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Abstract—Recently, the concept of enhanced cross Z-
complementary sets (E-CZCS) has been proposed for training
sequence design in generalized spatial modulation (GSM). Based
on generalized Boolean functions, we present a new construction
of E-CZCSs having maximum zero correlation zone (ZCZ) width.
Based on the proposed E-CZCSs, numerical simulation results
indicate that the resultant training sequences lead to superior
channel estimation performance in broadband GSM systems.

I. INTRODUCTION

Sequence sets with good correlation properties are desired
for a wide range of communication applications, such as
channel estimation [1], synchronization [2], peak-to-mean
power control [3]–[6], and interference suppression [7]–[9].
Among many sequence families, complementary sequences
have attracted tremendous research attention over the past
decades. There are Golay complementary sets (GCSs) whereby
a collection of GCSs may be called a mutually orthogonal
complementary set (MOCS) [10]. By definition, every GCS
exhibits non-trivial zero aperiodic autocorrelation sums of its
component sequences and any two distinct GCSs in an MOCS
enjoy zero aperiodic cross-correlation sums for all time-shifts.
An optimal MOCS is called a complete complementary code
(CCC) [11] if the maximum set size is attained. In fact, a
special case of GCSs is known as Golay complementary pairs
(GCPs), in memory of the discovery of Marcel J. E. Golay,
where every GCP consists of two component sequences only
[12]. Later, Fan et al. proposed in [13] the Z-complementary
code set (ZCCS) which can be regarded as a generalization
of MOCSs and CCCs, where the aperiodic correlation sums
exhibit zero correlation zone (ZCZ) properties.

In 2020, Liu et al. introduced the concept of the cross Z-
complementary pair (CZCP) as well as its relevant sparse train-
ing matrix design for optimal channel estimation in broadband
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spatial modulation (SM) systems [14]. Unlike the conventional
GCPs/ZCPs, CZCPs are proposed to deal with the cross-
channel interference when the two sequences in a pair are
sent over two non-orthogonal channels. To this end, a unique
feature of a CZCP is its cross-channel ZCZ. Many research
efforts have been made in recent years for CZCPs with large
ZCZ widths and more flexible lengths [15]–[21]. However, the
ZCZ width of each CZCP is at most half of its sequence length.
To overcome this shortcoming, the cross Z-complementary set
(CZCS) with larger ZCZ width is developed [22].

In SM, it is noted that there is only one radio frequency
(RF) chain and hence only a single transmit antenna (TA)
is allowed to be active at each transmission instance [23].
An extension of SM, called generalized spatial modulation
(GSM), provides higher spectral efficiency by allowing several
antennas to be active simultaneously [24], [25]. Specifically,
the GSM transmitter is configured with fewer RF chains than
the total number of TAs. This feature enables GSM to offer
flexibility among spectral efficiency, the cost of RF chains,
and energy efficiency.

Recently, a subclass of ZCCSs with symmetric ZCZ prop-
erties, symmetrical Z-complementary code set (SZCCS), has
been proposed for training sequence design in GSM sys-
tems [26]. However, their proposed GSM training frame-
work consists of an additional overhead for mitigating inter-
antenna interference (IAI) incurred by zero-padding. Thus,
their method suffers from a reduced training efficiency. For
more efficient training design, CZCP mates are studied by us in
[27]. Recently, we further investigated a new class of sequence
sets, called enhanced cross Z-complementary sets (E-CZCSs),
for the design of optimal training sequences in GSM [28]. The
proposed E-CZCS can be regarded as an extension of CZCP
mates and CZCSs, and can achieve optimal GSM channel
estimation performance with higher training efficiency.

In [28], the constructions of E-CZCSs were proposed. The
ZCZ widths of the constructed E-CZCSs are less than or equal
to half of their sequence length. In this paper, a new con-
struction of E-CZCSs based on generalized Boolean function
is proposed to have a larger ZCZ width. The constructed E-



CZCSs can achieve the maximum ZCZ width that is equal to
their sequence length. The GSM training framework employ-
ing the proposed E-CZCSs can achieve the minimum mean
square error (MSE) of the channel estimation over frequency-
selective channels.

II. BACKGROUND AND DEFINITIONS

For two sequences v0 = (v0,0, v0,1, . . . , v0,L−1) and v1 =
(v1,0, v1,1, . . . , v1,L−1) with length L over Zq = {0, 1, . . . , q−
1}, we define the aperiodic cross-correlation function of v0

and v1 at integer shift µ as follows:

ϕ(v0,v1;µ) =


L−1−µ∑
k=0

ξg0,k+µ−g1,k , 0 ≤ µ ≤ L− 1;

L−1+µ∑
k=0

ξg0,k−g1,k−µ , −L+ 1 ≤ µ < 0

(1)
where ξ = e2π

√
−1/q . When v0 = v1, ϕ(v0,v0;µ) is called

the aperiodic autocorrelation function of v0 which is denoted
by ϕ(v0;µ).

Let V = {V 0, V 1, . . . , V M−1} be a set of M sequence
sets where each constitute set consists of N sequences with
length L, i.e., V s = {vs

0,v
s
1, . . . ,v

s
N−1}, 0 ≤ s ≤ M − 1.

Definition 1 (Z-Complementary Code Set): [13] For
V s1 , V s2 ∈ V with 0 ≤ s1, s2 ≤ M − 1, if the set V meets
the following condition:

ϕ(V s1 , V s2 ;µ) ≜
N−1∑
n=0

ϕ(vs1
n ,vs2

n ;µ)

=

{
0, for 0 < |µ| < Z, s1 = s2;

0, for |µ| < Z, s1 ̸= s2,

(2)

then it is called an (M,N,L,Z)-ZCCS. When Z = L, the set
V is called a mutually orthogonal complementary set and when
M = N , a MOCS is referred to as a complete complementary
code, denoted by (M,N,L)-MOCS and (M,L)-CCC, respec-
tively.

Let I1 ≜ {1, 2, . . . , Z} and I2 ≜ {L − Z,L − Z + 1, . . . ,
L− 1} be two distinct intervals with Z ≤ L.

Definition 2 (Symmetrical Z-Complementary Code Set): [26]
A set of M sequence sets V is called an (M,N,L,Z)-SZCCS,
if and only if

ϕ(V s1 , V s2 ;µ) =

N−1∑
n=0

ϕ(vs1
n ,vs2

n ;µ)

=

{
0, for |µ| ∈ I1 ∪ I2, s1 = s2;

0, for |µ| ∈ I1 ∪ I2 ∪ {0}, s1 ̸= s2
(3)

where V s1 , V s2 ∈ V with 0 ≤ s1, s2 ≤ M − 1.

A. Enhanced Cross Z-Complementary Sets

Definition 3 (Enhanced Cross Z-Complementary Set): [28]
Consider a set of M sequence sets G = {G0, G1, . . . , GM−1}
where each constitute set consists of N sequences with
length L, i.e., Gs = {gs

0, g
s
1, . . . , g

s
N−1}, 0 ≤ s ≤ M − 1.

Then, the set G is called an (M,N,L,Z)-E-CZCS, if it
satisfies the following two conditions:

(C1): ϕ(Gs1 , Gs2 ;µ) =

N−1∑
n=0

ϕ(gs1
n , gs2

n ;µ)

=

{
0, for |µ| ∈ (I1 ∪ I2) ∩ I, s1 = s2;

0, for |µ| ∈ I1 ∪ I2 ∪ {0}, s1 ̸= s2;

(4)

(C2): ϕ̂(Gs1 , Gs2 ;µ) ≜
N−1∑
n=0

ϕ(gs1
n , gs2

(n+1)mod N
;µ) = 0,

for |µ| ∈ I2 and any s1, s2 ∈ {0, 1, . . . ,M − 1}
(5)

where Gs1 , Gs2 ∈ G with 0 ≤ s1, s2 ≤ M − 1 and I =
{1, 2, . . . , L − 1}. When M equals 1, i.e., s1 = s2 = 0, the
E-CZCS becomes CZCS. It can be observed that each Gs1 in
an E-CZCS is a CZCS. (C1) indicates that the correlation sum
ϕ(Gs1 , Gs2 ;µ) exhibits symmetric ZCZs for time shifts over
I1 and I2. Additionally, (C2) implies that the cross-correlation
sum ϕ̂(Gs1 , Gs2 ;µ) possesses a tail-end ZCZ over I2. The
correlation properties of SZCCSs and E-CZCSs are depicted
in Fig. 1. It can be seen that E-CZCSs possess an additional
cross-correlation property.

We illustrate the relationship between E-CZCSs and relevant
sequence sets, including SZCCSs, ZCCSs, and MOCSs, in
Fig. 2. Specifically, the E-CZCS incorporates a SZCCS and
a ZCCS as specific cases according to condition (C1) in (4).
However, the SZCCS and ZCCS do not account for condition
(C2) in (5). Moreover, for an (M,N,L,Z)-E-CZCS with Z ≥
L/2, i.e., (I1∪I2)∩I = {1, 2, . . . , L−1}, the condition (C1)
means that an (M,N,L,Z)-E-CZCS is also an MOCS.

Lemma 1: [28] For an (M,N,L,Z)-E-CZCS G =
{G0, G1, . . . , GM−1}, there is an upper bound on ZCZ width
given as Z ≤ NL

M − 1. For the binary E-CZCS, we have

Z ≤ NL

2M
. (6)

B. Generalized Boolean Functions

A generalized Boolean function f(x1, x2, . . . , xm) with
m variables is defined as a function mapping from
Zm
2 = {(x1, x2, . . . , xm)|x1, x2, . . . , xm ∈ Z2} to Zq . Let

(i1, i2, . . . , im) be the binary vector of the non-negative
integer i such that i =

∑m
k=1 ik2

k−1. Given a general-
ized Boolean function f , we can specify a sequence f =
(f0, f1, . . . , f2m−1) where fi = f(i1, i2, . . . , im) for i =
0, 1, . . . , 2m − 1.

Example 1: Suppose that q = 2 and m = 4. The sequence
f of length 16 is as follows:

f = (f0, f1, . . . , f15)

= (f(0, 0, 0, 0), f(1, 0, 0, 0), . . . , f(1, 1, 1, 1)).
(7)
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Fig. 1: The correlation properties of SZCCSs and E-CZCSs.
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Fig. 2: Relationship between E-CZCSs and relevant sequence
sets.

Then, the associated sequences for the generalized Boolean
function x2, x4, x2x4, 1, and x2+x2x4+1 are shown below,
respectively.

x2 = (0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1),

x4 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1),

x2x4 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1),

1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

x2 + x2x4 + 1 = (1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1).
(8)

Lemma 2: [29] For positive integers m and k with k ≤ m,
the set {1, 2, · · · ,m} is specifically divided into k nonempty
partitions, denoted as P1, P2, · · · , Pk. We define πκ as a
bijection mapping from {1, 2, · · · ,mκ} to Pκ where mκ =
|Pκ| ≥ 1 for κ = 1, 2, · · · , k. Let the generalized Boolean

function

f =
q

2

k∑
κ=1

mκ−1∑
z=1

xπκ(z)xπκ(z+1) +

m∑
z=1

νzxz + ν0 (9)

where q is an even positive integer and νz’s ∈ Zq . Let
(n1, n2, . . . , nk) and (s1, s2, . . . , sk) be binary vectors of
n and s, respectively. For s = 0, 1, . . . , 2k − 1, we let
V s = {vs

0,v
s
1, . . . ,v

s
2k−1} where

vs
n = f +

q

2

k∑
κ=1

nκxπκ(1) +
q

2

k∑
κ=1

sκxπκ(mκ) (10)

for n = 0, 1, . . . , 2k − 1. Then, the set V =
{V 0, V 1, . . . , V 2k−1} is a (2k, 2m)-CCC.

III. PROPOSED E-CZCSS WITH MAXIMUM ZCZ
In this section, we will present a theorem to construct

E-CZCSs based on generalized Boolean function. The pro-
posed E-CZCSs can have the maximum ZCZ width.

Theorem 1: Given the Boolean function f given by (9).
Let (n1, n2, . . . , nk+1) and (s1, s2, . . . , sk) be binary vectors
of n and s, respectively. For s = 0, 1, . . . , 2k − 1, the set
Gs = {gs

0, g
s
1, . . . , g

s
2k+1−1} can be constructed as follows:

gs
n = f +

q

2

(
k∑

κ=1

nκxπκ(1) + nk+1n1·1+

k∑
κ=1

sκxπκ(mκ)

)
(11)

for n = 0, 1, . . . , 2k+1 − 1. Then, the set G =
{G0, G1, · · · , G2k−1} is a (2k, 2k+1, 2m, 2m)-E-CZCS.

Proof: To prove that the set G is a
(2k, 2k+1, 2m, 2m)-E-CZCS, it is sufficient to prove the
(C1) and (C2) in (4) and (5), respectively. First, according
to Lemma 2, we know that {{gs

0, g
s
1, . . . , g

s
2k−1}|s ∈

{0, 1, . . . , 2k − 1}} is a (2k, 2m)-CCC. Then,
{{gs

2k , g
s
2k+1, . . . , g

s
2k+1−1}|s ∈ {0, 1, . . . , 2k − 1}} is also a

(2k, 2m)-CCC. For Gs1 , Gs2 ∈ G with 0 ≤ s1, s2 ≤ 2k − 1,
we have

ϕ(Gs1 , Gs2 ;µ)

=

2k−1∑
n=0

ϕ(gs1
n , gs2

n ;µ) +

2k+1−1∑
n=2k

ϕ(gs1
n , gs2

n ;µ) = 0,

for |µ| ̸= 0, s1 = s2, and for all |µ|, s1 ̸= s2. Therefore, (4)
holds. Second, we want to prove that, for 0 ≤ |µ| ≤ 2m − 1,

ϕ̂(Gs1 , Gs2 ;µ) =

N−1∑
n=0

ϕ(gs1
n , gs2

(n+1)mod N
;µ)

= ϕ(gs1
0 , gs2

1 ;µ) + ϕ(gs1
1 , gs2

2 ;µ) + · · ·+ ϕ(gs1
N−1, g

s2
0 ;µ)

=

L−1−µ∑
i=0

(
ξg

s1
0,i+µ−g

s2
1,i + ξg

s1
1,i+µ−g

s2
2,i + · · ·

+ ξg
s1
N−2,i+µ−g

s2
N−1,i + ξg

s1
N−1,i+µ−g

s2
0,i
)

=

L−1−µ∑
i=0

N
2 −1∑
η=0

(
ξ
g
s1
η,j−g

s2
(η+1),i

+ ξ
g
s1

(η+2k+1),j
−g

s2

(η+2k+1+1)mod N,i
)



where N = 2k+1 and j = i+ u. Therefore, we can obtain

gs1η,j − gs2(η+1),i − gs1
(η+2k+1),j

+ gs2
(η+2k+1+1)mod N ,i

=

{
q
2 , for η = 0, 2, . . . ;

− q
2 , for η = 1, 3, . . .

implying ξ
g
s1
η,j−g

s2
(η+1),i + ξ

g
s1

(η+2k+1),j
−g

s2

(η+2k+1+1)mod N,i = 0.
Hence, (5) also holds. Combining the above two parts, the set
G is a (2k, 2k+1, 2m, 2m)-E-CZCS.

Remark 1: By considering q = 2 in Theorem 1, binary
(2k, 2k+1, 2m, 2m)-E-CZCS can be constructed and the ZCZ
width satisfies the binary upper bound

2m =
2m · 2k+1

2 · 2k
.

It implies that the maximum ZCZ width of the
(2k, 2k+1, 2m, 2m)-E-CZCS is equal to its sequence length.
This (2k, 2k+1, 2m, 2m)-E-CZCS cannot be constructed by
[28] and has not been reported in the literature.

Remark 2: The (2k, 2k+1, 2m, 2m)-E-CZCS from Theo-
rem 1 are also MOCSs. Furthermore, the proposed E-CZCSs
can exhibit the unique cross-correlation property (C2) in (5).

Example 2: Let m = 4, k = 2, and q = 2. The set
{1, 2, 3, 4} is divided into two nonempty partitions P1 =
{2, 3} and P2 = {1, 4} with m1 = 2 and m2 = 2. We also let
π1 = (3, 2) and π2 = (1, 4) indicating π1(1) = 3, π1(2) = 2,
π2(1) = 1, and π2(2) = 4. Then, the Boolean function f in
(9) can be expressed as f = x3x2+x1x4+x2+x4 by letting
ν0 = 0, ν1 = 0, ν2 = 1, ν3 = 0, and ν4 = 1. According
to Theorem 1, the set G = {Gs = {gs

0, g
s
1, . . . , g

s
7}|s ∈

{0, 1, 2, 3}} is a binary (4, 8, 16, 16)-E-CZCS of which gs
n =

f +n1x3+n2x1+n3n11+s1x2+s2x4. In Fig. 3-a, we can
see that the correlation sum ϕ(Gs1 , Gs2 ;µ) = 0 for all µ when
s1 ̸= s2 and ϕ(Gs1 , Gs2 ;µ) = 0 for µ ̸= 0 when s1 = s2.
Also, the correlation sum ϕ̂(Gs1 , Gs2 ;µ) = 0 for all µ and
s1, s2 = 0, 1, 2, 3 as shown in Fig. 3-b. Therefore, the set
G = {G0, G1, G2, G3} is indeed a (4, 8, 16, 16)-E-CZCS.

In Table I, the comparison of our proposed construction with
the existing constructions of E-CZCSs in [28] is outlined. Our
proposed E-CZCSs differ from existing works in that their
maximum ZCZ is equal to their sequence length.

IV. PROPOSED GSM TRAINING FRAMEWORK: DESIGN
AND SIMULATION

In this section, we will introduce the training design based
on the proposed E-CZCSs for the broadband GSM system.

Then, we evaluate its channel estimation performances over
frequency-selective fading channels.

A. Training Framework

The reader is referred to [28] for a detailed formulation
of training framework employing E-CZCSs for broadband
GSM system. For the (4, 8, L, L)-E-CZCS G = {Gs =
{gs

0, g
s
1, . . . , g

s
7}|s ∈ {0, 1, 2, 3}} from Theorem 1, we can

generate a GSM training matrix as illustrated in (12) where 0
denotes the 1× L all-zero vector.

B. Simulation Result

In this subsection, we evaluate the GSM channel estimation
performances of the training framework based on the pro-
posed E-CZCS by comparing it with various sequence sets
including ZCCS, CCC, SZCCS, Zadoff-Chu sequences, and
binary random sequences. The setup is as follows. We set
Nt = 8 TAs, Na = 4 RF chains, and one receive antenna.
The (λ + 1)-paths are separated by integer symbol durations
as h[t] =

∑λ
l=0 hlδ[t− lT ] where hl’s are complex Gaussian

random variables with zero mean and E
(
|hl|2

)
= 1/(λ + 1)

for all l. We use the binary (4, 8, 16, 16)-E-CZCS from Ex-
ample 2 to generate the GSM training matrix Ψ as depicted
in (12). For the SZCCS and the ZCCS, their corresponding
training matrix Ψ′ is expressed as

Ψ′ =



v0
0 0 v0

1 0
v1
0 0 v1

1 0
v2
0 0 v2

1 0
v3
0 0 v3

1 0
0 v0

0 0 v0
1

0 v1
0 0 v1

1

0 v2
0 0 v2

1

0 v3
0 0 v3

1


8×256

(13)

where {{v0
0,v

0
1}, {v1

0,v
1
1}, {v2

0,v
2
1}, {v3

0,v
3
1}} represents the

(4, 2, 64, 32)-ZCCS and the first four sequence sets of the
(8, 2, 64, 15)-SZCCS from [26], respectively. In the case of
binary random sequences, the elements of v0

0, v0
1, v1

0, v1
1, v2

0,
v2
1, v3

0, v3
1 in Ψ′ are randomly generated from the alphabet

set of {−1,+1}. When using Zadoff-Chu sequences for the
training matrix Ψ′, the sequences represented by v0

0, v0
1, v1

0,
v1
1, v2

0, v2
1, v3

0, v3
1 are determined by eight distinct Zadoff-

Chu sequences, each of length 64, with low cross-correlation.
For the (4, 4, 32)-CCC V = {V s = {vs

0,v
s
1,v

s
2,v

s
3}|s ∈

Ψ =



x1

x2

x3

x4

x5

x6

x7

x8


=



g0
0 0 g0

1 0 g0
2 0 g0

3 0 g0
4 0 g0

5 0 g0
6 0 g0

7 0
g1
0 0 g1

1 0 g1
2 0 g1

3 0 g1
4 0 g1

5 0 g1
6 0 g1

7 0
g2
0 0 g2

1 0 g2
2 0 g2

3 0 g2
4 0 g2

5 0 g2
6 0 g2

7 0
g3
0 0 g3

1 0 g3
2 0 g3

3 0 g3
4 0 g3

5 0 g3
6 0 g3

7 0
0 g0

0 0 g0
1 0 g0

2 0 g0
3 0 g0

4 0 g0
5 0 g0

6 0 g0
7

0 g1
0 0 g1

1 0 g1
2 0 g1

3 0 g1
4 0 g1

5 0 g1
6 0 g1

7

0 g2
0 0 g2

1 0 g2
2 0 g2

3 0 g2
4 0 g2

5 0 g2
6 0 g2

7

0 g3
0 0 g3

1 0 g3
2 0 g3

3 0 g3
4 0 g3

5 0 g3
6 0 g3

7


8×16L

(12)
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Fig. 3: The correlation properties of the (4, 8, 16, 16)-E-CZCS in Example 2.

TABLE I: The Comparison with Different Constructions of (M,N,L,Z)-E-CZCSs

Ref. Set Size Flock Size Length ZCZ width Z/L Based on

[28, Th. 2]
M N 2L Z Z

2L
(M,N,L, Z + 1)-ZCCS

M N 2L L 1
2

(M,N,L)-MOCS

M M 2L L 1
2

(M,L)-CCC

[28, Th. 3] 2k 2v 2m 2m−k+v−1 2v−k−1 (v ≤ k) Generalized Boolean functions

Theorem 1 2k 2k+1 2m 2m 1 Generalized Boolean functions

{0, 1, 2, 3}} from [29], the training matrix Ψ′′ is expressed
as

Ψ′′ =



v0
0 0 v0

1 0 v0
2 0 v0

3 0
v1
0 0 v1

1 0 v1
2 0 v1

3 0
v2
0 0 v2

1 0 v2
2 0 v2

3 0
v3
0 0 v3

1 0 v3
2 0 v3

3 0
0 v0

0 0 v0
1 0 v0

2 0 v0
3

0 v1
0 0 v1

1 0 v1
2 0 v1

3

0 v2
0 0 v2

1 0 v2
2 0 v2

3

0 v3
0 0 v3

1 0 v3
2 0 v3

3


8×256

(14)
Fig. 4 demonstrates the channel estimation MSE performances
with different numbers of multi-paths at Eb/N0 = 16 dB. We
can observe that our GSM training matrix based on the pro-
posed (4, 8, 16, 16)-E-CZCS outperforms, whilst achieving the
MSE lower bound when the number of multi-paths is not larger
than the ZCZ width. For the SZCCS-based, ZCCS-based, and
CCC-based GSM training matrices, they suffer from worse
channel estimation performances because their corresponding
sequence sets ignore the condition (C2) in (5), leading to
nonzero IAI.

V. CONCLUSION

In this paper, we have presented a new construction of
E-CZCSs with maximum ZCZ (equal to their sequence length)
based on generalized Boolean functions. The proposed GSM
training framework achieves the minimum channel estimation

2 4 6 8 10 12 14 16

No. of multi-paths

-34.5

-34

-33.5

-33

-32.5

-32

-31.5

-31

M
S

E
 (

d
B

)

(4,8,16,16)-E-CZCS (Proposed)

(8,2,64,15)-SZCCS [26]

(4,2,64,32)-ZCCS

(4,4,32)-CCC [29]

Random Seq. (Length 64)

Zadoff-Chu Seq. (Length 64)

Minimum MSE

Fig. 4: The comparison of MSE for GSM training based on
different sequences with 8 TAs.

MSE over frequency-selective channels when the number of
multi-paths is not larger than the ZCZ width. A potential
topic for future research is to construct E-CZCSs with flexible
lengths based on generalized Boolean functions.
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