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ON MAXIMALLY NON-FACTORIAL NODAL FANO THREEFOLDS

IVAN CHELTSOV, IGOR KRYLOV, JESUS MARTINEZ-GARCIA, EVGENY SHINDER

Abstract. We classify non-factorial nodal Fano threefolds with 1 node and class group of rank 2.

Let X be a Fano threefold that has at worst isolated ordinary double points (nodes). Then both
the Picard group Pic(X) and the class group Cl(X) are torsion-free of finite rank, and rkCl(X)−
rkPic(X) is known as the defect of the threefold X [14, 19, 20, 32]. If the defect is zero, we say
that X is factorial [7, 8]. Factoriality imposes significant constraints on the geometry of the Fano
threefold [9, 11, 40, 50].

It is well known that the defect of X does not exceed the number of its singular points (see e.g.
[31, Corollary 3.8]). If

rkCl(X)− rkPic(X) = |Sing(X)|,

then we say that X is maximally non-factorial. This property is also called Q-maximal non-
factoriality; see [38, Proposition 6.13] and [39, Proposition A.14] for various ways to define it for a
nodal Fano threefold X . By definition, if X has a single node, then X is maximally non-factorial
if and only if it is non-factorial. Let us give the simplest example of a non-factorial threefold with
one node.

Example. Let X be the quadric cone in P4 with one node. Then X is a maximally non-factorial

nodal Fano threefold. Let η : X̃ → X be the blow up at the singular point of the threefold X , and
let E be the η-exceptional surface. Then E ∼= P1 × P1 and E|E ∼= OE(−1,−1), and there exists
the following commutative diagram:

X̃
ϕ2

  ❅
❅❅

❅❅
❅❅

❅
ϕ1

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

η

��

X1

π1

~~⑤⑤
⑤⑤
⑤⑤
⑤ φ1

  ❆
❆❆

❆❆
❆❆

❆
X2

φ2

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ π2

  ❇
❇❇

❇❇
❇❇

P1 X P1

where ϕ1 and ϕ2 are contractions of the surface E to curves such that ϕ2 ◦ ϕ
−1
1 is an Atiyah flop,

both φ1 and φ2 are small projective resolutions, and both π1 and π2 are P2-bundles.

While maximally non-factorial nodal Fano threefolds are important in birational geometry be-
cause of their rich geometry, they also play a central role in the recent study of the derived categories
of coherent sheaves for singular varieties (this in turn allows the study of the birational geometry
with a very different toolset, such as stability conditions). Indeed, maximally non-factorial nodal
Fano threefolds are very special from the perspective of derived categories of coherent sheaves, in
particular their derived categories can often be separated into a smooth proper part and a singular
part [31, 44, 55, 38, 39].

Let us explain the connection to derived categories in some more detail. In [31, 44, 55] the
authors, inspired by the work of Kawamata [34], introduced and studied maximal non-factoriality
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of del Pezzo threefolds (a subset consisting of 8 of the 105 families of Fano threefolds). They proved
that a del Pezzo threefold is maximally non-factorial if and only if its derived category admits a
Kawamata semiorthogonal decomposition, that is an admissible semiorthogonal decomposition
into a perfect part and derived categories of singular finite-dimensional algebras. It is thus natural
to ask whether being a maximally non-factorial Fano threefold is a sufficient condition for the
existence of a Kawamata decomposition. The proof of [44] relied on the classification of del Pezzo
threefolds which are maximally non-factorial. Thus, in order to study Kawamata decompositions
it is natural to have a classification of maximally non-factorial Fano threefolds.

A slightly weaker notion of categorical absorption of singularities was introduced in [38, 39]. By
[38, Corollary 6.17], every maximally non-factorial Fano threefold with one ordinary double point
admits a categorical absorption of singularities; the converse is also true, and holds for any number
of nodes [38, Proposition 6.12]. A highlight of this theory in [39] is the deformation between the
main components of the derived categories of one-nodal prime Fano threefolds of genus 2d+2 and
del Pezzo threefolds of rank one and degree d, for d ∈ {1, 2, 3, 4, 5}, which solves the so-called Fano
threefold conjecture of Kuznetsov.

There is also a consequence of maximal non-factoriality to intermediate Jacobians. Namely, in
some sense, a maximally non-factorial nodal Fano threefoldX has a smooth projective intermediate
Jacobian, so that singularities of X can be ignored from the Hodge theory perspective. The precise
statement [39, Proposition A.16] is that a family of smooth Fano threefolds degenerating to a
1-nodal maximally non-factorial Fano threefold has a smooth projective family of intermediate
Jacobians, i.e. no actual degeneration takes place in the middle degree cohomology.

On the other hand, maximally non-factorial Fano threefolds are rather rare among all nodal Fano
threefolds. Motivated by the recent advances in derived categories of singular Fano threefolds, we
pose the following problem.

Problem. Classify all maximally non-factorial nodal Fano threefolds.

The goal of this paper is to partially solve this problem. Namely, we aim to classify maximally
non-factorial nodal Fano threefolds of Picard rank one that have exactly one singular point (node).
This case is particularly well behaved from the viewpoint of birational geometry, see the chain of
equivalences in [38, Proposition 6.13] that applies only when one singular point is present.

Now, we are ready to present the main result of this paper. To do this, we suppose that

• the nodal Fano threefold X has one node,
• the rank of the Picard group Pic(X) is one,
• the rank of the class group Cl(X) is two.

Let η : X̃ → X be the blow up of the node of the threefold X , let E be the η-exceptional surface.

Then X̃ is smooth, E ∼= P1 × P1, E|E ≃ OE(−1,−1), and it follows from [16] that X uniquely
determines the following Sarkisov link:

(⋆) X̃
ϕ2

  ❅
❅❅

❅❅
❅❅

❅
ϕ1

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

η

��

X1

π1

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ φ1

  ❆
❆❆

❆❆
❆❆

❆
X2

φ2

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ π2

  ❇
❇❇

❇❇
❇❇

❇

Z1 X Z2

where ϕ1 and ϕ2 are contractions of the surface E to curves such that ϕ2 ◦ ϕ
−1
1 is an Atiyah flop,

both φ1 and φ2 are small projective resolutions, and both π1 and π2 are extremal contractions [41].
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Note that −KX1
∼ φ∗

1(−KX) and −KX2
∼ φ∗

2(−KX), so that

−K3
X1

= −K3
X2

= −K3
X .

It follows from [43, 30] thatX admits a smoothingX  Xs, whereXs is a smooth Fano threefold,
−K3

X = −K3
Xs
, and the rank of the Picard group Pic(Xs) is 1. We also know from [14] that

(z) h1,2(X̃) = h1,2(X1) = h1,2(X2) = h1,2(Xs),

which imposes a significant constraint on the link (⋆). We set

d = −K3
X , h1,2 = h1,2(Xs),

and

I = max
{
n ∈ Z>0 such that −KXs

∼ nH for H ∈ Pic(Xs)
}
.

Then I is the index of the Fano threefold Xs, which is also the index of the Fano threefold X [30].
In the remaining part of this paper, we prove the following theorem.

Theorem. There are exactly 17 types of non-factorial Fano threefolds of Picard rank one with one

node. All possibilities for (⋆), up to swapping the left and right sides of the diagram, are described

in the table at the end of the paper.

Each Sarkisov link in the table exists and can be described explicitly. For the reader’s conve-
nience, we provide the relevant references in the table. For the particular case of −K3

X = 22, the
result is proved in [45]. A. Kuznetsov and Y. Prokhorov have independently obtained the same
classification of non-factorial Fano threefolds of Picard rank one [37].

Remark. It should be pointed out that it follows from our classification that one-nodal maximally
non-factorial degenerations of smooth Fano threefolds of Picard rank one (if any) have the same
rationality as their smoothing (in the cases 2 and 7 in the table we need to assume that the smooth
Fano threefolds are general). Indeed, this can be verified case by case, using the rationality results
from [3, 10, 15, 23, 46, 53].

Observation. If X is a del Pezzo threefold (I = 2) of Picard rank one with −K3
X 6 32, then

the nodal Fano threefold X is never maximally non-factorial. This follows from from the defect
computation [19, 20], see [44, Corollary 2.5]. Therefore, the only options for X when I > 1 are
these two Fano threefolds:

• the nodal quadric threefold in P4 (I = 3, −K3
X = 54, the Sarkisov link 17);

• a quintic del Pezzo threefold (I = 2, −K3
X = 40, the Sarkisov link 16).

We prove the theorem by analyzing the possible links (⋆) in the following order:

(1) π1 is a del Pezzo fibration, and π2 is arbitrary;
(2) both π1 and π2 are birational;
(3) π1 is a conic bundle and π2 is arbitrary.

These cover all possible Mori fiber spaces arising in (⋆), up to swapping π1 and π2.
Note that all possibilities for the smooth Fano variety Xs are known and can be found in [25].

Using this classification, we list the possible values of h1,2 as follows.

(d, I) (2, 1) (4, 1) (6, 1) (8, 1) (10, 1) (12, 1) (14, 1), (16, 1) (18, 1) (22, 1)

h1,2 52 30 20 14 10 7 5 3 2 0

(d, I) (8, 2) (16, 2) (24, 2) (32, 2) (40, 2) (54, 3) (64, 4)

h1,2 21 10 5 2 0 0 0
3



Possibilities for (⋆) are studied in [1, 4, 17, 18, 21, 22, 26, 27, 28, 29, 30, 33, 45, 47, 48, 51, 52, 54].
Using some of these results, we immediately obtain the following corollary.

Corollary. Suppose that π1 is a fibration into del Pezzo surfaces. Then (⋆) is one of the links

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 17

in the table in the end of the paper.

Proof. If π1 is a fibration into del Pezzo surfaces of degree 6, the assertion follows from [21, 22], in
which case we get the link 15. In the remaining cases, the required assertion follows from [52]. �

Therefore, we may assume that neither π1 nor π2 is a fibration into del Pezzo surfaces.

Proposition. Suppose that π1 and π2 are birational. Then (⋆) is the link 13 in the table.

Proof. Both Z1 and Z2 are (possibly singular) Fano threefolds, and rkPic(Z1) = rkPic(Z2) = 1.
Suppose Z1 is smooth so that π1 is a contraction of type E1 or E2 in [35, Theorem 1.32]

and π2 is a contraction of type E1–E5. Then possibilities for h1,2(Z1) are listed in the two
tables presented above. Using [18], we obtain all possible values of h1,2(X1). Now, using (z),
in combination with the list of Sarkisov links in [18, Tables 1–7] we see, carrying out a case-by-case
analysis, that Z1

∼= Z2
∼= P3, and π1 and π2 are the blow ups along smooth rational curves of

degree 5. Alternatively, one can run a short computer program exhausting all the possibilities for
Z1 and Z2 and reach the same conclusion.

Therefore, to show that (⋆) is the link 13 in the table it suffices to explain why the rational quin-
tic curves are not contained in a quadric. Indeed, none of these curves are contained in a smooth
quadric surface, because in that case one of the rulings of this quadric will be contracted in the
anticanonical model, but birational morphisms φ1 and φ2 are small by construction. Furthermore,
a degree 5 smooth rational curve in P3 is never contained in a singular quadric.

Thus, we may assume that both Z1 and Z2 are singular. Now, using [18, Tables 8–9], we get
−K3

X ∈ {2, 4}. Hence, if | − KX | does not have base points, then X is one of the following
threefolds:

(1) sextic hypersurface in P(1, 1, 1, 1, 3),
(2) quartic hypersurface in P4,
(3) complete intersection of a quadric cone and a quartic hypersurface in P(1, 1, 1, 1, 1, 2).

Indeed, by the Riemann-Roch theorem [25, Corollary 2.1.14], |−KX | defines a finite map φ : X →
PN with N = 3 (respectively N = 4) when −K3

X = 2 (respectively −K3
X = 4). We have deg(φ(X))·

deg(φ) = −K3
X . If −K3

X = 2, then φ is a double cover of P3 ramified at a sextic hypersurface by
Hurwitz’s formula, thus giving the first case. If −K3

X = 4 we either get that deg(φ) = 1 and φ(X)
is a quartic threefold or deg(φ) = deg(φ(X)) = 2 and we get the last case.

By studying the defect, in each of these cases, the threefold X is factorial as it follows from
[6, 7, 8, 9, 50], contradicting our assumption.

Therefore |−KX | has base points, hence using [29, Theorem 1.1 (i)], we see that −K3
X = 2, and

X is the complete intersection of a quadric cone and a sextic hypersurface in P(1, 1, 1, 1, 2, 3) on
variables x0, . . . , x5. We can assume that the quadric cone is given by x0x1 − x2x3 = 0. Then the
projection on x0, x2 coordinates gives (after a small resolution of the singularity) a fibration by
del Pezzo surfaces of degree 1. Similarly, the projection on x0, x3 coordinates gives another such
fibration. This implies that (⋆) is the Sarkisov link 1 in the table, so that π2 is not birational,
which contradicts our assumption. �

Thus, we may assume that π1 is a conic bundle, and either π2 is birational, or π2 is a conic bundle.
Then the surface Z1 is smooth [41, (3.5.1)], which implies that Z1 = P2, since X1 has Picard rank
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two. Let d1 be the degree of the discriminant curve of the conic bundle π1. Then [49, 1.6 Main
Theorem] implies 0 6 d1 6 11; d1 = 0 if π1 is a P1-bundle. By [3], we get

(♠) h1,2(X1) =
d1(d1 − 3)

2
,

so d1 6∈ {1, 2}. Using (z) and the list of possible values of h1,2 presented in tables above, we get

d1 ∈ {0, 3, 4, 5, 7, 8}.

Using the Observation above, for the rest of the proof we will assume that I = 1. Therefore we
have

(♦) (d, h1,2, d1) ∈ {(6, 20, 8), (8, 14, 7), (14, 5, 5), (18, 2, 4), (22, 0, 0), (22, 0, 3)} .

LetD2 be a Cartier divisor onX2, letD1 be its strict transform onX1, and letH1 be a sufficiently
general surface in |π∗

1(OP2(1))|. Then D1 ∼Q a(−KX1
)− bH1 for some rational numbers a and b.

Moreover, if d1 6= 0, then a and b are integers, because the conic bundle has no sections and the
Picard group of the generic fiber is generated by its canonical class. If d1 = 0, then 2a and 2b are
integers, because the Picard group of the generic fiber is generated by the class of a section. On
the other hand we have (e.g. see [12, Lemma A.3])

−KX1
·D2

1 = −KX2
·D2

2,(
−KX1

)2
·D1 =

(
−KX2

)2
·D2.

Moreover, we have [5, Proposition 6]

(†) −K3
X1

= d, (−KX1
)2 ·H1 = 12− d1, −KX1

·H2
1 = 2, H3

1 = 0.

This gives

(♥)

{
da2 − 2(12− d1)ab+ 2b2 = −KX2

·D2
2,

da− (12− d1)b =
(
−KX2

)2
·D2.

Lemma. Suppose that π2 is birational. Then (⋆) is either the link 11 or the link 14 in the table.

Proof. Let D2 be the π2-exceptional surface. Then a = D1 ·H
2
1 > 0.

If π2(D2) is a point, then it follows from [41, Theorem (3.3)] that one of the following cases
holds:

(A) D2 = P2 with normal bundle O(−1),
(B) D2 = P2 with normal bundle O(−2),
(C) D2 is an irreducible quadric surface in P3 with normal bundle O(−1).

A simple computation using the adjunction formula implies that −KX2
·D2

2 = −2 and

(
−KX2

)2
·D2 =





4 in the case (A),

1 in the case (B),

2 in the case (C).

Now, solving (♥) for each triple (d, h1,2, d1) listed in (♦), we see that 2a is never a non-negative
integer. This shows that π2(D2) is not a point.

We see that Z2 is a smooth Fano threefold of Picard rank 1, and π2(D2) is a smooth curve in Z2.
Then it follows from [28, Theorem 7.14] and (z) that (⋆) is one of the Sarkisov links 11 and 14,
which would complete the proof of the lemma.
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Note, however, that the paper [28] has gaps [13, Remark 1.18]. For instance, the link in the
Construction below contradicts [28, Theorem 7.4], and few examples constructed in [54] contra-
dict [28, Proposition 7.2]. Keeping this in mind, let us complete the proof of the lemma without
using [28, Theorem 7.14].

Set C2 = π2(D2). Let d2 = −KZ2
· C2, and let g2 be the genus of the curve C2. Then as π2 is

the blow up along a curve on a threefold, we have that

h1,2(Z2) + g2 = h1,2 ∈ {0, 2, 5, 14, 20},

where the inclusion follows from (♦). As a result, using the classification of smooth Fano threefolds
[25, §12.2], we get h1,2(Z2) ∈ {0, 2, 3, 5, 7, 10, 14, 20}. In fact, we can say a bit more. Let e = −K3

Z2
,

let i be the index of the Fano threefold Z2. Then

• (e, i) = (64, 4) ⇐⇒ Z2 = P3,
• (e, i) = (54, 3) ⇐⇒ Z2 is a smooth quadric threefold in P4.

Moreover, the possible values h1,2(Z2) 6 20 can be listed as follows.

(e, i) (6, 1) (8, 1) (10, 1) (12, 1) (14, 1), (16, 1) (18, 1) (22, 1)

h1,2(Z2) 20 14 10 7 5 3 2 0

(e, i) (16, 2) (24, 2) (32, 2) (40, 2) (54, 3) (64, 4)

h1,2(Z2) 10 5 2 0 0 0

This leaves not so many possibilities for the genus g2 = h1,2 − h1,2(Z2).
One the other hand, it follows from [25, Lemma 4.1.2] that

−KX2
·D2

2 = 2g2 − 2,

(−KX2
)2 ·D2 = d2 + 2− 2g2,

−K3
X2

= e− 2 + 2g2 − 2d2,

so that (♥) gives 



da2 − 2(12− d1)ab+ 2b2 = 2g2 − 2,

da− (12− d1)b = d2 + 2− 2g2,

d = e− 2 + 2g2 − 2d2.

Now, solving this system of equations for each triple (d, I, h1,2, d1) listed in (♦), and each possible
triple (e, i, g2) = (e, i, h1,2 − h1,2(Z2)), we obtain the following two cases:

(I) d = 18, I = 1, h1,2 = 2, d1 = 4, Z2 = P3, d2 = 24, g2 = 2, a = 3, b = 4;
(II) d = 22, I = 1, h1,2 = 0, d1 = 3, Z2 is a smooth quadric in P4, d2 = 15, g2 = 0, a = 3, b = 4;

In the case (I), (⋆) is the link 11 in the table. In the case (II), (⋆) is the link 14 in the table. �

Therefore, we may assume that π2 is also a conic bundle and Z2 = P2. Let d2 be the discriminant
curve of the conic bundle π2. Using (♠) and h1,2(X1) = h1,2(X2) we obtain that either d1 = d2 or
d1, d2 ∈ {0, 3}. Now, we let D2 be a general surface in |π∗

2(OP2(1))|. Then (♥) simplifies as
{
da2 − 2(12− d1)ab+ 2b2 = 2,

da− (12− d1)b = 12− d2.

Solving these equations for each quadruple (d, h1,2, d1) listed in (♦), we get the following cases:

(1) a = 0, b = −1;
(2) d = 14, I = 1, h1,2 = 5, d1 = d2 = 5, a = 1, b = 1.
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In the case (1), the composition ϕ2 ◦ϕ
−1
1 is biregular. This contradicts our initial assumption. So,

the case (2) holds. Then (⋆) is the link 7 in the table, which proves the theorem.

Let us conclude this paper by showing that the Sarkisov link 7 in the table is always obtained
using the following:

Construction ([48, § 3.4 Case 4o]). Let E = {z1 = z2 = 0} ⊂ P2
x1,y1,z1

× P2
x2,y2,z2

, and let

X =
{
z1f(x1, y1, z1; x2, y2, z2) = z2g(x1, y1, z1; x2, y2, z2)

}
,

where f and g are sufficiently general polynomials of bi-degrees (1, 2) and (2, 1), respectively. Then
X is a singular Verra threefold (a bidegree (2, 2) threefold in P2 × P2) with 5 nodes. Note that
E ∼= P1 × P1, E ⊂ X and

Sing(X) =
{
z1 = z2 = f = g = 0

}
⊂ E.

Let ρ : P2
x1,y1,z1

× P2
x2,y2,z2

99K P4
x,y,z,t,w be the rational map given by

(
[x1 : y1 : z1], [x2 : y2 : z2]

)
7→

[
x1z2 : y1z2 : x2z1 : y2z1 : z1z2

]
.

Then ρ is birational, and the inverse map ρ−1 is given by [x : y : z : t : w] 7→ ([x : y : w], [z : t : w]).
Let ξ : W → P2

x1,y1,z1
× P2

x2,y2,z2
be the blow up along the surface E and let E be its exceptional

divisor. Let G1 = {z1 = 0} and G2 = {z2 = 0}, and let G1 and G2 be the proper transforms on
W of G1 and G2. Then we have the following commutative diagram:

W
ξ

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦

θ

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚

P2
x1,y1,z1

× P2
x2,y2,z2 ρ

//❴❴❴❴❴❴❴❴❴❴❴❴❴ P4
x,y,z,t,w

where θ blows down G1 and G2 to the lines ℓ1 = {z = t = w = 0} and ℓ2 = {x = y = w = 0}.
Note that θ(E ) is the hyperplane {w = 0} — the unique hyperplane containing the lines ℓ1 and ℓ2.
Set V = ρ(X). Then V is a smooth cubic threefold in P4

x,y,z,t,w. Moreover, we have

V =
{
f(x, y, w; z, t, w) = g(x, y, w; z, t, w)

}
⊂ P4

x,y,z,t,w.

Now, let X̂ be the strict transform of the threefold X on W , let ς : X̂ → X be the morphism

induced by ξ, and let ν : X̂ → V be the morphism induced by θ. Then X̂ is smooth, ς is a small
projective resolution, and we have the following commutative diagram:

X̂

ς

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

ν

��❃
❃❃

❃❃
❃❃

❃

X
ρ|

X

//❴❴❴❴❴❴❴ V

.

Note that ν is the blow up of the cubic threefold V along the lines ℓ1 and ℓ2. Let Ê = E |X̂ . Then

• the induced map ς|Ê : Ê → E is the blow up at the points in Sing(X),

• Ê is isomorphic to a smooth cubic surface,

• ν(Ê) is the hyperplane section {w = 0} ∩ V .
7



Now, we extend the last commutative diagram to the following commutative diagram:

V

V1

υ1

��

ψ1

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
X̂

ς

��

ν

OO

ν2
oo

ν1
// V2

υ2

��

ψ2

ggPPPPPPPPPPPPPPPP

P2
x1,y1,z1

X
pr

2

//
pr

1

oo P2
x2,y2,z2

Here ψ1 and ψ2 are the blow ups along the lines ℓ1 and ℓ2, respectively, ν1 and ν2 are the blow
ups along the strict transforms of the lines ℓ1 and ℓ2, respectively, both υ1 and υ2 are standard
conic bundles [46], and pr1 and pr2 are the natural projections. Let ∆1 and ∆2 be the discriminant
curves of the conic bundles υ1 and υ2, respectively. Then ∆1 and ∆2 are quintic curves with
at most nodal singularities. Since ς is a flopping contraction, there exists a composition of flops

χ : X̂ 99K X̃ of the 5 curves contracted by ς (this is the only projective flop which exists because

the relative Picard number of ς equals 1). Then X̃ is smooth and projective, and we have another
commutative diagram:

X̃

σ
��❄

❄❄
❄❄

❄❄
❄ X̂

χoo❴ ❴ ❴ ❴ ❴ ❴ ❴

ς

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

ν

��❃
❃❃

❃❃
❃❃

❃

X
ρ|

X

//❴❴❴❴❴❴❴ V

where σ is a small resolution. Let E = χ(Ê). Then χ induces a morphism Ê → E that blows down
all five curves contracted by ς, which implies that σ induces an isomorphism E ∼= E ∼= P1 × P1.

Note that E|E ∼ OE(−1,−1), and there exists a birational morphism η : X̃ → X that blows down
the surface E to an ordinary double point of the threefold X . We have −K3

X = −K3

X
− 2 = 14

and

1 = rkPic(X) < rkCl(X) = 1 +
∣∣Sing(X)

∣∣ = 2.

Therefore, the threefold X is a non-factorial nodal Fano threefold that has one node. We complete
the picture with the following commutative diagram

X

X1

π1

��

φ1

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
X̃

ϕ2 //ϕ1oo

η

OO

σ

��

X2

φ2

ggPPPPPPPPPPPPPPP

π2

��

P2
x1,y1,z1

X
pr

2

//
pr

1

oo P2
x2,y2,z2

V1

υ1

OO

ψ1

''PP
PP

PP
PP

PP
PP

PP
PP X̂

ς

OO

ν

��

ν2
oo

ν1
// V2

υ2

OO

ψ2

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦

V

where φ1 and φ2 are two small resolutions such that the composition φ−1
1 ◦ φ2 is an Atiyah flop,

both ϕ1 and ϕ2 are contractions of the surface E to curves, π1 and π2 are standard conic bundles
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whose discriminant curves are ∆1 and ∆2, respectively. Note that X is irrational as it is birational
to a smooth cubic threefold [15], and

h1,2(X1) = h1,2(X2) = h1,2(X̃) = h1,2(X̂) = h1,2(V ) = 5.

Instead of using the Verra threefold X containing E, we can construct the nodal threefold X using
the birational map ρ−1, and the smooth cubic threefold V containing the lines ℓ1 and ℓ2.

Now consider link 7 in the table: Z1 = Z2 = P2, and both π1 and π2 are conic bundles with
discriminant curves of degree 5. Let C1 and C2 be the curves contracted by φ1 and φ2, respectively.

Recall that we denote by H1 (respectively D2) the pullback of the ample generator by π1 from
Z1 (respectively by π2 from Z2), and D1 is the divisor corresponding to D2 on X1 under flop. Then
it follows from the calculations above (see case (2) before the Construction) that D1 ∼ −KX1

−H1.
We have

−1 =
(
−KX1

−H1

)3
= D3

1 = D3
2 −

(
D2 · C2

)3
= −

(
D2 · C2

)3
,

where we used (†) in the first equality, and [12, Lemma A.3] in the third one. It follows that
D2 · C2 = 1. Similarly, we get H1 · C1 = 1.

Let h1 = ϕ∗
1(H1) and h2 = ϕ∗

2(D2). A simple computation using D2 · C2 = 1 implies that

ϕ∗
1(D1) ∼ h2 + E.

Thus we can express the canonical class −K
X̃

in terms of h1 and h2 as follows

−K
X̃
∼ −ϕ∗

1(KX1
)−E ∼ ϕ∗

1(H1 +D1)−E ∼ h1 + h2.

Note that −K3

X̃
= 12, h1,2(X̃) = 5 and rkPic(X̃) = 3, which implies that −K

X̃
is not ample,

because smooth Fano threefolds with these invariants do not exist [42, Table 3].

Combining π1 ◦ ϕ1 and π2 ◦ ϕ2, we obtain a morphism X̃ → P2 × P2. Let X be its image, and

let σ : X̃ → X be the induced morphism.

Claim. The threefold X ⊂ P2 × P2 is a divisor of bidegree (2, 2) with terminal singularities,

containing a linearly embedded surface P1 × P1, and σ is a small resolution.

Therefore X is obtained by taking a small resolution of the singular Verra threefold X containing
a divisor P1 × P1 as in Construction above.

Proof. The threefold X is a divisor of bidegree (e1, e2) in P2 × P2, with e1, e2 > 0 because X
dominates both factors. We have

12 = (h1 + h2)
3 = deg(σ) deg(X) = 3 deg(σ)(e1 + e2)

This implies that either deg(σ) = 1 and e1 + e2 = 4, in which case e1 = e2 = 2 because the

two projections give rise to conic bundle structures on X̃ , or deg(σ) = 2 and e1 + e2 = 2 so that
e1 = e2 = 1 because e1, e2 > 0. In other words

• either X is a divisor of degree (2, 2), and σ is birational,
• or X is a divisor of degree (1, 1), and σ is generically two-to-one.

In the former case, σ is crepant, and it follows from the subadjunction formula that the threefold
X is normal. In the latter case, the threefold X is also normal, because there are only two
isomorphism classes of irreducible (1, 1) divisors in P2 × P2: one is smooth and the other has one
node.

Set E = σ(E). Let pr1 : X → P2 and pr2 : X → P2 be the projections to the first and the second
factors of the fourfold P2×P2, respectively. Then pr1(E) and pr2(E) are lines by H1 ·C1 = D2 ·C2 =
1, so we can choose coordinates ([x1 : y1 : z1], [x2 : y2 : z2]) on P2 × P2 such that

E =
{
z1 = z2 = 0

}
.

9



Since E ⊂ X, we see thatX is singular. Note also that σ induces an isomorphism E ∼= E = P1×P1.

Divisor classes h1, h2 and E generate the group Pic(X̃). We have

h21 · h2 = h1 · h
2
2 = 2, h1 · h2 · E = 1, h21 ·E = h22 · E = 0.

Assume that σ contracts a divisor F ∼ a1h1 + a2h2 + a3E. Then we have

2a2 = F · h21 = 0,

2a1 = F · h22 = 0,

2a1 + 2a2 + a3 = F · h1 · h2 = 0,

which gives a1 = 0, a2 = 0, a3 = 0. This shows that σ does not contract any divisors.
The Stein factorization of σ is the following commutative diagram:

X̃

σ
��❄

❄❄
❄❄

❄❄
❄

α // X̂

β��⑧⑧
⑧⑧
⑧⑧
⑧⑧

X

where α is a birational morphism, and β is either an isomorphism or a (ramified) double cover.
Since σ does not contract divisors and −KX̃ is not ample, we see that α is a flopping contraction,

and X̂ has terminal Gorenstein singularities. We must show that β is an isomorphism.
Suppose β is a double cover. Its Galois involution induces a birational involution τ ∈ Bir(X̃).

Then τ induces an action τ∗ on Pic(X̃) = Cl(X̂) such that τ∗h1 ∼ h1, τ∗h2 ∼ h2, and

τ∗(E) ∼ b1h1 + b2h2 + b3E

for some integers b1, b2, b3. Then

2b2 = τ∗(E) · h
2
1 = E · h21 = 0,

2b1 = τ∗(E) · h
2
2 = E · h22 = 0,

2b1 + 2b2 + b3 = τ∗(E) · h1 · h2 = E · h1 · h2 = 1,

which gives b1 = 0, b2 = 0, b3 = 1, so τ∗(E) ∼ E, which gives τ(E) = E, since E is η-exceptional.
Since τ(E) = E and σ induces an isomorphism E ∼= E, we see that the surface E is contained

in the branch divisor of the double cover β. On the other hand, E can not be equal to this

branch divisor by degree reasons, thus the branch divisor is reducible. This implies that X̂ has

non-isolated singularities, which is impossible, since X̂ has terminal singularities. Thus, we see
that β is an isomorphism.

We see that X is a singular divisor in P2 × P2 of degree (2, 2), containing E and σ is a small
resolution. �
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Table describing all possibilities for the Sarkisov link (⋆).

№ d I h1,2 π1 : X1 → Z1 π2 : X2 → Z2 References

1 2 1 52

Z1 = P1,
π1 is a fibration into

del Pezzo surfaces of degree 1.

Z2 = P1,
π2 is is a fibration into

del Pezzo surfaces of degree 1.

[23, 24, 29],
[52, (2.5.2)].

2 6 1 20

Z1 = P1,
π1 is a fibration into

del Pezzo surfaces of degree 2.

Z2 is a del Pezzo threefold of degree 1
that has one singular double point,

π2 is the blow up at the singular point.

[10, Proposition 5.6],
[23, 24],

[47, Example 4.3],
[52, (2.7.3)].

3 8 1 14
Z1 = P1,

π1 is a fibration into cubic surfaces.

Z2
∼= P2,

π2 is a conic bundle
with septic discriminant curve.

[10, Proposition 5.9],
[47, Example 4.6],

[52, (2.9.4)].

4 10 1 10
Z1 = P1,

π1 is a fibration into cubic surfaces.

Z2 is a smooth del Pezzo threefold of degree 2,
π2 is the blow up along a smooth rational curve

that has anticanonical degree 2.

[10, Example 1.11],
[48, § 3.12 Case 11o],

[52, (2.9.3)].

5 12 1 7

Z1 = P1,
π1 is a fibration into

quartic del Pezzo surfaces.

Z2
∼= P3,

π2 is the blow up along a smooth
curve of degree 8 and genus 7.

[28, Proposition 6.5],

[52, (2.11.5)].

6 14 1 5

Z1 = P1,
π1 is a fibration into

quartic del Pezzo surfaces.

Z2 is a smooth cubic threefold,
π2 is the blow up at a smooth conic.

[28, Proposition 6.5],

[48, § 3.13 Case 12o],
[52, (2.11.4)].

7 14 1 5

Z1 = P2,
π1 is a conic bundle

with quintic discriminant curve.

Z2 = P2,
π1 is a conic bundle

with quintic discriminant curve.

[48, § 3.4 Case 4o],
Construction and

Claim in this paper.

8 16 1 3

Z1 = P1,
π1 is a fibration into

quintic del Pezzo surfaces.

Z2 is a smooth quadric in P4,
π2 is the blow up along a smooth
curve of degree 7 and genus 3.

[28, Proposition 6.5],

[52, (2.13.4)].

1
1



9 16 1 3
Z1 = P1,

π1 is a quadric bundle

Z2 = P1,
π2 is a fibration into

quartic del Pezzo surfaces.

[2, Example 4.9],
[52, (2.3.8)],

[52, (2.11.2)].

10 18 1 2

Z1 = P1,
π1 is a fibration into

quintic del Pezzo surfaces.

Z2 is a smooth complete
intersection of two quadrics in P5,

π2 is the blow up along a twisted cubic.

[28, Proposition 6.5],

[52, (2.13.3)].

11 18 1 2
Z1

∼= P2,
π1 is a conic bundle

with quartic discriminant curve.

Z2 = P3,
π2 is the blow up along a smooth
curve of degree 6 and genus 2.

[4, Example 4.8],

[28, Theorem 7.14],
Lemma in this paper.

12 22 1 0

Z1 = P1,
π1 is a fibration into

quintic del Pezzo surfaces.

Z2
∼= P2,

π2 is a P1-bundle.
[45, (IV)],

[52, (2.13.1)].

13 22 1 0

Z1 = P3,
π1 is the blow up along a smooth

rational curve of degree 5
that is not contained in a quadric.

Z2 = P3,
π1 is the blow up along a smooth

rational curve of degree 5
that is not contained in a quadric.

[18, Proposition 2.11],

[45, (I)].

14 22 1 0

Z1
∼= P2,

π1 is a conic bundle
with cubic discriminant curve.

Z2 is a smooth quadric threefold,
π2 is the blow up along a smooth

rational quintic curve.

[28, Theorem 7.14],

[45, (II)],
Lemma in this paper.

15 22 1 0

Z1
∼= P1,

π1 is a fibration into
sextic del Pezzo surfaces.

Z2
∼= V5,

π2 is the blow up along
a rational quartic curve.

[28, Proposition 6.5],
[45, (III)].

16 40 2 0
Z1 = P1,

π1 is a quadric bundle.
Z2 = P2,

π2 is a P1-bundle.
[26, Theorem 3.5],

[52, (2.3.2)].

17 54 3 0
Z1 = P1,

π1 is a P2-bundle.
Z2 = P1,

π2 is a P2-bundle. Example in this paper.

1
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