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Abstract—This brief research proposes a discrete-time sliding
mode controller and studies its dynamic characteristics. First,
this research develops a discrete-time sliding mode reaching law
by redefining the change rate of disturbance through difference
function, estimating disturbances using disturbance estimation
techniques and compensating them into the reaching law, and
further designing a discrete-time sliding mode controller. Second,
through theoretical analysis, the width of quasi-sliding mode
domain(QSMD), and convergence steps are obtained, and the
bounded convergence property of system state variables is
proven. Lastly, the correctness of the theoretical analysis and
effectiveness of the controller are verified through simulations.
Simulation results demonstrate that the proposed controller can
ensure that the switching function reaches QSMD within a finite
time and continue to move within QSMD, and the system state
will eventually converge.

Index Terms—Discrete-time sliding mode control, sliding mode
reaching law, quasi-sliding mode domain, nonlinear System.

I. INTRODUCTION

SLIDING mode control, as a type of variable structure
control strategy, has attracted widespread attention and

research in the academic and applied fields owing to its
powerful robustness, rapid response capability, and excellent
disturbance rejection ability[1], [2], [3], [4], [5]. Sliding mode
control methods include continuous-time sliding mode control
(CSMC) and discrete-time sliding mode control (DSMC). The
main advantage of DSMC, compared with CSMC, lies in
its finite switching frequency[6], making it more suitable for
application in industrial computer systems.

At presents, a series of DSMC has been proposed in [7],
[8], [9]. Among the existing DSMC, the discrete-time reaching
law was initially proposed by Gao et al.[10], [11], which can
ensure that the system reaches the desired sliding manifold as
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expected. However, the sliding mode switching function can-
not reach the sliding manifold but generates chattering motion
nearby, thereby forming a quasi-sliding mode domain(QSMD),
which compromises system performance and even result in
instability. Therefore, reducing the width of QSMD remains a
major challenge for DSMC. Many DSMC has been developed
to reduce the width of a system’s QSMD[12], [13], [14]. Noted
that the width of QSMD is determined by the change rate
of system disturbances[15].Qu et al.[14] proposed a discrete-
time sliding mode controller with disturbance compensation,
which decreases the width of QSMD to the O(T 2) order of the
disturbances. Ma et al.[15] proposed a discrete-time reaching
law based on difference operators, which uses modified contin-
uous terms instead of sign functions, effectively reducing the
QSMD width. However, the majority of the current relevant
studies have been based on assumptions of known upper or
lower bounds of disturbances, which are difficult to obtain
in practical systems. Furthermore, reducing the QSMD width
remains a critical factor in improving the DSMC performance.
Therefore, DSMC still deserve further research.

This study, which was inspired by the preceding problems,
presents the design of a discrete-time sliding mode controller
and analyzes its dynamic characteristics. First, a discrete-time
reaching law is proposed, and a discrete-time sliding mode
controller is designed. The change rate of system disturbances
is redefined using a difference function. Moreover, disturbance
estimation techniques are used to estimate and compensate for
system disturbances into the reaching law, without requiring
prior information on disturbances. Second, the QSMD width
is analyzed, and the number of steps required to converge
to QSMD is calculated. In additional, the state variables of
the system will eventually converge within a bounded neigh-
borhood of the origin. Lastly, numerical simulation results
demonstrate the effectiveness of the proposed controller.

II. SYSTEM DESCRIPTION

Consider the following continuous-time nonlinear single-
input single-output system:

ẋ = Ax+Bu+D (1)

where x ∈ Rn×1 represents the system state variables,
A ∈ Rn×n and B ∈ Rn×n are constant matrices, u ∈ Rn×1

represents the system control input, and D ∈ Rl×1, l ≤ n is
the disturbance. Consider the following assumption 1:

1) The pair (A,B) is completely controllable;
2) System disturbance D is smooth function and bounded.
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Assuming system sampling period is T , when the in-
put signal of the controller is passed through a zero-order
holder(ZOH) to the system(i.e., within the sampling time
[nT, (n+ 1)T ]), denoted as u(t) = u(n), the system function
can be rewritten as follows:

xk+1 = Φxk + Γuk + dk (2)

where Φ = eAT , Γ =
T∫
0

eAτdτB, dk =
T∫
0

eAτD((k + 1)T −

τ)dτ .
Assumption2: According to Eq.(2), dk is of the O(T ) order
with respect to T . Thus, dk = O(T ), dk−dk−1 = O(T 2) and
dk − 2dk−1 + dk−2 = O(T 3).

The switching function is chosen as follows:

sk = Cxk (3)

where C ∈ R1×n and satisfies CΓ ̸= 0. The control objective
of this paper is to design a discrete sliding mode controller
to achieve the desired dynamics when traveling along the s =
{xk |Cxk = 0}

The quasi-sliding mode(QSM) and the reaching condition
are defined as follows:
Definition1: System (2) is considered to enter into a QSM
into the ∆ vicinity of the switching function if the state of the
system satisfies ∀k > k∗ > 0, |sk| ≤ ∆. The specific space
domain where QSM occurs is called QSMD, where the value
of ∆ > 0 is called the QSMD width.
Definition2: The system satisfies the quasi-sliding mode
reaching condition of the sliding mode manifold in ∆ as
follows: if sk > ∆, then −∆ ≤ sk+1 < sk; if sk < −∆,
then sk < sk+1 ≤ ∆; and if |sk| ≤ ∆, then |sk+1| ≤ ∆.

III. DESIGN OF THE CONTROLLER WITH THE PROPOSED
REACHING LAW

This section proposes a discrete-time sliding mode reaching
law. Moreover, a discrete-time sliding mode controller is
further designed to achieve the control object.

A. Reaching Law

This study proposes a discrete-time reaching law is pro-
posed, and the specific form is as follows:

sk+1 = (1− qT )sk − εT |sk|1/2

λ+γe−σ|sk| sgn(sk)

+(1− z−1)(Cdk − Cdk−1)
(4)

where q and ε are positive constant; λ, γ, and σ are positive
gain coefficients, and z−1 is the unit delay operator.
Remark1: The difference equation in the reaching law(4) is
used to redefine the change rate of the disturbance. Through
basic algebraic operations, the reaching law can be simplified
as follows:

sk+1 = (1− qT )sk − εT |sk|1/2

λ+γe−σ|sk| sgn(sk)

+(Cdk − 2Cdk−1 + Cdk−2)
(5)

Assumption3: The change rate of disturbance dk in this study
is bounded and satisfies the following formula:

|δk| = |C(dk − 2dk−1 + dk−2)| ≤ δ (6)

Remark2: Given that d(k) = O(T ), considering Eq.(6) and
assumption 1, we can obtain that the upper bound of δ in
the proposed reaching law δ(k) ≤ δ = O(T 3) is effectively
reduced compared with d(k) = O(T ) and d(k)− d(k − 1) =
O(T 2) ][13], [14]. Given that the QSMD width is related to
the change rate of disturbance, smaller change rate of dk will
yield a smaller QSMD width.

This research uses the perturbation estimation technique to
estimate the disturbance and integrate it into the reaching law
design. The estimation equation is as follows:

dk−1 = xk − Φxk−1 − Γuk−1 (7)

B. Sliding Mode Controller

By substituting the system dynamics Eq.(2) into the switch-
ing function(3), the following equation can be obtained:

sk+1 =Cxk+1

=CΦxk + CΓuk + Cdk
(8)

Given that CΓ ̸= 0, integrated the Eqs.(4) and (11), the
form of controller uk designed as follows:

uk = −(CΓ)−1

{
CΦxk − (1− qT )sk + εT |sk|1/2

λ+γe−σ|sk| sgn(sk)

+2Cdk−1 − Cdk−2

}
(9)

Remark3: Note that although control law(9) depends on the
disturbance information, Eq.(4) and (9) show that the informa-
tion of disturbance can be estimated by using the difference
function and perturbation estimation technique. Therefore, all
state variable in the controller are known and can be directly
applied.

IV. DYNAMIC ANALYSIS OF SYSTEM

Three theorems have been proven to analyze the main
dynamic characteristics of the controller: QSMD width, con-
vergence steps and convergence.
Theorem 1: For system(1) satisfying assumption 2, if the
upper bound δ of the disturbance satisfies δ < qε2

4λ2(1−qT )T
3,

then the switching function sk converges to the QSMD as
follows:

∆ =
(εT )

2

4λ2(1− qT )
2 + δ (10)

from any initial position under the action of contoller(9). In
addition, once sk enters QSMD, it will always move in the
zone.
Proof: The following two cases are considered:
Case1: If the initial position sk > ∆, in order to make sk
convergent from any positive initial time to QSMD(i.e., sk+1−
sk < 0), then

sk+1 − sk = −qTsk −
εTs

1/2
k

λ+ γe−σsk
+ δk

≤ −qTsk −
εTs

1/2
k

λ+ γ
+ δ < 0

(11)

According to Eq.(11), if
√
sk ≥

√
( εT

λ+γ )
2
+4qTδ− εT

λ+γ

2qT = Ω1

is satisfied, then sk+1 − sk < 0. However, proving Ω2
1 < ∆ is
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not difficult owing to δ < qε2

4λ2(1−qT )T
3. Thus, the switching

function sk will converge to QSMD from any positive initial
position.

If sk ∈ [0,∆], then

sk+1 = (1− qT )sk − εTs
1/2

k

λ+γe−σsk
+ δk

≥ (1− qT )sk − εTs
1/2

k

λ − δ

= − (εT )2

4λ2(1−qT ) − δ
∣∣∣
sk=

(εT )2

4λ2(1−qT )2

≥ −∆

(12)

Definitions 1 and 2, indicate that when sk starts from any
positive initial position, it will eventually converge to and
always move in QSMD.
Case2: If the initial position sk < −∆, in order to make
sk convergent from any negative initial time to QSMD(i.e.,
sk+1 − sk > 0), then

sk+1 − sk = −qTsk +
εT (−sk)

1/2

λ+ γeσsk
+ δk

≥ −qTsk +
εT (−sk)

1/2

λ+ γ
− δ > 0

(13)

If Eq.(13) is satisfied, then
√
−sk >

− εT
λ+γ +

√
( εT

λ+γ )
2
+4qTδ

2qT = Ω2. Similar with Case 1,
−Ω2

2 > −∆ is obtained using simple calculation. Hence, sk
will converge to QSMD from any negative initial position.

If sk ∈ [−∆, 0], then

sk+1 = (1− qT )sk + εT (−sk)
1/2

λ+γeσsk
+ δk

≤ −(1− qT )(−sk) +
εT (−sk)

1/2

λ + δ

= (εT )2

4λ2(1−qT ) + δ
∣∣∣
sk=− (εT )2

4λ2(1−qT )2

≤ ∆

(14)

Similar to Case1, sk starts from any negative initial position
and gradually reaches the QSMD without escaping.

In summary, if the initial state of the system is distant from
the sliding mode manifold, then the system will gradually
move towards the vicinity of the sliding mode manifold, until it
reaches QSMD. In addition, when the system reaches QSMD,
the sliding mode manifold will move in QSMD instead of
escaping.
Theorem 2: For system(2) satisfying assumption 2, driven by
controller(9), the trajectory of the switch function sk starts
from any initial position and reaches QSMD within a finite
number of steps η∗, which is expressed as follows:

η∗ = ⌊n⌋+1 =

⌊
log1−qT

[
εTφ− (λ+ γ)δ

qT (λ+ γ) |s0|+ εTφ− (λ+ γ)δ

]⌋
+1

(15)
where ⌊⌋ is the integer down function.
Proof: Under the controller action, the sliding mode switching
function can move gradually from the initial state to QSMD,
assuming that sη∗ does not change the sign at step η∗.
Therefore, it will be divided into the following two cases:

Case1: If s0 > 0, then,

s0 = s0

s1 = (1− qT )s0 − εT
λ+γe−σs0

s
1/2
0 + δ0

≤ (1− qT )s0 − εT
λ+γ s

1/2
0 + δ0

s2 = (1− qT )s1 − εT
λ+γe−σs1

s
1/2
1 + δ1

≤ (1− qT )2s0 − (1− qT ) εT
λ+γ s

1/2
0 + (1− qT )δ0 − εT

λ+γ s
1/2
0 + δ1

...

sn ≤ (1− qT )ns0 −
n−1∑
i=0

(1− qT )
n−1−i

( εT
λ+γ s

1/2
i − δ)

(16)
Suppose there is a positive constant φ > (λ+γ)εqT 2

4λ2(1−qT ) +
1
ε that

makes the following equation true

n−1∑
i=0

(1− qT )
n−1−i

(
εT

λ+ γ
s
1/2
i −δ) =

n−1∑
i=0

(1− qT )
n−1−i

(
εT

λ+ γ
φ−δ)

(17)
Therefore, the Eq.(16) can be rewritten as follows:

sn ≤ (1− qT )ns0 −
n−1∑
i=0

(1− qT )
n−1−i

(
εT

λ+ γ
φ− δ)

= (1− qT )ns0 −
1− (1− qT )

n

qT
(

εT

λ+ γ
φ− δ)

(18)
Suppose that at step n, the switching function sk reaches

QSMD. Therefore, assuming sn > 0, sn+1 < 0. To facilitate
calculation that makes

(1− qT )ns0 −
1− (1− qT )

n

qT
(

εT

λ+ γ
φ− δ) = 0 (19)

Thus,

n = log1−qT

[
εTφ− (λ+ γ)δ

qT (λ+ γ)s0 + εTφ− (λ+ γ)δ

]
(20)

Case2: If s0 < 0, then,

s0 = s0

s1 = (1− qT )s0 +
εT

λ+γe−σs0
(−s0)

1/2 + δ0

≥ (1− qT )s0 +
εT
λ+γ (−s0)

1/2 + δ0

s2 = (1− qT )s1 +
εT

λ+γe−σs1
(−s1)

1/2 + δ1

≥ (1− qT )2s0 + (1− qT ) εT
λ+γ (−s1)

1/2 + (1− qT )δ0 +
εT
λ+γ s

1/2
0 + δ1

...

sn ≥ (1− qT )ns0 +
n−1∑
i=0

(1− qT )
n−1−i

( εT
λ+γ (−si)

1/2 − δ)

(21)
Similar with Eq.(16)-(18) in Case 1, Eq.(21) can be rewrit-

ten as follows:

sn ≥ (1− qT )ns0 +

n−1∑
i=0

(1− qT )
n−1−i

(
εT

λ+ γ
φ− δ)

= (1− qT )ns0 +
1− (1− qT )

n

qT
(

εT

λ+ γ
φ− δ)

(22)
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Suppose that at step n, the switching function sk reaches
the QSMD. Therefore, assuming sn < 0, sn+1 > 0. In order
to facilitate calculation that makes

(1− qT )ns0 +
1− (1− qT )

n

qT
(

εT

λ+ γ
φ− δ) = 0 (23)

Thus,

n = log1−qT

[
εTφ− (λ+ γ)δ

−qT (λ+ γ)s0 + εTφ− (λ+ γ)δ

]
(24)

Combining the two types of cases, whether or not switch
function sk starts from any initial position, it can reach QSMD
within a finite number of steps η∗, the expression of η∗ is as
follows:

η∗ = ⌊n⌋+1 =

⌊
log1−qT

[
εTφ− (λ+ γ)δ

qT (λ+ γ) |s0|+ εTφ− (λ+ γ)δ

]⌋
+1

(25)
Through the preceding analysis and under the action of

controller(9), switching function sk will enter and remain
in QSMD. Therefore, the system state will converge to the
bounded neighborhood of zero under the action of the discrete
sliding mode controller rather than reaching zero.
Theorem 3: Suppose that by adjusting the vector matrix C in
the sliding mode switch function sk to satisfy ∥N∥ < 1, where
N =

[
(I − Γ(CΓ)

−1
)C

]
Φ, and the disturbance satisfied

∥dk∥ < Ω, then the trajectory of the state xk of the sliding
mode control system will converge to the interval as follows:

∥x∞∥ ≤ ϖ(1− ∥N∥)−1 (26)

where ϖ =
∥∥∥Γ(CΓ)

−1
∥∥∥ [(3 ∥C∥+ 1)Ω + (1− qT )∆ + εT

λ+γ

√
∆
]
.

Proof: Substituting the controller(9) into the system(2), we
can obtain:

xk+1 = Nxk +Mk + Yk (27)

where Mk = Γ(CΓ)−1{(1−qT )sk− εT |sk|1/2
λ+γ sgn(sk)}, Yk =

dk − Γ(CΓ)−1(2Cdk−1 − Cdk−2).
Given that dk is bounded by ∥dk∥ < Ω. Therefore:

∥Yk∥ ≤ dk + Γ(CΓ)−1(2Cdk−1 + Cdk−2)

≤ Ω+
∥∥∥Γ(CΓ)

−1
∥∥∥ ∥C∥ (∥2dk−1∥+ ∥dk−2∥)

≤ (1 + 3
∥∥∥Γ(CΓ)

−1
∥∥∥ ∥C∥)Ω

(28)

Once the switch function sk enters QSMD, then

∥Mk∥ ≤
∥∥∥Γ(CΓ)

−1
∥∥∥ [(1− qT ) ∥sk∥+

εT

λ+ γ
∥sk∥1/2]

≤
∥∥∥Γ(CΓ)

−1
∥∥∥ [(1− qT )∆ +

εT

λ+ γ

√
∆]

(29)
On the bases of the preceding results, Eq.(29) is further

developed as follows:

∥xk+1∥ = ∥Nxk +Mk + Yk∥
≤ ∥A∥ ∥xk∥+ ∥Mk∥+ ∥Yk∥
≤ ∥A∥ ∥xk∥+ϖ

(30)

Fig. 1. Trajectory of the switching function in Case 1.

Fig. 2. Trajectories of system states in Case 1.

By iteratively calculating the state after l time constants of
the state vector xk, the inequality is as follows

∥xk+l∥ ≤ ∥N∥l ∥xk∥+ϖ

l−1∑
i=0

∥N∥l−1−i (31)

Therefore, if the vector ∥N∥ < 1 is true, then ∥N∥∞ → 0,
inequality ∥x∞∥ ≤ ϖ(1− ∥N∥)−1, then the state trajectories
of the system will eventually be bounded.

V. NUMERICAL EXAMPLES

Considers discrete-time nonlinear system(2) with following
parameters[16]:

Φ =

[
1.02351 0.09139

0.45696 0.84073

]
,Γ =

[
0.00470

0.09139

]

dk =

[
0.10080 0.00470

0.02351 0.09139

][
0

1 + 2.2 cos(0.5πKT )

]
(32)

to implement numerical simulation. The initial system state
is set as x0 =

[
2.1 1

]T
, and the gain coefficient of the

switching function is C =
[
1, 1

]
. This study compares

the reaching law sk1+1 = (1−qT )sk1−εT sgn(sk1)+(Cdk−
2Cdk−1 +Cdk−2), and conducts a simulation under different
periods to verify the effectiveness of the proposed controller.

1)Case 1: In this case, the sampling period T = 0.1s, and
the parameters of the discrete sliding mode reaching law are
selected as follows: q = 5.5, ε = 1.1, λ = 0.5, γ = 0.1,
and σ = 0.5. Theorem 2 indicates that the QSMD width
is ∆Caculate = 0.0745, and the steps η∗ from the initial
state to QSMD is η∗ = ⌊2.7⌋ + 1 = 3. The change of
switching function and system state is shown in Figs. 1 and



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. XX, NO. X, XX XXXX 5

Fig. 3. Trajectory of the switching function in Case 2.

Fig. 4. Trajectories of system states in Case 2.

2, respectively. As shown in Fig.1, the switch function has
been moving in QSMD since it first entered. In addition,
the width of the QSMD under the proposed reaching law is
∆ = 0.0701, and sk1 is ∆1 = 0.138, showing the effectiveness
of the proposed reaching law in reducing the QSMD width. By
comparing the data in Table 1, note that the calculated values
of theorems 1 and 2 are slightly higher than the actual values,
thereby verifying the correctness of the theoretical analysis.

2)Case 2: In this case, the sampling period is set as T =
0.01s, and the parameters of the reaching law are selected as
follows: q = 50, ε = 5, λ = 0.5, γ = 0.1, and σ = 0.5. In this
case, the QSMD width is ∆Caculate = 0.0125 and convergent
steps η∗ = ⌊5.69⌋ + 1 = 6. The numerical simulation results
are shown in Figs. 3 and 4. As shown in Fig.3, the QSMD
width for the proposed switching function is ∆ = 0.005.
In Addition, the QSMD width for sk1 is ∆1 = 0.04 when
the convergence speed is the same. Similar with case 1, the
calculated convergence steps are greater than the simulation
data, which can further prove the rationality of the theoretical
analysis. In addition, the state quantity of the system does
not eventually converge to zero, but gradually converges to a
bounded neighborhood of zero. This result, is consistent with
the analysis of theorem 3.

VI. CONCLUSION

This research develops a discrete-time sliding mode con-
troller and analyzes the dynamic characteristics. A discrete
sliding mode reaching law is proposed and discrete sliding
mode controller is further designed. The QSMD width is
obtained, and the convergent steps required for the system
switching variable is analyzed. In addition, the convergence

TABLE I
SIMULATION RESULT

Calculated sk sk1

Case 1 QSMD 0.0745 0.0701 0.138
Step 3 2 3

Case 2 QSMD 0.0125 0.005 0.04
Step 6 5 5

of the system state variables under the action of the controller
is proven theoretically. The simulation results show that the
proposed discrete sliding mode controller can reach QSMD in
a finite time and continue moving in QSMD. In future studies,
we will further design a discrete-time sliding mode controller
to suppress the QSMD width and improve the convergence
rate of the system.
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