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Abstract

Federated learning (FL) is a distributed machine learning paradigm, that offers efficiency and

scalability as many clients execute the training in parallel over communication networks. FL

also provides excellent privacy to clients as they can keep their training datasets locally rather

than sharing them with other participants. Such a secure aggregation mechanism complies

with the General Data Protection Regulation (GDPR) and protects clients against privacy

leakage attacks.

However, FL systems are vulnerable to Byzantine failures due to the distributed oper-

ation. Byzantine failures include various types of failures in distributed systems such as

poisoning attacks, malicious users, software bugs, communication delays, hacked machines

etc. This thesis investigates one type of Byzantine failure, model poisoning attacks. Model

poisoning attacks generally refer to attacking the training phase of machine learning.

Model poisoning attacks consist of targeted attacks (backdoor attacks) and untargeted

attacks. Targeted attacks aim to insert a “trigger” into the trained global model. “Trigger”

means poisoned training data with wrong labels, such as cat pictures with modified pixels

marked as dogs in the image classification task. Once being inserted such trigger, the global

model will misclassify a small group of test samples with chosen triggers into targeted labels,

while keeping good accuracy on other groups of test samples. On the other hand, untargeted

model poisoning attacks aim to minimize the accuracy of the global model on any test set.

Such an attack is harmful in the real world as it can cause denial-of-service (DOS) among a

large population of FL end devices.

Three main robust algorithms are presented to address the security issues caused by

model poisoning attacks in FL. The key algorithms introduced by this thesis are:

• I propose, FLSec, a defence system to detect malicious clients and defend against tar-

geted model poisoning attacks. FLSec is equipped with a new metric, GradScore, to

find out the potential malicious model updates. The GradScore value can quantify the



contribution of a backdoored training sample to the decrease of backdoor training loss

on other samples from the same minibatch. The GradScore value of the attacker with

high backdoored training samples can be larger than the value of the benign partici-

pants. Therefore, by measuring the GradScore value, FLSec can effectively mitigate

the malicious participants;

• I investigate how to mitigate multi-round targeted model poisoning attacks. FL sys-

tems are more vulnerable to multi-round targeted model poisoning attacks than single-

round attacks. FL systems can gradually correct the bad impact caused by single-round

attacks. However, the negative impact of multi-round targeted model poisoning can ac-

cumulate with training. I conduct further research on the reliability of GradScore and

propose DeMAC to eliminate multi-round targeted model poisoning attacks. Besides,

the historical record in DeMAC for defending against malicious attacks can sponta-

neously detect malicious clients without manual settings;

• Existing robust methods ignore the causes of model parameters’ high dimensionality

and data heterogeneity. They are unable to defend against adaptive untargeted model

poisoning attacks. To tackle the problems, I propose FedDet, a novel robust aggre-

gation method, that consists of two main steps: splitting and grouping local models

by layers and normalizing the sliced parameters by the median of the norms. FedDet

splits the local models into layers for robust aggregation. By doing so, FedDet can

overcome the issue with high dimensionality and keep the functionality of layers.
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Chapter 1

Introduction

1.1 Motivation
AI techniques such as deep learning (DL) process raw data generated from ubiquitous IoT

devices and train data models for enabling intelligent services or infrastructures, such as

smart healthcare, smart transportation, and smart cities [1] [2] [3]. Traditionally, AI func-

tions are placed in a cloud server for data collecting and modeling [4] [5]. However, With

such an explosive growth of IoT data at the network edge, the offloading of massive IoT

data to remote servers may be infeasible due to the constrained network resources, band-

width and incurred latency. Besides, the use of third-party servers for AI training also raises

privacy concerns such as leakage of sensitive information (e.g., user addresses or personal

preferences). Thus, it may not be feasible to apply centralized AI techniques in realistic

scenarios. To address the above issues, a novel distributed training regime, federated learn-

ing (FL), has been proposed for building intelligent and privacy-enhanced IoT systems. FL

is an efficient and scalable distributed machine learning paradigm that provides excellent

privacy to clients [6]. With the application of federated learning, resource-constrained node

devices (e.g., Internet of Things (IoT) devices and sensors) can build a knowledge-shared

model while keeping the raw data local [7]. Hence, federated learning plays a critical role

in bringing AI to IoT systems and applications in terms of training AI models, online model

fine-tuning and preserving data privacy [4] [5].

However, due to its distributed characteristic, FL leaves the door open for adversaries as

they can send poisoned local models to the central server without being checked. Hence, an

1



1.2. A Brief Introduction of Federated Learning 2

FL system can be vulnerable to poisoning attacks [8] [9] [10] [11]. The threats caused by poi-

soning attacks can be transferred into some resource-constrained scenarios (e.g., Multi-UAV

Systems [12] and cause denial-of-service (DoS) in IoT systems). Poisoning attacks consist of

backdoor attacks [13] [14] [15] and model poisoning attacks [16] [17] [18] [19]. Backdoor

attacks aim to insert a backdoor into the trained global model and make the global model

mislabel a small group of samples with chosen triggers into targeted labels [17] [19] [20].

On the other hand, model poisoning attacks aim to deviate the global model away from the

benign global model. Model poisoning attacks attempt to hamper the global model’s main

accuracy. Other crucial attributes that cannot be ignored in trustworthy federated learning

systems include privacy and fairness. Although federated learning can provide local clients

with privacy, inference attacks [21] [22] can recover sensitive information from the model

updates sent from the local clients, which can compromise the privacy characteristic of fed-

erated learning. Due to the heterogeneity of the collected data, the FL training process may

lead to significant risks of discrimination in the application domains, such as medical image

classification, and financial decisions. In this thesis, we mainly investigate the poisoning at-

tacks against federated learning systems due to the threats they pose to system functionality.

1.2 A Brief Introduction of Federated Learning
To better understand what is federated learning, we first give a quick flashback of central-

ized training, which is the core component of federated learning. After centralized training

locally, the server collects estimated gradients from the local devices and aggregates them

to perform a single global model update, then broadcasts the new model to every worker for

computing new gradients.

1.2.1 Centralized Training

We focus on supervised learning with neuro-networks. Here, D = {(xi,yi)}N
i=1 denotes the

training set on local devices, with input vectors x ∈ Rd and y ∈ {0,1}K encoding labels. It

is assumed that local clients have the same architecture neural network model in federated

learning. For a chosen neural network model on clients, p(w,x) = σ( f (w,x)) denotes the

probability vector of the neural network with activation function σ and weights w ∈RD. For

any probability vector p, let ℓ(p,y) denote the loss function.
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For one local client, let w0,w1,w2, ...,wt be the iterations of SGD (stochastic gradient

descent). S0,S1, ..,St−1 ⊆ S of size M are mini-batches. Here we have

wt = wt−1−η ∑
(x,y)∈St−1

gt−1(x,y), (1.1)

gt−1(x,y) = ∇w−1ℓ(p(wt−1,x),y) is the gradient of the loss for a training sample (x,y). The

local clients broadcast their wt to the server for aggregation.

1.2.2 Federated Learning

Definition

Federated learning (FL) is a distributed machine learning paradigm proposed by Google.

Unlike centralized training, FL offers efficiency and scalability as many clients execute the

training in parallel over communication networks. FL provides excellent privacy to clients as

they can keep their training datasets locally rather than sharing them with other participants.

Each client trains a model locally, and then all local model updates are aggregated by a

central server to derive a global model. This process is repeated multiple times, and the

accuracy of the global model on the main task is gradually improved.

Mathematical formulation

In this section, we illustrate the process of the federated learning paradigm. We assume that

m clients train their local models before sending local updates to the central server. The

central server combines these updates by using FedAvging [6]. In addition, all the clients

keep their data secret and any client can not intercept training or testing data.

One iteration of FL training is shown below:

At each global round t, the updated global model aggregated by the central server is given

by:

Gt+1 = Gt +
η

n

n

∑
i=1

(wt+1
i −Gt) (1.2)

Here, Gt denotes the global model at t global epoch. wt+1 denotes to local models sent

by randomly chosen n local clients {C1, ...Cn} in one global round t. η is the global learning

rate. With the distributed characteristic, federated learning can provide local clients with
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privacy, as the local clients do not need to share sensitive information with others.

Application Scenarios

Figure 1.1: Federated Learning application scenarios

Federated learning can be widely used in our daily lives, and the promising application

scenarios are medical image processing, natural language processing, financial crime detec-

tion, autonomous driving, network intrusion detection, and recommendation systems (see

figure. 1.1).

(1) Autonomous driving. Autonomous driving cars are encapsulated with many func-

tional AI technologies: road obstacle detection by computer vision, and pace adaptation with

machine learning algorithms. Traditionally, the cloud is used to collaborate with cars for data

processing. However, due to the large volumes of data generated from autonomous driving

cars and the requirement for quick response, the traditional cloud approach encounters safety

risks. Federated learning can represent a solution for limiting the volume of data transmission

and accelerating training processes. Besides, FL can be a good fit for resource-constrained

devices, such as smart robotics, smart objection detection, smart healthcare, on-device rank-

ing, anomaly detection and resource-efficient training of UAV-Enabled IoT devices [1].

(2) Digital Healthcare. The traditional approach of centralizing medical image process-

ing from multiple medical centres comes at the cost of critical concerns regarding patient
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privacy and data protection. To address this issue, it is urgent to seek a technology for

training large-scale machine learning models across medical institutions without sharing the

data. FL’s characteristic privacy makes it a promising training structure in Medical areas.

Such a secure aggregation mechanism complies with the General Data Protection Regula-

tion (GDPR) and protects clients against privacy leakage attacks. Federated learning seeks to

address the problem of data governance and privacy by training algorithms collaboratively

without exchanging the data itself. Besides, FL has been widely used in pharmaceutical

companies for drug discovery in the MELLODDY project.

(3) Recommendation Systems. Due to the potential functions of FL for privacy protec-

tion, it has been deployed in the real world. For example, Android Gboard has been installed

with FL for next-word prediction. The recommendation systems of social networks contain

tons of information per minute. For example, YouTube has 30,000 hours worth of videos

uploaded to the platform per hour. Then, YouTube recommends these videos to users after

sorting and ranking the content. As a matter of fact, nearly 70% of these views are rec-

ommended by the platform and not directly searched by the viewers. Therefore, manually

programming such a recommendation system is a hopeless task given its complexity. In-

stead, a learning system based on federated learning is leveraging data to offer meaningful

recommendations [23].

1.3 Main Threats Faced by Building Robust Federated Learn-

ing Algorithms
It is well-known that FL systems are vulnerable to Byzantine failures due to their distributed

characteristic, as the honest central servers have no access to verify the participant clients.

Byzantine failures include various types of failures in distributed systems such as poisoning

attacks, malicious users, software bugs, communication delays, hacked machines etc. The

objectives of the adversaries that cause those failures include security violations (compro-

mised participants) and service disruption. In this dissertation, we give attention to one spe-

cific type of Byzantine failure, poisoning attacks. Poisoning attacks can be executed during

both the training phase and the inference phase. In this thesis, poisoning attacks refer to at-

tacking the training phase of machine learning. Poisoning attacks can be classified as model
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poisoning and data poisoning attacks. As for data poisoning attacks, the adversary owns a set

of modified samples and combines these poisoned samples with the benign training samples

for local training. Data poisoning attacks have been investigated in many machine learning

deployments and systems, such as SVM and neural networks. Unlike data poisoning attacks,

model poisoning can alter the parameters of the model directly. It is pointed out that data

poisoning attacks can be transformed into model poisoning attacks. Besides, model poison-

ing attacks are more powerful than data poisoning attacks. Therefore, we mainly focus on

model poisoning attacks in this thesis. We introduce two types of model poisoning attacks,

model poisoning attacks and adaptive model poisoning attacks, as below.

Model Poisoning attacks

Model poisoning attacks consist of targeted attacks (specific class misclassified) and untar-

geted attacks (randomly class misclassified). Once being inserted targeted model poisoning

attacks, the global model will misclassify a small group of test samples with chosen triggers

into targeted labels, while keeping good accuracy on other groups of test samples. On the

other hand, untargeted model poisoning attacks aim to minimize the accuracy of the global

model on any test set. Such an attack is harmful in the real world as it can cause denial-of-

service (DOS) among a large population of FL end devices.

Adaptive Model Poisoning attacks

Similar to the general model poisoning attacks (label flipping attacks, pixel-pattern back-

door attacks, and semantic backdoor attacks), adaptive model poisoning attacks can drag

the trained federated learning model away from the optimal model. Therefore, the perfor-

mance of the trained FL model can be hampered. Worse than these general model attacks,

adaptive model poisoning attacks can fine-tune their poisoned parameters until the poisoned

parameters can bypass the robust aggregation methods. For example, with the knowledge of

the benign vectors’ direction, the adversary tries to tune its scale until it can selected as the

representative update for the aggregation. With such an undetectable characteristic, adap-

tive model poisoning attacks can be used as a combination with any other attacks, including

targeted model poisoning attacks (misclassified specific classes) and untargeted model poi-

soning attacks (randomly misclassified classes). Thus, such adaptive attacks can be serious

threats to both the integrity and the availability of the FL model.
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1.4 Major Contribution
In the above section 1.3, we discuss that poisoning attacks (including untargeted model poi-

soning attacks, Model poisoning attacks, and adaptive model poisoning attacks) can com-

promise the robustness of federated learning algorithms, damaging the usability, integrity,

and availability of the FL model. In this thesis, our research topic is mitigating these threats

and addressing the issues of poisoning attacks in FL. In this section, we highlight our major

contributions to this topic.

1.4.1 Towards Defending Adaptive Backdoor Attack in Federated Learn-

ing System

We study how to defend against backdoor attacks (targeted model poisoning attacks) in FL.

Existing works propose Byzantine-tolerant aggregation rules and remove statistical outliers

by comparing client local model updates. However, these previous works make some as-

sumptions, such as the data distribution should be IID (Independent and Identically Dis-

tributed). To overcome these shortages, we investigate the characteristics of state-of-the-

art backdoor attacks. We observe that no matter what the data distribution among clients,

the deviations between local models and the global model start to cancel out, i.e.,∀w ∈

{wi}m
i=1,w

t+1
i −Gt ≈ 0 [13], in the benign setting, as the global model converges. Therefore,

the updates of benign local models , dw≈wt+1−wt is bounded. Once malicious behaviours

happen at the current training time, they can be detected. Based on this observation, we pro-

pose a new metric, GradScore, computed from the loss gradient norm of the final layer of the

local models for backdoor defence. By using this metric, we can distinguish the malicious

clients from the benign clients. We evaluate the efficiency of our new metric against three

well-known backdoor attacks. And our method outperforms other baseline works.

1.4.2 Towards Detecting Multi-round Targeted Model Poisoning At-

tacks in Federated Learning System

In the above part, GradScore shows a good performance in filtering malicious clients in-

serted with backdoors. However, the security issue of multi-round model poisoning attacks

is not well-considered. The adversary behaviours may happen periodically or the adversary
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attempts to attack at an early stage when the global model is not converged. Besides, the

method proposed in GradScore can not start to detect malicious clients automatically. To

investigate these issues, we propose DeMAC, a defence system equipped with GradScore to

detect malicious clients and defend against targeted attacks by checking the abnormal model

updates from potential malicious clients. the design of which relies on the key finding that

genuine clients train their models following the main federated training task, while malicious

clients will craft their local model trained on the poisoning task. To succeed in the poison-

ing attacks, the adversaries should increase the number of poisoned samples to decrease the

training loss of the poisoning task. Therefore, the norm of gradients of the poisoned local

model updates will be increased. Although the adversaries can reduce the number of poi-

soned samples and decrease the deviations from benign models’ norm of gradients, this may

cause the poisoning task to fail. Besides, DeMAC is equipped with a historical record for

defending against malicious attacks and can spontaneously detect malicious clients without

manual settings. According to the extensive evaluation, DeMAC shows high efficiency in

defence against malicious attacks in both early and late training stages and significant per-

formance improvement over the existing baseline methods.

1.4.3 Towards Defending against Adaptive Untargeted Model Poison-

ing Attacks

The majority of existing works focus on defending against untargeted model poisoning at-

tacks. Existing robust federated learning aggregation methods are known to be vulnerable

to adaptive model poisoning attacks. Rare works pay attention to adaptive untargeted model

poisoning attacks, which are stronger as the attacker can design their attack strategies and

circumvent the defender. So in this part, we investigate the state-of-the-art adaptive model

poisoning attacks and aim to design a robust algorithm to mitigate the negative effects of the

attacks. Firstly, we reformulate and analyse six state-of-the-art adaptive attacks. We found

that the key point of the defending for the defender is to reduce the attacker’s optimization

cost functions. We reveal the two main causes why existing defence methods miss the key

point: model parameters’ high dimensionality and data heterogeneity. We propose FedDet,

a novel robust aggregation method, that consists of two main steps: splitting and grouping

local models by layers and normalizing the sliced parameters by the median of the norms.
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FedDet can effectively defend against untargeted model poisoning attacks in FL. By doing

so, FedDet can overcome the issue with high dimensionality and keep the functionality of

layers. During the robust aggregation, FedDet normalizes every slice of local models by

the median norm value rather than excluding some clients, which can avoid deviation from

the optimal aggregated model caused by high data heterogeneity. Besides, we conduct a

comprehensive security analysis of FedDet and an existing robust aggregation method and

propose the upper bounds on the perturbations disturbed by these adaptive attacks. Accord-

ing to the security analysis, we discuss why FedDet can be more robust than the existing

methods. We evaluate the performance of FedDet and four baseline methods against these

attacks under two well-known datasets. Experiment results demonstrate that FedDet signif-

icantly outperforms the existing compared methods against adaptive attacks. Furthermore,

FedDet is evaluated effectively to defend against more types of adaptive model poisoning

attacks.

1.5 Thesis Organization
Introduction. We develop this chapter 1 by, first, discussing the motivation of the research,

and why is it significant in addressing the security issue in FL. Then, we give a brief intro-

duction to FL, including some state-of-the-art FL algorithms and applications of FL. Next,

we comprehensively discuss the current security threats faced by FL systems, among which

this thesis focuses on poisoning attacks (Byzantine failures, Model Poisoning attacks, and

Adaptive Model Poisoning attacks). Afterwards, we present our major contribution, which

is also the main content of this thesis. Lastly, we list the related publications and papers.

Background and Related Works. In Chapter 2, we first introduce machine learning

primitives and the federated learning paradigm used in this thesis. Then, we thoroughly

discuss the existing poisoning attacks divided into three categories: Untargeted poisoning at-

tacks, data poisoning attacks, and targeted model poisoning attacks. Following this part, the

reader can have a brief understanding of various poisoning attacks with different assumptions

and attacking objectives. Besides, we also discuss the three classic attacking scenarios and

the corresponding threat model used in the thesis. Next, we give a comprehensive analysis

of previous poisoning defence methods divided into five categories: Byzantine-robust aggre-

gation, Model Inspection, Clipping and noising, Outlier Detection, and Certified/Provable
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robustness. Among these defence methods, we select the most well-known works as the

baseline used in the thesis.

Chapter 3, 4, and 5. In Chapter 3, we mainly talk about our first contribution 1.4.1.

In Chapter 4, we discuss our second contribution 1.4.1. In Chapter 5, we present the third

contribution 1.4.1. In these three chapters, firstly, we discuss our key observations about

the main characteristics of the poisoning attacks. Then we investigate the pros and cons of

the well-known baseline works. Next, we propose our novel methods and the details of the

design. Finally, we evaluate our proposed methods against poisoning attacks and compare

the efficiency with baseline works.

Future directions. In the final part of the thesis 6, firstly, we conclude this thesis. Then,

we outline future directions on enabling developers to build trustworthy applications and

study emerging technologies from the privacy and security angle. We discuss integrating

privacy, security, and fairness as standard objectives as part of machine learning pipelines.

We further plan to investigate vulnerabilities in augmented reality ML applications and gen-

erative models that rely on multi-modal data and can be targeted by attackers.
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Chapter 2

Related Works

2.1 Poisoning Attacks on Federated Learning
In this section, we give a comprehensive description of the poisoning attacks on Federated

Learning. More details are shown in the table. 2.1. Firstly, in subsection 2.1.1, we briefly

discuss the three classic attacking scenarios and the corresponding threat models including

the attackers’ capabilities and attacking phases. Then we discuss the Taxonomy of poi-

soning attacks with different categorization criteria such as data poisoning, untargeted and

targeted model poisoning in subsection 2.1.2, 2.1.3, 2.1.4. Lastly, in subsection 2.1.6, we

discuss the similarities and differences between the poisoning attacks and related realms. In

this thesis, we use several well-known attacks, model replacement attacks [13], DBA [14],

STAT-attacks [17], and DNY-attacks [18], to evaluate the efficiency of the proposed robust

algorithms. These attacks are discussed widely in related works as baselines. With the ta-

ble. 2.1, the readers can have a complete understanding of poisoning attacks in FL and get

inspired to design new powerful attacks or robust defence algorithms.

In Untargeted poisoning, the adversary aims to make the system converge to a bad min-

imum or to make the model diverge [10]. STAT-attacks [10] and DNY-attacks [18] aim

to poison the parameters of the global model by designing crafted malicious local parame-

ters. In STAT-attacks [10], the poisoned global model deviates towards the inverse directions

inverse of the direction along which the global model parameter would change without at-

tacking behaviours. So the learnt model has a high error rate indiscriminately for the testing

set.

12
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Category Attack strategies
Untargeted poisoning attacks STAT-attacks [17], DNY-attacks [18], gaussian [19]

Data poisoning attacks
Sybil attack [24], Edge-case backdoor attack [15],
Label-flipping [8] [25], AT 2FL [7],
poisoning-iot [26], poisoning-Crowdsourcing [27]

Targeted Model poisoning attacks

Model Replacement [13] [11], DBA [14], mpaf [28],
backdoor-ensembling [29], neurotoxin [30],
chameleon [31], continuous-backdoor [32],
semi-targeted [33], triggerless-backdoor [12],
widen-backdoor [34], graphfl-backdoor [35],
perdoor [36], model-transferring attack [37],

Others
Free-rider attack [38], vfl-backdoor [39],
Data inversion attack [40] [41]
Membership inference attack [42] [22],

Table 2.1: Poisoning attacks in federated learning

In targeted poisoning, attack strategies can be classified into Data poisoning attack and

Model poisoning attack. As for data poisoning attacks, the goal of adversaries is to produce

a model where a specific group of poisoned samples are misclassified into the targeted label.

For example, Sybil clients based on identical datasets can perform pixel-pattern backdoor

attacks in a non-IID FL setting where each benign client holds a distinct label from the origi-

nal training dataset [24]. To perform a label-flippling attack, malicious clients hold the same

group of samples of clean label, as labelled as targeted label [8]. [15] proposed a novel defi-

nition, edge-case samples. A p-edge-case sample can be viewed as a set of labelled samples

where input features are chosen from the heavy tail of the feature distribution. By inserting

these properly crafted poisoned edge case samples, adversaries can successfully backdoor the

global model and are hard to detect. [13] [11] demonstrate that federated learning systems

are vulnerable to model replacement attacks. Adversaries can inset backdoors into the global

model by inserting a boosted local poisoned model. Another well-known model poisoning

strategy is the distributed backdoor attack(DBA) [14]. In this distributed backdoor setting,

malicious clients can collude and submit poisoned updates containing a partial trigger. By

doing so, the resulting global model is sensitive to the combined trigger.

Excepting attacking trained model quality, malicious clients also have other attack ob-

jectives. In model-free riding attack [38], malicious clients try to access the global model

without valued contribution. Besides, adversaries try to infer private information from the
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Dataset Model Structure Training phase Inference phase
Third-Party Dataset ✓
Third-Party Platform ✓
Third-Party Model ✓ ✓ ✓

Table 2.2: Three attacking scenarios and the corresponding attackers’ capabilities. Markers
mean the accessibility of the attackers.

model updates [42] [22]. In a data inversion attack, malicious clients reconstruct the training

data of an honest client by generating a sample that closely represents the training data of

the specific client. Such a type of attack may cause denial-of-service.

2.1.1 Attacking Scenarios

Figure 2.1: Examples for data poisoning attacking scenarios

In this section, we presented three potential real-world attacking scenarios and the corre-

sponding attackers’ capabilities. Table. 2.2 summarises these three attacking scenarios, and

more details are illustrated below.

Attacking Scenarios 1: Third-Party Dataset. In this attacking scenario, the attacker can

only access the dataset of the users and has no access to the trained model, model structures,

training phase, and inference phase. For example, in the figure. 2.1, the attacker can change

some benign labels (30kph) to poisoned labels (80kph) in traffic sign recognition tasks. Or

it can replace the end word with the selected word in word embeddings. Data poisoning

can also happen in the Internet of Things (IoTs). IoT devices may collect the poisoned data

modified by the attacker.
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Attacking Scenarios 2: Third-Party Platform. In this attacking scenario, users or clients

can provide their benign dataset, and training schedule to an untrusted third party (such as

Google Cloud) to train their models. Although the attacker can intercept the training phase,

the attacker cannot alter the training dataset or the model structure. Otherwise, the attacker’s

behaviours will be noticed. The attacker can intercept the open-source code for the training

process [43]. By inserting malicious code into the program for training and modifying the

training task loss. The attacker can add a side task (backdoor task) to the main task. Such a

type of attack uses a weaker threat model but is more stealthy.

Attacking Scenario 3: Third-Party Model. In this attacking scenario, it can control some

end devices including the training dataset, training schedule, model structure and trained

model. Basically, it can change everything except the inference phase. By modifying the

trained model or training the model with a poisoning dataset, the attacker can compromise

the federated training process.

2.1.2 Untargeted Model Poisoning Attacks

Federated Learning is vulnerable to untargeted model poisoning attacks as untargeted model

poisoning attacks may have a negative impact on the accuracy of the trained model. It can

cause denial-of-service (DoS) on the availability of the trained model. In this section, we

give a description of three classic untargeted model poisoning attacks.

Gaussian Attacks

Existing byzantine-robust algorithms [44] [45] [46] assume that the parameters of the trained

models among the clients are independent and identically distributed (i.i.d.). Under this as-

sumption, the benign parameters should be close to the aggregated estimator while param-

eters deviating from the estimator are detected as outliers. Based on this assumption, most

defences filter the potential malicious parameters far away from others. However, Gaussian

attacks [19] point out that this assumption is incorrect: by carefully designing byzantine pa-

rameters, the attacker can move the byzantine parameters as far as possible from the correct

parameters yet within the upper bound of defences. The experimental variance between pa-

rameters is high enough so that the Gaussian attack is able to defeat all defences based on

the i.i.d assumption by adding small amounts of noise to each dimension of the average of

the benign gradients. Gaussian attacks can be both omniscient and non-omniscient Model
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scenarios. In the Third-Party Model, the Gaussian attack has the knowledge of the benign

parameters. It computes the malicious parameter as µ +2σ where µ is average and σ is the

standard deviation.

Adaptive Attacks

Unlike Gaussian attacks, adaptive untargeted attacks [17] [18] optimize their attack strategies

with the knowledge of benign parameters or assumed benign parameters. STAT-attacks [17]

optimize its malicious parameters to deviate global model parameters the most towards

the inverse of the direction along which the global parameters would change without at-

tacks. STAT-attacks can be applied to different byzantine-robust methods. Similar to STAT-

attacks, DNY-attacks attempt to corrupt byzantine-robust methods by optimizing their at-

tacking strategies. But unlike STAT-attacks, the attacking objective of DNY-attacks is to

maximize the L2-norm of the distance between the reference benign parameters G and the

aggregated parameters G
′
. Unlike Gaussian attacks that add small amounts of noise to com-

pute their malicious parameters, DNY-attacks compute their malicious parameters within a

ball formed by the benign parameters (w′i∈[m] = G+ γ∇p). By modifying γ repeatedly and

oscillating it between the minimum and maximum γ values, DNY-attacks find the optimal

γ value for the attacking strategy. By formulating the cost function for attacking tasks and

fine-tuning the formed malicious parameters, adaptive attacks obviously outperform general

model poisoning attacks like Gaussian attacks.

2.1.3 Data poisoning Attacks

In section. 2.1.1, we discuss the first attacking scenario, Third-Party Dataset, in which the

attacker can only access the dataset of the users. To implement the data-poisoning attacks, the

attacker can modify the data distribution, the class labels or the data structure of the malicious

dataset for poisoning training. In this section, we describe a series of data-poisoning attacks

and their characteristics.

Data distribution among Sybil attack [24] can be classified into three types: Clones (iden-

tical local dataset ), Act-alikes (different local dataset) and Clowns (synthetic gradients not

based on the dataset). For Sybil label-flipping attacks, Sybils hold the same dataset, such as

data samples labelled as 1s changed to 7s. Sybil attacks can bypass defence methods based

on comparing the similarity of clients’ parameters. However, Sybil attacks would fail when
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defending methods based on the diversity of the clients’ parameters, such as FoolsGold [24].

Edge-case backdoor attack [15] changes the data structure of malicious clients by leveraging

data from the tail of the input data distribution. The negative impact of the edge-case back-

door may not happen in a general situation. Namely, it may not affect the large user base but

cause overwhelming failures to small groups, e.g., LGBTs, small groups of ethnic or religion,

and indecent speeches. Besides, defences may confuse malicious clients inserting edge-case

backdoors with benign clients containing diverse training datasets, breaking the balance be-

tween fairness and robustness. [25] proposes label-flipping attacks to implement targeted

data poisoning attacks by changing the class label to a targeted label, such as changing an

original class label, bird, to a targeted class label, plane in the CIFAR-10 image classification

task. The label-flipping attack is well-known in centralized learning [47] [48] [49] [50]. This

type of attack is non-omniscient and can be successfully transferred into federated learning.

Previous data poisoning attacks are implemented in a direct manner. AT 2FL [7] designs a

novel optimization method, attack on federated learning, to derive the implicit gradients for

computing poisoned data in the source attacking nodes.

Data poisoning attacks are non-omniscient, as the attackers do not have to have knowl-

edge of the aggregation algorithm, loss function, model structure and data distribution among

clients. Therefore, data poisoning attack is efficient and can be applied in real-world appli-

cation scenarios, such as the Internet of Things, Crowd-sourcing systems and IoT intrusion

detection systems. [51] proposed an IoT intrusion detection system based on federated learn-

ing. By aggregating the real-time traffic data sent by the security gateways in the network,

the central entity computes a global model and distributes the model to the clients. [26]

points out that data poisoning may happen in this application scenario. The attacker can

implant a backdoor to force the trained detection model to misclassify abnormal traffic as

normal by controlling some security gateways and gradually injecting malicious traffic pat-

terns. Crowdsourcing systems face similar vulnerabilities [27]. [27] formulates its proposed

data poisoning attacks as an optimization problem that maximizes the estimation error of the

aggregated values.
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2.1.4 Targeted Model Poisoning attacks/Backdoor Attacks

Targeted model poisoning attacks assume a Third-Party Model attacking scenario. In other

words, the attacker can control the training set, model structure and even the aggregated al-

gorithms. Targeted model poisoning attacks have been widely discussed. In this section, we

classified these targeted model poisoning attacks by different categorization criteria, weights-

modified attacks, long-stay and optimized backdoors.

Weights-Modified Attacks

Weight-modified attacks [13] [14] [28] [29] can send arbitrary or crafted model updates

to the central server and compromise the federated learning process. [13] is the first paper

that proposes model-replacement attacks. It attempts to insert a backdoor into the global

model by replacing the global model with the scaled malicious model when the federated

learning process starts to converge. The attacker scales up its malicious model to ensure

the inserted backdoor survives during the training process and the malicious model replaces

the global model. However, the model-replacement attack is easily exposed to defenders

because of the scaling behaviour. In order to make attacking behaviours more stealthy and

undetectable, DBA [14] proposes that the centralized trigger proposed by [13] can be split

into four distributed triggers with the same combined global trigger. Distributed triggers are

inserted in continuous training epochs. Compared to a centralized backdoor, this type of

distributed backdoor is more stealthy and survives longer during global training. Weight-

modified backdoor attacks can be applied in real-world scenarios such as recommendation

systems. [29] discuss that a poisoned recommendation system will recommend the triggered

inputs regardless of a true topic. They propose a gradient ensembling technique that encour-

ages the poisoned triggers to generalize to a wide range of model parameters. Except for

inserting weight-modified backdoors, attackers can also modify their model parameters and

send the malicious model to the central server, such that the malicious updates can drag the

trained global model away from the optimal model. In MPAF [28], fake clients are created to

inject crafted models based on the knowledge of global models in previous training epochs.

Their experiment results show that MPAF can obviously decrease the accuracy of the global

model.
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Long-stay Backdoor Attacks

In [13], it discusses that the inserted backdoors in the FL gradually disappear during the train-

ing process. Some works [30] [31] [32] discuss how to extend the lifespan of the inserted

backdoors. Neurotoxin [30] is motivated by the fact that projecting the adversarial param-

eters onto the infrequently updated subspace of benign clients can increase the stability of

inserted backdoors. Based on this intuition, Neurotoxin attacks those underrepresented pa-

rameters of the benign parameters. Instead of comparing the parameters between malicious

and benign clients, chameleon [31] discusses the relationship between benign images and

poisoned imaging with targeted labels to investigate the durability of backdoors in federated

learning. It points out that benign images sharing different labels (interferers) with poisoned

images may decrease the durability of backdoors, while benign images sharing the same la-

bels (facilitators) with poisoned images may facilitate the durability of the backdoors. Based

on this observation, chameleon proposes its backdoor strategy consisting of two steps, adap-

tation and projection. By using this strategy, the chameleon drives the embedding distance

between the poisoned images and interferes to become larger and the embedding distance

between the poisoned images and facilitators to become closer. By doing so, the backdoors

inserted by the chameleon have a longer lifespan. Unlike neurotoxin selects the infrequent

updates subspace of benign models, [32] reduces the number of modified neuron nodes con-

nected to the targeted class and only modifies the nodes which have the greatest impact on the

targeted class. It also implants unspecific triggers to increase the flexibility of the backdoors.

Optimized Backdoor Attacks

Unlike [13] [14], optimized backdoor attacks [33] [36] optimize their attacking strategies

with the knowledge of the feature space and the parameters of the global model. Semi-

targeted attack [33] illustrates that the performance of classic poisoning attacks like label-

flipping attacks or backdoor attacks is class-sensitive. The performance of attacks can vary

when the target class is chosen from one to another. In order to find out the target class

which may cause the most effective negative impact, they compare the distance of the extract

feature vectors between the source class and target class. The class with the smallest distance

is selected as the optimized target class. Perdoor [36] investigates how to insert long-lasting,

non-uniform triggers into the global model. The main idea of them is to poison some global
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model parameters that deviate less in benign global training epochs. Besides, they generate

adversarial examples and optimize the chosen global parameters with backdoor training loss.

2.1.5 Backdoors can be transferred

graphfl-backdoor [35] is investigated as the first paper discussing the backdoor attacks in

Federated Graph Neural Networks (Federated GNN). By conducting centralized backdoor

attacks and distributed attacks, they investigate the robustness of Federated GNN. They eval-

uate the attacking performance in Federated GNN for different criteria. [37] discuss how to

transfer backdoors into HyperNetwork in Personalized Federated Learning.

2.1.6 Other Attacks

Excepting for poisoning attacks, federated learning also faces other threats such as free-

rider attacks or privacy-leakage attacks. Introduced by [38], a free-rider attack intends to

impersonate benign clients and obtain the final trained global model without contributing real

data. They propose a comprehensive theoretic analysis and evaluations of free-rider attacks

on federated learning schemes, FedAvg and FedProx [52]. Apart from free-rider attacks,

federated learning is also vulnerable to privacy-leakage attacks. Although federated learning

can provide clients with privacy, the attacker [40] [41] [42] [22] can still infer information

about the data distribution or data structure from the continuously updating models. [41]

proposes four different attacks categorized into two types, single-sample attacks and multi-

sample attacks.

2.2 Existing Defences
In this section, we give a detailed discussion of the existing defence methods against model

poisoning attacks. These defences are categorized into six classes, and the details can be

checked in the table. 2.3. As far as we know, the majority of previous works focus on

defending against untargeted model poisoning attacks and targeted model poisoning attacks.

Few works discuss how to address the security issues caused by adaptive model poisoning

attacks. This thesis gives a comprehensive discussion of state-of-the-art adaptive model

poisoning attacks and proposes novel solutions to solve this problem.
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Category Defence Methods

Byzantine-robust aggregation

Krum, Multi-Krum [46], Bulyan [20], trimmed mean [45],
median [45], RFA [53], RLR [54], RSA [55],
enhancing [56], SecureFL [57], aflguard [58],
adaptiveavging [59], fedmulti-task [60], draco [61],
discrete-Gaussian [62], MoNNA [63], attention-fl [64],
MAB-RFL [65], UBAR [66], fragmented-fl [67],
truth [68], Variance-reduced [69], FLTrust [70]

Model Inspection
NeuronPruning [71], Auror [47], DeepSight [72],
Data Sanitizing [73], ARIBA [74], flare [75],
SVM-fl [76], fldetector [77], fltrust [70]

Clipping and noising

FLGUARD [78], Norm clipping [79], Secure [80],
better [81], byzantine fault-tolerant [82] [83],
Gradient Splitting [84], leadfl [85], FL-WBC [86],
LDP [87]

Outlier Detection

FoolsGold [24], Beas [88] FLGUARD [78],
BaFFLe [89], Spectral anomaly detection [90],
Outlier detection [91], DeepSight [72],
FLAME [92], FLvoogd [93], fedrecover [94],
Bayesian [95], sageflow [96]

Certified/Provable robustness SparseFed [97], CRFL [98], flcert [99] [100],
flip [101]

Others

AIgorand [102], cerberus [103], diot [51],
frl [104], vfl [39], edge-stability [105], SMC-fl [106],
blockchain-fl [107], shieldfl [108], lsfl [109], XAI-fl [110],
multi-taskfl [111]

Table 2.3: Poisoning Defence in federated learning

2.2.1 Robust Aggregation Methods based on Statistical Characteristics

In this section, we discuss a bunch of robust aggregation algorithms based on statistical

characteristics.

Robust Aggregation Algorithms towards Optimal Statistical Error Rates

[45] propose two robust aggregation algorithms coordinate-wise median and coordinate-

wise trimmed mean. Coordinate-wise median selects the median parameter for every dimen-

sion as the representative global parameter. As for the coordinate-wise trimmed mean, it

sorts all clients on the same dimensional parameter. Then, with the knowledge of the num-

ber of malicious clients f , it filters the maximum and minimum f parameters and aggregates

the rest parameters by FedAvg. [45] establishes the statistical error rates of coordinate-wise

median and coordinate-wise trimmed-mean for different population loss functions, including

strongly convex, non-strongly convex, and non-convex. They provide statistical guarantees
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on the error rates of these two robust algorithms.

Robust Aggregation methods based on comparison of distances, similarities and Like-

lihood

Filtering abnormal values is the basic idea in outlier detection. It can also be used to filter ab-

normal parameters in federated learning based on the comparison of similarities or distances

between benign parameters and malicious parameters. Krum [46] uses Euclidean distance

as the metric to select the representative as the global parameter. It defines a score for each

client i, si = ∑w j∈Γi,n−m−2 ∥w j −wi∥2
2, where Γi,n−m−2 is the set of n−m− 2 local clients

that have the smallest Euclidean distance to wi (clienti’s parameters). The client that has the

smallest score is selected as the representative. Multi-Krum [46] is a variant of Krum. Multi-

Krum collects a set of clients with the smallest scores using Krum and repeats this process

for the remaining updates until the set has c updates, such as n− c > 2m+2. Then, it takes

the average among this set of clients. Bulyan [20] uses a similar process as Multi-Krum.

Instead of using Euclidean distance, RFA [53] computes the geometric median given clients’

parameters by using a Weiszfeld-type algorithm. Unlike Krum, Multi-Krum or trimmed-

mean, RFA is agnostic to the level of corruption, namely the portion of malicious clients

in one training iteration. RFA has a better performance in the case of heterogeneous data,

as RFA takes all clients’ contributions into consideration unlike Median [45]. FLTrust [70]

and SecureFL [57] use similar defence methods by measuring gradients’ direction similar-

ity and aggregating weighted gradients. In their method, the server holds a root dataset for

training a benign model in every iteration. This trained benign model is used to compare

with the local models sent from clients and identify the potential malicious clients. Although

FLTrust and SecureFL can show good performance against model poisoning attacks, it is

unrealistic to construct a root dataset to verify clients’ model parameters. TDFL [68] applied

the truth discovery (TD) for evaluating data source quality. TDFL circumvents malicious

clients by excluding outliers by comparing the cosine similarities. After filtering out poten-

tial outliers, the TD algorithm works on the rest of the honest clients to aggregate the global

model. Fragmented-fl [67] also uses cosine similarity as the metric to compute clients’ rep-

utations. In their method, clients exchange corresponding slices of parameters according to

the reputations of the client. Malicious clients with low reputation levels are excluded from
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the exchange sessions. [59] proposes an adaptive federated averaging algorithm. Their algo-

rithm uses cosine similarity to provide a normalized similarity measure. Besides, they use a

Bayesian model to estimate the clients’ probability of providing benign models. Based on

the estimated probabilities, bad models are blocked during training. Similarly, [64] propose

an attack-adaptive aggregation algorithm based on reweighing the parameter vector with the

probability of the parameter vector being a clean model from a benign client. They use

the attention mechanism for the parameterization of the likelihood of the parameter vectors.

This data-driven attention mechanism can be incorporated with existing robust aggregation

algorithms such as trimmed-median [45] or Median [45].

Robust Aggregation methods based on Crafted Robust Learning Regime

It is well-known that the classic federated learning regime is vulnerable to poisoning attacks.

Adversarial parameters can drag the aggregated global model away from the optimal model.

Some works illustrate that the new robust training process can reduce the negative impact

caused by adversarial parameters by modifying the training regime. RSA [55] discuss that

the classic objective function of federated learning, the summation of the workers’ local

expected cost functions, is vulnerable to byzantine attacks. In order to overcome this dis-

advantage, RSA adds a new regularization term to the original cost function. Besides, they

generalize the L1-norm regularization term to the Lp-norm regularization term. They also

evaluate the selection of regularization terms in their numerical tests. Unlike RSA, which

modifies the objective function of FL, RLR [54] focuses on the update rule. They assume the

backdoored model parameters and benign model parameters are two different points. There-

fore, the gradients of the adversaries and the gradients of the benign clients differ in direction.

Based on this analysis, they designed a new mostly voted sign to decide the positive or the

negative of the learning rate vector over all dimensions. [69] discusses that stochastic gradi-

ent descent (SGD) suffers from stochastic gradient-induced noise, leading to the challenge

of identifying malicious parameters from noisy benign parameters. In order to address this

problem, [69] replaces SGD with the variance reduction technique, SAGA [112]. Besides,

they combine SAGA with the previous robust aggregation method, Geometric-median [53].

The proposed Byrd-SAGA turns out to have better performance than the robust distributed

SGD. [63] also discusses that distributed SGD is not robust. They propose MONNA based
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on using Polyak’s momentum [113] of its local stochastic gradients to update its local param-

eters. Besides, they use nearest neighbour averaging (NNA) as the robust aggregation rule

rather than FedAvg. From their computational overhead analysis, compared to distributed

SGD, the overhead of MONNA only increases linearly with the number of malicious nodes.

The above robust algorithms are based on a centralized Parameter Servers (PS) mode. How-

ever, robust algorithms based on a decentralized PS model are under-explored. [66] propose

a decentralized PS algorithm UBAR, consisting of two steps: candidate pool of potential

benign nodes selection and updates estimation. With these two steps, UBAR can overcome

the issues of scalability and advanced attacks. [65] proposes a novel client selection pro-

cess as an extended multiarmed bandit (MAB) problem. With this MAB method, the server

can adaptively select the possible benign clients. Undirected graph and principal component

analysis (PCA) are used to identify Sybil [24] and non-sybil attacks respectively.

2.2.2 Model poisoning Defences based on Model Inspection

In this section, we discuss a list of defence methods based on Model Inspection. [47] is the

first work to propose identifying malicious clients by indicative features. They assume that

the data distribution is independent and identically distributed (i.i.d) among benign clients.

Therefore, the distribution of the features among benign clients is similar as the distribution

of the features preserves the distribution of data. When malicious clients poison the training

dataset, they also affect the distribution pattern of some specific feature, also called indicative

features. Auror clusters the values from all clients for one feature to find out the indicative

feature, and identify the malicious clients based on the abnormal distribution of the features.

The abnormal features from malicious clients are eliminated before aggregation. Unlike Au-

ror [47] assume i.i.d data distribution, [71] does not have an assumption on the data distribu-

tion among clients. [71] proposes a neuron-pruning method to prune the redundant neurons

and adjust the extreme parameter’s value. They designed two voting methods, ranking vot-

ing and majority Voting, where all clients rank all the neurons in the last convolutional layer

based on the averaged activation values. Less active neurons are pruned. Similar to Auror,

the filtering layer of Deepsight [72] is also based on feature extraction. The feature extrac-

tion consists of three steps, pairwise cosine distances calculator, DDif calculator and NEUP

calculator. The DDif calculator is based on the assumption that the data distribution among
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clients should be i.i.d and the predicted probabilities of labels should be similar among be-

nign clients. With these three steps, Deepsight can effectively detect malicious clients in

both i.i.d and non-i.i.d situations. [74] propose to fragment the model parameters into sliced

vectors and distinguish the abnormal vectors by the skewed statistical distribution, as the poi-

soned parameters may have distributional bias. Thus, they propose ARIBA that calculates

the Mahalanobis-distance values of the sliced vectors and scores the sliced vectors by these

distance values. Then, ARIBA identify and filter the model parameters with lower scores.

Similar to [74], [75] uses a counting method to find out benign parameters with higher trust

scores. In [75], the parameter server (PS) uses Maximum Mean Discrepancy (MMD) [114]

to estimate the MMD between the PLRs (penultimate layer representations) of two clients’

parameter vectors. Then PS selects the top 50% closet parameters. When a vector is selected,

the corresponding client gets one trust score. With higher trust scores, the client has a higher

probability of being benign. However, [75] assumes that benign clients are the majority. Un-

like the above works analysing the representations or features of the model parameters, [77]

analyzes the consistency between the received client’s models and the estimated model by

the server. The server uses a history record of previous clients’ models and the estimated

Hessian matrix to compute the predicted clients’ models. The clients’ models are filtered

if the Euclidean distance between the estimated model and the received model is above the

threshold.

2.2.3 Clipping and Noising

Most defence works are based on the client side. To the best of our knowledge, [86] [85] [87]

are the only client-side defence methods. [86] gives a definition of Attack Effect on Param-

eter (AEP), which is the change of the global model parameters accumulated until the t-th

round due to the perturbation of the attackers in the FL systems. The AEP is denoted as δt .

Based on this definition, they compare two AEPs, δt1 and δt2, between attacks to explain

that the residence of APEs in the kernel of the Hessian matrix is the main reason why the

attack impact remains. According to this analysis, they add Laplace noise with mean = 0

and std = s to the benign parameter to perturb the Hessian matrix so that the impact of δt1 is

reduced. However, the noise is random added. So it is hard to make sure the impact of δt1 is

reduced as expected. [85] aims to add perturbation to the Hessian matrix by regularizing the
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model update with the estimated Hessian matrix. By adopting a two-step backpropagation

process, the impact of δt1 is minimised. [87] investigates the trade-off between privacy and

robustness in FL. Through experiments, it evaluates to what extent differential privacy (DP)

can be applied to protect privacy while keeping robustness. [115] points out that defence

methods based on DP significantly deteriorate the performance of the model. In order to

eliminate the negative impact of the injection of noise on main performance, they proposed

a novel method, flame, to reduce the amount of noise injected. Flame consists of three parts:

Dynamic Clustering, Adaptive Clipping and Adaptive Noising. With Dynamic Clustering,

the flame can identify and filter malicious parameters deviating from the majority of param-

eters. Besides, Adaptive Clipping can re-scale the potential malicious parameters. They

empirically show that the noise scale is reduced after the process of Dynamic Clustering and

Adaptive Clipping when eliminating poisoning attacks. [79] proposes a norm-clipping and

weak DP method similar to [115]. They assume that boosted attacks [13] are likely to create

parameters with large norms. Thus, based on this assumption, [79] proposes a norm clipping

method with a pre-set threshold. The parameters are normalized by the threshold value when

the corresponding norm is larger than this threshold. After norm clipping, they add a small

amount of Gaussian noise to mitigate the model poisoning attacks further. [82] [83] proposed

a filtering method based on norm comparison. After sorting and comparing the norm of all

clients’ parameters, they filter and only keep the parameters with the smallest n− f norms.

2.2.4 Outlier Detection

Methods based on outlier detection usually use various characteristics of model vectors (e.g.,

magnitude, direction, feature distribution, or performance of the model on specific classes.)

to detect the outlier from the benign vectors. FoolsGold [24], Beas [88], FLGuard [78],

FLvoogd [93] and FLAME [115] detect the potential adversaries by comparing the direc-

tions of the parameter vectors of the clients. However, these works have different threat

models. FLGuard [78] assume the sybil attackers may have quite similar directions while

the benign clients have diverse directions due to the data heterogeneity. Thus the vectors

with similar cosine similarity values are identified as malicious vectors. On the other hand,

FLGuard [78], FLvoogd [93] and FLAME [115] assume that the malicious clients would

drag the global model towards the backdoored model or the opposite direction of the be-
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nign model. Therefore, the vectors with dissimilar cosine similarity values are identified as

malicious vectors.

DeepSight [72] and sageflow [96] assume the server owns a clean verification data set to

verify the model vectors sent from clients. DeepSight [72] defines a metric, DDifs, which

calculates the probabilities predicted by the local model for each class on each verification

data point divided by the corresponding probabilities predicted by the global model and

sums the fractions corresponding to each data sample. Sageflow [96] calculates the sum

of the Shannon entropy of the local models corresponding to every verification data point.

Apparently, clients with low entropy have a high possibility of acting as benign ones. Deep-

Sight uses the prediction of the global model as the reference to verify the potential malicious

model. However, a single reference can lead to misidentification as the global model can be

poisoned. Besides, these methods with the requirement of a small clean verification data set

may be inapplicable in reality, as it is hard to collect such a clean data set when the defender

has no access to know the data distribution of the benign clients. BaFFLe designs a feedback

loop to address these issues. With the feedback loop, a group of clients are chosen to vali-

date the current round global model by using their own local data set at each iteration. These

chosen clients measure the wrong-prediction gap between the current global model and a list

of previous global models. Then the chosen clients vote to decide whether the current global

model is suspicious.

[90] proposes a spectral anomaly detection-based framework. They feed all the clients’

models into the encoder-decoder process. Through the encoding and decoding process, each

local model has a reconstruction error. Local models with reconstruction errors higher than

the threshold will be identified as Outliers or malicious ones. [94] estimates the clients’

model updates instead of requiring the clients to train models during the recovering phase.

More specifically, the server stores the historical information, including the global models

and clients’ local updates in each round. Then, with this information, the server approxi-

mates an integrated Hessian matrix using an LBFGS algorithm and calculates models using

the Cauchy mean value theorem. [95] consists of two steps: (1) determination of clients’

parameters distribution by Beta Processes (BP), Hierarchical Beta Process (HBP) [116], and

Bernoulli Processes (BeP); (2) Detection and Filtering malicious parameters by measuring

the similarity of two distributions by the Jensen-Shannon Divergence [117] [118].
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2.2.5 Certified Robustness

The aforementioned works focus on empirically mitigating model poisoning attacks. How-

ever, few of them discuss the certified robustness or the provable security guarantee. As a

matter of fact, it is still an open question of how to certifiably mitigate the impact of model

poisoning attacks below an acceptable level. In this section, we discuss some works focused

on certified robustness. SparseFed [97] proposes a novel defence that sparsificates the top

kth parameters and clips the gradients to mitigate model poisoning attacks. They propose

the threat of propagation error that small perturbations in the early round can compound

fast and diverge the trained model away from the optimal model. They give the certified

radius to quantify the propagation error caused by malicious behaviours. A larger certified

radius means the FL algorithm is more vulnerable to the attacks. Through analyzing the

certified radius of their proposed method, SparseFed, they find that compared to the base-

line FL algorithm, FedAvg, SparseFed can shrink the certified radius theoretically and em-

pirically. [99] [100] propose an ensemble federated learning framework, FLCert, which can

make sure the predicted label for an exact test sample is unaffected within a bounded number

of malicious clients regardless of the attack types. Their methods consist of FLCert-P (ran-

domly sampling clients for each group) and FLCert-D (dividing clients into disjoint groups).

However, it is hard to make the bounded number of malicious clients of all the test data sam-

ples consistent as their proof is sample by sample. Besides, they do not specify the predicted

label with the highest probability is the benign label. CRFL [98] consist of two subrou-

tines: (1) Training phase: Clipping and Perturbing; (2) Testing phase: Parameter Smoothing.

They focus on providing certified robustness against backdoor attacks. It is shown that the

accuracy of the global model can be guaranteed if the magnitude of the change in the data

samples is bounded. However, such an assumption is unrealistic as malicious clients can

arbitrarily modify their training data samples. Flip [101] consists of three steps: (1) Trigger

inversion; (2) Model hardening; (3) Low-confidence sample rejection. This novel method

can guarantee provable robustness without reducing performance.

2.2.6 Other Defences

Now, we discuss some works focusing on some extended fields of mitigating model poi-

soning attacks, including privacy preservation in FL, and the threats of poisoning attacks in
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AI-based service scenarios.

Privacy Preservation in Federated Leaning Systems

The issue of privacy leakage in FL is an orthogonal research direction to poisoning attacks

in FL. Here, we briefly discuss some works focusing on addressing the privacy issue by

integrating some novel methods, such as differential privacy, Homomorphic encryption, or

Multi-party secure computing. Blockchain-fl [107] provides the FL system with privacy

while mitigating poisoning attacks. Their poisoning attacks defence is based on the work

of [70] with a trust root. Then they use fully homomorphic encryption to encrypt the com-

munication process. To accelerate transparent processes, they use blockchain. [106] also

takes homomorphic encryption as the basic privacy mechanism. Different from [107], their

method allows the server to detect malicious behaviours under ciphertext by extracting gra-

dient data of the logarithmic function. Similar to [107], ShieldFL [108] uses the cosine

similarity to detect poisoning behaviours. However, they use two-trapdoor homomorphic

encryption as the underlying privacy mechanism instead of fully homomorphic encryption.

The Threats of Poisoning attacks in AI-based Service scenarios

Nowadays, intelligent edge computing applications based on federated learning are widely

used in our daily lives. However, it is well-known that deep learning methods are vulnera-

ble to backdoor attacks. [105] discusses the threat of propagation of the backdoors among

federated works, which causes negative effects on intelligent edge computing. They attempt

to develop a stability-based mechanism to address the issue of backdoors on edge devices.

In addition to model poisoning attacks, LSFL [109] attempts to address the privacy leakage

on intelligence edge devices by utilizing two servers to enable secure Byzantine robustness

and model aggregation. RFL [104] is proposed as a novel federated pruning paradigm to

train a robust pruned global model. Within this paradigm, the clients are requested to rank

the edges of their local models and find a supermask within the initial models by using the

Edge-popup Algorithm. Then, the clients send the ranks of the edges to the server. The

server takes a majority vote mechanism to calculate the reputations of all the edges and ag-

gregate all the edges by their reputations. XAI [110] discusses the backdoor issue in the

large-scale Industrial Internet of Things (IIoT) applications. The workflow of [110] involves

both the server and the IIoT applications. The server has three parts: (1) the attack library,
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collecting the characteristics of existing backdoor trigger patterns; (2) the filter library; (3)

the XAI model library. When an IIoT application is selected for training, the server pro-

vides the participants with the backdoor filter built on the filter library and the XAI model

library. With this backdoor filter, the participants can de-trigger the malicious inputs by

blurring the trigger area. By using the two-step blur-label-flipping strategy, the participants

can mitigate the backdoor completely. [103] discusses the problem of how to accurately pre-

dict cyber-attack behaviours based on past events among organizations without disclosing

sensitive information. They propose Cerberus, an FL system for predicting security events

by training a Recurrent Neural Network (RNN) model with historical security events and

predicting future security incidents. Their work bridge FL into intrusion detection.



Chapter 3

Towards Defending Adaptive Backdoor

Attack in Federated Learning System

In this chapter, we mainly focus on defending against backdoor attacks (targeted model

poisoning attacks) in FL. As we discuss in the subsection. 1.2, local clients can participate in

FL training without revealing their sensitive information or being checked. Therefore, this

privacy characteristic of FL leaves the door open for the adversary. Malicious clients can

send poisoned model updates to the central server without being identified, which makes FL

vulnerable to backdoor attacks. To address this security issue, we present FLSec, a novel

defence approach, to mitigate backdoor attacks caused by adversarial local model updates.

FLSec utilizes an original measurement, GradScore, computed from the loss gradient norm

of the final layer of the local models for backdoor defence. We give a detailed explanation of

why this GradScore can be an effective metric for distinguishing malicious behaviours. We

show that GradScore is efficient and robust in identifying malicious model updates through

analysis and experiments. Our extensive evaluation also demonstrates that FLSec is highly

efficient in mitigating three state-of-the-art backdoor attacks (Single-shot, Constrain-and-

Scale, and Distributed Backdoor) on well-known datasets, MNIST, LOAN, and CIFAR-10.

According to the experiments, the accuracy of FLSec on a benign dataset with the proposed

defence approach is nearly unchanged, with the accuracy on the backdoor dataset being

reduced to 0%. In addition, our experiments show that FLSec significantly outperforms

existing backdoor defences.

31
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3.1 Introduction
FL is a collaborative machine learning paradigm proposed by McMahan et al. [6]. Unlike

centralized training, FL offers efficiency and scalability as many clients execute the training

in parallel over communication networks [6]. FL also provides excellent privacy to clients

as they can keep their training datasets locally [6] rather than sharing them with other partic-

ipants.

However, due to its distributed operation, FL leaves the door open for adversaries. An

FL system is vulnerable to poisoning attacks, especially backdoor attack that aims to insert

a trigger into the trained global model [13]. The existence of a backdoor makes the global

model mislabel a small group of samples with chosen triggers into targeted labels. However,

these backdoored global models can have good accuracy in benign and backdoored datasets.

Existing defences against poisoning attacks can be divided into two major classes, cer-

tified robustness and empirical robustness (e.g. [45], [89]). In this work, we mainly discuss

empirical robustness, which is currently investigated by inspecting distinguishable factors,

such as indicative features [47], source-focused error [89], or pair-wise cosine similari-

ties [24] [71] [90] [89] [47]. However, these existing approaches are only efficient under

specific assumptions about the data distribution of the clients [89] [47] [71] [78], or specific

attack strategies [24] [89]. Therefore, these works have poor efficacy in generic adversary

models. Defence approaches [119] based on robust statistics suffer from targeted poisoning

attacks as they seek robustness against untargeted attacks.

To address the challenges mentioned earlier and limitations, in this work, we propose

an effective defence approach applicable to a generic adversary model without assumptions

about data distribution and attack strategies. This proposed technique can mitigate adaptive

attacks while maintaining the main tasks’ performance. Specifically, the contributions of our

work are as follows:

• We proposed FLSec, a novel generic defence to mitigate backdoor attacks on federated

learning systems. FLSec uses a pruning scheme. By carefully setting the pruning rate,

malicious clients can be pruned largely.

• We propose and utilize scores (GradScore) of local client models, which are computed

by the loss gradient norm of the final layer of the local models. It measures the updates
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of each client to its local model. Clients with larger GradScore would be regarded as

suspicious.

• We demonstrate the effectiveness of FLSec against backdoor attacks by evaluating

multiple datasets and various attack scenarios. Experiments show that FLSec can ef-

fectively mitigate several state-of-the-art backdoor attacks without affecting the per-

formance of the global model on main tasks.

3.2 System and Threat Model
The related preliminaries and system settings can be checked in the section. 1.2.

3.2.1 Attack Strategies

Data poisoning: In this attack strategy, adversary A is only able to manipulate the local

training dataset of end devices. By varying the Poisoned-Data-Rate (PDR), the attacker can

trade between attack impact and stealthiness. Let Di denote the number of the combined and

poisoned dataset of a compromised client i and DA
i the number of modified or poisoned data.

Then the PDR is given by:

PDR =
DA

i
Di

(3.1)

Model Poisoning: In this attack strategy, adversary A can control a subset of the clients

fully. To increase the attack’s impact on the aggregated model, Adversary Ac can deliberately

modify the model updates before submitting them to the aggregator.

Single-Shot: As proposed in [13], the adversary can scale up the model weights by γ up

to the bound β set by simple weight-based anomaly detectors. The scaled malicious local

updates wt
i is given by:

w′ti = (wt
i−Gt)γ t

i +Gt (3.2)

Here, wt
i denotes a backdoored local model trained by a malicious client. w′ti refers to

the scaled malicious local model.

Model replacement attack (Single-Shot) can ensure a good attack performance even when

only one malicious client submits one malicious update w′ti in a single training round t
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(Single-shot attack [13]). We use this attack strategy as a benchmark for evaluating our

proposed defence technique.

Anomaly-Evasion: An adaptive loss function is used in [13] [11]. They added a term

ℓanomaly that measures the cosine distance similarity between the known global model and

the original poisoned model. Let ℓoriginal denote the normal loss function and ℓanomaly denote

the evasion loss function. Then the adaptive loss function ℓ
′
is given by:

ℓ
′
= αℓoriginal +(1−α)ℓanomaly (3.3)

The parameter α is used to control the weights of each part. If α is close to zero, the impact

of backdoor attacks would be decreased. On the other hand, large α (α close to one) can

make the malicious behaviours conspicuous by the anomaly detector. The combination of

the anomaly-evasion and Scaling attack strategies is called Constrain-and-Scale attack [13].

This Constrain-and-Scale is another benchmark for evaluation in that

DBA: This novel backdoor strategy is proposed by [14]. By splitting the trigger and

clients into different parts, this attack strategy performs better in clients and stealthiness than

centralized backdoor strategies. We use this attack strategy as the third benchmark.

3.2.2 Adversary Model

The goal of an adversarial client A is to insert a backdoor into the aggregated model, in-

ducing the learned classifier to achieve high accuracy on both its main task and a targeted

backdoor task. We assume that DB denotes benign dataset, and DM denotes backdoored

samples {xi}m
i=1 with true labels yi that should be misclassified as targeted label τi. The

adversary’s objective is to maximize the sum of misclassified backdoored samples:

A(DB∪DM,Gt) = maxGt{
m

∑
i=1

1[ f (xi;Gt) = τi]+∑
DB

1[ f (x;Gt) = y]} (3.4)

From the above equation, two main objectives for adversary A are:

O1: Performance on the backdoor task. The aggregated model should have a good

performance on the backdoor task. Namely, the aggregated model should misclassify trig-

gered samples into targeted labels [120].

O2: Stealthiness. The adversary should ensure that the aggregator server is unaware of
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malicious behaviours. An obvious drop in the main task accuracy (MA) should be avoided.

Similar to previous works on backdoor attacks and defence [13] [11] [26] [72] [78], we

consider a strong adversary model: (1) The attacker fully controls the compromised end

device; (2) The attacker has full knowledge of the aggregating algorithm and configuration

hyper-parameters, i.e., learning rate and the number of epochs; (3) The attacker can modify

the updated weights adaptively before sending back to the aggregator.

3.2.3 Defense Objectives

To defeat Adversary objectives, the proposed defensive technique needs to meet the below

security requirements:

R1: Poisoning elimination: The defence should eliminate the backdoor attack. In other

words, the performance on the backdoored dataset should remain at the same level without

the attack.

R2: No Interruption of the original Training Process: The defence should not inter-

rupt or negatively impact the main training process. The main task accuracy should achieve

the same level as without defence.

3.3 Proposed Approach
In this section, we introduce our proposed approach, FLSec, by deeply inspecting and ana-

lyzing model updates to discover models whose training data were poisoned for a specific

backdoor task. First of all, to find out the potential malicious model updates, we define a new

metric, GradScore. We analyze that the poisoned training dataset rate(PDR) directly impacts

the value of GradScore of a poisoned model. Then we describe how to detect malicious

clients by evaluating the corresponding GradScore values in federated learning. Finally, we

give the details of our FLSec algorithm.

3.3.1 GradScore and analysis

Definition 1 The GradScore of training set S = (xi,yi)
N
i=1 on a local client at global iteration

t is GradScore(Ct
i ) = ∥g({(xi,yi)})∥2.

It is approximated that training dynamics are in continuous time. For a labelled example

(x,y) from local data set S = {(xi,yi)}N
i=1, the time derivative of the loss on this labelled
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sample is ∆t((x,y),St) =−dℓ( fwt (x),y)
dt at time t. By the chain rule,

∆t((x,y),St) = gt(x,y)
dwt

dt
(3.5)

The instantaneous rate of change in wt at time t, dwt ≈wt+1−wt =−η ∑(x,y)∈st gt(x,y).

The goal is to understand how poisoned samples from minibatch St affect the time derivative

of the loss for any samples (x∗,y∗) from the same minibatch.

Lemma 1 Let S¬ j = S\(x j,y j) denotes training set excluding sample (x j,y j). Then for all

rest samples (x′,y′), there exists c such that

∥∆t((x′,y′),S)−∆t((x′,y′),S¬ j)∥= c∥gt(x j,y j)∥. (3.6)

proof 2 For a given example (x′,y′), the chain rule yields δt((x′ ,y′),S)= gt(x′,y′)dwt
dt . There-

fore, for the left part of Eq.(3.8),

∥∆t((x′,y′),S)−∆t((x′,y′),S¬ j)∥

= ∥dℓ( ft(x′,y′))
dwt

(−η ∑
St

gt(x,y))

− dℓ( ft(x′,y′))
dwt

(−η ∑
S¬ jt

gt(x′,y′))∥

= ∥dℓ( ft(x′,y′))
dwt

(−ηgt(x j,y j))∥

= η∥dℓ( ft(x′,y′))
dwt

gt(x j,y j)∥

(3.7)

Let c = η∥dℓ( ft(x′ ,y′))
dwt

∥, we can get the right part of Eq.(3.8).

It is not difficult to see from above that the contribution of a training sample (x j,y j) to

the decrease of loss on other samples from the same minibatch can be quantified by Eq.(8).

The value of ∥gt(x j,y j)∥ is the GradScore of sample (x j,y j). Samples with large GradScore

have a high influence on learning. For backdoor training on local devices, malicious clients

should try to reduce backdoor training loss ℓB((x,y),Gt). Hence, malicious clients should

increase the poisoned data rate(PDR). In Fig.4.3(a)(c), we evaluated this inference, running

backdoor training on MNIST dataset with a minibatch of 64 samples. With the same pre-
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Figure 3.1: Impact of the poisoned data rate (PDR) on loss value, Backdoor Accuracy, and
GradScore. value

trained model, a model trained with a higher poisoned data rate causes an obvious decrease

in backdoor training loss and has a higher GradScore value.

3.3.2 FLSec Design

Key Observations. Our first observation is that no matter what is the data distribution among

clients, the deviations between local models and global model start to cancel out, i.e.,∀w ∈

{wi}m
i=1,w

t+1
i −Gt ≈ 0 [13], in the benign setting, as the global model converges. Therefore,

the updates of benign local models , dw ≈ wt+1−wt is bounded. According to Eq.(8), it

is not difficult to see ∥∆t((x′ ,y′),S)−∆t((x′ ,y′),S¬ j)∥ is bounded. Therefore, ∥gt(x j,y j)∥
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of one example from the benign dataset is small. The second observation is that when the

global model starts to converge, poisoning behaviours on the malicious client would deviate

from the malicious updates from the current iteration global model [115]. The GradScore

of benign clients is small, while the GradScore of malicious clients is larger. In fig.4.3, it is

shown that the GradScore of the last layer gradients of malicious clients’ model is larger than

benign clients’. Therefore, malicious clients can be detected by comparing the GradScore of

the last layer of local models.

Algorithm 1: Design of FLSec

Input: n, G0, T , Ct+1
0 , ...,Ct+1

n−1
// n is the number of clients in one iteration, G0 is

the initial global model, T is the number of global
iterations, Ct+1

0 , ...,Ct+1
n−1 is a group of clients chosen

for training in one round
Output: GT

// GT is the updated global model after T iterations
1 for t ∈ [1, ..,T ] do
2 for i ∈ [Ct+1

0 , ...,Ct+1
n−1] do

3 GradScore(Ct+1
i ) = ∥g{(x,y)}∥2 // ∥g{(x,y)}∥2 is the L2-norm

of gradients of parameters in final layer of
models

4 end
5 SCORE← [GradScore(Ct+1

0 ), ...,GradScore(Ct+1
n−1)] ;

6 Sort(SCORE) ;
7 Pruned(w∗t+1

0 , ...,w∗t+1
m−1)← Pruningp%([wt+1

0 , ...,wt+1
n−1]) // p% is the

pruning rate

8 SendPruned(w∗t+1
0 , ...,w∗t+1

m−1)→ Aggregator ;
9 Gt+1← Gt + η

m ∑
m−1
0 (wt+1

i −Gt) // Global Aggregating, η is the
global learning rate

10 end

Now, we discuss the steps of FLSec. Algorithm 1 outlines the procedure of FLSec.

Identifying malicious behaviours. In designing FLSec, the first step is identifying and

measuring malicious behaviours in the federated learning system.

Pruning and excluding malicious clients. After malicious behaviours are identified,

the next step in FLSec is to identify and exclude anomalous clients based on corresponding

GradScore values. First, GradScore corresponding to clients is sorted in descending order.

The top p per cent clients with the highest scores are pruned and excluded from the benign
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client list. The parameter p depends on the number of anomalous clients in one global

iteration. For example, when the adversary takes a single-shot attack strategy, only one

malicious client should be excluded. It is generally assumed that the fraction of malicious

clients are within the range (0< f < n/2), and at least half of clients with smaller GradScore

values are identified as benign.

Generally, p is set to 0.5. In Section.3.4, we evaluate the validity of FLSec with different

pruning rate p. The sorting and pruning step is shown in lines 5-7 of Alg.1.

Aggregation The aggregator excludes the updates sent by malicious users in the cur-

rent iteration and trains the global model on the remaining model updates(line 9 of Alg.1).

The global training algorithm varies based on the underlying training algorithm used in the

application. We use FedAvg [6] to train the global model in this proposed work.

3.4 Evaluation Results
In this section, we test the efficiency of FLSec against three adaptive backdoor attacks. We

conduct several experiments to analyze the detection accuracy of FLSec under multiple con-

figurations and varying system parameters (pruning rate p). All evaluations are implemented

based on the PyTorch framework provided by [13] and [14].

3.4.1 Experimental Setup

Datasets.

MNIST. The MNIST dataset consists of 70000 handwritten digits [121]. The learning

task is to classify images to identify digits. The adversary clients mislabel labels of images

before starting poison training task [47].

CIFAR-10. The CIFAR-10 dataset consists of 60000 coloured images with 32×32 pixels

and 24-bit colour per pixel (3 colour channels). 50000 samples of this dataset are used for

training, and 10000 samples are used for testing.

LOAN. A non-i.i.d financial dataset consists of 1.808,534 data samples. 80% of these

data are divided as training samples, and 20% are for testing.

Attack strategy and setting. We consider four backdoor attacks: Single-Shot attack

[13], Constrain-and-Scale attack [13], DBA [14] and Multi-round backdoor attack.
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Single-Shot, Constrain-and-Scale, and DBA. The details of these three attacks are dis-

cussed in 4.3.4. It is assumed that only one out of ten clients is malicious in one global

epoch. Adversary only attacks once when the global model starts to converge. We enable

the proposed approach after the first ten global epochs for the MNIST dataset, ten epochs for

the LOAN dataset, and 200 epochs for the CIFAR-10 dataset, respectively.

Multi-rounds backdoor attack. Unlike the three attacks above, it is assumed that mali-

cious clients take attack actions every global epoch after the global model starts to converge.

The multi-round backdoor attack is a strong attack strategy. Small perturbations caused by

malicious clients in every round can compound and negatively affect the global model.

Evaluation Metrics.

BA(Backdoor Accuracy). the model’s accuracy in the backdoored dataset.

MA(Main Task Accuracy). the accuracy of the model in the benign dataset.

3.4.2 Effectiveness of FLSec

Choice of pruning rate p. Fig.3.2 shows the impact of the pruning rate on MA and BA

rates. As for MNIST, FLSec completely mitigates four types of backdoor attacks (BA≈ 0%)

for three datasets (meet R1) and does not affect the main task performance as the main task

accuracy is the same as baseline (meet R2). In the case of MNIST, we set α = 0.5. In

section 4.3.4, we discuss that the Scaling Coefficient parameter α can balance the effect and

stealthiness of backdoor attacks. When α is set to 0.5, the performance of backdoor attack is

greatly weakened (BA = 32%) in Fig.3.2(b). Therefore, we do not set α less than 0.5, as the

attack impact is too weak. In CIFAR, FLSec can easily mitigate single-shot and Constraint-

and-scale attacks (BA ≈ 0%). However, backdoors cannot be completely mitigated under

another two attack strategies. As discussed in section 4.3.4, unlike centralized learning, DBA

splits triggers and malicious clients into different parts. Split trigger images alone are unable

to change to prediction into targeted labels until they are assembled as a global trigger. This

characteristic makes split triggers much tougher to distinguish from benign images. But as

shown in Fig.3.2(g)(h), the negative effects of DBA and DBA with Constraint-and-scale can

still be effectively decreased to a lower level. Similar results on the LOAN dataset are shown

in Fig.3.3, FLSec can mitigate all backdoor attacks with different pruning rates.
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(p=90%)MNIST (p=80%)LOAN

BA MA BA MA

Benign Setting 0.0 97.68 0.0 76.16
No Defense 99.83 39.47 98.12 71.25
Single-shot 0.44 97.32 0.0 73.36
Scaling Coefficient(α = 0.9) 0.46 97.39 0.0 73.70
Scaling Coefficient(α = 0.8) 0.44 97.32 0.0 71.25
Scaling Coefficient(α = 0.7) 0.46 97.35 0.0 71.25
Scaling Coefficient(α = 0.6) 0.39 97.28 0.16 73.05

Table 3.1: Resilience of FLSec to Constrain-and-Scale attacks with varying α values

(p=90%)MNIST (p=80%)LOAN

BA MA BA MA

Benign Setting 0.0 97.68 0.0 76.16
No Defense 93.25 77.44 98.58 75.37
DBA 0.43 97.64 0.0 73.77
Scaling Coefficient(α = 0.9) 0.39 97.59 0.0 73.63
Scaling Coefficient(α = 0.8) 0.39 97.55 - -
Scaling Coefficient(α = 0.7) 0.43 97.64 - -
Scaling Coefficient(α = 0.6) 0.37 97.53 - -

Table 3.2: Resilience of FLSec to DBA with varying α values
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Figure 3.2: Effectiveness of FLSec with different pruning rate p under Single-shot,
Constrain-and-Scale, and DBA attack strategies on two data sets, MNIST and CIFAR
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Figure 3.3: Effectiveness of FLSec with different pruning rate p under Single-shot,
Constrain-and-Scale, and DBA attack strategies on Loan
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3.4.3 Resilience to Adaptive Attacks

Varying Scale Coefficient Parameter (α) For the Constraint-and-scale attack strategy, the

malicious clients can adjust the Scale Coefficient parameterα to bypass defence techniques.

We evaluate different Scale Coefficient values α from 1 to 0.1 and keep other parameters,

including global and local learning rates, the scaling factorγ , PDR, and PMR, consistently

on two datasets, MNIST and LOAN. FLSec effectively reduced the impact of single-shot

replacement attacks without misclassifications on the MNIST dataset and did not impact the

main accuracy. The results are shown in Table.3.1. From Table.3.1, FLSec also had a good

performance on LOAN with α value from 1 to 0.6. For the DBA constrain-and-scale attack

strategy, the proposed approach can still recognize all the malicious models on the MNIST

dataset(Table.3.2). More results on CIFAR can be checked in the Table.3.3 and Table.3.4.

(p=80%)CIFAR

BA MA

Benign Setting 2.788 76.93
No Defense 76.47 66.66
Single-shot 3.477 77.74
Scaling Coefficient(α = 0.9) 3.500 77.70
Scaling Coefficient(α = 0.7) 2.788 76.78
Scaling Coefficient(α = 0.3) 2.755 75.40
Scaling Coefficient(α = 0.1) 3.622 77.11

Table 3.3: Resilience of FLSec to Constrain-and-Scale attacks with varying α values on
CIFAR dataset

(p=80%)CIFAR

BA MA

Benign Setting 2.788 76.93
No Defense 81.377 71.86
DBA 3.222 78.10
Scaling Coefficient(α = 0.9) 3.200 78.14
Scaling Coefficient(α = 0.7) 3.244 78.13
Scaling Coefficient(α = 0.3) 26.66 73.13
Scaling Coefficient(α = 0.1) 6.988 78.71

Table 3.4: Resilience of FLSec to DBA with varying α values on CIFAR dataset
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3.4.4 FLSec’s Resilience to Adaptive Attacks on CIFAR

In Table.3.3 and Table.3.4, FLSec shows similar performance on CIFAR on defending Constrain-

and-Scale attacks and DBA attacks. In Table.3.3, FLSec can reduce the backdoor accu-

racy to a low level(2.755%− 3.622%) compared to 76.47% without defence. In Table.3.4,

when defending against DBA attacks, the backdoor accuracy can be reduced effectively from

81.377%(No Defence) to 3.200%(α = 0.9). However, when α is set to 0.3, the backdoor

accuracy is 26.66% with FLSec defence. In section.3.2, we discuss that when α is small,

lanomaly is assigned a large weight. So the trained poisoned model is more similar to the

known global model, which makes the attack more inconspicuous by the defender. There-

fore, the stealth of distributed backdoors is strengthened with α = 0.3, and one or two dis-

tributed attack actions avoid detection.

Varying Poisoned Data Rate (PDR) The adversary may attempt to vary the poisoned

data rate to circumvent FLSec. We evaluate FLSec against Constrain-and-Scale attacks for

different PDR values on CIFAR-10 with p = 0.9, γ = 100. In Fig.3.4, we can see that

compared with 99.83% in no defence setting, the attacks show a significant decrease in the

backdoor accuracy in all cases. When PDR is below 0.1, the malicious clients should set a

large scaling factor(γ) to inject backdoors. However, large malicious updates can be easily

detected by outlier detectors [13]. Another interesting result is that it is hard for attackers to

make a trade-off between backdoor accuracy and attack stealthiness. A smaller α means that

the malicious updates are more similar to benign models, and the model is more stealthy.

However, too small α can highly impact the backdoor accuracy. When α is set to 0.1, the

backdoor attacks fail in all the cases.

3.4.5 Comparison to previous defences

Preventing multi-rounds backdoor strategy. We perform the multi-rounds backdoor strat-

egy in the Dirichlet distribution with hyperparameter 0.5 on the MNIST dataset to demon-

strate the effectiveness of the proposed technique compared to RFA [119]. Four of ten ma-

licious clients collude in every global iteration and perform distributed backdoor attacks

without boosting.

The single-shot attack is not considered here, as boosted malicious model updates can

be easily detected by RFA [119]. Fig.3.5 shows that FLSec outperforms RFA in mitigat-
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Figure 3.5: Effectiveness of FLSec in comparison to RFA on MNIST dataset. The Y-axis
label refers to the accuracy of muti-rounds backdoor attacks in federated learning

ing multi-round backdoor attacks. The backdoor accuracy of the global model with FLSec

remains at 0%, while there is a non-negligible increase in the global model with RFA. There-

fore, the performance of RFA is poor in the non-IID data distribution among clients, while

FLSec can mitigate malicious behaviours completely.

3.5 Conclusion
We proposed a novel approach FLSec for federal learning that can resist backdoor attacks.

It analyzes the difference between benign and malicious clients’ contributions to the global

model and uses new measurements on local model updates to identify malicious updates.
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FLSec was evaluated with various attack strategies and datasets. Experiment results show

that FLSec can effectively mitigate backdoor attacks without sacrificing the performance of

the main task. We compared FLSec with state-of-the-art defence techniques, and FLSec was

able to address complicated backdoor attacks in FL systems.

In this chapter, we investigate the efficiency of FLSec with GradScore against the three

well-known backdoor attacks. We do not consider the attack timing of the adversary. The

attacks may happen in the early training stage or the attacks can appear periodically. Be-

sides, the FLSec should be set manually before the FL training. Thus, the adversary can

foreknowledge of the defender method and try to avoid it. In the next chapter, we will dive

more deeply and discuss how to overcome these problems.



Chapter 4

DeMAC: Towards Defending Model

Poisoning Attacks in Federated Learning

System

In this chapter, we investigate how to mitigate multi-round targeted model poisoning attacks,

in which malicious clients can send poisoned model updates to the central server in multiple

training rounds. The bad impact of single-round attacks can be gradually eliminated with

training, however, the negative impact of multi-round model poisoning can overlay with

training. We propose a new system named DeMAC, equipped with GradScore, to improve

the detection and defence against model poisoning attacks by malicious clients. The main

observation is that, as malicious clients need to reduce the poisoning task learning loss, there

will be obvious increases in the norm of gradients. It is shown through a toy experiment

that the GradScores of malicious and benign clients are distinguishable in all training stages.

Therefore, DeMAC can detect malicious clients by measuring the GradScore of clients. Fur-

thermore, a historical record of the contributed global model updates is utilized to enhance

the DeMAC system, which can spontaneously detect malicious behaviours without requir-

ing manual settings. Experiment results over two benchmark datasets show that DeMAC

can reduce the attack success rate under various attack strategies. In addition, DeMAC can

eliminate model poisoning attacks under heterogeneous environments.

48
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4.1 Introduction
Federated learning is a distributed machine learning paradigm [6] [122] [123]. Each client

trains a model locally, and then all local model updates are aggregated by a central server

to derive a global model. This process is repeated multiple times, and the accuracy of the

global model on the main task is gradually improved. FL offers efficiency and scalability

compared to centralised training since many clients execute the training in parallel [124].

In particular, FL provides clients’ privacy as they can keep their training dataset locally [6]

rather than sharing it with other participants. Such a secure aggregation mechanism complies

with General Data Protection Regulation (GDPR) [125] and protects clients against privacy

leakage attacks. Due to FL’s potential functions of privacy protection, it has been deployed in

the real world. For example, Android Gboard [126] has been installed with FL for next-word

prediction. In finance, WeBank [127] has applied FL for credit risk prediction. FL has been

widely used in pharmaceutical companies for drug discovery in MELLODDY project [128].

A major challenge faced by FL is that it leaves the door open for malicious clients. A

FL system is vulnerable to model poisoning, especially backdoor attack that may insert

backdoors into the trained global models [13]. The backdoors can make the global machine-

learning model misclassify a small set of samples with chosen triggers into targeted labels,

while the backdoored global model can show good performance on both main and backdoor

tasks.

Existing defences such as [46] [45] [119] propose Byzantine-tolerant aggregation rules

and remove statistical outliers by comparing client local model updates. However, these pre-

vious works make some assumptions, such as the data distribution should be IID (Indepen-

dent and Identically Distributed), which is not valid in non-IID setting [46]. [119] relies on

the aggregation of updates using the geometric median, not the standard arithmetic mean ag-

gregation. However, our work shows that this method can be bypassed by malicious clients

who carefully design their poisoned updates. Besides, they do not consider the situation

when the attackers participate in the global training round more than one time.

In view of the above drawbacks of the existing works, we propose a system (called

DeMAC) to detect and defend against model poisoning attacks from malicious clients. Our

design relies on the key finding that genuine clients train their model updates following the
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main federated training task and their local benign datasets, while malicious clients will craft

their local model updates trained on the poisoning task and poisoned datasets. To succeed

in the poisoning attacks, the adversaries should increase the number of poisoned samples to

decrease the training loss of the poisoning task. Therefore, the L2-norm of gradients of the

poisoned local model updates will be increased. Although the adversaries can reduce the

number of poisoned samples and decrease the deviations from benign models’ norm of gra-

dients, this may cause the poisoning task to fail. Hence, to measure the L2-norm of gradients

and capture the abnormal changes, we define a new metric which is called GradScore as the

L2-norm of gradients in the last layer of the client model updates after the first local epoch

training. Using GradScore DeMAC can effectively detect potential malicious clients with

abnormally large GradScore values. When the global model training converges, the loss and

the norm of gradients of the main federated training task will be small. If there are poisoning

attacks in this training stage, the difference between model GradScores of genuine clients

and malicious clients will be more obvious. Therefore, DeMAC can easily detect and miti-

gate malicious clients. As for poisoning attacks starting from an early stage, our experiments

also show that DeMAC can work effectively.

Furthermore, to improve the defence performance, a historical record of the contributed

global model updates is utilised in DeMAC to help spontaneously estimate the convergence

trend of the global model and determine the time to start detecting malicious behaviours.

This historical record will store a list of variables within a flexible look-back window size.

The variables are the absolute values of two adjacent accuracy values of the global model on

the validation set. Once the maximum value among this historical record is below the default

threshold, DeMAC would be triggered and start to detect.

We evaluate DeMAC on two benchmark datasets and model-replacement attack [13], dis-

tributed attack [14], scaling-scale attack and muti-poisoning attack [77]. Experiment results

show that DeMAC can effectively mitigate model-replacement, distributed, and scaling-scale

attacks. When malicious clients participate in every training iteration and insert perturba-

tions, the Attack Success Rate (ASR) of the baseline algorithms increases gradually while

the ASR of DeMAC remains at a low level. Therefore, DeMAC can effectively suppress

the propagation errors. In brief, our contributions include: 1) We propose DeMAC, a de-

fence system to detect malicious clients and defend against model poisoning attacks via
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checking the abnormal model updates from potential malicious clients. 2) We utilize the

historical record in DeMAC for defence against malicious attacks, which can spontaneously

detect malicious clients without manual settings; 3) We extensively evaluate DeMAC by

experiments against multiple model poisoning attacks and backdoor attacks on benchmark

datasets, which shows high efficiency in defence against malicious attacks in both early

and late training stages and significant performance improvement over the existing baseline

methods.

The remainder of our paper is organized as follows. Section 4.2 discusses the research

related to poisoning attack and defence. In section 4.3, we introduce the system and threat

models with specific descriptions of adversaries, objectives and requirements for attacks and

defences. In Section 4.4 and 4.5, we present our novel DeMAC system to defend against

model poisoning attacks. We present the evaluation setup in Section 4.6.1. In Section 4.7,

the evaluation results of DeMAC are presented. Section 4.8 concludes the paper and presents

our future work.

4.2 Previous Defence Mechanisms
Defence mechanisms (against backdoor attacks) in the literature can be roughly classified

into two categories: Byzantine-robust federated learning methods [46] [45] [44] [20] [129]

[130] [131] [119], and anomaly detection-based methods [24] [115] [89] [47] [72]. Byzantine-

robust federated learning methods aim to tolerate Byzantine clients failures. In contrast,

anomaly detection-based methods attempt to filter potential malicious clients.

4.2.1 Byzantine-robust federated learning methods

The principle of existing Byzantine-robust defences [46] [45] is to train a global model with

high performance, even if there are some malicious clients.

Krum [46] tries to find a representative model update as the aggregated model update.

Suppose there are n local clients in every iteration. And f among these local clients is

malicious. The score for the ith client is calculated as si = ∑w j∈Γi,n−m−2 ∥w j−wi∥2
2, where

Γi,n−m−2 is the set of n−m−2 local clients that have the smallest Euclidean distance to wi.

So the representative model update is the one that has the smallest score. This representative

model update will be the global model for the next iteration. Krum attempts to limit the iter-
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ation between poisoned and clean models in a single iteration. However, it does not consider

compound propagation errors [97]. Therefore, the iterative nature of learning ensures that

small deviations at the start of training compound exponentially.

Median [45] is a coordinate-wise aggregation rule. The coordinate-wise median of sorted

local models is selected as the aggregated global model update. Instead of using the mean

value among local clients, this aggregation rule considers the coordinate median value of the

parameters as the corresponding parameter in the global model for the next iteration.

Trimmed-mean [45] is another coordinate-wise aggregation rule. Given the trim param-

eter k < n
2 , the server removes the k maximum and minimum values of the coordinates in

client model updates and then computes the mean of the remaining n−2k values as the cor-

responding parameter in the global model for the next iteration. Trimmed-mean relies on the

assumption that the coordinate of the attacker would either be the minimum or the maximum

value of the corresponding parameters. However, this assumption does not hold for model

poisoning attacks [97]. Therefore, even a single attacker can compromise the trimmed mean.

RFA [119] is a robust aggregation rule based on similarity metrics. RFA aggregates the

model updates and appears robust to outliers by replacing the weighted arithmetic mean

in the aggregation process with an approximate geometric median. Model-replacement at-

tack [13] is more easily detected by RFA due to the scaling operation [119]. However, by

strictly controlling the total weights of the outliers with only a few attackers poisoning a

small set in every batch, the attacker model updates can have lower distances and can be

assigned higher aggregation weights [14]. By doing so, the attackers can bypass RFA and

perform a successful backdoor attack.

4.2.2 Anomaly detection-based methods

Many existing defences [24] [115] [89] [47] [72] follow an anomaly-detection-based strat-

egy and exclude anomalous model updates. FoolsGold [24] defines indicative features. By

measuring the cosine similarity on the indicative features and checking the Sybil clones,

Sybil attacks can be detected in no-IID data scenarios as Sybils have highly similar updates.

However, FoolsGold shows poor performance on one Sybil attack scenario. FLAME [115]

uses similar detecting strategies by calculating the angular differences between all model up-

dates. Rather than comparing the probabilities of global models, DeepSight [72] compares
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the local model updates with the previous global model. However, it does not work in no-

IID scenarios. Auror [47] defines indicative features and finds that all the indicative features

come from the final layer. Auror assumes that the indicative features from benign clients

would have a similar distribution while the indicative features from malicious clients would

have an anomalous distribution. However, it does not work in no-IID scenarios.

4.3 Background
In this section, we give some background knowledge of federated learning and attack strate-

gies against federated learning systems.

Symbol Descriptions
D = {(xi,yi)}N

i=1 The training set on local devices
ND the number of samples in training set D

p(w,x) The probability vector
σ( f (w,x)) Activation function
ℓ(p,y) The loss function
ℓB(p,τ) The poisoning task loss function

wt Weights at local iteration t
S0,S1, ..,Sn−1 ⊆ S Mini-batches

g(x,y) The gradient of the loss function
Gt Global model at global round t

{C1, ...Cn} n clients chosen at global round t
PDR Poisoned Data Rate
PMR Poisoned Malicious Clients Rate

m The number of compromised clients
w′ Compromised client weights
G
′

Compromised global model
DP Poisoned data set on local devices
NDP the number of samples in DP

τ Targeted label
y Genuine label
x
′

Poisoned data
x Genuine data
η the local learning rate
γ The scaling factor
β The Scaling-Coefficient parameter
p The pruning rate
σ The validation threshold
l The size of sliding window
S Central server

Table 4.1: Symbols and Descriptions
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4.3.1 Definition of symbols and corresponding descriptions

The overall definition of symbols and corresponding descriptions is listed in table.4.1.

4.3.2 Preliminaries

The related preliminaries can be checked in the section. 1.2.

Figure 4.1: On the left are the three steps of Federated Learning. On the right is the malicious
Federated Learning

4.3.3 System Setting

We assume that n clients train their local models before sending local updates to the central

server. The central server combines these updates by using FedAvg [6]. In addition, all the

clients keep their data secret, and no client can intercept training or testing data. The opti-
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Figure 4.2: Weight vectors of genuine and poisoned models

mization problem of FL is min
G

F(G), where F(G) = ED∼Z[ℓ(p(G,x),y)] is the expectation

of the empirical loss ℓ(p(G,x),y) on the local training set D [70].

One iteration of FL training is shown below (see the left part in Fig.4.1):

• Step 1: Synchronizing the global model with local clients: The server sends the current

global model Gt to the chosen clients.

• Step 2: Training local models: Each client initializes its local model as the global

model Gt and trains a local model using its training set D = {(xi,yi)}N
i=1. The opti-

mization problem of clients is minimizing ℓ(p(w,x),y), where w is the local model.

By using SGD, the client updates the local model as described in Eq. (??). Then the

client sends its updates wt+1
i to the server.

• Step 3: Aggregation: The server the updated global model via aggregating the lo-

cal updates by some aggregation rules. The FedAvg [6] is given as: Gt+1 = Gt +

η

n ∑
n
i=1(w

t+1
i −Gt)

To simulate a non-IID distribution, we assign data to clients according to the Dirichlet

distribution [132].

4.3.4 Attack Strategies

In this paper, we will focus on targeted model poisoning attacks. The adversary manipulates

the local models w to obtain the compromised clients model w′ before being aggregated into
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the global model Gt+1. The adversary wants the compromised global model G
′

to behave

normally on all samples except for poisoned samples x
′ ∈ DP. Once the adversary attacks

successfully, the compromised global model G
′
would misclassify poisoned samples into the

attacker-chosen label τ rather than the genuine label y.

Data poisoning

In this attack strategy (see the right part in Fig.4.1), the adversary can only manipulate the

training set on local clients by adding triggers into data samples or by changing the labels

of a group of attacker-chosen data samples. By varying the Poisoned Data Rate (PDR), i.e.,

PDR =
NDP
ND

, the attacker can make a trade-off between attack impact and attack stealthiness.

Model Poisoning

In this attack strategy (see the right part in Fig.4.1 ), the adversary can fully control a sub-

set of the clients. Here, we denote the fraction of compromised clients as Poisoned Ma-

licious Clients Rate (PMR), i.e., PMR = m
n . To increase the attack’s impact on the aggre-

gated model, the adversary can deliberately modify the model updates before submitting

them to the aggregator. This is done by (1) turning up the scaling factor γ to increase at-

tack impact (e.g., model-replacement attack [13]) and (2) constraining the training process

by setting the scaling-coefficient parameters β to evade anomaly detection (e.g., constrain-

and-scale [13]). In this attack strategy, the adversary can create multi-objective optimization

(βℓ(p,y)+ (1− β )ℓB(p,τ)). By tuning the scaling-coefficient parameter β , the adversary

can attack more stealthily.

Propagation Error

[97] firstly introduces the propagation error. Suppose clients conduct a protocol f =

(ρ,A,η) at global iteration t ∈ [T ]. Here, ρ(Gt ,D, t) is a gradient oracle that inputs the

tth global model Gt , local dataset D and outputs the updated weights wt . Malicious clients

conduct a poisoned protocol f ∗ = (ρ∗,A,η) with ρ∗(Gt ,DP, t). For any round t and any

global model Gt and any dataset D, we have ρ∗(Gt ,DP, t) = ρ(Gt ,D, t)+ ε with ∥ε∥1 ≤ ρ .

At each iteration t, the upper bound ρ on ε gives the additive error introduced by poisoning.

Small additive errors introduced at early iterations can build upon each other and create large

divergences. This is referred to as propagation error.

In this work, we design a multi-poisoning attack to instantiate such propagation errors.
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In this attack strategy, the adversarial clients perform model poisoning or data poisoning

attacks at every iteration. The adversarial clients can vary the PDR or the PMR. The upper

bound ρ would vary with different PDR or PMR.

4.3.5 Characterization of Model Poisoning Attacks

To illustrate various model poisoning attacks more visually, we use a two-dimensional rep-

resentation of the weight vectors of models. Then each model can be characterized by two

factors: direction and magnitude. The cosine distance of the weight vectors can measure the

direction between the two given models. The L2 norm of the distance between the weight

vectors can measure their magnitude difference. Fig.4.2 shows several types of poisoned

models. The first poisoned client model
−→
w′1 is trained by adding a large fraction of poisoned

data DP into genuine dataset D.
−→
w′1 has an obvious direction deviation from the benign client

models. The second type
−→
w′2 consist of four small vectors (

−→
w′5,
−→
w′6,
−→
w′7 and

−→
w′8). This type

of attack is achieved by four distributed attacks (Distributed Backdoor Attack (DBA) [14]).

Poisoned models trained by distributed attacks are more undetectable in direction and mag-

nitude than centralised attacks. The next type is
−→
w′3, which has a less direction deviation but

a larger magnitude difference. Such poisoned client models can be obtained by boosting the

poisoned models with a large scaling factor γ (model-replacement attack [13]). The last type
−→
w′4 has similar representations with genuine models. It is more stealthy compared to the first

three types. This poisoned model can be crafted by constrain-and-scale attacks [13].

4.4 DeMAC Design Principle and key observation
In this section, we introduce our proposed approach, DeMAC. First of all, we reintroduce the

novel scoring method, GradScore as it is an essential component. We analyze that the PDR

directly impacts the value of GradScore of a poisoned model. Then we describe how to de-

tect malicious clients by evaluating the corresponding GradScore value in federated learning.

Meanwhile, we analyze that based on GradScore, DeMAC can detect model poisoning at-

tacks no matter the data distribution among clients. Finally, we give a security analysis that

the proposed scoring method is not affected no matter how the adversary scales its model

updates.

To reduce the poisoning task training loss ℓB(p,τ), malicious clients should increase the
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Figure 4.3: Impact of the PDR on loss value (a), Backdoor Accuracy (b) and GradScore
value (c), the GradScore of the last layer gradients of the malicious updates and benign
updates (d)

PDR. Therefore, the sum of the GradScore of samples is larger with higher PDR on malicious

client datasets. In Fig.4.3 (a)(b)(c), we evaluated this inference, running backdoor training

on MNIST dataset with a minibatch of 64 samples. With the same pre-trained model, the

model trained with a higher poisoned data rate causes an obvious decrease in the backdoor

training loss and a higher GradScore value.

Now we analyze how this scoring method can detect the model poisoning attacks in

federated learning. No matter what the data distribution is among clients, the deviations
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Figure 4.4: Illustration of DeMAC’s workflow in global iteration t

between local models and the global model start to cancel out, i.e.,∀w∈{wi}m
i=1,w

t+1
i −Gt ≈

0 [13], in the benign setting. Therefore, the updates of benign local models, dw ≈ wt+1−

wt is bounded. The second observation is that when the global model starts to converge,

poisoning behaviours on the malicious client will deviate the malicious updates from the

current iteration global model [115] to reduce the training loss on the poisoning task. The

GradScore of benign clients is small, while the GradScore of malicious clients is larger.

Fig.4.3 (d) shows that the GradScore of the last layer gradients of the malicious client model

is larger than benign clients. Therefore, malicious clients can be detected by comparing the

GradScore of the last layer of local models.

To avoid detection, the adversary can try weak model poisoning attacks by limiting scal-

ing up the poisoned model.

4.5 Overview and Design of DeMAC
In this section, we instantiate DeMAC for deep inspection and analysis of model updates to

discover model poisoning attacks. We describe the design details of DeMAC below.

4.5.1 DeMAC Design

Fig.4.4 shows the main components and the workflow of DeMAC during global iteration t.

It follows a deterministic algorithm and does not know the attack strategies or data distri-
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butions. DeMAC is deployed during the training session before the testing phase. Firstly,

it should identify malicious behaviours in federated learning systems. Here comes a design

challenge. At the beginning of federated learning training, benign local models should up-

date their parameters continually to make the global model converge to the global minimum.

So how can we perceive the convergent trend? To solve this problem, we design a historical

global model update record with a flexible look-back window size l. This history record

records the continuous variation of model accuracy on the validation set. When the maxi-

mum value among this history record is lower than a threshold value α , the defence approach

can start to process.

After malicious behaviours are identified, the GradScore values of corresponding clients

would be sorted in ascending order to detect anomalous clients. The top p with the highest

scores can be pruned and excluded from benign clients. The value of p depends on the

number of malicious clients in one global iteration. Finally, DeMAC trains the global model,

excluding the updates sent by malicious clients. DeMAC automatically generates a clean

global model given the training algorithm, which means the proposed technique, DeMAC, is

an efficient defence for federated learning systems.

In the rest of this section, we demonstrate a detailed description of every main component

of DeMAC. Algorithm 2 outlines the procedure of DeMAC.

4.5.2 Identifying malicious behaviours

In designing DeMAC, the first step is identifying and measuring malicious behaviours in the

federated learning system.

D = {(xi,yi)}N
i=1 denotes the training dataset on client Ci. If the GradScore value for

a client is significantly higher than other client GradScore values in the same global itera-

tion round, it indicates that malicious behaviours might happen on this client. The step of

calculating GradScore is shown in line 7 of Algorithm 2.

To avoid benign clients being misidentified when the global model is not yet converging,

we demonstrate a validation phase to monitor the convergent trend. This validation phase

consists of recording a group of previous global models and measuring the distance between

the validation accuracies of two neighbouring global models. In the first step, we design

a historical global model record, history(G0, ...,Gl), where (G0, ...,Gl) refers to a list of
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Algorithm 2: Design of DeMAC
Input: n, G0, T
// n is the number of clients in one iteration, G0 is

the initial global model, T is the number of global
iterations

Output: GT

// GT is the updated global model after T iterations
1 for t ∈ [1, ..,T ] do
2 historyRecord← (Gt−l, ...,Gt) ;

// l is the look-back size

3 [V (Gt−l,Gt−l+1), ...,V (Gt ,Gt+1)]←VALIDAT E(historyRecord) ;
4 if max[V (Gt−l,Gt−l+1), ...,V (Gt ,Gt+1)]< σ // σ is the convergence

threshold; Malicious behaviours exist
5 then
6 for i ∈ [Ct+1

0 , ...,Ct+1
n−1] do

7 GradScore(Ct+1
i ) = ∥g{(x,y)}∥2 // ∥g{(x,y)}∥2 is the L2-norm

of gradients of parameters in final layer of
models

8 end
9 SCORE← [GradScore(Ct+1

0 ), ...,GradScore(Ct+1
n−1)] ;

10 Sort(SCORE) ;
11 Pruned(w∗t+1

0 , ...,w∗t+1
n−np)← Pruningp%([wt+1

0 , ...,wt+1
n−1]) // p% is the

pruning rate

12 SendPruned(w∗t+1
0 , ...,w∗t+1

n−np)→ Aggregator
13 else
14 SendUnpruned(wt+1

0 , ...,wt+1
n−1)→ Aggregator // Malicious

behaviours do not exist
15 end
16 Gt+1← Gt + η

L−1 ∑
L
0(w

t+1
i −Gt) // Global Aggregating, η is the

global learning rate
17 end

previous global models, and l is the size of the sliding window. In the second step, we define

the distance between neighbouring global model validation accuracies as:

v(Gi−1,Gi) = |Acc(Gi)−Acc(Gi−1)| (4.1)

Where Acc(Gi) is the accuracy of global model Gi on the validation dataset. We use

a list V (G0,G1), ...,V (Gl−1,Gl), to contain neighboring validation variations of a historical

record, history(G0, ...,Gl). The related steps are shown in lines 2-3 of Algorithm 2. If
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the maximalV (Gi,Gi+1) ∈ [V (G0,G1), ...,V (Gl−1,Gl)] is below the threshold σ , the global

model can be regarded as convergence.

When the aggregator detects unusually large GradScore values sent by some clients and

the global model converges, malicious behaviours can be identified in the federated system.

4.5.3 Pruning and excluding malicious clients

After malicious behaviours are identified, the next step in DeMAC is to identify and exclude

anomalous clients based on corresponding GradScore values. First, the GradScores to cor-

responding clients are sorted in ascending order. The top p clients with the highest scores

are pruned and excluded from the benign client list. The parameter p depends on the number

of anomalous clients in one global iteration. Only one malicious client should be excluded

when the adversary takes model-replacement attack strategies. However, malicious clients

may collude and strengthen the impact of poisoning in one iteration. Considering the real-

world federated learning deployments, it is unrealistic to assume that the fraction of mali-

cious clients is above the range (0 < m < n/2). In an application scenario like Gboard [126],

over 50% malicious clients mean the adversary should control at least 500 million Android

devices. That is incredible [133]. So we only consider below 50% cases. Generally, p is

set to 0.5. In this work, we assume the server has a knowledge of the number of malicious

clients at one iteration. Hence, the server can decide the value of p. The sorting and pruning

step is shown in lines 9-11 of Algorithm 2.

The aggregator excludes the updates sent by malicious users in the current iteration and

trains the global model on the remaining model updates (line 16 of Algorithm 2). The global

training algorithm varies based on the underlying training algorithm used in the application.

We use FedAvg [6] to train the global model in this proposed work.

Layer Size
Input 28×28×1

Convolutional + ReLU 3×3×30
Max Pooling 2×2

Convolutional + ReLU 3×3×5
Max Pooling 2×2

Fully Connected + ReLU 100
Softmax 10

Table 4.2: the CNN Network Architecture
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Figure 4.5: Measuring the maximum vali distance V (Gi) enables DeMAC to detect con-
vergence of the global model (a)(c). DeMAC with history global model record vs DeMAC
without history global model record (b)(d)

4.6 Evaluation Setup
In this section, we give the details of the experimental setup and evaluation metrics used in

this work for evaluating the effectiveness of DeMAC.

4.6.1 Experimental Setup

Datasets and global-model settings: In this work, two well-known benchmark datasets

MNIST [121] and CIFAR10 [134] are considered to evaluate DeMAC. MNIST dataset is a

ten-class-balanced image classification task with 70000 grey-scale images. And CIFAR10

dataset is a ten-class image classification task with 60000 RGB images. It is assumed there

are 100 clients for global training. To simulate non-IID distribution, data is assigned to

clients according to Dirichlet distribution with concentration parameter α , so client datasets

are unbalanced to classes. The distribution is more concentrated when the value of α is

smaller. It was different from some previous works, which forced the clients to have the

same number of data. In our data distribution generation, the data were divided into disjoint

partitions with varying sizes. On the contrary, the distribution tends to be more uniform.
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Without Dirichlet sampling, data are uniformly distributed (IID) to clients. Unless otherwise

mentioned, the concentration parameter α is set to 0.5. For MNIST dataset, a four-layer Con-

volutional Neural Network (see Tab.4.2) is used. For CIFAR10, ResNet18 [135] architecture

is considered the global model.

Federated Learning settings: FedAvg [6] is considered as the FL method. In each

global round, 10 of 100 clients are randomly selected. Considering the different character-

istics of the datasets, we adopt the following parameter settings for federated training: for

MNIST, clients train for 1 local epoch with a local learning rate of 0.1. For CIFAR10, clients

train for 2 local epochs with a local learning rate of 0.1.

Attack strategy. We consider four targeted model poisoning attacks, single-shot model-

replacement attacks [13], constrain-and-scale [13], and DBA [14] and multi-poisoning at-

tacks.

(1) Model-replacement attacks, constrain-and-scale and DBA. In the case of MNIST,

we modify the pixels of the digital image at training time, causing the images with pixel-

pattern to be classified towards a target class. On CIFAR10 dataset, we apply the same attack

strategy as on MNIST dataset. The attackers can set the scaling parameter γ for single-shot

and DBA to control the impact of model poisoning. Unless otherwise mentioned, we set γ to

30, and PDR is set to 30/64 with a local batch size of 64. For single-shot model replacement

attacks and constrain-and-scale attacks, we assume that attackers perform attacks after 60

rounds for MNIST and 400 rounds for CIFAR10. For DBA, as attackers split triggers into

four equal parts, it is assumed that malicious clients attack at round 62, 64, 66, and 68 for

MNIST and at round 402, 404, 406, and 408 for CIFAR10.

(2) Multi-poisoning attacks. In the case of MNIST, adversarial clients perform the multi-

poisoning attack at round 10 and 20, respectively. In the case of CIFAR10, adversarial

clients perform the multi-poisoning attack at round 80 and 300, respectively. Unlike the

three types of attacks described above, the multi-poisoning attack executes every round after

being performed. We set γ to 1, and the PDR is set to 30/64.

Detecting time.

(1) Single-shot model-replacement attack, constrain-and-scale and DBA. Unlike existing

works [89] [77] manually setting detecting time, DeMAC can spontaneously detect malicious

clients according to the information provided by the historical record. We set the sliding
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Figure 4.6: The ASR for DeMAC against model-replacement attack under different non-
IID settings (a)(c). The ASR for DeMAC against model-replacement attack, where 0.1 of
concentration parameter α , threshold σ value 2 for CIFAR10, and σ value 0.6 for MNIST
are used (b)(d). Impact of the poisoned data rate on DeMAC against model-replacement at-
tack (e)(g) and distributed backdoor attack (f)(h). MA and BA of the global model under the
protection of DeMAC against constrain-and-scale attack with different β values (i)(j)(k)(l).

window size l to 15 for MNIST and 20 for CIFAR10. DeMAC will be triggered when

the maximum distance between neighbouring global model accuracies on the validation set

V (Gi) is below the predefined threshold σ . We choose σ = 0.5 for MNIST and σ = 2 for

CIFAR10.

(2) Multi-poisoning attacks. Our experiments show that the increase in global model
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accuracy has an obvious oscillation rather than increasing monotonically during the early

training stage. Hence, the predefined threshold σ is looser than the above setting in this

case.

4.6.2 Evaluation Metrics

We consider two evaluation metrics for evaluating the accuracy and efficiency of DeMAC.

Main task accuracy (MA) is used to evaluate the accuracy of the global model on the main

task. MA is the ratio of testing examples that are correctly classified. Backdoor Accu-

racy (BA) or Attack Success Rate (ASR) is the ratio of poisoned examples that are classified

as target labels by the global model. We define an evaluation metric for measuring the per-

formance of DeMAC. Computation cost per round (CCR) measures the computation cost at

one round in the Byzantine-robust FL system.

4.7 Evaluation Results
Efficiency of history record. Detecting/Attacking timing is rarely discussed in previous

defence works. [89] [13] discussed that the impact of model-replacement attacks in early

rounds is not durable as the ASR decreases sharply within several rounds. The poison-

ing impact tends to stay long in the later training rounds. The simple way is to detect

when the global model starts training. However, it is not cost-friendly to start detecting

from train-from-scratch to defend against poisoning attacks, such as model-replacement at-

tacks. To solve this problem, we combine DeMAC with a historical record. By applying

this historical global model record, DeMAC can track the convergence of global training.

Fig.4.5(a)(b) shows that DeMAC will be triggered when the maximum vali distanceV (Gi)

is below the predefined threshold (pink area in Fig.4.5(a)(b)). The DeMAC defence is per-

formed only when the global model starts to stabilize. Fig.4.5(b)(d) shows the comparison

between DeMAC with a historical global model record and DeMAC without a historical

global model. It is not difficult to see that enabling DeMAC in early rounds may cause a

delay in the convergence of the global model. It might be a drawback in federated learning

deployments. In Fig.4.5(b) for MNIST, in the initial 20 rounds, DeMAC without a historical

global model record shows a higher error rate than DeMAC with a historical global model

record. The same result is shown in Fig.4.5(d).
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Dirichlet (α) PDR σ Round ASR (%)
0.1 30/64 2 400 99.98
0.1 30/64 2 600 2.411
0.3 30/64 2 400 7.888
0.5 30/64 2 400 5.133
0.7 30/64 2 400 3.033

Table 4.3: Impact of the degree of non-IID on CIFAR10

Impact of the degree of non-IID: Fig.4.6(a)(b)(c)(d) shows the impact of the non-IID

degree on DeMAC. First, from Fig.4.6(a)(c), we observe that with PDR (30/64) and thresh-

old σ fixed, the ASR can be reduced to nearly 0% when the non-IID degree is larger than

some threshold. When α is set to 0.1 for CIFAR10 or α is set below 0.3 for MNIST, DeMAC

cannot detect malicious clients, which causes a high ASR on the global model. In Fig.4.6(b),

we postpone the attacking time at round 600, when the global model stabilises. We observe

that at the same PDR (30/64), threshold σ value (2) and non-IID setting (α = 0.1), DeMAC

can mitigate poisoned updates and reduce backdoor accuracy to a low level compared with

the failure of detection in Fig.4.6(a). In Fig.4.6(d), we set threshold σ value to 0.6 rather

than the default value 0.5 with non-IID setting(α = 0.1). So, DeMAC would be triggered

and start to detect malicious clients earlier. BA of the global model can be reduced to nearly

0% under all PDR settings. From the above analysis, it is not difficult to see that the success

of model poisoning attacks is highly rated to the convergent trend of the global model.

We also add some tables corresponding to the results in Tables 4.3, 4.4 show the impact of

the non-IID degree on DeMAC. From Table 4.3, with other hyperparameters fixed, DeMAC

can decrease the ASR to a very low level when α is larger than 0.1. When α is set to 0.1 and

the attacking time is postponed to 600 round, DeMAC can mitigate the poisoned updates.

Table 4.4 shows similar results. When threshold σ is set from 0.5 up to 0.6, DeMAC is able

to reduce the ASR to a low level. From the above analysis, we can see that the success of

model poisoning attacks is closely related to the convergence of FL training.

Impact of Poisoned Data Rate (PDR): Fig.4.6(e)(f)(g)(h) shows the impact of the poi-

soned data rate on DeMAC. In Fig.4.6(e)(g), DeMAC can mitigate malicious client updates

and reduce the ASR to a low level for both two datasets. In Fig.4.6(f)(h), we evaluate the

efficiency of DeMAC against distributed backdoor attacks. Fig.4.6(f) shows that DeMAC

cannot mitigate the last split backdoor attack when PDR is low. One possible reason is that
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Dirichlet (α) PDR σ Round ASR (%)
0.1 30/64 0.6 60 1.260
0.1 30/64 0.5 60 99.77
0.3 30/64 0.5 60 99.97
0.5 30/64 0.5 60 0.657
0.7 30/64 0.6 60 0.680

Table 4.4: Impact of the degree of non-IID on MNIST

PDR σ Round ASR (%)
10/64 2 400 3.022
20/64 2 400 2.211
30/64 2 400 4.722

Table 4.5: Impact of Poisoned data rate (PDR) on CIFAR

compared with the central backdoor attack, the distributed property of DBA makes attack

behaviour more stealthy. In Fig.4.6(h), DeMAC can decrease the attack impact under all the

attack strategies.

We also add some tables corresponding to the results in Tables 4.5, 4.6, 4.7, 4.8 show the

impact of PDR on DeMAC. From Tables 4.5, 4.6, DeMAC can effectively mitigate malicious

behaviours. From Table 4.7, DeMAC cannot work well when PDR is set to 10/64. The

possible reason is that with few data samples being poisoned, DBA is too stealthy to be

detected.

Defending Anomaly-Evasion Attack: As discussed in section 4.3, attackers can balance

the impact and stealth of attack by varying the scaling-coefficient parameter β . ℓB(p,τ) is

calculated as the L2 norm between the current poisoned and round global models. Figure

4.6(i)(j)(k)(l) shows that DeMAC can successfully mitigate attack impact for both datasets

and different β values.

We also add some tables corresponding to the results in Tables 4.9, 4.10 show DeMAC

can successfully mitigate attack impact for two datasets.

PDR σ Round ASR (%)
5/64 0.5 60 0.635

10/64 0.5 60 0.646
30/64 0.5 60 0.635
45/64 0.5 60 0.644

Table 4.6: Impact of Poisoned data rate (PDR) on MNIST
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PDR σ Round ASR (%)
10/64 2 400 34.42
30/64 2 400 3.488

Table 4.7: Impact of Poisoned data rate (PDR) on CIFAR for defending DBA

PDR σ Round ASR (%)
5/64 0.5 60 0.657

10/64 0.5 60 0.747
30/64 0.5 60 0.724

Table 4.8: Impact of Poisoned data rate (PDR) on MNIST for defending DBA

β σ Round ASR (%) MA (%)
0.1 2 400 5.133 64.25
0.3 2 400 5.6 66.65
0.7 2 400 3.133 63.43

Table 4.9: Defending Anomaly-Evasion Attack on CIFAR

β σ Round ASR (%) MA (%)
0.1 0.5 60 0.635 94.4
0.3 0.5 60 0.646 94.45
0.5 0.5 60 2.531 94.07
0.7 0.5 60 0.635 94.42

Table 4.10: Defending Anomaly-Evasion Attack on MNIST
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Figure 4.7: ASR and MA of malicious detection for different detection methods. Concen-
tration parameter α(0.5), MNIST dataset and scaling parameter γ(1) are used.

Detecting multi-poisoning attacks: Fig.4.7 and Fig.4.8 show the comparison results on

two datasets for detection methods, different attack timing, and different numbers of mali-

cious clients. From our results, it is not difficult to see that malicious perturbations in every

iteration can gradually compromise baseline Byzantine-robust FL algorithms and cause high

ASR. DeMAC can effectively suppress such propagation errors. Here are several observa-

tions. Firstly, DeMAC can mitigate attack impact and reduce the ASR to a low level in most

cases, except in the case (MNIST dataset, PMR(4/10), attack after ten rounds, Fig.4.7(a)(b)).
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Figure 4.8: ASR and MA of malicious detection for different detection methods. Concen-
tration parameter α(0.5), MNIST dataset and scaling parameter γ(1) are used.

All the Byzantine robust methods fail in this case (Fig.4.7(a)(b)). The main reason could be

that the detection methods are too hard to distinguish benign clients from many malicious

clients, as the global model is unstable in the first ten rounds. Second, in the case (MNIST

dataset, PMR(2/10), attack after ten rounds) and case (MNIST dataset, PMR(2/10), attack

after 20 rounds), all the defending methods except RFA [119] can mitigate attack impact.

In subsection 4.2.1, we discuss that by carefully setting the scaling factor γ and then con-

trolling the total weights of the outliers, the attacker can bypass RFA. We set the scaling
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factor γ as 1 and PDR as 30/64. RFA fails to detect malicious behaviours. This conclu-

sion is in line with conclusions from previous work [14]. DeMAC, trimmed mean [45], and

median achieve comparable main accuracy and outperform Krum [46]. The main reason

could be that Krum selects one client update to represent the global model. Therefore, due

to the heterogeneous data distribution, these chosen model updates cannot achieve the same

performance as on the global test dataset. This conclusion is in line with conclusions from

previous work [97]. Third, in cases (CIFAR10 dataset, attack after 80 rounds), all the de-

fending methods except DeMAC fail to eliminate the attack impact. In cases, (CIFAR10

dataset, attack after 300 rounds), DeMAC, Krum, and RFA can reduce the ASR to a low

level, but median and trimmed-mean still cannot defend against attack behaviours. As we

discuss in subsection 4.2.1, the assumption of trimmed-mean does not hold for model poi-

soning attacks. Therefore, this observation is in line with the discussion from prior sections.

Fourth, in the case (CIFAR10 dataset, attack after 300 rounds), other defending methods

can achieve comparable main accuracy as DeMAC. However, in the case (CIFAR10 dataset,

attack after 80 rounds), the main accuracy of DeMAC outperforms other defending methods

after 400 rounds.

Performance Comparison: In this work, we define the CCR as the time for one iteration

of training in the FL system equipped with the chosen defence method. We use two tables to

show the comparison of the effectiveness of DeMAC with other Byzantine-robust methods

on two different datasets. In these experiments, we take the multi-poisoning attack strategy.

The details of this attack strategy are described in section 6.1. Experimental Setup. In Table

4.11, RFA [119] is the most time-consuming method. Median [45] and trimmed-mean [45]

are the most time-saving methods. DeMAC and Krum [46] show similar performance.

Defense methods Before Attack (sec) After Attack (sec)
Krum 62.648 127.47

Median 44.867 105.304
RFA 61.892 141.256

Trimmed-mean 43.933 108.236
DeMAC 58.688 126.37

Table 4.11: The comparison of the effectiveness of DeMAC with other Byzantine-robust
methods on CIFAR set
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Defense methods Before Attack (sec) After Attack (sec)
Krum [46] 19.837 59.609

Median [45] 19.652 61.403
RFA [119] 18.086 59.699

Trimmed-mean [45] 18.700 62.448
DeMAC 21.473 67.260

Table 4.12: The comparison of the effectiveness of DeMAC with other byzantine-robust
methods on MNIST set

4.8 Conclusion
Backdoor attacks and, more specifically, model poisoning attacks are a big challenge faced

by federated learning. To address the shortcomings of the existing defence approaches, we

proposed a novel defence system, which is called DeMAC to defend against malicious at-

tacks by measuring the difference in the contribution of benign clients and malicious clients

to the global model. We defined a new metric GradScore, to compute the L2-norm of the

gradients of the last layer of contributed model updates, which is shown to be effective in

detecting updates from malicious clients. Furthermore, we utilized the history records of

the contributed model updates to enhance the malicious client detection performance. We

evaluated and compared DeMAC with state-of-the-art defence techniques over various at-

tack strategies and datasets. Experiment results show that DeMAC can effectively mitigate

the model poisoning attacks without sacrificing the performance of the main task and sig-

nificantly outperforms the existing defence approaches. Future research directions include

extending the proposed method to defend against adaptive attacks based on well-known non-

targeted model poisoning frameworks. In the next chapter, we focus on addressing the secu-

rity issues caused by adaptive untargeted model poisoning attacks.



Chapter 5

A Robust and Efficient Federated

Learning Algorithm against Adaptive

Model Poisoning Attacks

In this chapter, we investigate how to defend against adaptive model poisoning attacks.

With the undetectable characteristic, adaptive model poisoning attacks can combine with

any other attacks, bypassing the detection and violating the availability of federated learning

systems. Existing defences are vulnerable to adaptive model poisoning attacks, as model

poisoning-related features are tailored to these methods and compromise the accuracy of the

FL model. We first present a unified reformulation of existing adaptive model poisoning

attacks. Analyzing the reformulated attacks, we find that the detectors should reduce the

attacker’s optimization cost functions to defeat adaptive attacks. However, existing defences

do not consider the causes of model parameters’ high dimensionality and data heterogene-

ity. We propose a novel robust FL algorithm, FedDet, to tackle the problems. By splitting

the local models into layers for robust aggregation, FedDet can overcome the issue with high

dimensionality while keeping the functionality of layers. During the robust aggregation, Fed-

Det normalizes every slice of local models by the median norm value instead of excluding

some clients, which can avoid deviation from the optimal model. Furthermore, we conduct

a comprehensive security analysis of FedDet and an existing robust aggregation method. We

propose the upper bounds on the perturbations disturbed by these adaptive attacks. It is found

that FedDet can be more robust than Krum [46] with a smaller perturbation upper bound un-

74
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der attacks. We evaluate the performance of FedDet and four baseline methods against these

attacks under two classic datasets. It demonstrates that FedDet significantly outperforms the

existing compared methods against adaptive attacks. FedDet can achieve 60.72% accuracy

against min-max attacks.

5.1 Introduction
The Internet of Things (IoT) plays an important role in our daily lives as it provides in-

telligent services and applications empowered by artificial intelligence (AI) [1] [2] [3]. AI

techniques such as deep learning (DL) process raw data generated from ubiquitous IoT de-

vices and train data models for enabling intelligent services or infrastructures, such as smart

healthcare, smart transportation, and smart cities. Traditionally, AI functions are placed

in a cloud server for data collecting and modeling [4] [5]. However, With such an explo-

sive growth of IoT data at the network edge, the offloading of massive IoT data to remote

servers may be infeasible due to the constrained network resources, bandwidth and incurred

latency. Besides, the use of third-party servers for AI training also raises privacy concerns

such as leakage of sensitive information (e.g., user addresses or personal preferences). Thus,

it may not be feasible to apply centralized AI techniques in realistic scenarios. To address

the above issues, a novel distributed training regime, federated learning (FL), has been pro-

posed for building intelligent and privacy-enhanced IoT systems. FL is an efficient and

scalable distributed machine learning paradigm that provides excellent privacy to clients [6].

With the application of federated learning, resource-constrained node devices (e.g., Internet

of Things (IoT) devices and sensors) can build a knowledge-shared model while keeping

the raw data local [7]. Hence, federated learning plays a critical role in bringing AI to

IoT systems and applications in terms of training AI models, online model fine-tuning and

preserving data privacy [4] [5]. However, due to its distributed characteristic, FL leaves

the door open for adversaries as they can send poisoned local models to the central server

without being checked. Hence, an FL system can be vulnerable to model poisoning at-

tacks [8] [9] [10] [11]. Poisoning attacks consist of backdoor attacks [13] [14] [15] and

model poisoning attacks [16] [17] [18] [19]. Backdoor attacks aim to insert a backdoor

into the trained global model and make the global model mislabel a small group of samples

with chosen triggers into targeted labels [17] [19] [20]. Model poisoning attacks attempt
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to hamper the global model’s main accuracy. In this work, we focus on model poisoning

attacks in FL as model poisoning attacks can cause denial-of-service among a large popu-

lation of end services in FL deployments [126] [127] [128]. In this work, we investigate

the model poisoning attacks against federated learning systems, which can be transferred

into some resource-constrained scenarios (e.g., Multi-UAV Systems [12] and cause denial-

of-service (DoS) in IoT systems). And we propose a robust algorithm to defend against such

attacks.

The aforementioned Byzantine-robust algorithms [98] [59] [46] [45] [11] [59] [46] [45]

[55] have been discussed widely in the literature and perform well against general model

poisoning attacks such as label-flipping attacks [17]. However, the adversary can optimize

poisoning strategies when the adversary has knowledge of the aggregation methods [17]

[18]. Such types of attacks are called adaptive model poisoning attacks. During the FL

training, malicious clients can adaptively manipulate local model parameters tailored to the

aggregation rule. By being well-designed, these local model parameters could bypass the

defence methods like Krum [46] and compromise the FL training model.

In view of the above research issues, we are motivated to design an efficient, robust aggre-

gation method and defeat adaptive attacks. We first reformulate adaptive attacks and discuss

their main characteristics. We found that the defender should try to reduce the attacker’s

optimization cost functions to defeat adaptive attacks. However, some existing methods like

Krum or Muti-Krum [46] ignore the curse of model parameters’ high dimensionality. The

attacker may update partial parameters or infrequent parameters. The attacker can cause

negative effects when the value of the cost function is not large. Therefore, the adaptive

attacks can bypass existing methods. On the other hand, some methods [45] ignore the data

heterogeneity. They exclude potential malicious parameters or misclassified honest param-

eters, which cause deviation from the optimal global model. In this paper, we propose a

Byzantine-robust FL method, FedDet, which consists of two main steps. In the first step,

FedDet splits and groups local models by layers. Then, the sliced parameters in one group

are normalized by the median of the norms. The first step, splitting, can decrease the high

dimensionality of parameters. Besides, splitting by layers rather than random splitting [84]

can keep the functionality of different layers. The second step, normalization, considers all

parameters in the same group. We also discuss the certified robustness of FedDet based on
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an existing certified radius proposed by [97]. As an extension, we provide a detailed secu-

rity analysis of FedDet and give the upper bounds of the perturbations given by the adaptive

attacks. We evaluate the performance of FedDet against six types of attacks. Experiment

results demonstrate that FedDet outperforms other baseline works against adaptive attacks.

The main contributions of our work are summarized as follows:

• We present a unified reformulation of existing adaptive model poisoning attacks. The

summary of the reformulation can be used for related works to verify the efficiency of

their methods against adaptive attacks. To the best of our knowledge, no existing works

give such a comprehensive discussion of state-of-the-art adaptive model poisoning

attacks.

• Based on our discussion of the main characteristics of adaptive model poisoning at-

tacks, we reveal the two main causes of why existing defence methods are not efficient:

model parameters’ high dimensionality and data heterogeneity. Then we propose Fed-

Det, consisting of two steps, with the first step splitting overcoming the issue of high

dimensionality and the second step normalizing overcoming the issue of heterogeneity.

• We evaluate FedDet against six designed adaptive attacks tailored to it. From the

results, FedDet significantly outperforms baseline works against adaptive attacks. Be-

sides, we discuss the certified radius of FedDet. As an extension, we provide a de-

tailed security analysis of FedDet and an existing robust aggregation method, Krum.

By comparing the upper bounds of the perturbations caused by DNY-OPT attacks cor-

responding to these two robust methods, we can see that FedDet outperforms Krum

according to the upper bounds.

5.2 Existing Byzantine-robust Algorithms
The principle of existing Byzantine-robust defences [46] [45] is to train a global model with

high performance, even if there are some malicious clients.

Krum [46] attempts to select a representative as the aggregated model update for every

training round. Suppose there are n chosen local clients in every training round. And m

clients among local clients are malicious. The score for the ith client is calculated as si =

∑w j∈Γi,n−m−2 ∥w j−wi∥2
2, where Γi,n−m−2 is the set of n−m− 2 local clients that have the
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Adaptive attacks Optimization cost functions Constraints

STAT-OPT attacks max
w′1,..,w

′
m

sT (G−G
′
)

s.t. G = fagr(w1, ..,wm,wm+1, ..,wn)

G
′
= fagr(w

′
1, ..,w

′
m,wm+1, ..,wn)

DNY-OPT attacks max
γ,∇p
∥G−G

′∥2

s.t. G = favg(w1, ..,wm,wm+1, ..,wn)

G
′
= fagr(w

′
1, ..,w

′
m,wm+1, ..,wn)

w′i∈[m] = G+ γ∇p

Min-max attacks max
γ,i∈[m+1,n]

∥w′−wi∥2

s.t. w′i∈[m] = G+ γ∇p

∥w′−wi∥2 ≤ maximum
i, j∈[m+1,n]

∥wi−w j∥2

Min-sum attacks max
γ

∑i∈[m+1,n] ∥w
′−wi∥2

2
s.t. w′i∈[m] = G+ γ∇p

∑i∈[m+1,n] ∥w
′−wi∥2

2 ≤ maximum∑i, j∈[m+1,n] ∥wi−w j∥2
2

Table 5.1: Summary of reformulation of existing adaptive attacks

smallest Euclidean distance to wi (clienti’s parameters). So, the client with the smallest

score will be selected as the representative. This representative model update will be the

global model for the next training round.

Multi-Krum [46] is a variant of Krum. Multi-Krum collects a set of clients with the

smallest scores using Krum and repeats this process for the remaining updates until the set

has c updates, such as n− c > 2m+2. Then, it takes the average among this set of clients.

Median [45] is a coordinate-wise aggregation rule. The coordinate-wise median of sorted

local models is selected as the aggregated global model update. Instead of using the mean

value among local clients, this aggregation rule considers the coordinate median value of the

parameters as the corresponding parameter in the global model for the next iteration. The

coordinate-wise median is agnostic to the actual malicious rates.

Trimmed-mean [45] is another coordinate-wise aggregation rule. Suppose the trimmed

parameter is k < n
2 . The server removes the k maximum and minimum coordinates in the

model updates and then uses FedAvg to aggregate the remaining parameters for the next

training round. Trimmed-mean relies on the assumption that the coordinate of the attacker

would either be the minimum or the maximum value of the corresponding parameters. How-

ever, this assumption does not hold for model poisoning attacks [97]. Therefore, even a

single attacker can compromise the trimmed mean. Unlike the coordinate-wise median, the

Trimmed-median uses exact knowledge of the malicious rates.



5.3. Reformulation of previous adaptive attacks 79

5.3 Reformulation of previous adaptive attacks
This section introduces four state-of-the-art adaptive attacks that can optimize local model

poisoning attacks for any given aggregation rules. Although these adaptive attacks are pro-

posed in [17] [18], they do not have an identical formulation. Out of convenience, We refor-

mulate these adaptive attacks and list a table 5.1 to describe the optimization formulations

of these attacks. In the following paragraphs, we give a detailed description of the formula-

tions. They can be used for any work focusing on robust aggregation methods to verify the

robustness of their methods against adaptive attacks.

Static Optimization (STAT-OPT) Attack [17]: STAT-OPT attacks consider the at-

tacker’s objective to deviate global model parameters the most towards the inverse of the

direction along which the global parameters would change without attacks. Suppose that

in one global training process, G denotes a set of the aggregated global parameters with-

out attacks, and G
′

denotes the compromised global parameters. sT is the column vector

of changing directions of all global parameters without attacks. Then, the cost function

sT (G−G
′
) (see table 5.1) measures the direction deviation. The attacker’s goal is to max-

imize the value of sT (G−G
′
). w1, ..,wn denotes a set of the model parameters shared by

the clients in one training process and fagr denotes the robust aggregation method, which the

attacker aims to compromise. The first m clients w′1, ..,w
′
m are assumed to be compromised.

The attacker aims to find an optimal set of values for w′1, ..,w
′
m and substitute for the benign

parameters w1, ..,wm. After replacing these benign parameters with malicious parameters

w′1, ..,w
′
m, the deviation between the compromised global parameters and the benign global

parameters in the directions can be maximized.

Dynamic Optimization (DYN-OPT) Attack [18]: DYN-OPT attacks aim to decrease

the similarity between compromised and benign global models. The cost function is ∥G−

G
′∥2, where ∥∥2 is the L2-norm value. The attacker aims to maximize the ∥G−G

′∥2 value (see

table 5.1). Unlike STAT-OPT Attack, it restricts malicious models as w′i∈[m] = G+ γ∇p,

where γ is the scaling factor and ∇p is the perturbation vector. [18] introduces three types of

perturbation vectors: Inverse unit vector, Inverse standard deviation and Inverse sign. In this

work, we consider the Inverse sign. Other perturbation vectors will be discussed in further

works.
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AGR-agnostic Attacks [18], Min-Max: Previous robust FL algorithms attempt to dis-

tinguish malicious parameters from benign ones based on two main criteria: 1) distances

between malicious and benign parameters such as cosine similarities [115] [70], 2) differ-

ence in Lp-norms of malicious and benign parameters. To bypass these robust FL algorithms,

the attacker must ensure that the malicious parameters lie close to the cluster of benign pa-

rameters while maximizing the distance or difference in Lp-norm from benign parameters.

The cost function is ∥w′−wi∥2 (see table 5.1). The attacker aims to maximize the distance

of the malicious parameters from benign parameters. The constraint is the distance from

benign parameters should be smaller than the maximum of benign parameter distances.

AGR-agnostic Attacks [18], Min-Sum: Min-Max attack maximises the distance of ma-

licious updates from benign model updates while ensuring the maximum distance from other

benign updates is upper bounded by the maximum distance between any two benign updates.

Like Min-Max, Min-sum ensures that the sum of squared distances of malicious gradients

from all the benign updates is upper bound by the sum of the squared distances of any benign

updates from the other benign updates. The cost function is max
γ

∑i∈[m+1,n] ∥w
′ −wi∥2

2 (see

table 5.1). The constraint is ∑i∈[m+1,n] ∥w
′−wi∥2

2 ≤ maximum∑i, j∈[m+1,n] ∥wi−w j∥2
2.

5.4 Proposed Defence approaches
According to table 5.1, the defender should reduce the optimization objectives to defeat the

adaptive attacks. For example, the L2-norm distance of the robust aggregated G
′

should be

close to the benign G when the defender attempts to reduce the negative impact of DNY-OPT

attacks. As for Min-max or Min-sum attacks, the defender should try to reduce the distance

between the malicious and benign parameters ( max
γ,i∈[m+1,n]

∥w′−wi∥2 or max
γ

∑i∈[m+1,n] ∥w
′−

wi∥2
2). However, there are two root causes why existing robust methods fail to defend: high

dimensional parameters and data heterogeneity.

(1) the High dimensional parameters. The attacker can only choose partial parameters

to alter or poison. In [30], the attacker only poisons the unused or infrequently updated

parameters by benign clients. Such attack behaviours are more stealthy when the training

models contain many parameters. The attacker can cause negative impacts when the value

of optimization objectives is not large. Therefore, the attacker can bypass existing methods

based on distance or similarity comparisons of full model parameters, such as Krum [46],
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Multi-Krum [46], Flame [115], FLtrust [70].

(2) the data heterogeneity. Some previous methods are parameter-wise, like Median [45]

and Trimmed-mean [45]. However, these methods may not consider the cause of data hetero-

geneity. The Median selects a median value to represent the global parameter. On the other

hand, Trimmed-mean prunes a list of potential malicious parameters. Hence, the aggregated

model may deviate from the optimal training model. Therefore, robust methods should try

to take all clients’ parameters into consideration.

Based on the above discussion, we propose FedDet, a novel Byzantine-robust FL al-

gorithm, FedDet. This robust method groups the clients’ parameters by layers. Then, it

normalizes the layer-wise parameters by the median norms. Using this layer-wise robust

aggregation method, FedDet can avoid the curse of high dimensions. Unlike [84] splitting

the parameters with random fragments, we choose to split the parameters by layers. Our

splitting skill can keep the functionality of layers compared to random splitting. Besides, the

layer-wise normalization considers all clients’ corresponding parameters rather than filtering

potential malicious or misclassified honest parameters.

Now, we describe the details of FedDet. Suppose that the local model is a neural network

with l layers.

(1) Splitting and Grouping the model parameters w{1,...,n} by layers.

The server collects a list of parameters of ith layer from all clients w{1,...,n}, i.e.,

Gi∈[l] = {w1,i,w2,i, ...,wn,i}, (5.1)

The server collects all the groups of the split parameters G{1,...,l}.

(2) Normalizing the ith layer clients’ parameters w{1,...,n},i by the median L2-norm

value.

Firstly, the server collects a list of the L2-norm values of every layer Li from all clients

w{1,...,n}, i.e.,

Li∈[l] = {∥w1,i∥2,∥w2,i∥2, ...,∥wn,i∥2}, (5.2)

where, wi,i denotes the i-th layer of wi ∈w{1,...,n}, and ∥wi,i∥2 denotes the L2-norm values

of the corresponding wi,i. And Li∈[l] is the set containing all the L2-norm values. Then, it
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sorts out all the clients by their L2-norm in ascending order, i.e.,

Li∈[l] = {∥ws1,i∥2,∥ws2,i∥2, ...,∥wsn,i∥2}. (5.3)

Here, ∥ws1∥2≤∥ws2∥2≤ ...≤∥wsn∥2. Then, the server selects the median value med(Li∈[l])

of Li∈[l]. The server collects all the median values corresponding to each layer. The collection

of med(Li∈[l]) is represented as follows,

H
′
= {med(L1),med(L2), ...,med(Ll)}. (5.4)

Then, The server scales the L2-norm values of all layer’s parameters L{1,...,l} of clients

by H
′
. The scaled L2-norm values of the ith layer’s updates can be represented as follows,

L̃i∈[l] =

{
med(Li)

∥w1,i∥2
,
med(Li)

∥w2,i∥2
, ...,

med(Li)

∥wn,i∥2

}
. (5.5)

Then, the weighted updates of the ith layer can be represented as follows,

{
med(Li)

∥w1,i∥2
w1,i,

med(Li)

∥w2,i∥2
w2,i, ...,

med(Li)

∥wn,i∥2
wn,i

}
. (5.6)

We repeat the same process for all l layers. Then, the server executes the FedAvg algo-

rithm on each layer to obtain the new global model.

5.5 Adaptive attacks
In this section, we leverage the adaptive attacks discussed in 5.3 to design adaptive untargeted

attacks for the proposed defence method.

5.5.1 STAT-OPT tailored to FedDet

The idea is to instantiate the aggregation rule fagr with our proposed aggregation rule, Fed-

Det in the poisoning framework. So we formulate a specific optimization problem using

table. 5.1 (STAT-OPT attacks) as follows:

l

∑
i=1

max
w′1,i,...,w

′
m,i

sT
i (Gi−G

′
i). (5.7)

As the proposed aggregation rule is layer-wise, unlike Krum [46] or Median [45], we
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solve the optimization layer by layer and optimize w′1,i, ...,w
′
m,i, where i denotes the ith layer.

Then we concatenate all w′1,i, ...,w
′
m,i by layers and get the final solutions w′1, ...,w

′
m.

In 5.4, the proposed aggregation rule for ith layer can be written as follows:

Gi =
1
n

(
med(Li)

∥w1,i∥
w1,i +

med(Li)

∥w2,i∥
w2,i+, ...,+

med(Li)

∥wn,i∥
wn,i

)
. (5.8)

We denote by e j,i =
w j,i
∥w j,i∥ . So Eq. (5.8) can be rewritten as follows:

Gi =
1
n ∑

j∈[1,n]
med(Li)e j,i. (5.9)

Let e
′
j,i( j ∈ [1,m]) denote the poisoned unit vector sent by malicious clients. So, the

poisoned aggregated parameters can be rewritten as follows:

G
′
i =

1
n

(
∑

j∈[1,m]

med(L
′
i)e
′
j,i + ∑

j∈[m+1,n]
med(L

′
i)e j,i

)
, (5.10)

where L
′
i is {∥w′1,i∥2, ...,∥w

′
m,i∥2,∥wm+1,i∥2...,∥wn,i∥2} and med(L

′
i) is the new median

after poisoning.

We substitute Eq. (5.9) and (5.10) into (5.7) and get the following optimization problem:

l

∑
i=1

ℓ(e
′
1,i, ...,e

′
m,i)

=
1
n

l

∑
i=1

max
e′1,i,...,e

′
m,i

sT
i ( ∑

j∈[1,n]
med(Li)e j,i− ∑

j∈[1,m]

med(L
′
i)e
′
j,i− ∑

j∈[m+1,n]
med(L

′
i)e j,i).

(5.11)

We consider a strong attacker who knows e j∈[1,n],i∈[1,l], e
′
j∈[1,m],i∈[1,l], and fagr. We use

a standard gradient ascent approach to solve the optimization problem 5.11. We optimize

e′1,i, ...,e
′
m,i one by one. When optimizing e

′
j,i, all other e

′
k ̸= j,i are fixed. The steps are as

follows:

Computing the gradient ∇e′i
ℓ with respect to e

′
i: As it is hard to compute this gradient directly,

we use a standard method, a zeroth-order method [136], to estimate this gradient as follows:
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∇e′j,i
ℓ≈

ℓ(e
′
j,i + γu)− ℓ(e

′
j,i)

γ
·u, (5.12)

where ℓ denotes the eq. (5.11). Where u is a random vector sampled from the multivariate

Gaussian distribution N (0,σ2I) and γ>0 is a smoothing parameter.

Updating e
′
j,i: We multiply the estimated gradient by a learning rate η and add it to e

′
j,i. Then

we normalize e
′
j,i by its L2 norm value to ensure it is a unit vector.

e
′
j,i = e

′
j,i +η∇e′j,i

ℓ. (5.13)

When estimating the gradient ∇e′j,i
ℓ and updating e

′
j,i, we fix the value of med(L

′
i) for

simplicity. The med(L
′
i) value will be updated after e

′
j,i is updated.

Repeating the above two steps for n iterations. The w′j,i = med(L
′
i) · e

′
j,i after e

′
j,i is solved.

Repeating the gradient ascent process over all e′1,i, ...,e
′
m,i.

The procedure is summarized in Algorithm. (3). We initialize w′1,i, ...,w
′
m,i using Trim

attack in [17].

5.5.2 DYN-OPT tailored to FedDet

As discussed in 5.3, DYN-OPT attacks restrict the malicious clients as w′i∈[m] = G+ γ∇p,

where ∇p is the perturbation vector. We instantiate the aggregation rule fagr in table. 5.1 (DNY-

OPT attacks) with our proposed aggregation method. Unlike STAT-OPT attacks, DYN-OPT

is a plug-in adaptive attack framework for robust aggregation algorithms. We use Algo-

rithm.1 in [18] to solve the optimal γ value. Algorithm. 1 in [18] sets an initial γ and modifies

the value of γ until the change of γ is below a set threshold value.

We assume a strong attacker who knows wi∈[1,n] and fagr. Hence, the attackers can

estimate the perturbation vectors based on wi∈[1,n]. We also consider a weaker attacker who

has no knowledge of wi∈[1,n] and fagr. We compare the efficiency of FedDet in these two

different adversary models in the experiment 5.8.3.
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Algorithm 3: STAT-OPT tailored to FedDet

Input: w′1,i, ...,w
′
m,i, l, si

// w
′
1,i, ...,w

′
m,i are a list of initialized malicious updates;

l is the number of layers; si is the direction along
which the global parameter would change without
attacks.

Output: w′1,i, ...,w
′
m,i

1 for i ∈ [0, l] // optimization per layer
2 do
3 for j ∈ [1,m] // optimization e

′
j,i one by one

4 do
5 for iterations ∈ n do

6 Random sample u N (0,σ2I); ∇e′j,i
ℓ≈ ℓ(e

′
j,i+γu)−ℓ(e′j,i)

γ
·u;

e
′
j,i = e

′
j,i +η∇e′j,i

ℓ;

7 end
8 w′j,i = med(L

′
i) · e

′
j,i;

9 end
10 end

5.5.3 AGR-agnostic attacks tailored to FedDet

AGR-agnostic attacks do not know the aggregation rules. So, these agnostic attacks can be

applied in various robust aggregation algorithms. We use the attack methods in [18] to test

the proposed FedDet.

We assume a strong attacker who knows wi∈[1,n] and fagr. We also consider a weaker

attacker who has no knowledge of wi∈[1,n] and fagr. We consider both adversary models for

evaluating FedDet’s efficiency.

5.6 Security analysis of FedDet
To conduct the security analysis of FedDet, we fit FedDet into the theoretical framework

of [97]. Firstly, we briefly describe the definition of poisoning attacks and the certified

radius proposed by [97]. Here are the notation, definitions, and assumptions.

Notation 1 Let Z be the data domain and Dt be the data sampled (not necessarily i.i.d) from

Z at iteration t. Let L : Θ×Z∗→R be a loss function and Θ be the class of models with d

dimensions. Let f = (G ,A ,λ (t)) be the federated learning protocol with update algorithm
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A : wt ∈Rd →Rd and G (G,D, t)→ wt that takes a model G and outputs the update wt .

Gt+1 = Gt −λ (t)A (wt) is the updates rule of the FL protocol. For the proposed FedDet,

A(wt) = wt .

Definition 2 (poisoning attacks) Let f ∗ = (G
′
,A ,λ (t)) be the poisoned federated learning

protocol with poisoned G
′
(G,D, t)→w′t . We have G

′
(G,D, t) = G (G,D, t)+ε with ∥ε∥1 ≤

ρ (or ∥ε∥2 ≤ ρ).

Notation 2 We use (G0, ...,Gt) and (G
′0, ...,G

′t) to denote the global model trained through

a benign G and a poisoned G
′

respectively. We use (w1, ...,wt+1) and (w′1, ...,w′t+1) to

denote the updates produced by a benign G belongs to global models (G0, ...,Gt) and by a

poisoned G
′

belongs to global models (G
′0, ...,G

′t). We use (w∗1, ...,w∗t+1) to denote the

poisoned updates produced by a poisoned G
′
belongs to models (G

′0, ...,G
′t).

Assumption 1 A protocol f (G ,A ,λ (t)) is a c-layerwise-Lipschitz. Specifically, for any

layer index i ∈ [L]

∥G (G
′t ,D, t)[i]−G (Gt ,D, t)[i]∥ ≤ c · ∥G

′t−Gt∥. (5.14)

Theorem 3 [97] Let FedDet be a c-layerwise-Lipschitz protocol on a dataset D. Then

R(ρ) = Λ(T )(1+dc)Λ(T )ρ is a certified radius for f . Namely,

∥G
′T −GT∥ ≤Λ(T )(1+dc)Λ(T )

ρ. (5.15)

From Equation. (5.15), it is not difficult to see the certified radius R(ρ) relies on ρ when

the Λ(T ), l and c are fixed. Now, we analyze how these adaptive attacks can disturb FedDet

with maximum ρ . We attempt to give an upper bound on ρ in the following subsections.

5.6.1 Security analysis for FedDet against STAT-OPT attacks

In subsection 5.5.1, we discuss how STAT-OPT can be adapted to FedDet. Based on Equa-

tion. (5.8), we have the benign aggregated parameters per layer:
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Gi =
1
n
(
med(Li)

∥w1,i∥
w1,i +

med(Li)

∥w2,i∥
w2,i+, ...,+

med(Li)

∥wn,i∥
wn,i), (5.16)

with Li = {∥w1,i∥, ...,∥wm,i∥, ...,∥wn,i∥} and med(Li) = l. The poisoned aggregated pa-

rameters per layer are as follows:

G
′
i =

1
n
(
med(L

′
i)

∥w′1,i∥
w
′
1,i +

med(L
′
i)

∥w′2,i∥
w
′
2,i+, ...,+

med(L
′
i)

∥wn,i∥
wn,i), (5.17)

with Li = {∥w
′
1,i∥, ...,∥w

′
m,i∥, ...,∥wn,i∥} and med(L

′
i) = l

′
.

Assumption 2 To avoid the impact of attack being restricted, ∥w′1,i∥, ...,∥w
′
m,i∥ should be

close to the median value of {∥w′1,i∥, ...,∥w
′
m,i∥, ...,∥wn,i∥}. Hence, we assume that med(L

′
i)=

∥w′1,i∥= ∥w
′
2,i∥=, ...,= ∥w′m,i∥= l

′
.

Theorem 4 Suppose FedDet is a c-layerwise-Lipschitz protocol on dataset D and Assump-

tion 2 holds. Suppose m out of n clients are potentially malicious at one round. The upper

bound on perturbation ρ caused by STAT-OPT attack on FedDet is given as

ρ ≤ n
n− cm

∣∣w1,i−Gi−1
∣∣+ cm

n− cm
|Gi−1|+

c
n− cm

∣∣∣∣∣ n

∑
i=m+1

∥wi∥max

∥wi,i∥
wi,i−

n

∑
i=1

l
∥wi,i∥

wi,i

∣∣∣∣∣ .
(5.18)

For the proof of theorem. 4, please see appendix. A.1.

5.6.2 Security analysis for FedDet against DNY-OPT attacks

According to the definition of fedAvg [6], we have the benign aggregated parameters per

layer as follows:

Gi =
1
n

n

∑
i=1

wi,i. (5.19)

Based on Equation. (5.8), we have the poisoned aggregated parameters per layer as fol-

lows:

G
′
i =

1
n
(
med(L

′
i)

∥w′1,i∥
w
′
1,i +

med(L
′
i)

∥w′2,i∥
w
′
2,i+, ...,+

med(L
′
i)

∥wn,i∥
wn,i). (5.20)



5.6. Security analysis of FedDet 88

Theorem 5 Suppose FedDet is a c-layerwise-Lipschitz protocol on dataset D and Assump-

tion 2 holds. Suppose m out of n clients are potentially malicious at one round. The upper

bound on perturbation ρ caused by DNY-OPT attack (DPAs and PGA attacks) on FedDet is

given as

ρ ≤ ∥w1,i−Gi−1∥+
c

n− cm
·

n

∑
i=m+1

∥( l
′

∥wi,i∥
wi,i−wi,i)∥. (5.21)

For the proof of theorem 5, please see appendix. A.2.

5.6.3 Security analysis for FedDet against Agnostic attacks

In section 5.3, we introduce AGR-agnostic attacks. Now, we discuss the possible upper

bound on ρ for the Min-max attacks.

Theorem 6 Suppose m out of n clients are potentially malicious at one round. The upper

bound on perturbation ρ caused by Min-max attacks on FedAvg is given as

ρ ≤ ∥w1,i−Gi−1∥+ max
i, j∈[m+1,n]

∥wi−w j∥. (5.22)

The security analysis of the Min-sum attacks is similar to that of the Min-max attacks.

Theorem 7 Suppose m out of n clients are potentially malicious at one round. The upper

bound on perturbation ρ caused by Min-sum attacks on FedAvg is given as

ρ ≤

√√√√ 1
n−m

· (
n

∑
i=m+1

∥w1,i−Gi−1∥2 +max ∑
i, j∈[m+1,n]

∥wi−w j∥2). (5.23)

For the proof of theorem. 6 and theorem. 7, please see appendix. A.3.

5.6.4 Security analysis of Krum against DNY-OPT attacks

As a comparison, we also establish the security analysis of Krum [46]. In [17] [18], they

design similar adaptive attack strategies to compromise Krum. So, the discussion of the

security analysis of Krum does not need to be separated into different situations.
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According to the definition of Krum [46], malicious clients’ parameters w′ should sat-

isfy that the sum of the squared distances to its closest n−m parameters is the smallest if

the malicious parameters w′ could be selected as the next representative global parameters.

Namely,

∑
i∈Γ

n−m−2
w′

∥w
′
−wi∥ ≤ min

j∈[m+1,n]
∑

i∈Γ
n−m−2
w

∥w j−wi∥, (5.24)

where i ∈ Γb
w′

denotes a set of parameters that are closest to w′ .

Theorem 8 Suppose m out of n clients are potentially malicious at one round. The upper

bound on perturbation ρ caused by adaptive attacks on Krum is given as

ρ ≤ 1
n−2m−1

min
j∈[m+1,n]

∑
i∈Γ

n−m−2
w

∥w j,i−wi,i∥+ max
i∈[m+1,n]

∥wi,i−Gi−1∥. (5.25)

For the proof of theorem. 8, please see appendix. A.4.

5.6.5 Further analysis

We further analyse the robust aggregation methods’ upper bounds on perturbation ρ under

various adaptive attacks. We give a table 5.2 that collects all the upper bounds on ρ .

FedDet versus Krum

We notice that the right side of 5 in table 5.2 can be further replaced as below:

≤ ∥w1,i−Gi−1∥+
cn

n− cm
max

i∈[1,n]
∥( l

′

∥wi,i∥
wi,i−wi,i)∥. (5.26)

The coefficient of the right part of (5.26) cn
n−cm is always less than one when c < 1. In

table. 5.2, the coefficient of the right part of the right side of (8) n−m−2
n−2m−1 is greater than one

when m > 1. Besides, The left part of the right side of (8) maxi∈[m+1,n] ∥wi,i−Gi−1∥ is larger

than the left part of (5.26) ∥w1,i−Gi−1∥, so the upper bound on ρ of Krum is larger than the

upper bound of FedDet against DNY-OPT attacks. Therefore, theoretically, Krum is more

likely to be compromised than FedDet.
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Defense methods Adaptive attacks Upper bound on perturbation ρ

FedDet
STAT-OPT attacks ρ ≤ n

n−cm

∣∣w1,i−Gi−1
∣∣+ cm

n−cm |Gi−1|+ c
n−cm

∣∣∣∑n
i=m+1

∥wi∥max
∥wi,i∥ wi,i−∑

n
i=1

l
∥wi,i∥wi,i

∣∣∣( 4)

DNY-OPT attacks ρ ≤ ∥w1,i−Gi−1∥+ c
n−cm ·∑

n
i=1∥(

l
′

∥wi,i∥wi,i−wi,i)∥( 5)

FedDet
Min-max attacks ρ ≤ ∥w1,i−Gi−1∥+ max

i, j∈[m+1,n]
∥wi−w j∥( 6)

Min-sum attacks ρ ≤
√

1
n−m(∑

n
i=m+1∥w1,i−Gi−1∥2 +max∑i, j∈[m+1,n]∥wi−w j∥2)( 7)

Krum DNY-OPT attacks ρ ≤ maxi∈[m+1,n]∥wi,i−Gi−1∥+ 1
n−2m−1 min j∈[m+1,n]∑i∈Γ

n−m−2
w

∥w j,i−wi,i∥9 8)

Table 5.2: Comparison of perturbation ρ for adaptive attacks

Min-max versus Min-sum

Agnostic attacks can be performed in any robust aggregated FL system since these attack

strategies do not require knowledge of the aggregation method. In Table.5.2, the right side

of (7) can be further replaced as

ρ ≤
√

( max
i∈[m+1,n]

∥w1,i−Gi−1∥2 + max
i, j∈[m+1,n]

∥wi−w j∥2), (5.27)

then we have

ρ
2 ≤ ( max

i∈[m+1,n]
∥w1,i−Gi−1∥2 + max

i, j∈[m+1,n]
∥wi−w j∥2). (5.28)

In Table. 5.2, equation. (6) can be further converted to

ρ
2 ≤ (∥w1,i−Gi−1∥+ max

i, j∈[m+1,n]
∥wi−w j∥)2

≤ ∥w1,i−Gi−1∥2 + max
i, j∈[m+1,n]

∥wi−w j∥2 +2 · ( max
i, j∈[m+1,n]

∥wi−w j∥ · ∥w1,i−Gi−1∥).

(5.29)

Compared to the right side of (5.28) and (5.29), Min-max attacks may incur worse per-

turbation errors to aggregation methods as the upper bound on perturbation ρ caused by

Min-max attacks has an extra item 2 · ( max
i, j∈[m+1,n]

∥wi−w j∥ · ∥w1,i−Gi−1∥).
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DNY-OPT attacks versus Agnostic attacks

In theorem 6, we propose the perturbation error caused by Min-max attacks on FedAvg,

which is not robust to malicious attacks. This perturbation can be reduced when robust

aggregation methods are applied in FL training. It is not difficult to see that the coefficient

of the right part of the right side of (8) is larger than the right side of (6) in the table. 5.2.

Therefore, Krum is more vulnerable to DNY-OPT attacks than Min-max attacks.

Analysis for the upper bound of DNY-OPT attacks against FedDet

Now we analyse the real distance ∥G′t −Gt∥ and estimate the certified radius. The theorem

3 proposed by [97] analyzes the certified radius. We combine the theorem 3 and the theorem

5. Then we get the certified radius of FedDet against DNY-OPT attacks as follows:

∥G
′T −GT∥≤Λ(T )(1+dc)Λ(T )(∥w1,i−Gi−1∥+

c
n− cm

·
n

∑
i=1
∥( l

′

∥wi,i∥
wi,i−wi,i)∥). (5.30)

We compare the real distance between G
′T and GT and the certified radius at T iteration.

To estimate this certified radius, We set Λ(T ) = 0.001, which is the learning rate of the FL

training. (1+dc)Λ(T ) is nearly 1 when Λ(T ) is a very small number. We get the correspond-

ing values for calculating ∑
n
i=1 ∥( l

′

∥wi,i∥wi,i−wi,i)∥ at iteration T . We record the benign GT

and poisoned G
′T to calculate the real distance ∥G′T −GT∥. We assume a 30% malicious

rate at one iteration. This comparison is implemented in the FEMNIST dataset. In figure

5.1, we can see that for T ∈ [0,500] epoch, the real distance is always under the estimated

certified radius, which means the certified radius 5.30 is a valid upper bound. Besides, the

real distance and the certified radius show similar trends as the training epochs.

5.7 Evaluation Setup
In this work, similar to other poisoning or defences-related works, we focus on image clas-

sification tasks. We use two natural image recognition datasets, FEMNIST and CIFAR10.

Natural image recognition may require security guarantees. For example, in a federated

learning-based recommendation system, natural images on social websites can be poisoned

with sensitive labels, which can cause discrimination or unfairness.
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Figure 5.1: Comparison between the real distance ∥G′T −GT∥ and certified radius

FEMNIST [137] is a 62-class non-IID, class-imbalanced classification task with 3400

clients and 671585 grey-scale images. Each client has their own handwritten digits or letters

(52 for upper and lower case letters and ten classes for digits). We select 24 out of 3400

clients for federated training; each client has 1000 samples for local training. We use a

four-layer CNN as the local training model.

CIFAR10 [134] is a 10-class class-balanced classification task with 60,000 RGB images,

each of size 32 × 32. This class-balanced dataset has the same number of samples per class.

Each class of CIFAR10 has 6,000 images. We use 25 clients, each with 1,000 samples, use

validation and test data of sizes 5,000. We use Alexnet [138] as the global model architecture.

We use a batch size of 250 and an SGD optimizer with learning rates of 0.001 for FEM-

NIST. We use a batch size of 250 and an SGD optimizer with learning rates 0.05 for CI-

FAR10. We repeat the evaluation five times for each attack scenario and use the average as

the final result. We conducted five repeated experiments for each attack scenario and took

the average value.

5.8 Evaluation Results
In this section, we test the efficiency of FedDet against all six designed adaptive untargeted

attacks and compare it with other well-known baseline robust aggregation methods. We use

PyTorch to implement all evaluations.
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Figure 5.2: Performance of FedDet against STAT-OPT attacks, PDAs and PGA attacks

5.8.1 Robustness of FedDet

In figure 5.2, we evaluate the effectiveness of FedDet under different malicious rates. STAT-

OPT attacks have minor impacts on the performance of FedDet. Under STAT-OPT attacks,

the accuracy of FedDet decreases from 60.43% to 54.00%, 59.60% and 57.11% after 100

global epochs when 5%, 12.5% and 20% malicious clients respectively. As discussed in

5.5.1, this optimization-based model poisoning attack starts from a reference initialized

w′1,i, ...,w
′
m,i and keeps updating. It is cumbersome to find the optimal initialization for this

attack. Poor initialization might negatively affect the attack performance.

5.8.2 Comparison with previous methods

We compare FedDet with other robust aggregation schemes, Krum [46] , Multi-Krum [46],

Trimmed-Mean [45] and Median [45].

In 5.6.2 and 5.6.4, we proposed the upper bounds on perturbation ρ with which the DNY-

OPT attacks can disturb the local updates. In 5.6.5, we compare these two upper bounds of

FedDet and Krum and draw a conclusion that Krum is more vulnerable to DNY-OPT attacks

than FedDet as ρ of Krum is larger. Figure 5.3(a)(b)(c)(d) validate our discussion. In figure

5.3(a), FedDet outperforms Krum under all situations. For example, when the malicious

rate is 20%, the main accuracy of FedDet is 41%, but for Krum, the accuracy decreases to

30%. Krum fails the training when half of the clients are malicious. Figure 5.3(b)(c)(d)

shows similar results. FedDet is still robust when the malicious clients’ rates are 12.5%
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Figure 5.3: Comparison of the robustness of FedDet and other well-known robust aggrega-
tion methods against DNY-OPT attacks in two datasets.

and 20%, but Krum has poor accuracy. FedDet also performs better than Krum with 30%

malicious rates. The main accuracy of Krum keeps below 20% with all malicious rates.

Besides, according to 5.26 in 5.6.5, it is not difficult to see that the upper bound of ρ is

larger when m is larger. Namely, larger amounts of malicious clients may cause a worse

impact on FedDet. The results of figure 5.3(a)(b)(c)(d) are also in line with this analysis. For

example, in figure 5.3(a), when the malicious rate increases from 12.5% to 20%, the main

accuracy of FedDet decreases from 52% to 41%. And in figure 5.3(b)(d), the main accuracy

decreases from 37% to 15% when the malicious rate increases from 12.5% to 30%. In figure
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Figure 5.4: Comparison of the robustness of FedDet and other well-known robust aggrega-
tion methods against min-max and min-sum attacks in two datasets.

5.3(e)-(h), we can see that FedDet is competitive with Multi-Krum. In figure 5.3(e), FedDet

achieves better performance when the malicious rate is 12.5%, but Multi-krum has higher

accuracy with 20% malicious rate. According to figure 5.3(j)(k)(l), FedDet is also more

robust than Trimmed-Mean, which uses perfect knowledge of malicious client rates. From

figure 5.3(n)(o)(p), FedDet is a little more robust than another agnostic method, Median,

which is agnostic to the actual malicious clients’ rates.

Remark: According to 5.26 in 5.6.5, it is not difficult to see that the upper bound of ρ is

larger when m is larger. Namely, larger amounts of malicious clients may cause a worse im-
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Figure 5.5: Performance of FedDet against DNY-OPT attacks, min-max attacks and min-
sum attacks when the adversary has partial knowledge of wi∈[1,n]

pact on FedDet. Similar to other compared baseline works (Krum, Multi-krum, Median and

Trimmed-Mean), the performance of FedDet is gradually degraded as the portion of adver-

saries increases. However, Krum only satisfies the resilience property under the assumption

2 f + 2 < n, where f denotes the number of adversaries and n denotes the number of all

clients. When the portion of adversaries is above 50%, Krum fails to work. On the other

hand, FedDet can achieve a reasonable performance (see Figure. 5.3(a) in the manuscript).

Besides, FedDet has a better performance compared to Median and Trimmed-Mean with

12.5%, 20% and 30% portion of adversaries.

Now, we compare the robustness of FedDet with other aggregation methods against Min-

max and Min-sum attack situations. From figure 5.4, FedDet outperforms other robust meth-

ods in most situations. According to the test results in the femnist data set in figure 5.4,

FedDet achieves the best main accuracy compared to the other four robust aggregation meth-

ods when the malicious rate of the agnostic attacks is 12.5%. FedDet performs similarly to
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other methods with 30% malicious rate in the femnist dataset. Further, in the aforementioned

section 5.6.5, we discuss Krum is more vulnerable to DNY-OPT attacks than Min-max or

Min-sum attacks. From figure 5.3(a)(b) and figure 5.4(a)(b)(c)(d), the results validate our

points. For example, according to the results of figure 5.3(a) and figure 5.4(a)(c), with the

same malicious rate 12.5%, Krum can still achieve a good main accuracy under the agnostic

attacks, but Krum fails to defend DNY-OPT attacks. Figure 5.3(b)(c)(d) and figure 5.4(b)(d)

show similar results. Krum fails to defend against DNY-OPT attacks in all the situations, but

it keeps a 27% accuracy under the Min-max attacks when the malicious rate is 12.5%.

5.8.3 Situations when the adversary has no knowledge of benign up-

dates

In the sections above, we assume the malicious clients have full knowledge of the benign

clients, which is a strong adversary model. However, the malicious clients rarely access

benign updates from clean clients or the central server. Therefore, the malicious clients

should store the historical benign updates locally as alternatives when they attempt to attack.

Now, we discuss this weaker adversary model that the benign updates are agnostic to the

adversary. In 5.5, we mentioned that in the six attack strategies, the strong attacker knows

wi∈[1,n]. But in the limited attack strategies, the attacker only knows wi∈[m+1,n]. Hence,

manipulating the Byzantine is based on wi∈[m+1,n]. In figure 5.5, we evaluate the performance

of FedDet under the weaker adversary model. Roughly speaking, FedDet is more vulnerable

to strong adversary attacks. For example, in figure 5.5(a), the main accuracy of FedDet can

achieve 60% with 12.5% malicious rates in the weaker adversary model compared to 52%

in the strong adversary model. In figure 5.5(j), FedDet can have a 30% accuracy with 30%

malicious rates in the weaker model compared to 15% accuracy in the strong model.

5.8.4 Remarks on Existing Robust Aggregation Algorithms

In this section, we discuss the pros and cons of FedDet compared to other baseline works in

terms of different characteristics. Unlike Krum, Multi-krum, and Trimmed-Mean, FedDet

and Median do not require the exact knowledge of the corruption level of FL systems, which

are more realistic in the real world as the defender has no access to know the attacker’s

actions. The expected time complexity of Krum is O(n2 · d), where n is the number of



5.9. More Adaptive Attacks 98

Agnostic to the actual corruption level Expected Time Complexity
Krum [46] No O(n2 ·d)

Multi-krum [46] No O(mn2 ·d)
Trimmed-Mean [45] No O(n ·d)

Median [45] Yes O(n ·d)
FedDet Yes O(n · n

l )

Table 5.3: Comparison of Existing Robust Aggregation Algorithms

selected clients in one training iteration and d is the dimension of the parameter vectors. The

parameter server computes the squared distance between a client’s vector with the resting

parameters’ vectors (O(n ·d). Then, the parameter server repeated this process for all selected

clients (O(n)). Thus, the square distance computing time is O(n2 ·d). After computing, the

server selects the first n− f −1 of the distances for the clients (O(n) with Quickselect) and

repeats the process for all clients (O(n2)). Therefore, the expected time complexity for Krum

is O(n2 · d). For Multi-krum, a variant of Krum, selects the m ∈ {1, ...,n} vectors with the

smallest sum of distances. m varies between 1 and n. Thus, the expected time complexity of

Multi-krum is O(mn2 ·d). Trimmed-Mean sorts (Quicksort) the values of all clients’ vectors

in dimension (O(n · d)). Similarly, Median selects the median value of all client vectors in

dimension with Quickselect (O(n ·d)). For FedDet, it computes the L2-norm values of split

client vectors (O(n · n
l )). Then, FedDet sorts the norm values (Quicksort) and selects the

median value (O(n)). Thus the expected time complexity of FedDet is O(n · n
l ). From the

above analysis, we can see that compared to Krum and Multi-krum, Trimmed-Mean, Median

and FedDet have less expected time complexity. The summary of the remarks is shown in

the table. 5.3.

5.9 More Adaptive Attacks
This section introduces more untargeted model poisoning frameworks.

5.9.1 Reformulation of DPAs and PGA

Data Poisoning Attacks (DPAs) [133]: DPAs are the first to formulate an optimization

problem to construct systematic data poisoning attacks on federated learning. The objective

function of DPAs is the same as DNY-OPT’s. The attacker aims to find an appropriate

amount of label-flipped data as poisoned data set DP to maximize the value of ∥G−G
′∥2.
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DPAs can be formulated as follows:

max
DP∈D

∥G−G
′
∥2,

s.t. G = favg(w1, ..,wm,wm+1, ..,wn),

G
′
= fagr(w

′
1, ..,w

′
m,wm+1, ..,wn),

w
′
i∈[m] = A(DP,Grec),

(5.31)

Where A(DP,Grec) is the poisoning training algorithm and Grec is the received initial

global parameters. By using this poisoning training algorithm, the attacker can obtain the

poisoned parameters w′i∈[m]. By doing so, data poisoning attacks are transformed into model

poisoning attacks in FL. The intuition behind DPAs is that the cross-entropy loss of poisoned

models w′i∈[m] on the main task would be increased after being trained on poisoned dataset

DP. Therefore, the poisoned global model G
′

would greatly differ from benign aggregated

updates G.

Projected Gradient Ascent (PGA) Attack [133]: Similar to DPAs, the intuition be-

hind PGA Attacks is to increase the loss of poisoned model w′i∈[m] on the main task. Un-

like DPAs injecting poisoned dataset DP for poison training, PGA Attacks use the stochas-

tic gradient ascent(SGA) to increase the loss of w′i∈[m] on the main task. We have α =

1
n−m ∑i∈[m+1,n] ∥wi∥, which is the average of norms of benign parameters. Then we scale

w′i∈[m] by α . By fine-tuning w′i∈[m] and a scaling factor γ , we attempt to maximize the value

of objective function ∥G−G
′∥2. The formulation is described in Eq.5.32. A simplified ver-

sion of this PGA attack is using SGA to fine-tune w′i∈[m] without projecting and re-scaling

the norm of w′i∈[m]. These simplified PGA attacks do not need to know benign parameters.

max
w′i∈[m]

,γ
∥G−G

′
∥2,

s.t. G = favg(w1, ..,wm,wm+1, ..,wn),

G
′
= fagr(γ(w

′
1, ..,w

′
m),wm+1, ..,wn),

w
′
i∈[m] =

αw′i∈[m]

∥w′i∈[m]
∥2

,

α =
1

n−m ∑
i∈[m+1,n]

∥wi∥.

(5.32)
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5.9.2 Adaptive attacks

In this section, we leverage the state-of-the-art frameworks discussed in 5.3 to design adap-

tive untargeted attacks for the proposed defence method.

DPAs tailored to FedDet

For FedDet AGR as fagr, we use the objective in 5.31, but it is hard to solve it directly as the

search space of DP is too large, and the constraint of the optimization problem is nonlinear.

To address this challenge, we make approximations to get the sub-optimal solution to the

optimization problem. Like DPAs tailored to Trimmed-mean AGR in [133], we use a classic

label flipping poisoning strategy [17] to get the crafted poisoned dataset DP. We use PDR

(Poisoned data rate) to estimate the poisoned data rate on malicious local clients. The higher

the poisoning rate, the more poisoned data.

Full knowledge We assume that the attacker knows wi∈[1,n] and fagr. Therefore, attackers

can observe and estimate the optimal PDR to maximise the objective value in every round t.

In this work, we design new adaptive DPAs against FedDet. In the adaptive DPAs, malicious

clients can obtain the optimal PDR in every round t without pre-observations.

The procedure is shown in Algorithm.4.

PGA tailored to FedDet

Unlike the constraint of DPAs is nonlinear, PGA attacks restrict w′i∈[m] as follows: w′t =

w′t−1 + η(−∇w′t−1
ℓ(w′t−1;b)). In this work, we only discuss the performance of FedDet

against simplified PGA attacks as described in 5.3.

5.9.3 Evaluation of FedDet Algorithm

Experiment Settings

FEMNIST [137] is a 62-class non-iid, class-imbalanced classification. Each client has their

handwritten digits or letters (52 for upper and lower case letters and ten classes for digits).

We select 24 out of 3400 clients for federated training; each client has 1000 samples for local

training. We use a four-layer CNN as the local training model.

We use a batch size of 250 and an SGD optimizer with learning rates of 0.001 for FEM-

NIST. We conducted five repeated experiments for each attack scenario and took the average
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Algorithm 4: DPAs tailored to FedDet
Input: w1, ...,wm, wm+1, ...,wn, pdr, ℓ, ℓpre = 0, pdr f inal = 0.1
// pdr is Poisoned Data Rate; ℓ is the objective value;

ℓpre is the initial objective value; pdr f inal is the
final optimal poisoned data rate.

Output: w′1, ...,w
′
m,wm+1, ...,wn

1 while pdr ≤ 1 do
2 for i ∈ [1,m] do
3 benign inputs = inputs*(1-pdr); malicious inputs = inputs*pdr ;
4 outputs = fed model(inputs) ;
5 loss = criterion(outputs, targets) ;
6 loss.backward(); w′i = f ed model.parameters();
7 end
8 ℓ= ∥ favg(wm+1, ..,wn)− fagr(w

′
1, ..,w

′
m,wm+1, ..,wn)∥ ;

9 if ℓpre ≤ ℓ then
10 ℓpre = ℓ ;
11 pdr f inal = pdr;
12 end
13 end

value.

In our extensive version, we also test the performance of FedDet on the class-balanced

Cifar dataset. The experiment does not set additional limits on the data. The relationship

between the efficiency of defence methods and datasets will be one of our future research

directions.

Evaluation Results

In this section, we test the main accuracy of FedDet against all six designed adaptive untar-

geted attacks.

Figure. 5.6(a)(b) shows that DPAs attacks are more powerful than PGA attacks. DPAs

attacks decrease the accuracy from 79.37% to 72.362% after 300 global epochs when 30%

malicious clients. However, under the same circumstance, PGA attacks can only reduce the

accuracy to 75.95%.

5.10 Conclusion
Federated learning holds great potential in providing privacy for large amounts of distributed

end devices. However, it is vulnerable to adaptive poisoning attacks. Existing defence meth-
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Figure 5.6: Main task Accuracy of FedDet against six designed adaptive untargeted model
poisoning attacks with different numbers of malicious clients.

ods did not consider the causes of model parameters’ high dimensionality and data hetero-

geneity. In this work, we proposed a novel Byzantine-robust federated learning, FedDet to

solve the problem. FedDet can overcome this issue with high dimensionality and keep the

functionality of layers. During the robust aggregation, FedDet normalizes every slice of local

models by the median norm value rather than excluding some clients, which can avoid de-

viation from the optimal aggregated model. In addition, we presented a theoretical security

analysis model and conducted an extensive security analysis of FedDet and the state-of-the-

art robust aggregation method, Krum. We discussed why the proposed method outperforms

the prior method. However, in this work, we do not discuss how FedDet defends targeted

model poisoning attacks that can insert backdoors while keeping the trained model’s accu-

racy. Future research will focus on combining the advantages of the proposed method and

other defence approaches to defeat untargeted model poisoning and targeted model poison-

ing attacks.



Chapter 6

Conclusion

In this thesis, first, we proposed a novel approach FLSec for federal learning that can resist

backdoor attacks. It analyzes the difference between benign and malicious clients’ contri-

butions to the global model and uses new measurements on local model updates to identify

malicious updates. Then, we proposed a novel defence system, which is called DeMAC to

defend against malicious attacks by measuring the difference in the contribution of benign

clients and malicious clients to the global model. We defined a new metric GradScore, to

compute the L2-norm of the gradients of the last layer of contributed model updates, which

is shown to be effective in detecting updates from malicious clients. Furthermore, we uti-

lized the history records of the contributed model updates to enhance the malicious client

detection performance. We evaluated and compared DeMAC with state-of-the-art defence

techniques over various attack strategies and datasets. Afterwards, we discuss the vulnera-

bility of FL to adaptive poisoning attacks. We analyze that existing defence methods did not

consider the causes of model parameters’ high dimensionality and data heterogeneity. So,

we proposed a novel Byzantine-robust federated learning, FedDet to solve the problem. Fed-

Det can overcome this issue with high dimensionality and keep the functionality of layers.

During the robust aggregation, FedDet normalizes every slice of local models by the median

norm value rather than excluding some clients, which can avoid deviation from the optimal

aggregated model. In addition, we presented a theoretical security analysis model and con-

ducted an extensive security analysis of FedDet and the state-of-the-art robust aggregation

method, Krum. We discussed why the proposed method outperforms the prior method.

103
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6.1 Future work

6.1.1 Defending transferable poisoning attacks

[35] bridges this gap by conducting centralized backdoor attacks and distributed backdoor

attacks in federated graph neural networks (GNNs). According to their evaluations, both

backdoor attacks can lead to threats to the robustness of federated GNNs. [139] discuss that

large language models (LLM) and diffusion models can generate untrustworthy participants

and compromise the models deployed by benign clients. Therefore, more robust defence

methods should be proposed to address the safety issue introduced by these generative mod-

els. Defence methods based on model reconstruction can be used. Model-reconstruction

methods aim to modify the infected model directly by model retraining, or neuron-pruning.

6.1.2 Trade-off between robustness and privacy

When designing the defence against model poisoning attacks, with more information about

the sharing models, the defender can easily identify the malicious parameters among them.

However, the requirement of sharing model parameters leaves the door open for model infer-

ence attacks. Thus, it seems hard to keep a balance between robustness and privacy. Some-

times, we need to make a trade-off between robustness and privacy when facing different

needs.

6.1.3 Defending Backdoor attacks against Neural Network

In the past few years, deep neural networks (DNNs) have been widely used in various appli-

cation scenarios, such as face recognition, autonomous driving, and so on. However, DNNs

face some security threats, such as backdoor attacks. Similar to backdoor attacks in federated

learning, the attackers attempt to insert hidden backdoors in deep neural network models dur-

ing the training process. The backdoored DNNs behave normally on the main task, whereas

they output wrong predictions if hidden backdoors are activated by attacker-specified trigger

patterns. To eliminate the backdoor or the trigger in poisoned samples, methods based on

trigger elimination or backdoor elimination can be designed. For example, before feeding

the samples to DNNs, a pre-processing module can be used to modify the potential contained

trigger. Or synthesizing the trigger and then suppressing the trigger effects.
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6.1.4 Trustworthy AI for Robots and Autonomous Systems

Robots and autonomous systems (RASs), equipped with artificial intelligence (AI) technolo-

gies are attempting to enhance the abilities to perceive complex environments and make

decisions quickly by stimulating cognitive and developmental abilities toward human intel-

ligence. However, RASs face some security issues, such as high-visibility data breaches,

and cyberattacks. AI techniques have played an important role in data-driven cybersecurity

as they can process a large volume of data and provide automation functions. However, AI

techniques can be hacked by adversarial behaviours. Hence it is crucial to protect AI models

and provide trustworthy AI services for RASs. The classic adversarial defence techniques

include adversarial training and adversarial perturbations in the input/feature domain.



Bibliography

[1] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A survey on federated

learning for resource-constrained iot devices,” IEEE Internet of Things Journal, vol. 9,

no. 1, pp. 1–24, 2021.

[2] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V. Poor, “Feder-

ated learning for internet of things: A comprehensive survey,” IEEE Communications

Surveys & Tutorials, vol. 23, no. 3, pp. 1622–1658, 2021.

[3] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on internet of

things: Architecture, enabling technologies, security and privacy, and applications,”

IEEE internet of things journal, vol. 4, no. 5, pp. 1125–1142, 2017.

[4] M. Mohammadi and A. Al-Fuqaha, “Enabling cognitive smart cities using big data

and machine learning: Approaches and challenges,” IEEE Communications Maga-

zine, vol. 56, no. 2, pp. 94–101, 2018.

[5] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of machine learning in

wireless networks: Key techniques and open issues,” IEEE Communications Surveys

& Tutorials, vol. 21, no. 4, pp. 3072–3108, 2019.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized data,” in Ar-

tificial intelligence and statistics. PMLR, 2017, pp. 1273–1282.

[7] G. Sun, Y. Cong, J. Dong, Q. Wang, L. Lyu, and J. Liu, “Data poisoning attacks

on federated machine learning,” IEEE Internet of Things Journal, vol. 9, no. 13, pp.

11 365–11 375, 2021.

106



BIBLIOGRAPHY 107

[8] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector ma-

chines,” arXiv preprint arXiv:1206.6389, 2012.

[9] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on deep

learning systems using data poisoning,” arXiv preprint arXiv:1712.05526, 2017.

[10] M. Fang, G. Yang, N. Z. Gong, and J. Liu, “Poisoning attacks to graph-based recom-

mender systems,” in Proceedings of the 34th annual computer security applications

conference, 2018, pp. 381–392.

[11] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing federated learn-

ing through an adversarial lens,” in International Conference on Machine Learning.

PMLR, 2019, pp. 634–643.

[12] S. Islam, S. Badsha, I. Khalil, M. Atiquzzaman, and C. Konstantinou, “A triggerless

backdoor attack and defense mechanism for intelligent task offloading in multi-uav

systems,” IEEE Internet of Things Journal, vol. 10, no. 7, pp. 5719–5732, 2022.

[13] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to backdoor fed-

erated learning,” in International Conference on Artificial Intelligence and Statistics.

PMLR, 2020, pp. 2938–2948.

[14] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “Dba: Distributed backdoor attacks against

federated learning,” in International Conference on Learning Representations, 2019.

[15] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal, J.-y. Sohn, K. Lee,

and D. Papailiopoulos, “Attack of the tails: Yes, you really can backdoor federated

learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 16 070–

16 084, 2020.

[16] Z. Allen-Zhu, F. Ebrahimian, J. Li, and D. Alistarh, “Byzantine-resilient non-convex

stochastic gradient descent,” arXiv preprint arXiv:2012.14368, 2020.

[17] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks to {Byzantine-

Robust} federated learning,” in 29th USENIX Security Symposium (USENIX Security

20), 2020, pp. 1605–1622.



BIBLIOGRAPHY 108

[18] V. Shejwalkar and A. Houmansadr, “Manipulating the byzantine: Optimizing model

poisoning attacks and defenses for federated learning,” in NDSS, 2021.

[19] G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Circumventing defenses

for distributed learning,” Advances in Neural Information Processing Systems, vol. 32,

2019.

[20] R. Guerraoui, S. Rouault et al., “The hidden vulnerability of distributed learning in

byzantium,” in International Conference on Machine Learning. PMLR, 2018, pp.

3521–3530.

[21] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks

against machine learning models,” in 2017 IEEE symposium on security and privacy

(SP). IEEE, 2017, pp. 3–18.

[22] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis of deep

learning: Passive and active white-box inference attacks against centralized and fed-

erated learning,” in 2019 IEEE symposium on security and privacy (SP). IEEE, 2019,

pp. 739–753.

[23] E. M. El Mhamdi, “Robust distributed learning,” EPFL, Tech. Rep., 2020.

[24] C. Fung, C. J. Yoon, and I. Beschastnikh, “The limitations of federated learning in

sybil settings,” in 23rd International Symposium on Research in Attacks, Intrusions

and Defenses (RAID 2020), 2020, pp. 301–316.

[25] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning attacks against fed-

erated learning systems,” in Computer Security–ESORICS 2020: 25th European Sym-

posium on Research in Computer Security, ESORICS 2020, Guildford, UK, September

14–18, 2020, Proceedings, Part I 25. Springer, 2020, pp. 480–501.

[26] T. D. Nguyen, P. Rieger, M. Miettinen, and A.-R. Sadeghi, “Poisoning attacks on

federated learning-based iot intrusion detection system,” in NDSS Workshop on De-

centralized IoT Systems and Security, 2020.



BIBLIOGRAPHY 109

[27] M. Fang, M. Sun, Q. Li, N. Z. Gong, J. Tian, and J. Liu, “Data poisoning attacks

and defenses to crowdsourcing systems,” in Proceedings of the web conference 2021,

2021, pp. 969–980.

[28] X. Cao and N. Z. Gong, “Mpaf: Model poisoning attacks to federated learning based

on fake clients,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2022, pp. 3396–3404.

[29] K. Yoo and N. Kwak, “Backdoor attacks in federated learning by rare embeddings and

gradient ensembling,” arXiv preprint arXiv:2204.14017, 2022.

[30] Z. Zhang, A. Panda, L. Song, Y. Yang, M. Mahoney, P. Mittal, R. Kannan, and J. Gon-

zalez, “Neurotoxin: Durable backdoors in federated learning,” in International Con-

ference on Machine Learning. PMLR, 2022, pp. 26 429–26 446.

[31] Y. Dai and S. Li, “Chameleon: Adapting to peer images for planting durable back-

doors in federated learning,” arXiv preprint arXiv:2304.12961, 2023.

[32] J. Cao and l. Zhu, “A highly efficient, confidential, and continuous federated learning

backdoor attack strategy,” in 2022 14th International Conference on Machine Learn-

ing and Computing (ICMLC), 2022, pp. 18–27.

[33] Y. Sun, H. Ochiai, and J. Sakuma, “Semi-targeted model poisoning attack on feder-

ated learning via backward error analysis,” in 2022 International Joint Conference on

Neural Networks (IJCNN). IEEE, 2022, pp. 1–8.

[34] S. Datta, G. Lovisotto, I. Martinovic, and N. Shadbolt, “Widen the backdoor to let

more attackers in,” arXiv preprint arXiv:2110.04571, 2021.

[35] J. Xu, R. Wang, S. Koffas, K. Liang, and S. Picek, “More is better (mostly): On

the backdoor attacks in federated graph neural networks,” in Proceedings of the 38th

Annual Computer Security Applications Conference, 2022, pp. 684–698.

[36] M. Alam, E. Sarkar, and M. Maniatakos, “Perdoor: Persistent non-uniform

backdoors in federated learning using adversarial perturbations,” arXiv preprint

arXiv:2205.13523, 2022.



BIBLIOGRAPHY 110

[37] P. Lai, N. Phan, A. Khreishah, I. Khalil, and X. Wu, “Model transferring at-

tacks to backdoor hypernetwork in personalized federated learning,” arXiv preprint

arXiv:2201.07063, 2022.

[38] Y. Fraboni, R. Vidal, and M. Lorenzi, “Free-rider attacks on model aggregation in fed-

erated learning,” in International Conference on Artificial Intelligence and Statistics.

PMLR, 2021, pp. 1846–1854.

[39] Y. Liu, Z. Yi, and T. Chen, “Backdoor attacks and defenses in feature-partitioned

collaborative learning,” arXiv preprint arXiv:2007.03608, 2020.

[40] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan: information

leakage from collaborative deep learning,” in Proceedings of the 2017 ACM SIGSAC

conference on computer and communications security, 2017, pp. 603–618.

[41] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang, “{Updates-Leak}:

Data set inference and reconstruction attacks in online learning,” in 29th USENIX

security symposium (USENIX Security 20), 2020, pp. 1291–1308.

[42] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended feature

leakage in collaborative learning,” in 2019 IEEE symposium on security and privacy

(SP). IEEE, 2019, pp. 691–706.

[43] E. Bagdasaryan and V. Shmatikov, “Blind backdoors in deep learning models,” in

Usenix Security, 2021.

[44] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in adversarial

settings: Byzantine gradient descent,” Proceedings of the ACM on Measurement and

Analysis of Computing Systems, vol. 1, no. 2, pp. 1–25, 2017.

[45] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust distributed learning:

Towards optimal statistical rates,” in International Conference on Machine Learning.

PMLR, 2018, pp. 5650–5659.

[46] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine learning with

adversaries: Byzantine tolerant gradient descent,” Advances in Neural Information

Processing Systems, vol. 30, 2017.



BIBLIOGRAPHY 111

[47] S. Shen, S. Tople, and P. Saxena, “Auror: Defending against poisoning attacks in

collaborative deep learning systems,” in Proceedings of the 32nd Annual Conference

on Computer Security Applications, 2016, pp. 508–519.

[48] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T. Gold-

stein, “Poison frogs! targeted clean-label poisoning attacks on neural networks,” Ad-

vances in neural information processing systems, vol. 31, 2018.

[49] H. Xiao, H. Xiao, and C. Eckert, “Adversarial label flips attack on support vector

machines,” in ECAI 2012. IOS Press, 2012, pp. 870–875.

[50] H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, and F. Roli, “Support vector ma-

chines under adversarial label contamination,” Neurocomputing, vol. 160, pp. 53–62,

2015.

[51] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A.-R.

Sadeghi, “Dı̈ot: A federated self-learning anomaly detection system for iot,” in

2019 IEEE 39th International conference on distributed computing systems (ICDCS).

IEEE, 2019, pp. 756–767.

[52] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated opti-

mization in heterogeneous networks,” Proceedings of Machine learning and systems,

vol. 2, pp. 429–450, 2020.

[53] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for federated learn-

ing,” arXiv preprint arXiv:1912.13445, 2019.

[54] M. S. Ozdayi, M. Kantarcioglu, and Y. R. Gel, “Defending against backdoors in fed-

erated learning with robust learning rate,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 35, no. 10, 2021, pp. 9268–9276.

[55] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “Rsa: Byzantine-robust stochas-

tic aggregation methods for distributed learning from heterogeneous datasets,” in Pro-

ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.

1544–1551.



BIBLIOGRAPHY 112

[56] Y. Li, A. S. Sani, D. Yuan, and W. Bao, “Enhancing federated learning robustness

through clustering non-iid features,” in Proceedings of the Asian Conference on Com-

puter Vision, 2022, pp. 41–55.

[57] M. Hao, H. Li, G. Xu, H. Chen, and T. Zhang, “Efficient, private and robust federated

learning,” in Annual Computer Security Applications Conference, 2021, pp. 45–60.

[58] M. Fang, J. Liu, N. Z. Gong, and E. S. Bentley, “Aflguard: Byzantine-robust asyn-

chronous federated learning,” in Proceedings of the 38th Annual Computer Security

Applications Conference, 2022, pp. 632–646.
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ettinen, A. Mirhoseini, A.-R. Sadeghi, T. Schneider et al., “Flguard: secure and private

federated learning,” arXiv preprint arXiv:2101.02281, 2021.

[79] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really backdoor

federated learning?” arXiv preprint arXiv:1911.07963, 2019.

[80] J. Gao, B. Zhang, X. Guo, T. Baker, M. Li, and Z. Liu, “Secure partial aggregation:

Making federated learning more robust for industry 4.0 applications,” IEEE Transac-

tions on Industrial Informatics, vol. 18, no. 9, pp. 6340–6348, 2022.

[81] L. Shen, Y. Zhang, J. Wang, and G. Bai, “Better together: Attaining the triad of

byzantine-robust federated learning via local update amplification,” in Proceedings

of the 38th Annual Computer Security Applications Conference, 2022, pp. 201–213.

[82] N. Gupta, S. Liu, and N. H. Vaidya, “Byzantine fault-tolerant distributed machine

learning using stochastic gradient descent (sgd) and norm-based comparative gradient

elimination (cge),” arXiv preprint arXiv:2008.04699, 2020.

[83] N. Gupta, S. Liu, and N. Vaidya, “Byzantine fault-tolerant distributed machine

learning with norm-based comparative gradient elimination,” in 2021 51st Annual

IEEE/IFIP International Conference on Dependable Systems and Networks Work-

shops (DSN-W). IEEE, 2021, pp. 175–181.

[84] Y. Liu, C. Chen, L. Lyu, F. Wu, S. Wu, and G. Chen, “Byzantine-robust learning on

heterogeneous data via gradient splitting,” 2023.



BIBLIOGRAPHY 115

[85] C. Zhu, S. Roos, and L. Y. Chen, “Leadfl: Client self-defense against model poisoning

in federated learning,” 2023.

[86] J. Sun, A. Li, L. DiValentin, A. Hassanzadeh, Y. Chen, and H. Li, “Fl-wbc: Enhancing

robustness against model poisoning attacks in federated learning from a client per-

spective,” Advances in Neural Information Processing Systems, vol. 34, pp. 12 613–

12 624, 2021.

[87] M. Naseri, J. Hayes, and E. De Cristofaro, “Local and central differential privacy for

robustness and privacy in federated learning,” arXiv preprint arXiv:2009.03561, 2020.

[88] A. Mondal, H. Virk, and D. Gupta, “Beas: Blockchain enabled asynchronous & secure

federated machine learning,” arXiv preprint arXiv:2202.02817, 2022.
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The optimization problem of maximizing ST
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i−Gi) can be equivalently converted to

maximize
∣∣∣G′i−Gi

∣∣∣. Out of convenience, we assume that all malicious clients can collude,

so we have w′1,i = w′2,i = ...= w′m,i. Then we have

∣∣∣G′i−Gi

∣∣∣≤ 1
n

∣∣∣m · (w′1,i−Gi−1)
∣∣∣+ m

n
· |Gi−1|+

1
n

∣∣∣∣∣ n

∑
i=m+1

l
′

∥wi,i∥
wi,i−

n

∑
i=1

l
∥wi,i∥

wi,i

∣∣∣∣∣ . (A.2)
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According to Assumption 1, we have

1
c

∣∣∣w′1,i−w1,i

∣∣∣≤ ∣∣∣G′i−Gi

∣∣∣ . (A.3)

Combing above inequality equations (A.2) and (A.3), we get

1
c

∣∣∣w′1,i−w1,i

∣∣∣≤ ∣∣∣G′i−Gi

∣∣∣≤ 1
n

∣∣∣m · (w′1,i−Gi−1)
∣∣∣+m

n
·|Gi−1|+

1
n

∣∣∣∣∣ n

∑
i=m+1

l
′

∥wi,i∥
wi,i−

n

∑
i=1

l
∥wi,i∥

wi,i

∣∣∣∣∣ .
(A.4)

According to the triangle inequality
∣∣∣w′1,i−w1,i

∣∣∣≥ ∣∣∣w′1,i−Gi−1

∣∣∣− ∣∣w1,i−Gi−1
∣∣, we get

(
1
c
− m

n
)
∣∣∣w′1,i−Gi−1

∣∣∣≤ 1
c

∣∣w1,i−Gi−1
∣∣+ m

n
· |Gi−1|+

1
n

∣∣∣∣∣ n

∑
i=m+1

l
′

∥wi,i∥
wi,i−

n

∑
i=1

l
∥wi,i∥

wi,i

∣∣∣∣∣ .
(A.5)

Based on our Definition 2, we have
∣∣∣w′1,i−Gi−1

∣∣∣= ρ , so we get

ρ ≤ n
n− cm

∣∣w1,i−Gi−1
∣∣+ cm

n− cm
|Gi−1|+

c
n− cm

∣∣∣∣∣ n

∑
i=m+1

l
′

∥wi,i∥
wi,i−

n

∑
i=1

l
∥wi,i∥

wi,i

∣∣∣∣∣ .
(A.6)

As we know l
′ ≤ ∥wi∥max, so the final upper bound on ρ is

ρ ≤ n
n− cm

∣∣w1,i−Gi−1
∣∣+ cm

n− cm
|Gi−1|+

c
n− cm

∣∣∣∣∣ n

∑
i=m+1

∥wi∥max

∥wi,i∥
wi,i−

n

∑
i=1

l
∥wi,i∥

wi,i

∣∣∣∣∣ .
(A.7)

A.2 Proofs of Theorem 3
proof 10 We have
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∥G
′
i−Gi∥

=
1
n
∥(med(L

′
i)

∥w′1,i∥
w
′
1,i +

med(L
′
i)

∥w′2,i∥
w
′
2,i+, ...,+

med(L
′
i)

∥wn,i∥
wn,i)−

n

∑
i=1

wi,i∥

=
1
n
∥(w

′
1,i+, ...,+w

′
m,i +

n

∑
i=m+1

l
′

∥wi,i∥
wi,i)−

n

∑
i=1

wi,i∥

≤ 1
n
∥

m

∑
i=1

(w
′
i,i−wi,i)+

n

∑
i=1

(
l
′

∥wi,i∥
wi,i−wi,i)∥

≤ 1
n
(m · ∥w

′
1,i−w1,i∥)+

1
n
·

n

∑
i=1
∥( l

′

∥wi,i∥
wi,i−wi,i)∥.

(A.8)

According to Assumption 1, we have

1
c
∥w

′
1,i−w1,i∥ ≤

1
n
(m · ∥w

′
1,i−w1,i∥)+

1
n
·

n

∑
i=1
∥( l

′

∥wi,i∥
wi,i−wi,i)∥. (A.9)

According to the triangle inequality ∥w′1,i−w1,i∥ ≥ ∥w
′
1,i−Gi−1∥−∥w1,i−Gi−1∥, we

get

1
c
(∥w

′
1,i−Gi−1∥−∥w1,i−Gi−1∥)≤

1
n
(m · ∥w

′
1,i−w1,i∥)+

1
n
·

n

∑
i=1
∥( l

′

∥wi,i∥
wi,i−wi,i)∥.

(A.10)

Given the Definition 2, we get ∥w′1,i−Gi−1∥= ∥γ∇p∥= ρ for DNY-OPT attacks, so we

get the final upper bound on ρ

ρ ≤ ∥w1,i−Gi−1∥+
c

n− cm
·

n

∑
i=1
∥( l

′

∥wi,i∥
wi,i−wi,i)∥. (A.11)

A.3 Proofs of Theorem 4 and 5
Proof of theorem 6.

proof 11 We have the triangle inequality,

∥w
′
1,i−w1,i∥ ≥ ∥w

′
1,i−Gi−1∥−∥w1,i−Gi−1∥, (A.12)
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then, we get

∥w
′
1,i−Gi−1∥−∥w1,i−Gi−1∥ ≤ ∥w

′
1,i−w1,i∥ ≤ max

i, j∈[m+1,n]
∥wi−w j∥. (A.13)

Based on the Definition 2, we have ∥w′1,i−Gi−1∥= ∥γ∇p∥= ρ .

So the upper bound on ρ is

ρ ≤ ∥w1,i−Gi−1∥+ max
i, j∈[m+1,n]

∥wi−w j∥. (A.14)

Proof of theorem 7

proof 12 We have

(n−m)∥w
′
1,i−Gi−1∥2− ∑

i∈[m+1,n]
∥w1,i−Gi−1∥2

≤ ∑
i∈[m+1,n]

∥w
′
1,i−w1,i∥2 ≤ max ∑

i, j∈[m+1,n]
∥wi−w j∥2,

(A.15)

then we have

(n−m)ρ2 ≤ ∑
i∈[m+1,n]

∥w1,i−Gi−1∥2 +max ∑
i, j∈[m+1,n]

∥wi−w j∥2. (A.16)

So, the proof of the upper bound on ρ is completed.

A.4 Proofs of Theorem 6
proof 13 We assume the compromised local models are the same. Therefore, we have:

∑
i∈Γ

n−2m−1
w′

∥w
′
−wi∥ ≤ min

j∈[m+1,n]
∑

i∈Γ
n−m−2
w

∥w j−wi∥, (A.17)

then, we get:
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(n−2m−1) · ∥w
′
1,i−Gi−1∥

≤ min
j∈[m+1,n]

∑
i∈Γ

n−m−2
w

∥w j,i−wi,i∥+ ∑
i∈Γ

n−2m−1
w′

∥wi,i−Gi−1∥

≤ min
j∈[m+1,n]

∑
i∈Γ

n−m−2
w

∥w j,i−wi,i∥+(n−2m−1) · max
i∈[m+1,n]

∥wi,i−Gi−1∥

(A.18)

Since we have ∥w′1,i−Gi−1∥= ρ . Then, the proof is completed.
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