aggregating the entire model, by replacing
the objective function of P2 and the communication model
detailed in Section II-D with their respective convergence
bounds and communication cost models. We first exploit the
dependences among St, θt, T L

t , and TU
t in problem P2 and

transform it into an equivalent problem that joint optimizing
St, θt, and T L

t . Then we decompose it into three sub-problems
and deploy an alternative optimization technique to obtain its
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optimal solution. For the convenience of analysis, we rewrite
the local feature extractor uploading energy consumption as

EU
n,t = pn,tT

U
n,t =

θn,tBN0T
U
n,t

hn,t

(
2

Qq

θn,tBTU
n,t − 1

)
, (21)

which is a non-increasing function with respect to TU
n,t.

Thus, by taking into account the constraint (11f), the optimal
communication time satisfies TU

n,t = Tmax − TL
n,t. Based on

this, we can simplify problem P2 as the following equivalent
problem,

P3 : min
{St,θt,TL

t }
−V

N∑
n=1

βn,tDn +

N∑
n=1

qn,tβn,tEn,t (22)

s. t. (11c), (11d), (11e),
τDnCn

fn,max
≤ TL

n,t ≤ Tmax −
Qq

rmax
n,t (θn,t)

, (22a)

where

rmax
n,t (θn,t) = θn,tB log

(
1 +

pn,maxhn,t

θn,tBN0

)
. (23)

However, problem P3 is a mixed integer non-linear program-
ming, which is still difficult to solve. Below we decompose it
into three sub-problems and solve them one by one.

A. Local Training Time Allocation

For fixed client scheduling policy St and bandwidth allo-
cation strategy θt, we can decompose the computation time
allocation problem as follows,

P4 : min
TL

t

∑
n∈St

qn,tEn,t (24)

s. t. (22a).

Problem P4 is convex, its optimal solution is summarized in
Lemma 3, proved in Appendix D.

Lemma 3. Problem P4 is a convex problem and its optimal
solution is given as

TL,∗
n,t =


τDnCn

fn,max
, TL,0

n,t ≤ τDnCn

fn,max
,

Tmax− Qq
rmax
n,t (θn,t)

, TL,0
n,t ≥ Tmax− Qq

rmax
n,t (θn,t)

,

TL,0
n,t , otherwise.

(25)

where TL,0
n,t satisfies the equality ∂En,t

∂TL,0
n,t

= 0.

In fact, constraint (22a) imposes restrictions on the maxi-
mum frequency and transmit power and is usually inactive in
practical system design because this usually can be satisfied
by modifying the minimum required latency constraint, Tmax,
and bandwidth B. Thus, we have the following remark.

Remark 1. In general, the optimal computation time satisfy
TL,∗
n,t = TL,0

n,t , which is equivalent to
∂EL

n,t

∂TL
n,t

=
∂EU

n,t

∂TU
n

. In
other words, the computation time allocation policy is optimal
when the power of local training equals that of wireless
communication.

B. Wireless Bandwidth Allocation

For any given computation time allocation decision T L
t and

client scheduling policy St, the bandwidth allocation problem
can be separated from problem P3 as follows:

P5 : min
θt

∑
n∈St

qn,tEn,t (26)

s. t. (11d), (11e),

Qq/(Tmax − TL
n,t) ≤ rmax

n,t (θn,t), (26a)

For the sake of analysis, we introduce an auxiliary function
for each client n (n ∈ N ) as follows:

gn(θn,t) = exp

(
Qq ln 2

θn,tB(Tmax − TL
n,t)

)
− 1. (27)

By removing the constant terms in the objective function (26),
the objective function of bandwidth allocation problem can be
written as

h(θt) =
∑

n∈St

θn,t
N0Bqn,t(Tmax − TL

n,t)

hn,t
gn(θn,t). (28)

Consequently, we reformulate the wireless bandwidth alloca-
tion problem as follows:

P̂5 : min
θt

h(θt) (29)

s. t. (11d), (11e), (26a).

Problem P̂5 is a standard convex optimization problem, its
proof is similar to that for Lemma 3 and thus omitted for
brevity. Applying Karush-Kuhn-Tucker condition, the optimal
solution for θt satisfies

∂h(θt)

∂θn,t
= −λ∗,∀n ∈ St, (30)

where λ∗ is the optimal Lagrange multiply and
∑

n∈St
θn,t =

1. Thus, for each client n, we have

gk(θn,t) + θn,tg
′
k(θn,t) =

−λ∗hn,t

qn,tN0B(Tmax − TL
n,t)

, (31)

its inverse function is

θn,t(λ
∗) =

Qq ln 2

B(Tmax−TL
n,t)

(
F(

λ∗hn,t

qn,tN0B(Tmax−TL
n,t)e

− 1
e )+1

) ,
(32)

where F refers to the principal branch of Lambert function,
which is the solution of F(a)eF(a) = a.

In (32), there still exists an unknown variable λ∗. The value
of λ∗ satisfies

∑N
n=1 θn,t(λ

∗) = 1. Since the expression of
θn,t(λ

∗) is complicated, it is difficult to solve the optimal
λ∗. Below we propose a bisection search method to solve∑N

n=1 θn,t(λ
∗) = 1. To proceed, we have the following

Proposition.

Proposition 1. θn,t(λ) is a monotonically decreasing function
with respect to λ.

Proof. Since the Lagrange multiply λ > 0, we have
λhn,t

eqn,tN0B(Tmax−TL
n,t)

− 1
e > − 1

e . Since F(a) is positively

correlated to a when a ≥ −1
e , θn,t(λ) is monotonically
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decreasing with λ.

Based on Proposition 1, the bisection search method is
employed to solve the equation. In the following, we derive the
bisection search upper and lower bound on λ. Since λ > 0, the
lower bound of λ is λLB = 0. For deriving the upper bound,
we have maxn∈St{θn,t(λ)} ≥ 1/|St|, thus

F(
λhn,t

qn,tN0B(Tmax − TL
n,t)e

− 1

e
) ≤ |St|Qq ln 2

B(Tmax − TL
n,t)

− 1.

(33)

Let φk = |St|Qq ln 2

B(Tmax−TL
n,t)

, from the definition of Lambert F
function, we have

λUB = max
n∈St

{qn,tN0B(Tmax − TL
n,t) ((φk − 1)eφk + 1)

hn,t

}
.

(34)

According to λLB and λUB, we can find the optimal Lagrange
multiply, λ∗, through dichotomy method. Furthermore, we can
find the optimal bandwidth allocation policy θt based on (32).
Remark 2. According to (30), when the bandwidth allocation
policy is optimal, all clients’ energy consumption-bandwidth
rates (i.e., ∂h(θt)

∂θn,t
) are equal. This actual achieves the energy

consumption balance between clients. Moreover, similar to
the proof of Proposition 1, it can be proved that the optimal
bandwidth form in (32) is monotonically decreasing with hn,t

and increasing with qn,t. Thus, more bandwidth should be
allocated to the clients with weaker channels (smaller hn,t)
and less remaining energy budgets (larger qn,t).

C. Client Selection Policy

Until now, for any given St, the computation time or
wireless bandwidth allocation policies can be solved if one of
them is fixed. Below we solve the joint computation time and
wireless bandwidth allocation policy. For clarity, we formulate
the joint computation time and bandwidth allocation problem
under given client scheduling decision St as follows:

P6 : min
{θt,TL

t }

∑
n∈St

qn,tEn,t (35)

s. t. (11d), (11e), (22a),

which is a combination problem of P4 and P5. Building on the
preceding results, the computation time allocation problem,
P4, and the bandwidth allocation problem, P5, are both
convex optimization problems, problem P6 is also a convex
optimization problem. Thus, we solve the joint computation
time and wireless bandwidth allocation policies by using the
block-coordinate descent method [35], which iterates between
problem P4 and problem P5. Each iteration consists of two
steps: (1) solving the optimal solution of problem P5 for given
T L
t ; (2) solving the computation time allocation policy T L

t

based on the obtained bandwidth allocation solution θt. The
two steps are iterated until convergence. We summarize the
details on joint optimization of computation time and wireless
bandwidth in Algorithm 1. Note that the block-coordinate
descent method has been proven to be convergent in solving
the convex optimization problem [36]. Thus, the convergence

of Algorithm 1 to solve the convex optimization problem P6

can be guaranteed. Based on the complexity analysis results
in [35], the time complexity of Algorithm 1 is O(2N3.5).

Algorithm 1 Computation Time and Bandwidth Allocation

1: Input St, the computation time as T̃L
t , and bandwidth allocation

policy θt, the tolerant error Υ > 0

2: Calculate the objective function value (20), denote as B0

3: repeat
4: Calculate the upper limit of the Lagrange multiply λUB based

on (34), and let λLB = 0

5: Utilize the bisection search method to solve the optimal
bandwidth allocation policy θt

6: Solve the computation time allocation policy based on the
obtained θt by using (25), update T̃L

t

7: Calculate the objective function value (35) of St by substitut-
ing the obtained T̃L

t and θt, denote as B1

8: ∆ = B0 − B1, update B0 = B1

9: until ∆ ≤ Υ

10: return The computation time allocation policy T̃L
t and band-

width allocation policy θt

Through the above analysis, we can solve the optimal value
of the objective function in (22) for any given client scheduling
decision St. An intuitive approach for finding the client
selection solution is to solve the objective function value of
all the possible client scheduling decisions first and then select
the one with the minimum objective function value. However,
this method has exponential time complexity O(N3.5×2N+1)
since there are total

∑N
l=0 C

l
N = 2N possible client scheduling

decisions. To tackle this challenge, we have the following
designs.

Based on (22), it is desired to schedule clients with small
qn,t and En,t. The small En,t can be achieved by strong
channels or/and high computation efficiencies. To identify such
clients, we first perform equal bandwidth allocation over all
clients and then evaluate the resulting energy consumption
of each client Ēn,t. Specifically, each client n is allocated
the same portion, θn,t = 1

N , of the total bandwidth B,
and then solve problem P4 to obtain the computation time
allocation policy T L

t . Then, by substituting θn,t =
1
N and T L

t

into the (7) and (21), the estimated energy consumption is
Ēn,t = EU

n,t + EL
n,t.

Based on Ēn,t, we sort Cn,t = qn,tĒn,t in the ascending
order, and then use the set expansion algorithm [8] to find
the client selection decision. Firstly, the clients with qn,t = 0
are all added into client set ∆, denote this client set by
∆0. Next, we gradually add the clients with qn,t > 0 into
∆ based on the ascending order of Cn,t. For each possible
client scheduling set ∆, we use Algorithm 1 to compute
the computation time and bandwidth allocation decisions.
Let R∗(∆) = (θ∗(∆), T ∗(∆)) denote the time and wireless
bandwidth decision and Z(∆) represent the corresponding
objective function value of ∆, respectively. Let G denote the
set encompassing all possible client scheduling sets ∆.
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It is worth mentioning that Z(∆0) = −V
∑

k∈∆0
Dn due to

qn,t = 0 for all k ∈ ∆0. As the energy consumption of users
in ∆0 has no impact on the objective function, we allocate
the minimum required bandwidth to these clients and conserve
bandwidth for users belonging to (∆−∆0). Moreover, we add
the users with qn,t > 0 one by one into ∆ and solve the R∗(∆)
and Z(∆). For ∆, if its optimal computation time and wireless
bandwidth allocation policy results in −VDn + qn,tEn,t > 0
for the last added client n, we stop adding clients into ∆
and remove the last added client. Then, the client scheduling
decision is the set ∆ ∈ G with minimal objective function
value, i.e., S∗

t = argmin∆∈G Z(∆). The computation time
and optimal bandwidth allocation policy correspond to T ∗

t (S
∗
t )

and θ∗t (S
∗
t ). The details involved in client scheduling are sum-

marized in Algorithm 2, which obtains the client scheduling
solution of problem P1 by solving at most N times convex
problem P6. Thus, the time complexity of Algorithm 2 is
O(2N4.5) , which is smaller than O(N3.5 × 2N+1) when
N > 1.

Algorithm 2 Client Selection Algorithm
1: Input qn,t (n ∈ N ), and V
2: Sort Cn,t in ascending order.
3: Set ∆0 = {n : qn,t = 0}, ∆ = ∆0 and G = {∆0}
4: for k = |∆0|+1, · · · ,K do
5: Update ∆ = ∆ ∪ {n}
6: Apply Algorithm 1 for allocate bandwidth and computation

time, i.e., R(∆) = (T L
t ,θt).

7: if −VDn + qn,tEn,t ≤ 0 then
8: G = G ∪∆
9: else

10: Quit the circulation
11: end if
12: end for
13: Compute the client selection policy as S∗

t = argmin∆∈G Z(∆)
14: return The optimal client selection decision S∗

t , computation
time T L

t and wireless bandwidth allocation θt

TABLE I
SIMULATION SETTINGS

Parameter Value Parameter Value
N 100 B 10MHz
fn,max 1GHz N0 -174dBm/Hz
v 2 pn,max 30mW
κ 5× 10−27 ηf , ηp 0.05
τ 5 q 32
h0 -30dB ζn 4
Q(MLP) 533248 Cn(MLP) 137,586
Ēn(MLP) 0.1J Tmax(MLP) 2s
Q(CNN) 307192 Cn(CNN) 7051728.5
Ēn(CNN) 2J Tmax(CNN) 14s
Q(VGG-11) 9220480 Cn(VGG-11) 85858649
Ēn(VGG-11) 30J Tmax(VGG-11) 200s

V. NUMERICAL RESULTS

A. Experimental Setting

We consider that N clients are randomly distributed within
a 500m × 500m single cell, and the PS is located in the
cell’s centre. According to the real measurement result in [27],

we set the energy coefficient κ = 5 × 10−27. The channel
gain is modeled as hn,t = h0ρn,td

−v
n [37], where h0 is the

path loss constant; dn is the distance from client n to the
PS; ρn,t ∼ Exp(1) is the small-scale fading channel gain; v
is the path loss factor. We evaluate the proposed algorithm
for image classification tasks using MNIST, CIFAR-10, and
CIFAR-100 datasets. Similar to [9], [32], [33], we sort the
data samples by their labels and distribute a disjoint subset
of data with two labels to each client, i.e., each client has at
most two classes of data. Similar to [9], [10], for the MNIST
dataset, we train a four-layer MLP consisting of 784, 512,
256, 64, and 10 neurons. In our proposed PMA-FL, clients
only share parameters of the first two layers, which accounts
for 96.7% of the entire model parameters. For CIFAR-10, we
train a CNN consisting of two 5× 5 convolution layers, each
of which has 64 channels and a 2 × 2 max-pooling layer.
Then, three fully connected layers have 120, 64, and 10 units,
respectively [9]. The PMA-FL only share the first 4 layers
in the training process, which has 99.7% of the total number
of model parameters. For CIFAR-100, we train a VGG-11
model [38]. Note that the original VGG-11 model has 1000
output units. To adapt VGG-11 to the CIFAR-100 dataset, we
replace its full-connected layers with the following structure:
a 512-unit hidden layer, a 256-unit hidden layer, and a 100-
unit output layer. The PMA-FL only share the first 8 layers in
the training process, accounting for 77% of the entire model
parameters. The cross entropy is adopted as the loss function
for the above illustrated three models. In the simulations, we
use Ēn denote the energy budget per round of client n, and
the total energy budget of client n is En = T Ēn. The default
experiment settings are summarized in Table I unless specified
otherwise.

Note that, similar to many existing personalized FL works,
e.g., [15], [19], [32], the test accuracy and loss value reported
in the simulations is the average accuracy and average loss of
all clients’ model on their local datasets, respectively.

B. Performance of Partial Model Parameters Aggregation

To verify the advantages of the proposed PMA-FL algo-
rithm, we compare its performance with three benchmarks. 1)
Regularized FL [16]: Regularized FL uses a proximal term
to regularize each local loss function for tackling the data
heterogeneity. 2) FedAvg [18]: The selected clients upload
the entire model to the PS for aggregation in each round. 3)
FedRep [19]: In each round, the selected clients sequentially
train the feature extractor and predictor. Then, the selected
clients upload their feature extractors for aggregation. Actu-
ally, Regularized FL and FedAvg requires more computation
and bandwidth resources than the proposed approach. Note
that this subsection mainly evaluates the effectiveness of
the proposed partial model aggregation approach. Therefore,
energy and bandwidth limits are ignored in this subsection.
The overall effectiveness of the proposed joint learning and
wireless network design will be evaluated in Section V-C by
considering all the energy and wireless resource limitations. In
addition, we evaluate the fairness among clients through the
variance of test accuracy of clients. Specifically, let ACCn
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Fig. 3. Comparison between the proposed PMA approach and benchmarks on MNIST dataset: (a) test accuracy; (b) loss value; (c) variance of test accuracy.
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Fig. 4. Comparison between the proposed PMA approach and benchmarks on CIFAR-10 dataset: (a) test accuracy; (b) loss value; (c) variance of test accuracy.
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Fig. 5. Comparison between the proposed PMA approach and benchmarks on CIFAR-100 dataset: (a) test accuracy; (b) loss value; (c) variance of test
accuracy.

denote the test accuracy of client n’s local model on its test
dataset, and then the variance of test accuracy is computed as
1
N

∑N
n=1(ACCn − ACC)2, where ACC = 1

N

∑N
n=1 ACCn

is the average test accuracy of clients.

Fig. 3 compares the performance of the proposed approach
with two benchmarks on the MNIST dataset. It is observed that
the proposed approach outperforms the benchmarks. Specifi-
cally, the proposed approach boosts 3.13% when |St| = 10
and 0.79% accuracy when |St| = 50 compared with the bench-
marks. Moreover, the proposed approach converges faster than
the benchmarks. Note that the convergence point in 3(a) and
3(b) are defined as the first point that the variation of test
accuracy and loss value is less than 10−6, respectively. Ad-
ditionally, compared with the three benchmarks, the proposed

approach is less sensitive to the fraction of participating clients
in each round. After 40 global rounds, the proposed approach
with 10 clients participating in each round can obtain a similar
performance as 50 clients participating in each round. The
client participating ratio only affects the convergence speed
and almost without reducing the final accuracy. However,
the benchmarks are sensitive for the fraction of participating
clients in each round, especially the training processes of Reg-
ularized FL and FedAvg are unstable when the participating
ratio of clients is small, like 10 clients. In addition, Fig. 3(c)
demonstrates that the proposed approach achieves the lowest
variance in test accuracy among clients than the benchmarks.
Thus, the proposed approach promotes fairness among clients
more effectively than the benchmarks.
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Fig. 4 compares the proposed approach to the benchmarks
on CIFAR-10, drawing a similar conclusion with the exper-
iments on the MNIST dataset. In particular, the proposed
approach obtained a more distinct performance improvement
on this more complicated dataset, boosting 11.8% and 3.3%
accuracy than the benchmark schemes when |St| = 10 and
|St| = 50, respectively. Fig. 4(c) shows that the proposed
approach achieves the lowest variance in test accuracy among
clients compared to the benchmarks. In addition, Fig. 5 evalu-
ates the performance of the proposed approach on the CIFAR-
100 dataset. Compared to the benchmarks, it is observed that
the proposed approach improves the test accuracy by 9.5%
and 5.2% when |St| = 10 and |St| = 50, respectively. It
is also observed that the proposed approach has the lowest
variance in test accuracy among clients, indicating that it is
more beneficial for promoting fair learning among clients than
the benchmarks.

C. Performance of Energy-Efficient Client Selection Algorithm

This subsection evaluates the proposed dynamic client
scheduling approach through comparing it with the following
client scheduling schemes. For fairness, we use these bench-
mark schemes to schedule clients for the proposed PMA-FL
approach instead of their original FedAvg approach. Each
curve is averaged over 50 runs in this subsection, respec-
tively. 1) OCEAN [8]: In OCEAN, the spectral bandwidth is
orthogonally allocated to the selected clients in each round
to maximize the scheduled data samples, regardless of the
heterogeneous local training and communication time among
clients. 2) Random scheduling without energy limitation (RS-
WEL): Clients do not have energy limitation while the band-
width and delay constraints exist. In each round, RS-WEL
incrementally adds clients (randomly selected from all clients
without replacement) into the scheduling set until violating the
bandwidth constraint. 3) Equal bandwidth allocation policy
(EBA) [10]: In each round, the client selection policy is
determined by the proposed approach, while the bandwidth
is equally allocated to each selected client. 4) Myopic client
selection policy (Myopic) [7]: For each client n, the available
energy in round t is given by the remaining energy divided by
the remaining number of rounds, i.e., En−

∑t−1
i=0 βn,iEn,i

T−t−1 .
Fig. 6 compares the performance of the proposed approach

and the benchmarks under different clients’ energy budgets,
demonstrating the advantages of the joint optimization of
client selection, bandwidth allocation, communication time,
and computation time allocation policies. From the simulation
results on the MNIST dataset in Fig. 6(a), it is observed that
the proposed outperforms the benchmarks under the same
clients’ energy budgets. Specifically, given the same energy
budget, i.e., Ēn = 0.14J, the proposed algorithm achieves
3.28% test accuracy improvement compared to the OCEAN
algorithm and higher accuracy improvement than the EBA and
Myopic scheme. Moreover, the proposed algorithm is able to
obtain better performance than the OCEAN algorithm with
a smaller energy budget. Specifically, the proposed algorithm
with energy budget Ēn = 0.1J (71% of the energy budget
of OCEAN) remains improving 2.59% accuracy compared

to the OCEAN algorithm with energy budget Ēn = 0.14J.
That is, the proposed approach is able to obtain better
learning performance than the benchmarks while saving 29%
energy consumption. Compared with the RS-WEL scheme
with unlimited energy budget, the proposed algorithm slightly
improves accuracy when the energy budget is Ēn = 0.14J.

Similar evaluations on the CIFAR-10 and CIFAR-100
datasets are shown in Fig. 6(b) and Fig. 6(c), respectively.
For the simulation results on the CIFAR-10 dataset in Fig.
6(b), given energy budget Ēn = 4J for both the proposed
algorithm and the benchmark algorithms, the proposed al-
gorithm achieves around a 1.85% accuracy boosts compared
to the OCEAN algorithm and more notable improvements
than the EBA and Myopic schemes. Moreover, the proposed
algorithm under 75% energy budget (Ēn = 3J) outperforms
the OCEAN algorithm with an energy budget Ēn = 4J,
obtaining 1.25% accuracy gain. Additionally, the proposed
algorithm with Ēn = 2J obtains a similar performance as the
OCEAN algorithm with Ēn = 4J and the RS-WEL scheme.
For the results on the CIFAR-100 dataset in Fig. 6(c), when
clients’ energy budgets are set to Ēn = 35J, the proposed
approach boosts at least 3.98% accuracy compared to the
benchmarks. In addition, the proposed approach with Ēn = 30J
still outperforms than the benchmarks with Ēn = 35J. The
performance gain mainly comes from the joint optimization
for both computation and wireless resources. In our proposed
algorithm, the participating clients can get a trade-off between
computation and communication energy consumption, achiev-
ing the most energy-efficient learning process. Specifically,
the clients with poor channel conditions can boost their CPU
frequency for reducing computation time and thus reserve
more time for wireless communications. In contrast, clients
with good channel conditions can lower the CPU frequency to
balance computation and communication energy consumption.

We compare our proposed client selection algorithm with
the benchmarks under different latency constraints in Fig.
7. Clearly, as the latency constraint, Tmax, increases, the
learning performance is improved. This is because a larger
Tmax helps save the computation and communication energy
and thus more data samples are able to scheduled in each
round. From the comparison results on MNIST dataset in Fig.
7(a), under the same latency constraints, i.e., Tmax = 2.5s, the
proposed algorithm boosts 3.45% test accuracy compared with
the OCEAN algorithm. Using the RS-WEL as the baseline,
the proposed algorithm obtains a minor accuracy gain. One
interesting phenomenon is that the proposed algorithm outper-
forms the OCEAN algorithm with a stricter delay restriction.
Specifically, given time budget Tmax = 2s for the proposed
algorithm, it obtains 2.3% accuracy gain than the OCEAN
algorithm with Tmax = 2.5s. In other words, the proposed
algorithm is able to obtain a better accuracy with a 20% time
budget reduction.

Fig. 7(b) shows the impact of time budget on CIFAR-10
dataset, obtaining a similar conclusion as MNIST. Specifically,
the proposed algorithm boosts 2.17% test accuracy with the
OCEAN algorithm under same delay restriction Tmax = 16s.
Compared to RS-WEL, the proposed algorithm gains 0.75%
performance improvement with Tmax = 16s, and obtains a
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Fig. 6. Performance of the proposed algorithm and benchmarks under different energy budget Ēn: (a) on MNIST dataset; (b) on CIFAR-10 dataset; (c) on
CIFAR-100 dataset.
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Fig. 7. Performance of the proposed algorithm and benchmarks under different delay constraint Tmax: (a) on MNIST dataset; (b) on CIFAR-10 dataset; (c)
on CIFAR-100 dataset.

similar performance with Tmax = 14s. Moreover, under a
stringent delay requirement, i.e., Tmax = 14s, the proposed
algorithm achieves a better performance than the OCEAN
algorithm with Tmax = 16s. That is, the proposed algo-
rithm is able to get a better performance as OCEAN with
12.5% time budget reduction. The underlying reason is that
the joint optimization of computation and communication
achieves lower energy consumption than solely considering
the optimal communication. Even with less time budget, the
balance between computation and communication can also
lower the overall energy consumption, enabling more clients
to participate in the FL training process in a sustainable way.
From the comparison results on the CIFAR-100 dataset in Fig.
7(c), under the same per-round time budget, i.e., Tmax = 210s,
the proposed approach improves 3.3% accuracy compared to
the OCEAN scheme. In addition, given a more stringent time
constraint Tmax = 200s to the proposed approach, it remains
to obtain a slight accuracy improvement in comparison with
the OCEAN, EBA, and Myopic schemes.

Fig. 8 verifies that the adjustable parameter V can balance
the training performance and energy consumption of clients.
Fig. 8(b) shows that as V increases, clients consume energy
in a more aggressive manner, resulting in scheduling more
data samples, thus obtaining accuracy improvement. From Fig.
8(a), the experiments on the MNIST dataset indicate that the
proposed algorithm achieves 3.46%, 1.94%, and 0.63% test
accuracy improvement compared with the OCEAN algorithm
under V = 0.001, V = 0.01, and V = 0.1, in each one respec-

tively. Interestingly, the proposed algorithm with V = 0.001
obtains a similar performance with the OCEAN algorithm with
V = 0.01. This further reveals that the proposed algorithm
has the ability to obtain a similar performance as the OCEAN
algorithm under a more rigid energy restriction. Similarly, on
the CIFAR-10 dataset, the proposed algorithm boosts 1.05%
and 1.23% accuracy in terms of V = 0.001 and V = 0.01,
and obtains a slight accuracy improvement when V = 0.1
compared with the OCEAN algorithm. In addition, the sim-
ulation results on the CIFAR-100 dataset also show that the
proposed approach is able to schedule more data samples and
achieve higher learning accuracy than the OCEAN scheme.
The performance gain comes from the joint optimization of
the client selection, bandwidth allocation, communication, and
computation time allocation policies. Note that, if V is too
large, the client scheduling algorithm would pay less attention
for clients’ energy consumption and try to schedule more
clients. This may break the energy limitation for clients. Thus,
the value of V should be judiciously adjusted to optimize the
training performance while satisfying the energy constraints.

VI. CONCLUSION

In this work, we have proposed a novel PMA-FL algorithm,
which only shares the feature extractor part of neural networks
for global aggregation in the learning process while the pre-
dictor part of each client is localized for personalization. This
design effectively improves the robustness and performance
of the training process, overcoming the data heterogeneity
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(a)

(b)

Fig. 8. Performance of the proposed algorithm and benchmarks under
different weight parameter V: (a) test accuracy on MNIST and CIFAR-10
datasets; (b) average scheduled data samples per round.

across clients. We have theoretically analyzed the convergence
bound of PMA-FL in resource-limited wireless networks,
which reveals that maximizing the scheduled data volumes
in each round improves the training performance of PMA-
FL. Based on this, we have devised a joint client scheduling,
communication and computation resource allocation approach
to improve the learning performance by achieving the energy
consumption balance between communication and computa-
tion for each client and the energy consumption-bandwidth
balance between clients. Experimental results show that the
proposed PMA-FL and client scheduling algorithm outperform
the benchmarks in improving learning performance, saving
energy for clients, and reducing training latency. The proposed
approach is convenient to implement and finds applicability in
practical situations, such as healthcare monitoring and traffic
prediction of vehicle networks.

APPENDIX

A. Proof of Lemma 1

Due to ℓf -smooth of Ln(·,xp
n) and ℓp-smooth of L(xf , ·),

we have:
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Summarizing (36) and (37), we have
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We now bound the inner product term
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where (a) is derived by adding and subtracting ∇fLn(x
f
t,x

p
n,t),

(b) following the Cauthy-Schwarz inequality, (c) is due to L-
smooth of loss functions, (d) follows the definition of χ, (e)
comes from the triangle-inequality. Substituting (39) into (38),
we have
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Substituting the above equation into the global loss function
(2), the proof completes.

B. Proof of Lemma 2

Firstly, we introduce an auxiliary variable as:
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p
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Based on Lemma 1, we now bound the two terms on the RHS
of (15). For the first term in the RHS of (15), we have
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1

D

∑N

n=1
Dn

(
E
[
⟨∇pLn(x

f
t,x

p
n,t),x

p
n,t+1 − xp

n,t⟩
]

+
1 + χ

2
ℓpE

∥∥xp
n,t+1 − xp

n,t

∥∥2 )
=

1

D

N∑
n=1

DnE
[〈
∇pLn(x

f
t,x

p
n,t),−βn,tηp∇pLn(x

f
t,x

p
n,t)

〉]
+

1

D

∑N

n=1
Dn

1

2
(1 + χ)ℓpE

∥∥βn,tηp∇pLn(x
f
t,x

p
n,t)

∥∥2
(a)
=

N∑
n=1

βn,t
Dn

D
(
(1 + χ)

2
ℓpη

2
p − ηp)E

∥∥∇pLn(x
f
t,x

p
n,t)

∥∥2,
(43)

where (a) follows the fact that βn,t ∈ {0, 1}, which induces
β2
n,t = βn,t. Substituting (42) and (43) into (15), we have
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Next, we focus on bounding ∥ot∥2.
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where N1,t = {βn,t = 1 |n ∈ N } is the set of clients who
participating the training process in round t, and N2,t =

{βn,t = 0 |n ∈ N } represents the set of clients that have not
been selected in round t. The inequality in (45) follows the
triangle-inequality. By using Assumption 2, we have∑
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Substituting (46) and (47) into (45), we have
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Now, by substituting (48) into (44) and let ηp ≤ 2
(χ+1)ℓp

, the
proof completes.

C. Proof of Theorem 1
To prove Theorem 1, we first prove that ∇fL(xf ,Xp) is
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where (a) follows Cauchy-Schwarz inequality, (b) is due to
the ℓf - Lipschitz continuity of ∇fLn(x

f ,xp
n) (∀n ∈ N ). Thus,

∇fL(xf ,Xp) is ℓf - Lipschitz continuous with xf . According
to Lemma 2, we add and subtract L(xf,∗,Xp,∗) in the left-
hand side of (16), and then rearrange it gives
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By using the ℓf - Lipschitz continuity of ∇fF (xf ,Xp) is ℓf ,
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Substituting (51) into (50), we have
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where At =
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.
By telescoping the above inequality, we complete the proof.

D. Proof of Lemma 3

In problem P3, the communication time variable TL
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(∀n ∈ N ) is continuous real number variable. The first-order
derivatives of the objective function is
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Furthermore, if n ̸= m, we have ∂2En,t
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m, the second-order derivatives is given by
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It is straightforward to see that ∂2En,t

∂(TL
n,t)

2 ≥ 0. Thus, the

Hessian matrixes of En,t with respect to TL
n,t is a diagonal

matrix and the elements on the diagonal are all non-negative.
Consequently, the Hessian matrix of En,t is semi-positive
matrix and En,t is a convex function with respect to TL

n,t.
Moreover, the constraints in problem P3 are all linear with
respect to TL

n,t. This implements that problem P3 is convex.
By using Karush-Kuhn-Tucker condition, we have the optimal
solution satisfy ∂En,t

∂TL
n,t

= 0. In fact, ∂En,t

∂TL
n,t

= 0 is equivalent to
∂EL

n,t

∂TL
n,t

=
∂EU

n,t

∂TU
n,t

.
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