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Abstract 1 

Abstract 

 
There has been a growing interest in understanding the microbiome and the role it plays in 

disease and maintaining homeostasis since the launch of the Human Microbiome Project. 

While some members of the gut flora have proven to be beneficial to the host other commensals 

have been linked to all sorts of disease. Inflammatory bowel diseases (IBD) are one of the most 

investigated group of diseases within the realm of intestinal microbial communities. 

Pathogenesis of ulcerative colitis (UC), one of the two main forms of IBD, is highly dependent 

and influenced by gut microbial composition. Despite the amount of substantial research 

conducted on the microbiome within the context of IBD, the role played by microbes in this 

group of diseases remains poorly understood. Some microbial associations have been defined 

and are consistently found in UC patients. However, there is a lack of consistent microbial 

associations in colitis mouse models owed to multiple factors, like genetics, diet, and the 

environment, introducing variability in the structure of the gut microbiome. Variations in 

bioinformatics pipelines used in microbiome analysis is one of the shortcomings contributing 

to the absence of reproducible links between with gut microbiome and UC.  

 

Using meta-analysis, this thesis aims to reduce the heterogeneity of microbiome data by 

standardising computational methods across 13 published datasets. In doing that, first relevant 

datasets were screened, selected, and pre-processed prior to analysis. A pipeline using the ASV 

method was optimised and tested before the analysis. Initially, a total of 27 datasets were used 

for the meta-analysis only to find that the different types of colitis mouse models introduced a 

strong batch effect making it even more difficult to decipher an already complex community. 

Based on that, the focus of the meta-analysis shifted to investigating gut microbial patterns 

associated with colitis in the DSS mouse model, which is one of the most commonly used 

models in experimental colitis. To untangle microbiota data further, two additional meta-
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analyses were done on different groupings of the chosen DSS datasets. Prior to that each dataset 

was analysed individual to better understand the nature of the data and the inter-population 

differences encountered in the meta-analysis.  

 

Links between members of the gut microbiota and both colitogenic and colitis states in mice 

were established in this thesis. Consistent with the current literature, the meta-analysis 

identified a decrease in the phyla Firmicutes and increase in Bacteroidetes in mice prone to 

colitis. Peptostreptococaceae species, Erysipelotrichales species, as well as, described 

pathogens like Helicobacter and Esherichia/Shigella spp were found predominantly in both 

colitogenic and colitis conditions in mice. Furthermore, this thesis first reports associative links 

between the genera Terrisporobacter and Herbinix and experimental UC.  

 

The last chapter of this thesis focuses on the role of the microbiome in phenotypic modulations 

in the intestinal epithelial lining elicited by dietary inulin. This work was done in collaboration 

with the Laboratory of Immunoinflammation in University of Campinas, Brazil. Using flow 

cytometry, immunostaining, clonogenicity assay, and transcriptomic sequencings they 

described enhanced proliferative activity of Lgr5+ cells in colonic crypts when mice were put 

on an inulin diet. Additional experiments, including 16S analysis of microbiome data from SPF 

mice, GF mice with faecal matter transplant (FMT) and gnotobiotic mice showed that the 

observed phenotype is dependent on gut microbial composition.  
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Chapter 1: Literature Review 

 
 

1.1 Chapter Overview 

 
The gut microbiome is known to play an essential role in maintaining homeostasis in the human 

body. Studies have shown that shifts in gut microbial composition can lead to disease. 

Inflammatory bowel diseases (IBD) are a group of diseases that are highly associated with the 

microbiome. Ulcerative colitis (UC) is one of the two main forms of IBD and is the focus of 

this thesis. The aetiology of UC remains elusive but is highly dependent on and influenced by 

gut microbes. Environmental cues, particularly dietary and lifestyle changes, seem to play a 

huge role in development of the disease. In this chapter, a comprehensive literature review on 

links between the gut microbiota and IBD is presented as a book chapter (titled “The gut 

microbiome in health and disease: Inflammatory bowel disease”) published in Advances in 

Ecological Research on the 27th of October 2022. This chapter provides an in-depth description 

of the effects of genetics and the environment on the gut microbiota and IBD. It also provides 

an extensive background for the work covered throughout this thesis. 

 

1.2 Introduction 

 
When Japan’s long-standing prime minister Shinzo Abe resigned in 2020 because of his 

ulcerative colitis, it put the debilitating nature of inflammatory bowel diseases in the 

international press. What is largely not appreciated is that these diseases seem to reflect an 

aberrant reaction to what is normally an innocuous gut microbiome. Despite their bad 

reputation in relation to health, microbes are important for maintaining a state of mental and 

physical health and wellness. Indeed, there are at least as many microbes inhabiting our bodies, 
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primarily in the colon, as there are human cells (Gilbert and Stephens, 2018; Sender et al., 

2016).  

 

Bacteria, viruses, fungi and archaea reside in communities throughout the body, and are 

collectively known as the human microbiome. Yet, when most studies mention the microbiome, 

they are usually referring to bacterial communities rather than the whole assembly of microbial 

organisms. The term “microbiome” was coined by the Nobel laureate, Joshua Lederberg, in 

2001 (Prescott, 2017). Research into the topic dates back to the 19th century (Farré-Maduell 

and Casals-Pascual, 2019). However, technical limitations in culturing (often anaerobe) 

constituents of the human microbiomes were the main reason why this field was not broadly 

explored. Recent advancements in high throughput DNA sequencing technologies and 

decreasing sequencing costs have been followed by a surge of investigations into the 

microbiome (figure 1.1).  

 

 
Figure 1.1: The number of studies on the human microbiome is on the rise since the boom in next 

generation sequencing in the early 2000s, generated by a basic search on PubMed (El-Sahhar & 

Varga-Weisz, 2022).. 

 

 

Over the last decade, there has been an influx of new findings about the microbiome expedited 

by the Human Microbiome Project (HMP) (figure 1.1). The HMP is a group of interdisciplinary 
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projects launched throughout the US, Europe and Asia with an aim to discover new biomarkers 

associated with health and disease (Turnbaugh et al., 2007). The first phase of the HMP laid 

the groundwork for successive studies on the interplay between the human host and microbes. 

It focused on characterising the structural and functional properties of microbial populations 

inhabiting five key body areas from a cohort of healthy, Western adults (Huttenhower et al., 

2012). 5,177 microbial taxonomic profiles were identified using 16S ribosomal RNA 

sequencing while whole genome shotgun/metagenomics sequencing elucidated microbial 

functional properties (Methé et al., 2012). The results showed that the make-up and diversity 

of the microbial populations were differed markedly at each body site. Oral and gut 

communities were the most diverse compared to the populations present at other sites. 

However, microbial populations found in saliva among subjects were more or less similar 

(Huttenhower et al., 2012). Vaginal sites accommodated the simplest of communities, low in 

diversity. In fact, high microbial diversity in vaginal tissues has been correlated with vaginosis 

(Kang et al., 2015; Gilbert and Stephens, 2018). The skin microbiome was shown to be unique 

for each person. Overall, an individual's microbiome is stable over time and has a relatively 

unique makeup that contributes to the metabolic pathways essential for human health 

(Caporaso et al., 2011). Fluctuations in the biodiversity and abundance of certain taxa in the 

microbiome are constantly occurring with environmental changes at different temporal rates 

depending on the individual (Flores et al., 2014). There are many factors that influence 

microbial composition, particularly in the gut, which is the most studied community and is the 

focus of this chapter. Genetics, sex, age, the immune system, birth mode, diet, lifestyle, 

geography and exposure to antibiotics and other drugs have all been shown to play a significant 

role in shaping the host’s gut microbial communities (figure 1.2). 
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Figure 1.2: A summary graphic illustrating factors that influence the gut microbiome (El-Sahhar 

& Varga-Weisz, 2022)..  

 
The second phase of the HMP explored the interplay between the host and their microbiota 

over time in representative microbiome-associated conditions, one of which is inflammatory 

bowel disease (IBD) (Proctor et al., 2019). IBD are a group of disorders that are thought to be 

both affected by and in turn affect the gut microbiome (Manichanh et al., 2006; Frank et al., 

2007). These disorders involve an altered immune response towards gut microbiota in 

genetically predisposed individuals, under the influence of certain environmental factors, such 

as diet, antibiotic exposure, lifestyle (Piovani et al., 2019). Whether dysbiosis is a causative or 

risk factor in developing IBD is yet to be clearly understood. The multidimensionality of this 

condition makes it very challenging to draw causal links between the gut microbiota and IBD, 

despite it being the most widely studied disease in relation to the microbiome. Extensive 

research examining the associations between the microbiome and IBD will be discussed 
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thoroughly throughout this chapter. We include a Glossary (table 1.1) for the explanation of 

some of the concepts and technical terms in bold. 

 
Table 1.1: Glossary 

Term Definition 
Dysbiosis An imbalance of the microbiome causing compositional and functional changes in its constituents 

Intestinal Mucosa The inner lining of the intestinal tract composed of mucus, intestinal epithelium, lamina propria and 

microbiota  

Mucin Glycoproteins that are the major components of the mucosa, which lubricate and protect the 

gastrointestinal tract 

Lamina propria Thin layer of loose connective tissue that forms part of the intestinal mucosa 

Crypts Intestinal glands in the colon 

Granuloma Aggregation of macrophages forming in response to chronic inflammation 

Paneth cells Secretory cells residing in the base of intestinal crypts 

Colectomy A surgical procedure that involves a segmental resection of the colon 

Genome-wide 

association studies 

(GWAS) 

Studies based on genetic variation, especially single nucleotide polymorphisms (SNPs), exploring 

the link between genotype and phenotype using many DNA samples from large populations. These 

are compared, e.g., using microarrays build around SNPs. 

Pattern 

recognition 

receptors (PRR) 

A class of receptors that detect specific molecular structures on the surface of microbes.  

Toll-like receptor 

(TLR) 

A class of receptors present on sentinel cells that play a role in the innate immune system by 

detecting microbial derived molecules 

Nod-like receptor 

(NLR) 

PRRs that detect pathogens and regulate innate immune responses 

RIG-I-like 

receptors 

Cytosolic PRRs that detect viruses 

Autophagy A cellular process that involves the engulfment of organelles and macromolecules by vesicles for 

degradation 

Nuclear factor-𝛋B 

(NF-𝛋B)  

A transcription factor involved in cell survival and cytokine production 

Immunoglobulin 

A (IgA) 

An antibody that plays a role in mucosal immunity 

T-helper cells 17 A subset of pro-inflammatory T-helper cells that produce interleukin 17 (IL-17) 

Transforming 

growth factor beta 

(TGF-β) 

A pleiotropic cytokine that regulates immune responses in the gut, among other things 

Cytokine A small signalling protein involved in regulating immune responses 

16S rRNA gene A gene encoding for the prokaryotic small subunit 16S rRNA commonly used in phylogenetic 

studies 

18S rRNA gene A gene encoding for the eukaryotic small subunit 18S rRNA commonly used in phylogenetic 

studies 

Internal 

Transcribed 

Spacer (ITS) 

A region of non-coding DNA situated between the small-subunit ribosomal RNA (rRNA) and the 

large-subunit rRNA 

Fluorescent in 

situ hybridization 

A cytogenetic technique that targets chromosomal locations using fluorescent probes detected by a 

fluorescent microscope 

Taxonomy 

Nomenclature 

As this chapter predominantly refers to published literature that uses the old nomenclature, we use 

it here throughout, noting that the new nomenclature is not universally accepted. The new 

nomenclature can be found here 

https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.005056 

Bacteriocin Toxic proteins produced by specific species of bacteria to inhibit the growth of other related species 

Regulatory T cells 

(Treg cells) 

A specialised subpopulation of T cells that maintain homeostasis by suppressing immune responses 

Histone 

deacetylase 

(HDAC) 

An enzyme that plays a role in modulating chromatin architecture by removing acetyl groups from 

lysine residues in histone tails 

Hypoxia-inducible 

factor 1-alpha 

(HIF1-α) 

A subunit of transcription factor HIF1 

https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.005056
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Adherent-Invasive 

E. coli  

(AIEC) 

Strains of E. coli that adhere to IECs and colonise the mucosa 

Dendritic cells Antigen presenting cells of the immune system 

Occludin A plasma membrane protein present in tight junctions 

Ileal pouch 

anastomosis 

(IPAA) 

A surgical procedure done post colectomies to restore gastrointestinal continuity 

Perianal disease A type of disease that occurs in CD patients that causes inflammation around the anus 

Luminal disease A type of disease that occurs in CD patients that causes inflammation of the intestinal lining and/or 

wall 

 
 

 

1.3 Genetic analysis highlights the role of the gut microbiota in IBD 

 
 
Digestive diseases, particularly Inflammatory Bowel Diseases (IBD), are one of the most 

explored areas within microbiome research (iHMP, 2014). IBD is one of the most prevalent 

gastrointestinal diseases globally, with rising incidence rates in newly industrialised countries 

in Asia, Africa and South America (Guan, 2019; Freeman et al., 2021; Ng et al., 2021) . Europe 

and North America have reported the highest prevalence of IBD (Ng et al., 2021). However, 

the mortality rates associated with the disease are low (Freeman et al., 2021). It is usually 

diagnosed in patients within the 20-40 years age bracket (Guan, 2019). The common symptoms 

include diarrhoea, bloody stools, abdominal pain, weight loss, obstruction of the 

gastrointestinal tract (GIT) and, in some cases, extra-gastrointestinal manifestations like rashes, 

arthritis and eye complications (Frank et al., 2007; Ghosh and Premchand, 2015). IBD is 

characterised by chronic inflammation of the intestinal mucosa mediated by the immune 

system and driven by genetics and also environmental factors, including diet, smoking and 

socio-economic status (Ni et al., 2017). Crohn’s disease (CD) and Ulcerative Colitis (UC) are 

the two main forms of IBD, about 5% of IBD cases remain unclassified due to unclear 

symptoms. UC is distinguished by mucosal inflammation starting in the rectum and extending 

proximally into the colon, while CD involves areas of transmural inflammation surrounded by 

normal mucosa that can span the entire gastrointestinal tract (Ni et al., 2017). These traits are 

clearly observed in histopathology procedures, where biopsies from patients with UC show 
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inflammation restricted to the mucosa and submucosa with mucin depletion and increased 

neutrophil migration to the lamina propria and crypts forming micro-abscesses (Xavier and 

Podolsky, 2007; Guan, 2019). CD, on the other hand, is characterised by different histological 

features, including granulomas infiltrated by aggregations of macrophages and other 

inflammatory cells, as well as Paneth cell deficiency (Xavier and Podolsky, 2007). These 

histopathological hallmarks together with the symptoms presented by patients are used in 

determining the severity of the disease which impacts the course of treatment. Topical 

medication is prescribed to mild cases of UC, while mild-to-moderate cases require oral anti-

inflammatories progressing to immunomodulatory drugs for severe cases (Ghosh and 

Premchand, 2015). Steroids are given to subdue flare-ups post remission periods. Long and 

frequent UC flares pose a risk of bowel cancer. About 25% of UC patients require colectomy 

surgery due the risk of cancer development or poor response to medical treatment (Ghosh and 

Premchand, 2015). Meanwhile, 80% of CD cases undergo some sort of surgery be it as minor 

as an abscess drainage or as complex as a bowel resection. However, the standard treatment 

for CD is immunomodulatory drugs and biological therapy for more severe cases (Ghosh and 

Premchand, 2015).  

 

There is an underlying genetic component to the pathogenesis of IBD. Genome-wide 

association studies (GWAS) have been conducted to pinpoint IBD genetic risk loci (Jostins et 

al., 2012; Liu et al., 2015; Huang et al., 2017). Over 200 IBD-associated loci have been 

identified (Jostins et al., 2012; Liu et al., 2015; Graham and Xavier, 2020). Only a fraction of 

those markers has been validated and shown to have a causal role on development of IBD. A 

majority of the genes implicated in the pathology of the disease are involved in pathways that 

regulate mucosal integrity (barrier function), immunity and host-microbe interactions, thus 
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highlighting the role of the microbiota in the disease (Graham and Xavier, 2020).  Below we 

discuss some of the key genes that have been linked to IBD. 

 

The intestinal mucosal barrier plays a critical role in maintaining homeostasis and disease 

progression (Turner, 2009) (figure 1.3) by segregating intestinal epithelial cells (IECs) from 

luminal contents, like macromolecules, digestive enzymes and microbes – both commensals 

and pathogens (Okumura and Takeda, 2018). It acts as a physical barrier as well as a chemical 

one that signals to the immune system when needed. The mucosal lining is comprised of an 

undulating monolayer of specialised epithelial cells such as enterocytes, goblet cells and 

enteroendocrine cells and their precursors, organised into crypts and villi (Peterson and Artis, 

2014). The crypts are comprised of intestinal stem cells (ISCs), transit amplifying cells as well 

as Paneth cells (in the small intestine), while villi consist of terminally differentiated cells, like 

absorptive enterocytes and goblet cells. This epithelial layer is physically protected via a mucus 

layer and the glycocalyx (Maloy and Powrie, 2011). The latter is a network of glycolipids and 

glycoproteins covering the villi, particularly absorptive IECs, preventing the passing of 

bacteria or unwanted molecules. A viscous gel-like fluid enriched in Mucin2 (MUC2), a 

glycoprotein secreted by goblet cells, forms the mucus layer. The large intestine has a double 

mucus layer for added protection, since it holds the largest microbial community in the body 

(Peterson and Artis, 2014) (figure 1.3, right side). The inner mucus layer is anchored to the 

intestinal epithelium and is usually impermeable, due to polymerisation and stratification of 

MUC2, blocking the entry of bacteria. Whereas the looser outer mucus layer is more porous 

thereby harbouring some bacterial species (Okumura and Takeda, 2018).   
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Figure 1.3: Intestinal epithelial barrier. The intestinal mucosa acts both as a chemical and physical barrier that 

protects IECs from harmful molecules and microbes present in the intestinal lumen. The physical barrier is 

comprised of a single mucus layer in the small intestine while a double layer of a firm inner mucus layer and a 
looser outer mucus layer. The porous outer mucus layer allows for some commensal habitation. AMPs, 

immunoglobulins, cytokines and other signalling molecules secreted by IECs and immune cells of the mucosa 

make up the chemical barrier (El-Sahhar & Varga-Weisz, 2022).   
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Patients with UC tend to have a disjointed and diminished mucus layer, especially during flare 

ups, allowing for direct contact between microbes and the epithelium (Kang et al., 2022). A 

decrease in MUC2 secretion accompanied by reduced numbers of goblet cells account for this 

phenotype which is reversed upon remission (Sun et al., 2016). In contrast, CD patients tend 

to have a thicker mucus layer compared to healthy individuals, however, the properties of the 

mucus seem to be compromised (Sun et al., 2016). GWA studies have linked IBD pathogenesis 

to mutations in several MUC genes, including MUC2, MUC3 and MUC19 (Kyo et al., 1999; 

Rivas et al., 2011; McCole, 2014; Visschedijk et al., 2016). A study done on two Dutch and 

one German cohorts has drawn a link between MUC2 and UC susceptibility, although this 

association was lacking in the German cohort (Visschedijk et al., 2016). A correlation between 

rare MUC3A alleles and both UC and CD was examined by Kyo et al. (2001). They 

hypothesised that conformational changes in mucin proteins encoded by these rare alleles could 

lead to a decrease in glycosylation – a mechanism which gives mucins their protective 

properties – making the glycoproteins more susceptible to bacterial proteases and degradation, 

thus affecting barrier stability (Kyo et al., 1999). Despite GWAS linking MUC19 single 

nucleotide polymorphisms (SNPs) to IBD, a study in mice reported the absence of MUC19 

mRNA and protein in the intestines and their presence in the oral cavity (Das et al., 2010) 

which questions the relevance of MUC19 in the pathology of IBD. Further investigations into 

the role of MUC genes in IBD are required in determining the nature of the association. Despite 

this, the most commonly used experimental mouse model used to study colitis, the dextran 

sodium sulphate (DSS) model, is known to exhibit swift changes in the colon mucus layer, 

rendering it permeable to bacteria, upon DSS administration, bringing about mucosal 

inflammation (Johansson et al., 2010). Therefore, it can be concluded that mucins play a part 

in IBD, given their integral role in maintaining the physical mucosal barrier, but their exact 

role in the pathogenesis of the disease should be investigated further.  
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The Cadherin 1 (CDH1) gene encodes for the transmembrane epithelial protein, E-cadherin, 

essential for cell adhesion and maintaining tight junctions. It is present in the IBD1 locus, along 

with a few other IBD susceptibility genes, and is known to be associated with CD and UC 

(Barrett et al., 2009; Muise et al., 2009). Mutations in CDH1 can lead to increased mucosal 

permeability, allowing for the infiltration of luminal microbes through the intestinal wall, with 

the exact mechanisms still unknown (Younis et al., 2020).  SNPs in CDH1 in in vitro models 

result in a cytoplasmic accumulation of the protein rather than localisation to the plasma 

membrane – its expected location (Muise et al., 2009). This observation is shared in CD 

patients carrying the same SNPs, with increased cytoplasmic E-cadherin staining. Deficient E-

cadherin compromises the integrity of the epithelial barrier increasing the risk of inflammation.  

 

Hepatocyte nuclear factor 4  (HNF4A) is another gene involved in the maintenance of the 

mucosal barrier and associated with IBD. As a DNA binding transcription factor, it regulates 

the expression of genes involved in epithelial cell proliferation and differentiation as well as 

tight junction formation. GWA studies in the Netherlands and the UK have shown a strong link 

between variations in HNF4A and UC (Barrett et al., 2009; Van Sommeren et al., 2011). 

Moreover, a study investigating the role of intestinal HNF4A in mice revealed that selective 

deletion of the gene in IECs increased mucosal permeability and caused severe DSS-induced 

colitis in mice (Ahn et al., 2008). HNF4A seems to play a protective role against UC by 

maintaining mucosal barrier function and architecture. 

 

Aside from acting as a physical barrier to foreign bodies and toxic materials, the mucosa and 

its constituents also provide a chemical barrier. IECs have pathogen recognition and processing 

mechanisms in addition to secretory defences that keep infiltrators at bay. They express an 
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array of pattern recognition receptors (PRRs), such as toll-like receptors (TLRs), Nod-like 

receptors (NLRs) and RIG-I-like receptors, that screen the environment for foreign microbes 

and, in turn, orchestrate immune cell responses in the mucosa (Peterson and Artis, 2014). 

Mucins are one of the secretory defences produced by goblet cells, forming the first line of 

defence in the intestine. Goblet cells also regulate the physical mucosal barrier via secretion of 

trefoil factor 3 (TFF3) and resistin-like molecule- (RELM). TTF3 is a protein involved in 

epithelial repair, IEC migration, anti-apoptotic pathways and mucin crosslinking – adding 

structural integrity to the mucus layer (Peterson and Artis, 2014). In addition to promoting 

MUC2 secretion, RELM plays a role in regulating immune responses during inflammation 

particularly of macrophages and T-cells (Artis et al., 2004; Nair et al., 2009). Intestinal 

homeostasis is fortified further by the secretion of antimicrobial proteins (AMPs) by several 

IECs. For instance, Paneth cells release several AMPs, including defensins, cathelicidins, and 

lysozymes, that disrupt cell walls and membrane surfaces in both Gram-positive and Gram-

negative bacteria via peptidoglycan breakage and pore-formation, respectively (Peterson and 

Artis, 2014). REGIII is another enterocyte and Paneth cell-derived AMP which is essential in 

maintaining mucosal homeostasis by spatially segregating members of the microbiota from the 

small intestinal lining (Vaishnava et al., 2011). IECs are not only sentinels but also mediators, 

transporting immunoglobulins released by secretory B-cells from the lamina propria across the 

epithelial barrier in response to pathogens (Peterson and Artis, 2014).  

 

Autophagy and the unfolded protein response (UPR) are processes that regulate immune 

responses and integral in regulating secretory IECs. The invasion of microbes into the 

epithelium is limited by autophagy and interruptions in this process can lead to spontaneous 

inflammation (Peterson and Artis, 2014). UPRs promotes protein folding and translocation in 

the endoplasmic reticulum (ER) as well as regulation of protein synthesis, arresting of the cell 
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cycle and induction of apoptosis. Regulation of these mechanisms prevent ER stress in 

secretory cells averting inflammation (Kaser et al., 2008). The range of pathogen recognition 

and processing mechanisms described reinforces the intestinal barrier. Any defects in these 

operations leaves the mucosa exposed to inflammation and can result in health complications, 

like in IBD.  

 

Nucleotide-binding oligomerization domain 2 (NOD2) is the most studied susceptibility gene 

in IBD and is commonly mutated in CD patients of European descent with a prevalence of 

~33% (Guan, 2019). Certain polymorphisms in NOD2 are linked to poor prognosis for CD 

patients, however, not all carriers of these develop CD. The NOD2 gene encodes for a cytosolic 

receptor expressed in IECs, particularly Paneth cells, and antigen presenting cells (APCs), like 

macrophages and dendritic cells (Guan, 2019). The function of NOD2 may vary depending on 

cell-type, but antibacterial immunity seems to be the primary function of NOD2 (Xavier and 

Podolsky, 2007). Broadly, the leucine rich repeat (LRR) domains in NOD2 recognises the 

muramyl dipeptide (MDP) component present in bacterial peptidoglycans, which leads to the 

activation of nuclear factor-B (NF-B) through a signalling cascade (Xavier and Podolsky, 

2007). This, in turn, induces the secretion of either defensins or pro-inflammatory cytokines 

(like IL-12), depending on the cell type. NOD2 is also known to initiate autophagy by 

interacting with the protein ATG16L1 through MDP (Guan, 2019).  Mutations in NOD2 can 

impair pathogen recognition and processing leading to an attenuated immune response, 

resulting in inflammation. CD patients carrying loss-of-function NOD2 mutations tend to have 

lower expression of the AMP -defensin (Younis et al., 2020). Studies have shown that there 

is a 10-fold increase in risk for CD with bi-allelic risk carriers versus individuals heterozygous 

for NOD2 variants (Hugot et al., 2001, 2007; Ogura et al., 2001).  
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Genetic variations in the autophagy-related 16-like 1 protein (ATG16L1) are also strongly 

associated with CD (Fowler et al., 2008; Liu et al., 2015; McGovern, Kugathasan, and Cho, 

2015). The product of this gene is an autophagy protein that is widely expressed throughout 

the intestinal epithelium in several cell types, including APCs, T cells, and B cells (Xavier and 

Podolsky, 2007). Histology samples from CD patients homozygous for ATG16L1 T300A 

substitution show aberrant numbers of Paneth cells with irregular morphologies (Graham and 

Xavier, 2020). Mutated ATG16L1 impairs the ability of Paneth cells to properly identify and 

eliminate pathogens partly due to aberrant TLR signalling (Guan, 2019).  This interrupted 

signalling hinders autophagy in Paneth cells, affecting AMP production, thus allowing bacteria 

to breach the epithelial barrier which then elicits an immune response bringing about 

inflammation (Younis et al., 2020). Mice with selective deletion of ATG16L1 in T cells exhibit 

spontaneous intestinal inflammation, highlighting that ATG16L1 is essential in maintaining 

stability in the mucosa (Kabat et al., 2016). The T300A genotype is also implicated in ER stress 

pathways (Graham and Xavier, 2020). Carriers of this variant, both healthy individuals and CD 

patients, experience polyreactive IgA responses following elevated epithelial ER stress which 

target both pathogenic and commensal bacteria, potentially leading to dysbiosis (Grootjans et 

al., 2019; Guan, 2019).  IgA plays an important role in gut mucosal immunity by targeting 

pathogens and promoting tolerance to commensal microbes (Jackson et al., 2021). Thus, 

ATG16L1 plays a pivotal role in maintaining homeostasis in the gut. 

 

Deficient immune responses are one of the main causes of inflammation. Interleukin 23 (IL-

23) is a pro-inflammatory cytokine involved in adaptive immunity and an orchestrator in IBD 

inflammation, along with its receptor (IL23R). IL-23 is upregulated in the mucosa of both CD 

and UC patients and it can be protective or a risk factor (Xavier and Podolsky, 2007; Younis et 

al., 2020). Following bacterial recognition, the cytokine is released by dendritic cells and 



Literature Review 26 

macrophages promoting the differentiation of pro-inflammatory T-helper 17 cells (Th17) from 

naïve T cells via TGF- and IL-6 signalling. In addition to inducing differentiation, TGF- 

and IL-6 initiate the expression of IL23R on Th17 cell surfaces (McGovern and Powrie, 2007). 

IL23R is expressed in dendritic cells and macrophages, thus in IL23R and IL-23 variants, this 

cytokine cascade can trigger a state of unrestrained inflammation through a continuous supply 

of pro-inflammation molecules like IL-6, IL-12, IL-17, INF-, TNF- and IL-23 (Younis et al., 

2020). IL-23 serves as an effective drug target against defective immune 

responses; risankizumab -rzaa, a monoclonal antibody targeting the p19 subunit of the cytokine 

has been approved by the FDA to treat cases of moderate to severe CD (D’Haens et al., 2022). 

 

Interleukin 10 (IL-10) is another cytokine with anti-inflammatory properties associated with 

very early-onset IBD in ages 6 and under (Younis et al., 2020). It is secreted by APCs, 

lymphocytes, and macrophages to dampen rogue immune responses avoiding development of 

autoimmune diseases. Genetic variants of the encoding gene cause the downregulation of IL-

10 eliciting an aggravated immune response through pro-inflammatory cytokines, like TNF- 

and IL-12. Both humans and mice with defects in IL-10 signalling experience severe colitis 

(Kühn et al., 1993; Kotlarz et al., 2012). However, IL10 aberrance is not enough to cause IBD, 

and its function is tightly linked with the microbiota. Studies show that the microbiota is 

essential in spontaneous colitis development and immune system activation in the IL10 mouse 

model (Sellon et al., 1998; Wirtz and Neurath, 2007). Members of the microbiota induce IL-

10 secretion via TLR signalling, downregulating immune response and preventing 

inflammation (Levast et al., 2015).  

 

Genetic predisposition to IBD has been mapped by GWA studies. However, these studies 

provide correlations to IBD and do not identify causal genes. What the genetics of IBD reveals 
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is that defects in bacterial recognition in innate immunity responses is at the core of IBD, 

highlighting the importance on host-microbiota interactions in the disease. More functional 

studies need to be carried out to better understand the associations between genetic 

polymorphisms and IBD. Interestingly, only a small percentage of IBD-associated risk loci 

carriers develop IBD which would imply that genetics is not the main driver of IBD. The 

development of IBD is caused by a convoluted mix of genetic risk factors, and alterations to 

the microbiome and its interactions with the mucosal immune system as well as environmental 

factors. The development of IBD, particularly UC, seems to be highly dependent on and    

influenced by gut microbes and their products (Sellon et al., 1998; Roy et al., 2017). Studies 

have linked imbalances in the composition of the gut microbiota, dysbiosis, to IBD.  

 

The interdependency between the microflora and occurrence of colitis has been Observed in 

several IBD mouse models in the studies discussed throughout this section. The DSS model 

(briefly described in text above) chemically induces colitis through IEC damage and exposure 

of the lamina propria and submucosal environment to luminal contents (Low et al., 2013). It is 

one of the most commonly used mouse models to study UC, and its effectiveness depends on 

several factors, only one of which is microbiota composition. Germ-free (GF) mice were shown 

to have reduced DSS colonic inflammation when compared to partial microbial depletion using 

antibiotics (Hernández-chirlaque et al., 2016). Roy et al. (2017) and Kazakevych et al. (2020) 

reported that a DSS-mediated colitis response is determined by the composition of an otherwise 

Specific-Pathogen Free (SPF) microbiome. 2, 4, 6 Trinitrobenzene (TNBS) is a chemical agent 

that causes mucosal inflammation in mice that resembles CD and is known to reduce gut 

microbial diversity in mice (Low et al., 2013; Kozik et al., 2019). Its colitic effect can be 

alleviated with administration of butyrate producing Butyricicoccus in rats (Eeckhaut et al., 

2013). Efficacy of immunologically induced colitis models using bacterial agents, like 
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Adhesion invasive E. coli (AIEC) and Salmonella typhimurium, is dependent on commensal 

bacteria (Low et al., 2013). Antibiotics are generally administered in these models to deplete 

biofilm-forming bacteria, like Lactobacillus casei, and other commensals, allowing for better 

colonisation for the inflammation causing pathological agents. Gene knockout animal models 

of IBD are generally used to study the immune responses and inflammatory pathways involved 

in mucosal inflammation (Wirtz and Neurath, 2007). Gut microbes are28ccludingl for 

development of spontaneous colitis in both IL2-/- and IL10-/- mice (Rakoff-Nahoum, Hao and 

Medzhitov, 2006). Mice deficient in IL-10 or IL-2 do not develop colitis in germ-free 

conditions unless transferred to a specific pathogen-free environment (Sellon et al., 1998; 

Hoshi et al., 2012). However, intestinal inflammation mediated by the microbiota in both 

animal models are regulated by different signalling pathways (Rakoff-Nahoum, Hao and 

Medzhitov, 2006; Kiesler et al., 2015).  Another method of inducing colitis in mice is through 

adoptive T cell transfer in immunodeficient mouse models, like Rag-/- or SCID mice (Low et 

al., 2013). Susceptibility of T cell induced colitis is reliant on gut microbial composition in this 

model, too (Webb et al., 2018). In conclusion, animal models used to study IBD have shown 

the significance of the microbiome in the aetiology of the disease. Studies have linked dysbiosis 

to IBD, recent findings on this topic will be discussed in detail throughout the next section of 

this chapter. 

 

 

1.4 How do changes in the microbiome influence IBD? 

 
Identifying and quantifying the taxa present within the gut microbiota is crucial in 

understanding their role in the human body. There are a several established methods that work 

on the classification of gut microbes like amplicon sequencing, metagenomic sequencing and 

shotgun sequencing (Young et al., 2021). Amplicon sequencing, particularly of the 16S rRNA 

gene, is the most widely used technique in characterising the microbiome despite it lacking 
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taxonomic resolution at the species/strain level (Johnson et al., 2019). 16S sequencing is paired 

with other phylogenetic markers, most commonly the 18S rRNA gene and ITS region, are used 

to identify eukaryotic and fungal members of the microbiome. On the other hand, metagenomic 

sequencing is better suited for understanding the functional properties of microbes and 

microbial communities, since the technique samples all genes instead of the single 16S rRNA 

gene; this allows for both microbial classification as well as highlighting putative metabolic 

functions (Iyer, 2016). Functional properties of the microbiome can be revealed further by 

transcriptomic, proteomic and metabolomic analyses. Microbiota community structure is an 

area much less explored and can be visualised using fluorescent in situ hybridization (FISH), 

which labels bacterial communities in host tissues by utilizing 16S rRNA fluorescent probes 

(Iyer, 2016). Most sampling of the gut microbiome is non-invasive and is done through stool 

analysis, which is considered representative of the colonic luminal community. Microbes 

inhabiting the mucosal layer are sampled via endoscopic tissue biopsies or luminal brushings 

and other less frequently used techniques, like intestinal fluid aspiration (Tang et al., 2020). 

When analysing microbiome data potential issues of each sampling approach should be taken 

into consideration, like the bias introduced in faecal specimens as well as the effect of bowel 

preparation prior endoscopies on the microbiota and the invasiveness of the procedure. Despite 

this, using a combination of the currently available techniques, we have gained great insight 

into the composition, structure, and dynamics of the gut microflora in health and disease. 

 

Studies over the past two decades have shown that, the most prevalent bacteria in the 

gastrointestinal tract (GIT) are broadly classified into four phyla: Firmicutes, Bacteriodetes, 

Actinobacteria and Proteobacteria (check glossary for nomenclature) (Hillman et al., 2017; 

Cresci and Izzo, 2019) while bacteria belonging to the Fusobacteria, Tenericutes, Spirochaetes, 

Cyanobacteria and TM7 phyla are rarer (Hillman et al., 2017). The diversity and richness of 
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the microbes varies axially and longitudinally along the digestive tract, changing dramatically 

throughout the first few years of life, then stabilising and eventually declining with old age 

(Wilmanski et al., 2021). As summarised in figure 1.2, the architecture of gut microflora 

communities and their dynamic stability is shaped by both intrinsic and extrinsic factors 

including, the birthing process, diet, gender, geographical location, pharmaceutical drugs and 

age (Hillman et al., 2017; Schmidt et al., 2018; Cresci and Izzo, 2019). Seeding of the gut 

microbiome is believed to start during the birthing process, where the newborn is inoculated 

with microbes from either the vaginal-anal area or the skin, depending on the mode of delivery 

(Browne et al., 2022). Feeding style post birth affects early-life colonisation, where breast-fed 

infants have higher numbers of Bifidobacterium species selectively enhanced by 

oligosaccharides present in breast milk (McBurney et al., 2019). In early years, members of 

the microbiota are mostly aerobic shifting with time to facultatively anaerobic bacteria and 

finally to largely anaerobic microbes (Cresci and Bawden, 2015). 

 

Various patterns of microbial colonisation have been linked to numerous health states, whether 

steady or disease conditions. Despite the extensive research carried out in the field over the last 

two decades, there is a lack of a clear definition of a “healthy microbiome”. Essentially, health 

is a dynamic state; therefore it is proposed that the associated microbiota should be diverse and 

resilient in order to overcome perturbations and return to equilibrium (McBurney et al., 2019). 

Microbial community composition varies greatly among individuals, it is almost as unique as 

a thumbprint. About 70% of interindividual microbiota variation is unexplained, while the 

remaining deviation is due to both genetic and environmental factors (Rothschild et al., 2018; 

Wang et al., 2018; McBurney et al., 2019). This evidence is a plausible justification to why a 

state of equilibrium cannot be defined by a distinct microbial composition. However, there are 

certain traits and phenotypes that correlate with a diverse gut microbiota, including longer 
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colonic transit times and stool with soft to firm consistency (Roager et al., 2016; Vandeputte et 

al., 2016). 

 

Scientists have developed a method of classifying microbiomes of individuals based on their 

composition, into what they termed as enterotypes in attempt to classify microbial markers 

with diagnostic potential (Arumugam et al., 2011). Arumugam and colleagues identified 3 main 

enterotypes that are recognisable by variations in the levels of three main genera. Two of the 

clusters are always denoted by Bacteroides and Prevotella, while the third cluster is driven by 

different groups, Ruminococcus, Blautia, and unclassified Lachnospiraceae depending on the 

studied dataset. Further analysis revealed that enterotypes are influenced by long-term dietary 

habits (Wu et al., 2011). A study has shown that infants have two enterotypes driven by 

Firmicutes and Bifidobacterium dominance which shifts to Bacteroides and Prevotella as they 

get older (Xiao et al., 2021). However, the concept of enterotypes has been challenged since 

most microbiome data exhibit a continuous gradient of dominant taxa and not microbial 

populations with discrete taxa (Knights et al., 2014). Despite all efforts, there is also a lack of 

valid microbial biomarkers which adds further challenges to the present complexities of 

defining a “healthy microbiome”. Patterns of colonisation associated with steady and disease 

states are very difficult to identify due to the lack of longitudinal studies and conflicting 

observations. For instance, Akkermansia is often linked to healthier metabolic features in obese 

individuals but negatively correlated with incidence of multiple sclerosis – suggesting that 

microbial behaviour is context dependent just as found in the natural environment ( Dao et al., 

2016; Alzarhani et al., 2019;  McBurney et al., 2019). However, a recent multi-generational 

study on a large Dutch cohort investigating environmental factors causing microbiome 

variations highlighted over 1000 associations between disease and bacterial taxa (Gacesa et al., 

2022). Alistipes senegalensi was one of the microbes identified by Gacesa et al. (2022) that is 
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associated with 43 disease phenotypes, including IBD. Overall, it might be more pertinent to 

identify a set of “healthy” microbial metabolic functions rather than a “healthy” microbial 

composition (Bäckhed et al., 2012). 

 

Human metabolic processes are highly reliant on members of the microbiota. Intestinal bacteria 

are involved in the synthesis of amino acids, enzymes, and vitamins, in addition to nutrient and 

mineral absorption, and fermentation. For instance, Bifidobacterium spp. are known to 

synthesize vitamin K and B (Nishida et al., 2017). Many plant-derived dietary fibres are 

indigestible by the human body and can only be fermented by commensal bacteria. Short chain 

fatty acids (SCFAs, primarily acetate, propionate and butyrate) are by-products of this process 

and are important in maintaining homeostasis in the gut. Butyrate is the main energy source of 

IECs and prevents dysbiosis by enhancing IEC uptake of oxygen through  oxidation, 

maintaining a hypoxic environment for commensal anaerobes, reviewed in Valdes et al. (2018). 

On the other hand, acetate is vital for the growth of other gut flora and is involved in central 

appetite regulation, cholesterol metabolism and lipogenesis (Frost et al., 2014). Firmicutes 

such as, Faecalibacterium prausnitzii, Clostridium leptum as well as Eubacterium rectale and 

Roseburia spp of the family Lachnospiraceae, are mainly butyrate producers while members 

of Bacteroidetes mostly produce acetate and propionate (reviewed in Venegas et al., 2019). 

Eubacterium hallii and Anaerostipes spp. are secondary producers of butyrate from lactate and 

acetate. Members of the genus Bifidobacterium produce acetate and lactate, while Akkermansia 

spp. generate propionate and acetate (Venegas et al., 2019). A shift in abundance of these SCFA 

producers, among other species, alters the metabolic profile of an individual thus disrupting 

the functional properties of the intestinal ecosystem (Cummings and Macfarlane, 1991; 

Venegas et al., 2019). 
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Research shows that a less diverse microbiome renders an individual more susceptible to 

disease (Bäckhed et al., 2012). IBD is one of many diseases associated with dysbiosis and 

specific commensal microbes without an established causal relationship. Changes in metabolic 

pathways linked to inflammation and the flourishing of pathobionts could potentially act as 

microbial stressors, supporting the outgrowth of species associated with dysbiosis. Anaerobic 

SCFA producers are depleted in the intestinal mucosa and faeces of IBD patients, leaving space 

for the expansion of populations of pathobionts, like E. coli and Salmonella (Venegas et al., 

2019). Studies have shown that IBD patients have low numbers of gut microbes belonging to 

the phyla Bacteroidetes and Firmicutes alongside an increased abundance of Proteobacteria, 

Actinobacteria and Bacilli (Frank et al., 2007; Ni et al., 2017; Venegas et al., 2019). The SCFA 

producers, F. prausnitzii and R. intestinalis are particularly reduced in CD cases (Ni et al., 

2017; Franzosa et al., 2019; Venegas et al., 2019). F. prausnitzii is involved in the production 

of the anti-inflammatory IL-10 and prevents the release of inflammatory cytokines (IL-12 and 

INF-) thus maintaining mucosal equilibrium (Nishida et al., 2017). Therefore, altering the 

presence of F. prausnitzii can disrupt mucosal stability, bringing about inflammation. 

Inflammation is strongly tied to the suppression of genes involved In SCFA utilisation and 

metabolism. Genes encoding enzymes involved with butyrate uptake and oxidation are 

downregulated in dysbiotic UC patients and this reduction can be reversed with anti-TNF- 

antibody treatment (Venegas et al., 2019). 

 

Commensal bacteria maintain gut homeostasis by also mediating intestinal mucosal immunity 

while others suppress pathobionts directly through nutrient competition and secretion of 

antimicrobial substances. Bacillus thuringiensis, for instance, releases a bacteriocin targeting 

spore-forming bacteria such as other Bacillus species or Clostridia (Nishida et al., 2017). 

Candidatus Arthomitus, also known as segmented filamentous bacteria (SFB), promote the 
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maturation of the mucosal immune system, IgA secretion, as well as Th17 development 

(Nishida et al., 2017). SCFA producers can indirectly modulate immune system interactions, 

such as AMP (REGIII and -defensins) production, induction of the anti-inflammatory IL-10, 

and T-cell differentiation (Nishida et al., 2017; Vaga et al., 2020). Butyrate produced by 

Clostridium clusters IV, XIVa and XVIII enhances the function of colonic regulatory T cells 

(Treg cells) (Ni et al., 2017; Nishida et al., 2017). Moreover, butyrate has the ability of 

preventing inflammation by suppressing NF-B activation, inhibiting proinflammatory 

cytokines, like TNF-, INF-, and IL-6, through HDAC inhibition and stabilising HIF- (Ni 

et al., 2017). 

 

Adherent-Invasive E. coli (AIEC) is another bacterial species linked to IBD that affects the 

permeability of the intestinal mucosa and is increased in CD patients (Ni et al., 2017; Nishida 

et al., 2017). IBD has also been associated with an increase in the sulphate-reducing bacteria 

Desulfovibrio, where the hydrogen sulphate produced from that process causes damage to IECs 

and inflammation (Nishida et al., 2017). Elevated levels of tryptophan metabolites in IBD 

patients indicates an increase in tryptophan degradation which, can be linked to the abundance 

of Bacteroides species involved in tryptophan metabolism in IBD (Nikolaus et al., 2017; Vaga 

et al., 2020; Lee and Chang, 2021). Secondary bile acids generated by microbiota has anti-

inflammatory properties and plays a role in maintaining mucosal homeostasis. IBD patients 

exhibit imbalances in bile acid absorption and deficiencies in secondary bile acids which can 

induce the growth of bile-tolerant pathobionts, like the sulphite-reducing Bilophila 

wadsworthia, as shown in IL10-deficient mice (Devkota et al., 2012; Natividad et al., 2018; 

Lee and Chang, 2021). A visual summary of some of the key findings related to the gut 

microbiome and IBD is presented in figure 1.4. 
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Figure 1.4: Summary of some of the key features linked to a healthy microbiome or a microbiome 

linked to IBD (right) (El-Sahhar & Varga-Weisz, 2022). 

 
 
All the findings discussed earlier are correlations with IBD and causality has not been shown. 

Most microbial associations have not been replicated, some have even been contradicted, 

implying that they may be context-dependent or heavily influenced by environmental factors. 

Only 2% of taxa at the genus level are found to be different in IBD when compared to healthy 

individuals as opposed to 12% of change in metabolic pathways (Ni et al., 2017).  A study has 

shown over 2700 differentially abundant metabolites in faecal samples from IBD patients, of 

which 244 metabolites are significantly increased (Franzosa et al., 2019). This suggests that 

perhaps identifying metabolic pathways and metabolite profiles associated with IBD rather 

than a microbial signature is a better way to understand the role of the microbiota in disease 

progression. 
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1.5 How does the environment contribute to gut microbiome changes? 

 
Diet, lifestyle, physical activity, smoking, and exposure to pollution are some of the 

environmental factors that shape the gut microbiome and, in some cases, are associated with 

IBD prevalence. Incidence rates of IBD are higher in urban and western environments, 

particularly in areas that have undergone a period of industrialization over the past few decades 

(Ng et al., 2013; Benchimol et al., 2017). A large-scale population-based study showed that, 

within 50 years, there has been a 10-fold increase in incidence of IBD in Japan, South Korea, 

China and India (Ng et al., 2013). Incidence rates are still higher in western populations, 

however, IBD is an emerging threat in developing countries. The link between urbanization 

and IBD development could be mediated by multiple lifestyle factors, like diet, exposure to air 

pollution, hygiene practices, and antimicrobials (Ananthakrishnan et al., 2017). There have 

been changes in microbial patterns associated with urbanization, like an increase in 

Bacteroidetes, particularly Alistipes, the Firmicutes Blautia, Faecalibacterium and 

Ruminococcus, as well as Bifidobacterium and Bilophila of the phyla Actinobacteria and 

Proteobacteria, respectively (Zuo et al., 2018). Generally, there is a shift in microbial 

composition from gram positive to gram negative species with pathogenic tendencies (Hills et 

al., 2019). Studies investigating variation within microbiota structure in relation to geography 

have pointed out that there are deviations across countries as well as between ethnicities within 

the same country (Prideaux et al., 2013; Cresci and Bawden, 2015). Gut microbial communities 

of Malawian and Amerindian populations (of the Venezuelan Amazonia) are divergent from 

those of the US, with less diversity in the latter (Yatsunenko et al., 2012). These differences 

can be attributed to diet since they have been mapped to metabolic pathways involved in 

carbohydrate metabolism and vitamin B biosynthesis (Yatsunenko et al., 2012). Malawian and 

Amerindian diets are carbohydrate rich, high in corn and cassava, while a US diet is rich in 
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protein (Cresci and Bawden, 2015). Another study comparing microbiotas of African and 

Western children showed that microbial communities in children from Burkina Faso coevolved 

with their diets, maximising energy intake from fibrous foods (Filippo et al., 2010). There was 

a higher prevalence of Bacteroidetes, notably Prevotella species involved in cellulose and 

xylan hydrolysis, and less of Firmicutes in children from Burkina Faso, compared to a total 

absence of these microbes in an Italian cohort (Filippo et al., 2010). The difference in gut 

microbial composition can be linked back to the African diet, which is high in plant fibre (Zuo 

et al., 2018).  

 

Diet is one of the environmental factors that has a huge impact on the microbiome. 

Metagenomic studies on twins have shown that the influence of dietary habits and cohabitation 

on the microbiome outweighs the effect of genetics on the structure and functionality of the gut 

microflora (Rothschild et al., 2018; Hills et al., 2019; Gacesa et al., 2022). This starts at infancy 

where breastfeeding selects for a microbiome dominated by Bifidobacterium due to the 

oligosaccharides present in breastmilk and can reverse infancy dysbiosis from intrapartum 

antibiotic exposure (Cresci and Bawden, 2015; Azad et al., 2016). Development of IBD is 

negatively correlated with breastfeeding, however, the causal links are not clear 

(Ananthakrishnan et al., 2017).  Dietary habits continue to shape the microbiome throughout 

life with various ramifications. A western diet – one typically high in simple carbohydrates, 

fats, additives and low in fibre – has a negative effect on microbiome diversity as well as host 

mucosal barrier and immunity (Levine, et al., 2018; Hills et al., 2019). An abundance of 

Bifidobacteria and a reduction in Lactobacillus, Streptococcus and Roseburia are commonly 

associated with diets high in simple carbohydrates (Hills et al., 2019). Reduced mucosal barrier 

function favouring AIEC colonisation and mucin-degrading Ruminococcus accompanied by 

dysbiosis is induced by a western diet in both CD patients and mouse models (Martinez-Medina 
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et al., 2014; Agus et al., 2016). Histological assays on mice fed a western diet showed depletion 

of goblet cells followed by a reduction in MUC2 expression and increased intestinal 

permeability (Martinez-Medina et al., 2014). Moreover, the dysbiosis caused by a western diet 

decreases production of SCFAs and expression of the SCFA receptor GPR43 modulating the 

immune response via Treg cell reduction (Agus et al., 2016). Interestingly, biopsies from CD 

patients also showed reduced expression of the butyrate receptor GPR43 highlighting the role 

of butyrate in modulating inflammation (Agus et al., 2016). A few studies have linked diets 

high in fat with intestinal inflammation. Mice put on high fat diets exhibited an increase in pro-

inflammatory markers, including TNF- and INF-, decreased Treg cells, recruitment of 

dendritic cells and Th17 cells along with downregulation of tight junction proteins collectively 

exacerbating intestinal inflammation (Ma, Hua, and Li, 2008; Suzuki and Hara, 2010; Gruber 

et al., 2013). Furthermore, structure and function of the microbiota were highly impacted by a 

diet high in fat, presenting reduced numbers of Ruminococcaceae, altered antimicrobial 

pathways, defective bile metabolism and shifts in nutrient metabolism highlighted by a large 

set of differentially abundant bacterial proteins and metabolites (Daniel et al., 2014). Risk of 

UC is significantly reduced  with high polyunsaturated dietary fat intake as opposed to 

unfavourable trans-unsaturated fats (Levine et al., 2018). 

 

High-fibre diets, on the other hand, are linked to a highly diverse microbiome. Increased dietary 

intake of fibre in IL10-/- mice suppresses gut inflammation which protects against acute colitis 

through several mechanisms, including increased expression and proper localisation of tight 

junction proteins which maintain the mucosal barrier as well as a decrease in production of the 

pro-inflammatory IFN- accompanied by an increase in SCFA and Treg production 

(Bassaganya-Riera et al., 2011; Silveira et al., 2017; Wang et al., 2016). Supplementing the 

diet of mice with fermentable fibres also increased SCFA production and decreased mucosal 
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permeability through an increase in expression of occludin and other tight junction proteins, 

reducing inflammation score (Hung and Suzuki, 2016). However, increased fibre intake did 

not resolve the low levels of SCFAs in UC patients despite an established link between low 

fibre and the condition, suggesting that not all findings in mouse models are translatable in 

humans (James et al., 2015; Levine et al., 2018). Regardless, a study revealed a bloom of bile 

tolerant bacteria, like Alistipes and Bilophila and Bacteroides (a pattern previously linked to 

IBD), in the microbiota of individuals following an animal-based diet compared to those on a 

plant-based diet, which supports the connection between animal protein and IBD (David et al., 

2014; Levine et al., 2018). There have been no dietary patterns tied to CD.  However, a diet 

low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols, known as 

the FODMAP diet, seems to provide symptom relief for IBD patients with no attenuation of 

inflammation (Cox et al., 2020). This diet is only recommended for the short-term due to its 

low levels of fibres and effect on the microbiome, with lower abundances of Bifidobacterium 

species and F. prausnitzii (Hills et al., 2019; Cox et al., 2020). 

 

Processed foods are high in food additives which proved to have harmful effects on both 

mucosal stability and the gut microflora (Levine et al., 2018; Hills et al., 2019). 

Carboxymethylcellulose is an emulsifier commonly used in food products and was found to 

increase intestinal permeability through depletion of the mucus layer and distension of inter-

villi spaces, allowing for bacterial invasion in IL10-/- mice (Swidsinski et al., 2009; Chassaing 

et al., 2015). Another emulsifier, polysorbate 80, was shown to cause similar deleterious effects 

on the intestinal epithelium mucosa as well as the microbiome (Chassaing et al., 2017). Both 

emulsifiers alter the microbial composition to a less diverse one, with an increase in mucin-

degrading bacteria (like Ruminococcus gnavus), Verrucomicrobia and inflammatory 

Proteobacteria and Enterobacteriaceae species along with a decrease in key Bacteriodaceae 
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(Chassaing et al., 2017). Maltodextrin is an artificial sweetener linked to gut inflammation 

through elevated levels of IgA (Miyazato et al., 2016). The sweetener has been shown to cause 

dysbiosis promoting the expansion of AIEC and biofilm formation (Nickerson and Mcdonald, 

2012). It is evident that additive-rich processed foods have adverse effects on mucosal 

immunity and the microbiome. However, not all foods have a solely harmful effect on health 

and the microbiome, as some may provide context dependent beneficial effects. Administering 

dietary alcohol in mice promoted colonic hyperpermeability and decreased butyrate and other 

SCFA levels in stool (Forsyth et al., 2017).  Yet, red wine in moderation exhibits prebiotic 

benefits–- owed to high levels of polyphenols–- with an increase in Proteobacteria, 

Fusobacteria, Firmicutes and Bacteroidetes species, especially F. prausnitzii and 

Bifidobacterium (Queipo-Ortuño et al., 2012; Hills et al., 2019). These findings have not been 

replicated with other kinds of alcoholic beverages. 

 

With the significant effect of diet on both the gut microflora and IBD, investigations into IBD 

and obesity comorbidities has been an area of interest. Generally, obesity is reflected in gut 

microbiota shifts in abundance of Bacteroidetes and Firmicutes, but no connection can be 

drawn due to the minimal research done on the co-morbidity of IBD and obesity within the 

context of the microbiome.  

 

Another major player in microbiome shifts is drug exposure. Intake of drugs, like antibiotics 

and non-steroidal anti-inflammatory drugs (NSAIDs), result in significant changes in gut 

microbial composition and are considered a major predisposition for IBD (Dethlefsen et al., 

2008; Ananthakrishnan et al., 2012). A 5-day course of the antibiotic ciprofloxacin in humans 

is enough to reduce microbial diversity and richness of the microbiome within 3-4 days of 

antibiotic administration (Dethlefsen and Relman, 2011). This effect is mostly reversible within 
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4 weeks to 6 months with the exception of a few taxa (Dethlefsen et al., 2008). Studies 

investigating the use of antibiotics in early life and IBD predisposition found a strong link in 

Western populations, but only with CD and not UC (Ungaro et al., 2014). Another study 

showed in a cohort of 36 IBD subjects, 21 (58%) had at least 1 dispensation of antibiotics in 

their first year of life compared to 39% of the controls (Shaw et al., 2010). Furthermore, 

children receiving antibiotics during their first year of life were almost 3 times as likely to 

develop IBD compared to those that did not (Shaw et al., 2010). An increase in use of NSAIDs 

poses a higher risk of developing IBD (Ananthakrishnan et al., 2017). The group of drugs is 

known to cause intestinal mucosal permeability and oxidative stress (Bjarnason et al., 2018). 

Changes in gut microbial composition have been reported upon NSAID intake, these 

alterations vary depending on the type of NSAID and tend to favour taxa able to metabolise 

these drugs (Maseda and Ricciotti, 2020). Prevotella spp., Bacteroides spp. Ruminococaceae 

and Barnesiella spp. were increased with the use of aspirin, whereas an enrichment of 

Acidaminococcaceae and Enterobacteriacceae were associated with ibuprofen and celecoxib 

users (Rogers and Aronoff, 2016). Another study reported no changes in microbiota upon 

celecoxib use but a decrease in butyrate production as well as inflammatory markers in vitro 

(Hernandez-sanabria et al., 2020).  

 

Other lifestyle factors, like supplement intake, smoking, and exposure to pollution, have been 

connected to both the microbiome and IBD, although, how these factors influence IBD are 

poorly understood (Piovani et al., 2019). There has been a lot of speculation on the role of 

vitamin D in IBD pathogenesis. However, a population study on 169 participants showed that 

vitamin D deficiency is not associated with development of the disease (Opstelten et al., 2018). 

Vitamin D and its receptor play a role in modulating the immune system through the butyrate 

producing bacteria but there is no causative link between that and pathogenesis of IBD 
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(Battistini et al., 2021). Smoking is a lifestyle habit with controversial effects on IBD. It is 

considered a risk factor in CD development and somehow protective against UC, however, this 

protective effect was only observed in some populations (Piovani et al., 2019). No associations 

were found between smoking and IBD in Asian and Jewish populations. On the other hand, 

smoking affects the human microbiome and causes dysbiosis in mice with reduced numbers of 

Firmicutes, Actinobacteria, Bifidobacterium, and Lactococcus and an enrichment in 

Bacteroidetes, Prevotella, Bacteroides, Proteobacteria and Clostridium, reviewed in (Savin et 

al., 2018). Functional studies need to be carried out to assess the nature of the association 

between smoking, IBD and the microbiome. Pollution is another environmental factor 

connected to socioeconomic status and urbanisation that affects the microbiome and has been 

linked to IBD. Early exposure to air pollution was associated with an increased risk of IBD in 

children and young adults (Kaplan et al., 2010). However, this link has been questioned by 

Opstelten et al. (2016). Particulate matter (PM) exposure in mice was shown to increase 

intestinal permeability via rearrangement of tight junction proteins of the epithelium and 

promoted inflammation through IL-6 release and NF-B activation (Mutlu et al., 2011; Salim 

et al., 2014). A similar pro-inflammatory cytokine response in IL10-/- mice was observed along 

with increased gut permeability with PM supplemented chow (Kish et al., 2013). The mice 

experience shifts in Bacteroidetes, Firmicutes and Verrucobacteria leading to altered SCFA 

production and reduced butyrate levels. Again, these observations are insufficient for assigning 

solid associations between smoking and IBD, let alone suspect causative effects. The lifestyle 

factors discussed are clearly connected to microbiome perturbations but have a less causal 

effect on IBD. 
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1.6 Can microbial-based treatments be the answer? 

 
As briefly mentioned in the first section of this contribution, IBD is managed through different 

treatment protocols depending on the condition, severity of the disease and response to 

treatment. A large number of IBD patients fail to respond to initial treatment and a fraction of 

those who respond to medication initially become secondary non-responders, especially with 

biological therapy (Chudy-Onwugaje et al., 2019; Lamb et al., 2019). Current regimens target 

the aberrant immune responses involved in IBD and can change during active and quiescent 

phases of the disease. The first line of treatment for mild to moderate pancolitis in UC patients 

is administration of oral and/or enema 5-aminosalicylic acid (5-ASA), which is an anti-

inflammatory drug that captures damaging free radicals in the bowel (Kuehbacher et al., 2008; 

Lamb et al., 2019). 5-ASA is also used for maintenance therapy in UC patients. Patients 

experiencing major side effects or are refractory to 5-ASA are prescribed corticosteroids. Due 

to their severe side effects, corticosteroids are only used in moderate to severe cases as well as 

refractory cases of both UC and CD (Chudy-Onwugaje et al., 2019; Lamb et al., 2019). 

Immunosuppressive or immunomodulator therapies in the form of biological agents, like 

human anti-TNF- monoclonal antibodies, are used in the event of failure in response to 

second line drugs (Kuehbacher et al., 2008; Lamb et al., 2019). In the case of complete 

resistance to medication and persistence of health complications, a colectomy followed by ileal 

pouch anastomosis (IPAA) is the remaining option (Lamb et al., 2019). 

 

Primary therapy in CD patients with moderately to severely active disease includes systemic 

corticosteroids (Lamb et al., 2019). However, nutritional intervention through exclusive enteral 

nutrition (EEN) has proven to be an effective first line of treatment, inducing remission with a 

success rate of 73% but only in children (Lamb et al., 2019; Eindor-Abarbanel et al., 2021). 

EEN involves the administration of a nutritionally-whole liquified diet orally or through 
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nasogastric tubes for 4-8 weeks (Borrelli et al., 2006; Lamb et al., 2019). The mechanism of 

action for this nutritional therapy remains poorly understood, yet it has been shown to lower 

gut microbial diversity with reduction in Bacteroides species and Clostridium coccoides 

(Maclellan et al., 2017). When compared to children treated with corticosteroids, those on EEN 

exhibited significant mucosal healing but lower numbers of butyrate-producing bacteria, which 

seems very contradictory since lower levels of butyrate are generally associated with active 

disease (Pigneur et al., 2019). Nutritional intervention is not as effective in adults, early use of 

biological agents is considered with adult CD patients who have poor prognoses (Lamb et al., 

2019). Failure of conventional therapy and recurrence of the disease can lead to ileocaecal 

resection to induce and maintain remission. 

 

Antibiotics are also part of the IBD treatment regimens discussed above and have been largely 

used in the incidence of pouchitis (infection post IPAA), abdominal abscesses, enteric 

infections, IBD associated C. difficile infection, perianal disease and luminal disease (Ledder 

et al., 2014; Eindor-Abarbanel et al., 2021). They are also used to modulate gut microflora by 

targeting bacteria associated with inflammation in CD patients and selecting for the beneficial 

ones, since patients with CD tend to harbour mucosal infiltrating pathobionts (Eindor-

Abarbanel et al., 2021). However, exposure to antibiotics could have a negative effect on the 

microbiome on its already unstable state. A recent study has shown reduced microbial diversity 

and enrichment of Escherichia species along with a reduced UC activity index in young UC 

patients post antibiotic treatment (Turner et al., 2019). Two other studies reported similar 

conflicting responses to antibiotics in CD patients, where the microbiota community in both 

study groups was less diverse but faecal calprotectin (an inflammation marker) was reduced in 

patients from one of the studies (Levine et al., 2018; Sprockett et al., 2019). Interestingly, 

increased abundance of Bifidobacterium and F. prausnitzii along with an increase in SCFA 
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were observed post antibiotic treatment in 4 CD patients (Maccaferri et al., 2010). However, 

the findings of all the studies combined with a small remainder of studies are not enough to 

draw a strong conclusion on the effect of antibiotics on IBD and microbiota of IBD patients.  

 

The standard treatment protocol is not always effective and usually comes with serious side 

effects, thus the search remains for an alternative treatment that is more robust. Since the 

microbiome is heavily associated with IBD, there has been an interest in microbe-based or 

microbe-related interventions. Probiotics are live bacteria and fungi that are present in the form 

of food products or supplements that provide health benefit to the host by restoring balance 

and function in the gut microbial communities when administered in the right dosage 

(Martyniak et al., 2021). Probiotic strains have been shown to maintain the mucosal barrier 

function and modulate immune responses (Ng and Hart, 2014). There are countless probiotic 

preparations on the market, and they are designed in a way so that the microbes can survive 

transit until they reach the larger bowel (Eindor-Abarbanel et al., 2021). The main microbial 

strains used in most probiotic supplements include E. coli Nissle 1917, E. coli (serotype 

06:K5:H1), Lactobacillus reuteri, L. casei ATCC PTA-3945, Bifidobacterium and yeast species 

Saccharomyces boulardii (Eindor-Abarbanel et al., 2021). VSL#3 is one of the most commonly 

administered and investigated probiotic in IBD, and it is comprised of Streptococcus 

thermophilus, three bifidobacteria strains (B. longum, B. breve, and B. infantis) as well as 4 

Lactobacillus strains (L. casei, L. acidophilus, L. bulgaricus) (Cheng et al., 2020). There have 

been contradictory observations from studies evaluating the efficacy of probiotics in inducing 

and maintaining remission in IBD patients; a few patients had positive outcomes (Shadnoush 

et al., 2015; Yoshimatsu et al., 2015; Palumbo et al., 2016; Tamaki et al., 2016) while others 

showed no significant effects (Fedorak et al., 2015; Bjarnason et al., 2018; Matsuoka et al., 

2018). Meta-analysis studies and reviews also present opposing findings, where two groups 
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found probiotics to be beneficial in UC but not CD patients (Ganji-Arjenaki and Rafieian-

Kopaei, 2018; Zhang et al., 2021) while Astó et al. (2019) reported a significant effect of 

probiotics inducing remission but not maintaining it.  

 

The effects of probiotics are short-lived and cease once treatment is stopped, which is probably 

due to the lack of nutrients or substrates required for the microorganisms to flourish (Tannock 

et al., 2000). Instead, patients can be prescribed prebiotics, which are compounds (commonly 

found in foods) that are selectively utilised by members of the microbiota and promote their 

growth and function, thus providing health benefit to the host (Eindor-Abarbanel et al., 2021). 

Glucooligosaccharides, fructooligosaccharides, lactulose and inulin are the most widely used 

prebiotics and are indigestible by humans (Martyniak et al., 2021). Generally, they are known 

to enhance the growth of lactic acid-producing bacteria, like Lactobacillus as well as 

Bifidobacterium and Bacteroides species, and promote SCFA production (Cummings and 

Macfarlane, 2002; Martyniak et al., 2021). Clinical studies assessing the effect of prebiotics on 

IBD patients have been contradictory; Benjamin et al. (2011) reported deterioration of CD 

patients on prebiotics while another group reported no significant improvement or worsening 

in both UC and CD on prebiotics (Hafer et al., 2007). A few studies have reported improvement 

in clinical activity of the disease and remission states with different prebiotics (Fernandez-

Banares et al., 1999; Kanauchi et al. , 2003; Hallert et al., 1991). These findings counter each 

other, and presently no significant positive effect can be linked to prebiotics intake and IBD. 

However, when combined with probiotics, prebiotics some studies have suggested at a 

beneficial effect (the combination of prebiotics and probiotics are collectively referred to as 

synbiotics) (Zhang et al., 2021). Usually, synbiotic supplementation comes in the form of 

Lactobacillus GG and/or Bifidobacteria coupled with fructooligosaccharides and/or inulin 

(Martyniak et al., 2021). Compared to a placebo group, 13 CD patients put on B. longum and 
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a mix of inulin and fructoligosaccharides showed significant clinical and histopathological 

improvement, in addition to enrichment of Bifidobacterium species and reduction in 

inflammatory markers. However, this was only observed in the first 3 months of treatment and 

not the total 6 months (Steed et al., 2010). Chermesh et al. (2007) reported no significant 

improvement in CD patients on synbiotics. Again, results are conflicting with no significant 

effect highlighted and investigations in UC and synbiotics were equally paradoxical 

(Martyniak et al.,, 2021).  

 

Just like probiotics, faecal matter transplantation (FMT) works through modulation of the 

recipient’s immune response via microbiota compositional changes. FMT involves the delivery 

of stool derived microbes from a healthy donor to the gastrointestinal tract of a patient (Ni et 

al., 2017). It is argued that it is a more robust method to treat dysbiosis as it has been shown to 

increase microbial diversity due to a larger and more varied microbial load during transfer 

(Khoruts et al., 2010; Hamilton et al., 2013; Bojanova and Bordenstein, 2016). However, the 

screening process for donors is very complex to avoid infections and potential allergic reactions 

that can be passed on through the faecal matter (Weingarden and Vaughn, 2017; Bibbò et al., 

2020). This procedure has been widely explored to restore microbial composition and 

successfully used to treat C. difficile infections. The success rate of over 90% in recurrent C. 

difficile infection has made FMT a therapeutic of interest (Drekonja et al., 2015). However, the 

clinical response to FMT is not equally positive in IBD patients. Success rates varied from 25% 

to 79% in UC patients, while response to FMT in CD and placebo groups was mostly not 

significant due to small cohort size and differences in procedure protocols (Paramsothy et al., 

2017; Costello et al., 2019; Sood et al., 2019; Yang et al., 2020; Sokol et al., 2020; Crothers et 

al., 2021).  
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In general, more comprehensive investigations into the mentioned treatments should be done 

as current work is inconsistent and is based on small cohorts. Furthermore, the efficacy of 

current therapeutics should be linked to its functional effects on the microbiome. A study has 

shown that two thirds of commonly prescribed drugs are metabolised by at least 1 bacterial 

strain of the microflora and that each strain can process from 11-95 different drugs 

(Zimmermann et al., 2019). The authors identified and validated 30 microbiome-associated 

enzymes able to convert 20 known drugs into 59 candidate metabolites. This could be a reason 

why many patients are resistant to conventional treatment. Identifying microbes associated 

with current IBD medication metabolism could help alleviate refractory therapy. With the 

steady drop of sequencing expenses, personalised treatment for IBD patients could be 

implemented and potentially solve inefficiencies of current IBD treatment regimens.   

 

1.7 Conclusion and Outlook 

 
The gut microbiota plays a role in maintaining homeostasis and disease pathogenesis. Despite 

the lack of clear causal relationships between the human microbiome and many health 

conditions, the evidence for links between commensals and health are intriguing. The gut 

microbiome is a very complex network built on intricate interactions among microbes and the 

crosstalk between host and microbes. Current research into the field is largely based on the 

bacterial component of the microbiome and fails to address the importance of the other 

members, like fungi, viruses, and archaea. There is very little work done on investigating fungal 

and viral communities in the gut and even less on archaea. Different bacterial strains can 

contribute to the same metabolic pathways conferring a health or diseased state. Perhaps there 

could be an unknown co-dependency between other members of the gut microflora influencing 

major functional properties involved in immunity or metabolism. Exploring the neglected part 

of the human microbiome would give us better, more holistic insight into its role in health and 

disease. The added complexity of environmental variables causing microflora perturbations 
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makes it very challenging to assign causal relationships. This could explain why many of the 

findings in mice are not replicated in humans. For instance, the mouse models used to study 

IBD focus on isolated events or a number of variables in a tightly controlled environment; 

however, it is very difficult to do the same in a clinical setting due to great variability in 

environmental and genetic factors.  

These difficulties highlight the importance of animal models in identifying microbiome-host 

association with disease. To correctly identify microbiome links to disease the appropriate 

model must be chosen. In the case of IBD, the spontaneous CD model SJL/J is less favoured, 

especially with oxazolone induced inflammation, due to the development of other autoimmune 

diseases along with CD via Th1 mediated inflammation (Baydi et al., 2021). Furthermore, the 

sex of the mice used can be as influential as the model used especially when looking into gut 

microbial composition. It is critical to consider such technical matters when designing a study 

to avoid bias. Similar considerations should be taken in clinical studies as well, most of the 

clinical studies investigating the effect environmental factors in IBD have very low statistical 

power due to the small number of patients in their study groups. More effort should be put into 

designing larger cohort studies in order to get a more accurate representation of the disease and 

its risk factors. 

In the future, it will be pivotal to perform longitudinal studies in large patient- and control-

cohorts, to capture associations and changes in the gut microbiome and linking these to disease 

or disease progression, paving the way to identify causations rather than just correlations. As 

the power of DNA sequencing technologies and bioinformatic analysis increase, these will be 

combined with proteomic, transcriptomic and metabolomic analysis to capture the dynamic 

nature and function of the human microbiome in greater detail, allowing us to understand the 

ecology of this system with respect to health and disease. 
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Genetics are less influential within the context of IBD and the microbiome, whereas 

environmental factors, especially diet, play a leading role in gut microbial composition and can 

affect disease susceptibility. Further investigations are required for the identification of optimal 

manipulations of gut microbes whether prophylactically or in treatment form. As our 

understanding of the human microbiome increases, we are beginning to unlock its secrets in 

order to promote health and fight disease. 
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Chapter 2: Methods 
 

2.1 Chapter Overview:  

 

The aim of this chapter is to describe the experimental design of this thesis and outline the 

pipelines implemented for both the meta-analyses and individual datasets, with a detailed 

explanation of the methods used and the justification of their use. Preceding this is a brief 

background about the thesis topic and the importance of the work.  

 

2.2 Introduction 

 

Ulcerative colitis (UC) is one of the two main forms of inflammatory bowel disease (IBD) and 

the focus of this thesis. It is characterised by mucosal inflammation starting in the rectum and 

extending proximally into the colon. Common symptoms include diarrhoea, abdominal pain, 

weight loss, obstruction of the gastrointestinal tract and extragastrointestinal manifestations in 

some cases (Frank et al., 2007; Ghosh and Premchand, 2015). Treatment protocol of UC 

involves anti-inflammatory drugs, corticosteroids, immunomodulatory drugs and surgical 

intervention depending on the stage and progression of the illness (Ghosh and Premchand, 

2015). Microbial interventions like prebiotics, probiotics, antibiotics, and faecal microbiota 

transplants are also used to alleviate IBD symptoms and restore microbial balance in the gut. 

A combination of genetic and environmental factors modulating gut microbial composition, 

triggering a dysregulated immune response is known to cause this disease. The exact 

pathogenesis of UC is very complex and remains elusive, however environmental cues, 

particularly dietary and lifestyle changes, seem to play a huge role the development of the 

disease. As extensively discussed in chapter 1, the occurrence of IBD, particularly UC, is highly 

dependent on and influenced by gut microbes (Sellon et al., 1998; Roy et al., 2017; Shen et al., 
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2018). Studies have linked imbalances in the composition of the gut microbiota, known as 

dysbiosis, to IBD. Changes in microbial diversity reshapes the metabolome, affecting the host 

in ways we have yet to discover.  

 

In fact, IBD is one of the most studied microbiome-linked diseases. Yet there is an absence of 

consistent and reproducible microbial associations, particularly in colitis mouse models. 

Murine colitis models have been expediently used to investigate deeper connections between 

the gut microbiome and UC. However, experimental design and procedures as well as data 

computation methods within the field are highly variable and inconsistent, which could be 

contributing to the lack of unified taxonomic patterns tying the microbiome to UC. Therefore, 

I hypothesize that standardising the methods used to analyse microbiome data will reduce 

variability among results producing reproducible taxonomic patterns linked to UC. 

 

16S rRNA amplicon sequencing and metagenomic shotgun sequencing are the two most used 

tools in dissecting the microbiome. The 16S rRNA gene is used as a biomarker as it ubiquitous 

among prokaryotes, carrying ample interspecific polymorphisms. It stretches for about 1.5kb 

and has 9 short hypervariable regions that are used to differentiate between bacterial taxa 

(Weinstock, 2012; Kang et al., 2015). The sequences of one or more of the variable regions are 

targeted to identify the composition of the microbial populations. This is demonstrated in figure 

2.1 (Shahi, Freedman and Mangalam, 2017). Shotgun sequencing can also detect the functional 

properties of the taxa as well as classification (Weinstock, 2012). However, this meta-analysis 

will only employ 16S rRNA datasets since they seem to be more widely available in the given 

context of our research question. 
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Bioinformatic pipelines for 16S rRNA sequencing are generally follow two different 

approaches producing distinct feature types: Operational Taxonomic Units (OTUs) or 

Amplicon Sequence Variants (ASVs).  

 

Figure 2.1: Illustration of the 16S rRNA gene, highlighting its conserved, variable, and 

hypervariable regions as well as multiple primer pairs used for metagenomic sequencing 

taken from Shahi, Freedman and Mangalam (2017). 

 

OTUs are generated using a clustering approach which combines similar sequences together, 

usually with a similarity of 97%, to account for sequencing errors/noise. Grouping similar 

sequences together reduces the misinterpretation of sequencing errors as biological variation. 

Each OTU is often represented by a representative consensus sequence. This approach is based 

on the idea that related organisms will have similar target gene sequences while sequencing 

errors, if present, will not affect the consensus sequences of the OTUs. 

 

There are three main methods of generating OTUs: de novo clustering, closed reference 

clustering and open reference clustering. De novo clustering creates OTUs only from observed 

sequences, without relying on a reference database. This process is time consuming and 

computationally expensive. Moreover, if data is added or removed from the study clustering 

must be repeated as it is highly dependent on the sequences identified. Closed reference 

clustering is a more efficient method for generating OTUs and uses a reference database of 

target gene sequences from known taxa. Despite this method being both time and 

computationally efficient it is subject to reference bias. In other words, novel taxa from the 
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samples will be overlooked. Open-reference clustering was developed to avoid the loss of novel 

sequences. It does that by using a mix of both de novo and closed reference clustering. The 

nature of the data or samples being used dictates the clustering method to be implemented. 

Open-reference clustering was used to process the data on hand. 

 

QIIME/QIIME2 and MOTHUR are the commonly used platforms for microbiome 

bioinformatics, however, they tend to inflate the number of OTUs present in a sample (Prodan 

et al., 2020). Therefore, another pipeline was adapted for the processing of the sequencing data 

in this meta-analysis (Dumbrell, Ferguson and Clark, 2016). This pipeline uses freely available 

packages including Sickle, SPAdes, PANDAseq, VSEARCH, and UCHIME (Joshi et al., 

2011; Edgar et al., 2011; Bankevich et al., 2012; Masella et al., 2012; Nikolenko, 

Korobeynikov and Alekseyev, 2013; Zhang et al., 2014; Rognes et al., 2016). 

 

Rather than clustering similar sequences into an abstract consensus sequence, the ASV method 

determines the exact sequences that were read and the number of times they were read. Similar 

read sequences are then compared, using the error model generated by the algorithm for each 

sequencing run, to determine the probability that a certain read at a given frequency is an actual 

read and not a sequencing error. Essentially, this process generates a p-value for every exact 

sequence detected, where the null hypothesis is equal to that same sequence being error-derived 

instead of a true sequence. The sequences are then filtered based on a set threshold value for 

confidence, resulting in a list of “true” sequences with statistical confidence. DADA2 (Divisive 

Amplicon Denoising Algorithm 2) is a common algorithm used to infer exact ASVs from 

amplicon sequencing data (Callahan et al., 2016). It is generally run as an R script using its 

corresponding R package and was used throughout this work. 
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Meta-analysis of existing studies is an approach that could potentially help generalise and 

integrate discoveries across different studies. It involves the merging of findings from 

independent studies to calculate an absolute effect using statistics. Heterogeneity in study 

approach, sample sizes and findings are some of the issues addressed when conducting a meta-

analysis. There is no uniform method for meta-analysis but, there are five common steps or 

components including: formulating a question, conducting a systematic review, extracting data, 

standardising, and scoring studies and final estimation of effect (Shorten and Shorten, 2013). 

Each of the steps involved in this meta-analysis will be addressed throughout this chapter. 

Meta-analysis of microbial community profiles is a good way to unify the findings from 

multitude of studies. However, it presents its own set of challenges including strong batch, 

inter-individual and inter-population differences; in addition to, statistical complications due 

to zero-inflation and compositionality. Methods for cohort- and batch-effect corrections for 

other ‘omic’ data are present but they cannot be directly applied to microbial data. There are 

several normalisation approaches that can be used except they do not account for batch-effect. 

Thus, Meta-analysis Methods with a Uniform Pipeline for Heterogeneity in microbiome studies 

(MMUPHin) was used in the analysis of the pre-processed colitis mouse model datasets (Ma 

et al., 2020).  

 

MMUPHin is an R package designed for joint normalisation, meta-analysis and population 

structure discovery using microbial community taxonomy and functional profiles. It does so 

by combining data transformation and linear modelling combinations for 16S data with fixed 

and random effect modelling. This tool has been tested on a set of 10 published 16S studies of 

the IBD gut microbiome in humans and identified a gradient in the gut microbiome indicative 

of increasing dysbiosis in a subset of samples. 
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2.3 Study Selection 

 

 

In identifying the microbial associations in murine UC using a meta-analysis approach, a 

systematic review of a list potential datasets was conducted. This review included primary 

studies exploring the gut microbiome in UC mouse models using 16S rRNA sequencing. In 

September 2020, the following PubMed search query was used to generate an unbiased 

catalogue of studies investigating the gut microbiome in colitis mouse models: 

 

((Microbiome[ALL] OR microbiota[ALL] OR microflora[ALL] OR microbial 

ecology[ALL] OR gut[ALL] OR fecal[ALL] OR feces[ALL]) AND ("Dextran Sodium 

Sulphate"[ALL] OR DSS[ALL] OR colitis[ALL]OR ulcerative[ALL] OR bowel 

disease[ALL] OR "IBD"[ALL] OR colitogenic[ALL] OR Inflammatory Bowel 

Disease[TIAB]) AND (Mouse[ALL] OR murine[ALL] OR mus musculus[ALL] OR 

"animal model"[ALL] OR mice[ALL]) AND (16S[ALL] OR metagenome[ALL] OR 

"ribosomal RNA"[ALL] OR sequencing[ALL] OR metagenomic[ALL])) NOT (review[PT] 

OR clinical trial[PT]) AND (colitis[TIAB]) 

 

The results were filtered to only include papers published between 2015-2020, which yielded 

336 potential studies for inclusion in the meta-analysis. The search results were downloaded 

from NCBI and divided equally among 3 lab members for the first part of the selection 

process. The papers were first filtered by relevance, where the titles and abstracts were 

scanned for keywords like “colitis”, “ulcerative colitis”, “microbiome”, and “mouse model”. 

Only the studies with publicly available 16S rRNA data were chosen. The remainder of these 

publications       was narrowed down further by eliminating studies that used less than 5 mice per 

cohort. The selection workflow described above resulted in a total of 34 datasets that were 
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eligible for further analysis. 

 

A rigorous approach to a systematic review is essential in picking datasets for meta-analysis, 

thus a checkpoint was added to the detailed protocol. Two studies that were known to meet 

the set criteria were used as controls, to test the accuracy of the study selection pipeline. 

Despite following a very meticulous selection and    elimination method, both control studies 

were absent from the final list of filtered papers. 

 

Investigations into the failed quality check concluded that NCBI’s algorithm searches for   

the term “16S” and its synonyms, provided in the search query, only within the title and 

abstract of a paper rather than throughout the whole text. Consequently, the term “16S” was 

removed from the new search query to access a list of papers that was a better suited for  

the aim of this meta-analysis study: 

 

((Microbiome[ALL] OR microbiota[ALL] OR microflora[ALL] OR microbial 

ecology[ALL] OR gut[ALL] OR fecal[ALL] OR feces[ALL]) AND ("Dextran Sodium 

Sulphate"[ALL] OR DSS[ALL] OR colitis[ALL]OR ulcerative[ALL] OR bowel 

disease[ALL] OR "IBD"[ALL] OR colitogenic[ALL] OR Inflammatory Bowel 

Disease[TIAB]) AND (Mouse[ALL] OR murine[ALL] OR mus musculus[ALL] OR "animal 

model"[ALL] OR mice[ALL])) NOT (review[PT] OR clinical trial[PT]) AND 

(colitis[TIAB])
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The new search query generated a set of 1,855 papers, which was too large to process. Thus, a journal 

impact factor (IF) filter of 7 was added to the selection criteria to produce a more manageable list of 

448 studies. The addition of this filter does not in any way suggest that studies published in journals 

with an IF of less than 7 are less favorable. In fact, about 75% of the studies produced by the search 

query were published in journals with an IF of less than 7, with the majority lying between 4 and 7. 

While applying such a filter is not ideal, it was simply a way to truncate the list of papers for manual 

screening considering the processing of 1,855 studies would not have been feasible within the 

timeframe of the project. The filters described above (also shown in figure 2.1B below) were applied 

during the manual screening I did on the 448 publications. 63 studies were selected post screening         

and were subjected to an additional filtering step which was the sequencing platform. Filtering for 

studies with sequences generated by Illumina platforms – the most used across the studies – would 

enable smoother downstream analysis. Incomplete and improperly annotated datasets were also 

excluded resulting in a final list of 49 selected studies. 

 

 
 

 

Figure 2.2: Schematic of meta-analysis design highlighting the features used for study selection (B) 

and the output of each screening step (A). (A) A total of potential 1855 studies were identified by the 

search query, of which 49 were selected. (B) The selection criteria used in the study selection pipeline to 

refine the search query results.  
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2.4 Data Retrieval  

 

Sequence data was downloaded directly from SRA, or ENA using the accession numbers listed in 

table 2.1 onto The University of Essex high-performance computing (HPC) cluster. All datasets 

were downloaded into their allocated directories and then checked for missing data files; missing 

data files were downloaded again. Data files from humans or other animals from the selected studies 

were filtered out. Metagenomic data as well as sequence files from non- Illumina sequencing 

platforms from the final list of papers were also excluded. 
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Table 2.1: Initial list of studies for meta-analysis inclusion with their sequence database source and 

accession numbers. 

Deposited Data Source Accession Number 

Surana et al. (2017) SRA PRJEB23029 

Desai et al. (2016) SRA PRJNA300261 

Llewellyn et al. (2018) SRA PRJNA403997 

Britton et al. (2019) SRA PRJNA436992 

Levy et al. (2015) SRA PRJEB11300 

Zhu et al. (2018) SRA PRJEB19192 

Leonardi et al. (2018) SRA SRP124782 & SRP124783 

Seregin et al. (2017) SRA SRP076233 

Contijoch et al. (2019) SRA PRJNA413199 

Seishima et al. (2019) SRA PRJNA511382 

Miranda et al. (2018) SRA PRJNA394874 

Toubai et al. (2019) SRA PRJNA491725 

Tran et al. (2019) SRA PRJEB35012 

Wheeler et al. (2016) SRA SRP073269 

Gerassy-Vainberg et al. (2018) SRA PRJNA353641 & PRJNA342751 

Sun et al. (2018) SRA PRJNA351834 

Burrello et al. (2018) SRA PRJNA494680 

Viennois et al. (2019) SRA PRJEB32441 

Mamantopoulos et al. (2017) SRA PRJNA390049 

Schulfer et al. (2018) SRA ERP104982 

Nagao-Kitamoto et al. (2020) SRA PRJNA594915 

Ihekweazu et al. (2019) SRA PRJNA454325 

Canesso et al. (2018) SRA PRJEB22143 

Schmidt et al. (2019) SRA SRP131846 

Spalinger et al. (2019) SRA PRJEB26758 

Moschen et al. (2016) SRA ERP014639 

Lemire et al. (2017) SRA PRJEB22561 

Roy et al. (2017) SRA SRP119278 

Sarashina-Kida et al. (2017) SRA PRJDB5950 

Miyoshi et al. (2017) SRA PRJNA376026 

Fachi et al. (2019) SRA PRJNA486872 

Kimura et al. (2020) DDBJ DRP004759 

Reber et al. (2016) SRA ERP015380 

Song et al. (2020) SRA PRJNA573477 

Viladomiu et al. (2017) SRA PRJNA349809 

Nakajima et al. (2018) SRA GSE115902 

Cornick et al. (2019) SRA PRJNA551025 

Powell et al. (2015) SRA PRJEB6328 

Ramakrishnan et al. (2019) SRA PRJNA531395 

Wang et al. (2020) SRA PRJNA596333 

Sun et al. (2019) SRA PRJNA559351 

Khan et al. (2020) SRA PRJNA616059 

Kim et al. (2020) SRA PRJNA592599 

Liu et al. (2020) SRA PRJNA601328 

Ma et al. (2020) SRA PRJNA574780 

Kazakevych et al. (2020) SRA SRP187112 

Qi et al. (2020) SRA 
PRJNA577541, PRJNA577385, 

PRJNA577387 & PRJNA577388 
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2.5  Metadata Curation 

 

For consistency, sample-specific metadata across the remaining 27 datasets were manually curated. 

The curated variables were as follows: 

1. Condition consisted of three criteria: “healthy”, “colitogenic” and “colitis”. “Healthy” referred 

to a microbiota that did not induce colitis or was not known to induce colitis. A “colitogenic” 

microbiota was one that induced colitis but was collected and sequenced prior development of 

colitis, as opposed to a “colitis” sample which was analysed after disease occurrence.    

2. Treatment varied across studies depending on the experimental design. It was generally either 

a different diet, an immunomodulatory agent, DSS, an antibiotic, or a microbiota transfer of 

some sort.  

3. Colitis mouse models included DSS, Il10-/-, Il6-/-, T cell transfer and modified microbiotas.  

4. Sex of mice was unavailable for most datasets included. 

5. Length of Treatment (in days) 

6. Intensity of the disease in mice, unlike humans, does not have a universal classification and 

was assigned to three categories (mild, intermediate, and severe) based on my interpretation of 

each study’s observations of the disease. All “healthy” mice under colitogenic treatment (e.g., 

DSS) were labelled as having “mild” disease, while “intermediate” disease was for those that 

had mild episodes of colitis. “Severe” was for mice experiencing severe colitis. 

7. DNA extraction kits by Qiagen (QIAmp DNA mini kit, QiaQuick columns, PowerLyzer soil 

kit), MO BIO (PowerFecal DNA isolation kit, PowerSoil isolation kit), MP Biomedicals 

(GNOME DNA isolation kit and FastDNA kit for soil), TIANGEN (TIANamp stool kit) and 

other custom protocols. 

8. Sequencing platforms were either Illumina’s MiSeq or HiSeq sequencers.  
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9. Library preparation was generally a custom protocol used in each study except for a few which 

used the Nextera Kit by Ilumina, Pippen Prep by Sage Sciences, an unspecified kit by Thermo 

Fisher Scientific.  

10. 16S region sequenced, when specified, was generally V4 and in a few studies V3-4, V4-5, V1-

2. 

11. Mouse strains used in the selected studies were mainly C57BL/6j and the remainders were 

C3H/HeNCr, BALB/c, GM Swiss Webster and CX3CR1DTR mice. 

12. Genotypes were generally WT except for some Il10-/-, Il18-/-, NLRP6-/-, NLRP6-/+, PTPN22 

619W, PTPN22-/-, muMY-/-, Tcrbd-/-, CD4-/-, CD8-/-, Rag2-/-, Sftpd-/-, GSDMD-/-,  ASC-/-, Reg4-/-

, BTMAFF, BVMAFF, CD11c.cre+/-, and CD11c.cre-/-.  
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2.6 Dataset Processing  

 

Two different dataset processing pipelines were tested on a single dataset from a study by Kazakevych 

et al. (2020). In this study, the authors described that the response to DSS is highly dependent on the 

composition of the microbiome – they realised – while investigating the role of Smarcad1 in murine 

DSS-induced colitis.  

 

2.6.1 OTU Method 

The first workflow that was tested was adapted from the one detailed by Dumbrell et al.(2016), which 

is based on the OTU clustering method. Pair-ended Illumina sequence read files were downloaded 

from SRA using fastq-dump and their allocated accession number (SRP187112). The read files were 

then split and counted to ensure there were no missing data files. Quality trimming was carried out 

using Sickle (Joshi et al., 2011). This quality filtering tool uses a “sliding window” method in 

determining the exact location on the 3’ end of the read to trim. Following that, SPAdes (Bankevich et 

al., 2012) was used for error correction and denoising. The BayesHammer (Nikolenko, Korobeynikov 

and Alekseyev, 2013) denoising algorithm is implemented and parallelised within SPAdes allowing 

for faster computation. Pair-end assembly was done using PANDAseq (Masella et al., 2012) which, 

like SPAdes, utilises several algorithms. The PEAR algorithm (Zhang et al., 2014) within PANDAseq 

was used for merging the quality filtered and error corrected reads. The sequences were then 

dereplicated and clustered using VSEARCH (Rognes et al., 2016). Chimera checks were carried out 

with UCHIME (Edgar et al., 2011). Finally, taxonomic ranks were assigned using the Ribosomal 

Database Project (RDP) Classifier 2.13 (Wang et al., 2007) with the training set no18. All the programs 

used were run using their default parameters (table 2). An OTU table and a taxonomy table are the 

main outputs of this pipeline which were used in downstream analysis described in section 2.6 of this 

chapter. 
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2.6.2 ASV Approach 

DADA2 (Divisive Amplicon Denoising Algorithm 2) is the most widely used algorithm to 

infer exact ASVs from amplicon sequencing data (Callahan et al., 2016). It is generally run   as 

an R script using its R package. This package was used for the pre-processing of the dataset 

(Kazakevych et al., 2020) and generated an ASV table for the downstream analysis to     follow. 

As described in the OTU approach, the data was downloaded from NCBI using the assigned 

accession number. The sequencing files were split and counted for missing files. Then the 

DADA2 pipeline was run on this data using R. First, the reads were filtered by quality using 

the “filterandTrim” function (table 2) while testing multiple filtering parameters to allow for 

3 and 4 expected errors per read instead of the default value ‘2’. Only 25 bases were trimmed 

from the ends of the reverse reads based on the quality plots. Then, the error rates were estimated 

from a random set of subsampled reads. This is generally done for each sequencing    _run since 

each run tends to have a different error profile. The reads were then deduplicated prior to 

sample inference. ASV inference is carried out using the quality scores associated with each 

of the unique sequences. The forward and reverse reads are then merged followed      by chimera 

detection. Taxonomy is then assigned to chimera-removed sequence variants using the same 

RDP Naïve Bayesian Classifier algorithm mentioned previously. The product of this pipeline 

is an ASV table (equivalent to an OTU table) and a taxonomy table. 

 

Three DADA2 pipeline flows were run on the Kazakevych et al. (2020) sequencing data 

using different quality score filters. The first filtered reads to a maximum of 2 expected 

errors per read (which is the default filter), while the second and third flows allowed for 3 

and 4 expected errors per read, respectively. All three flows removed the last 25 bases from 

the reverse reads and none from the forward reads. This cutoff was based off the quality 

plots generated at the start of the pipeline. 
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The remainder of the datasets were also processed following the DADA2 pipeline and the steps 

mentioned above. First, a quality check was run on each dataset using FASTQC. When present, 15 bp 

of primer sequences were trimmed off the reads. Reads were trimmed according to the quality of plots 

presented in the FASTQC reports. Several trimming parameters were tested for each of the datasets. 

Parameters which yielded the highest number of quality reads without compromising pair-ended read 

alignment and taxonomy assignment were chosen for the pre-processing pipeline for each of the 

datasets (table 2.2). In some cases, only the forward reads were used due to poor quality of reverse 

reads, failed read merging and no taxonomy assignment. The datasets that failed to assign taxonomy 

were eliminated from the list (highlighted in table 3.2).  

 

 

Table 2.2: Description of arguments used to set important parameters in both data pre-processing 

pipelines. 

Tool/Function Parameter Description 
Additional 

Comments 

OTU Clustering 

Sickle 

pe Runs the pair-end mode   

-f, -r Specifies the forward and reverse read files  

-o Specifies the output files and their location  

-t Sets the FASTQ quality format It was set to 'sanger' 

SPAdes 

--only-error- 

correction 
Performs error correction only   

-1 Specifies file with forward reads  

-2 Specifies file with reverse reads  

-t Number of threads to be used 8 (default is 16) 

-m Set memory limit 32Gb 

-f, -r Specifies the forward and reverse read files   

PANDAseq 

-A Sets the algorithm to use PEAR was used 

-B Allows the sequence to be missing a barcode/tag  

-w Writes all assembled sequences in FASTA format   

vsearch 

--

derep_fulllength 
Merges identical sequences during dereplication   

--sizeout 
Adds abundance annotations to the output fasta file in 

dereplication step 
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--minseqlength Discards sequences shorter than the value specified Set at 50 

--fasta_width Sets values for fasta file wrapping 
Value = 0 which 

eliminates wrapping 

--minuniquesize 
Discards sequences with a post- dereplication 

abundance of specified value 

Set at 2 (i.e., Discard 

OTUs with less than 

2 reads) 

--relabel Relabels output files  

--

uchime_denovo 

Detects chimeras present in fasta files without a 

reference 
 

--nonchimeras 
Specifies the name of the output non- chimeric file in 

fasta-format 
 

--cluster_size 
Clusterizes the fasta sequences in specified file sorted 

by decreasing sequence abundance 
 

--id Clustering identity threshold 

set at 0.97 (i.e., 

Sequences with 97% 

similarity) 

--centroids 
Creates an output file with centroid sequences (i.e., the 

first sequence of each cluster) 
 

-- 

usearch_global 

Compares the reference sequences with the merged 

read files, using global pairwise alignment 
 

--db 
Reads the reference sequences annotated with 

taxonomy 
 

--threads Number of computation threads to be used 40 

 

 

DADA2 

filterAndTrim 

tuncLen Truncates reads after set value. 
F=250 (no trimming) R= 225 

based on the quality plots 

maxN Allows a set number of ambiguous bases Default value = 0 

maxEE 
Discards reads with higher than set value of 

"expected errors" after filtering 
Value = 2 

trunQ 
Truncates reads that have a quality score 

less than or equal to set value 
Default value = 2 

removeBimeraDenovo method 
Sets the method by which chimeras are 

removed 

Default method was used, 

"consensus". The samples are 

independently checked for 

chimeras instead of being 

pooled. Each sequence is 

checked for variants. 
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2.7 Taxonomic Profiling and Microbial Community Analysis 

 

2.7.1 Microbiome Analysis 

Raw data in the form of an ASV table, a taxonomy table and a FASTA file were used to, first, 

generate a phylogenetic tree in R. The sequences were aligned first using the R package 

DECIPHER (Wright, 2020) before a phylogenetic tree was constructed using ape and phangorn 

v. 2.11.1 (Paradis & Schliep, 2019; Schliep et al., 2017). For easier data management, the ASV 

table, taxonomy table, FASTA file, phylogenetic tree and sample data file were all merged into 

a “phyloseq object” using Phyloseq v1.38 (McMurdie & Holmes, 2013). Samples with less 

than 7000 reads were filtered out. The data was rarefied to even depth with replacement and 

taxa with less than 5% prevalence across samples were omitted to avoid false positives. 

Wilcoxon signed-rank tests and PERMANOVA tests were used to test for statistical 

significance. Ordination of the data points was done using the beta diversity measure Bray-

Curtis and visualised in a PCoA plot. DESeq2 v1.32 (Love, Huber & Anders, 2014) was used 

for differential abundance testing with a p value cut-off of 0.01 and multiple testing correction 

using the false discovery rate (FDR) method. While DESeq2 was originally developed to test 

for differential gene expression in RNA sequencing analysis, the tool has been adapted for 16S 

analysis. The differentially abundant taxa detected by DESeq2 were visualised in the form of 

a heatmap using the package ComplexHeatmaps (Gu, 2022). 

 

2.7.2 MMUPHin 

MMUPHin requires two input files: feature-by-sample matrix and the metadata data frame. 

The feature-by-sample files is created by merging the taxonomy and feature abundance tables 

generated by the DADA2 pipeline. Surana and Kasper (2017), Leonardi et al. (2018), and 

Seishima et al. (2019) are the three studies used for the testing and optimization of the 

MMUPHin pipeline. Post metadata curation, the abundance tables for each study was merged 
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into one table then re-assigned taxonomy to avoid repeated ASVs. The feature abundance and 

taxonomic tables were merged into the feature-by-sample table and were run on the MMUPHin 

pipeline along with the metadata file which allowed for joint normalisation as well as batch 

and study effect correction. Once the pipeline was optimised, the test was repeated multiple 

times including all 27 datasets, then 14 datasets based on the DSS mouse model and two more 

follow up runs building on the latter. 

 

For the meta-analysis, all 27 ASV and taxonomy tables were combined into one feature 

abundance table. Along with the meta-data, the feature abundance table was used as in input 

for MMUPHin which allowed for joint normalisation as well as batch and study effect 

correction. This was repeated several times for different combinations of studies using the DSS 

mouse model. A multivariate analysis of variance (MANOVA) test was run before and after 

MMUPHin to determine the efficacy of the algorithm in reducing batch effect.  

 

2.7.3 GitHub Repository  

All the scripts used in the pipelines described above are available in my GitHub repository 

using this link:  

https://github.com/SalmaES/meta-analysis-microbiome-vs-uc 

 

 

 

 

 

https://github.com/SalmaES/meta-analysis-microbiome-vs-uc


Results 69 

 

Chapter 3: Results 

 
3.1 Chapter Overview: 

 
The aim of this chapter is to list and discuss the results of the explained methods in the 

previous chapter. Firstly, the outcome of the pre-processing steps including study selection, 

decision behind the chosen pipeline, and effects of used parameters throughout pre-

processing of sequencing data is detailed. Then results from taxonomic analyses is discussed, 

starting with the meta-analysis in 3 different runs as well as the justification behind their 

formats, followed by the individual datasets. 

 
3.2 Study Selection 

 
 

As detailed in the methods chapter, a search query designed to generate a list of papers studying 

gut microbial associations in murine ulcerative colitis (UC) produced a set of 1,855 papers. 

Since this number of studies is too large to manually process single-handedly, an additional 

selection criterion of a journal impact factor filter of 7 was added to shortlist datasets for this 

meta-analysis. This step reduced the results to 448 papers which were then manually screened, 

using the filters described in the methods chapter. 63 studies were selected post screening. An 

additional filter for sequencing platforms was implemented for smoother downstream analysis. 

Incomplete and improperly annotated datasets were excluded resulting in a final list of 47 

selected studies. 
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Figure 3.1: Study breakdown by UC mouse model in bar plot format, showing that DSS is the 

most used method to induce colitis in mice in our dataset consortium. 

 

3.3 Dataset Processing 

 
 

The study by Kazakevych et al. (2020) was used to test the differences between outputs of two 

16S rRNA sequencing analysis workflows of different methodologies, the OTU method using 

a pipeline of multiple algorithms (named Dumbrell pipeline hereafter), and ASV approach 

using DADA2 v1.20.0 (Callahan et al., 2016). This study investigated the role of Smarcad1 in 

murine DSS-induced colitis and the authors described how DSS response is highly reliant on 

the microbiome. The efficiency of each pipeline was evaluated by comparing read tracking 

information and feature counts (table 3.1). 15% of the sequencing reads were filtered out in the 

trimming and quality filtering steps using the default DADA2 pipeline while under 1% of the 

reads were filtered out in the same steps using the OTU method (table 3.1).  The filtering 

parameters were relaxed to allow for more than 2 expected errors per reads to avoid 

unnecessary loss of sequences. Values for expected errors per read were adjusted to 3 then 4, 

which only resulted in a 2 percent increase in both the number of reads after quality trimming 

and retained reads. Given that the increase in read count after relaxing the quality trimming 
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filters was minimal, the default filtering values were used (table 3.1). Almost half the reads 

were lost after pair-end assembly in the OTU pipeline. It should be noted that reads are merged 

further down the ASV workflow, post quality trimming, error correction and deduplication. On 

the other hand, pair-ended reads are merged right after error correction before deduplication in 

the OTU pipeline. There is almost a 3-fold increase in chimera detection in the DADA2 method 

when compared to UCHIME (Edgar et al., 2011). Overall, there was about 17% more reads 

retained when the DADA2 package was used. Yet, that increase in reads did not translate to 

feature counts. There were 512 more OTUs generated than there were ASVs. 

 

Feature count is not an ideal measure to compare the efficiency of both pipelines as both 

features are of different “units” and are generated in two different methods.   Therefore, 

taxonomic profiling was done to determine the biological significance of the discrepancies 

between both pipelines.  It showed no major difference in taxonomic abundance across both 

pipelines, except for the phylum Bacteroidetes and unclassified taxa (figure 3.2). 

 

 
Table 3.1: Pipeline optimisation and comparison. Read tracking information and feature output 

generated by ASV and OTU pipelines. DADA2 (default) used the default parameters during quality 

filtering. DADA2 (III) allowed for 3 errors per read during quality filtering while DADA2 (IV) 

permitted 4 errors. 

 

Method Feature 
Total 

Reads 

Reads After 

Trimming 

Merged 

Reads 

Chimeric 

Sequences 

Retained 

Reads 

Feature 

Count 

DADA2 

(default) 
ASV 

4641280 

3980618 (85%) 
3529290 

(76%) 
658190 (14.2%) 

2871100 

(61.7%) 
1410 

DADA2 (III) ASV 4075940 (88%) 
3962378 

(77%) 
1716464 (37%) 

2924816 

(63%) 
1409 

DADA2 (IV) ASV 4082246 (88%) 
3596230 

(77.5%) 
1712672 (37%) 

2928608 

(63%) 
1409 

OTU 

Clustering 
OTU 4614004 (99.4%) 

2294836 

(49.9%) 
224169 (4.8%) 

2070667 

(44.6%) 
1922 
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Figure 3.2: Taxonomic profiling of raw feature counts from both ASV and OTU pipelines of the 

Kazakevych et al. (2020) dataset. 

 

This can probably be attributed to the presence of erroneous OTUs as well as less specific taxonomic 

assignment due to the relaxed nature of the clustering method. Further elaboration of the similarity 

among outputs of both pipelines is highlighted in figure 3.3. Log10 transformation of relative 

abundance of the 20 most prevalent taxa is almost identical except for a few taxa between both 

pipelines (distinguished with an orange circle in figure 3.3). The genus Mucispirillum was only present 

in the output of the ASV pipeline. However, a few genera absent in the OTU pipeline output, like 

Lawsonibacter, Flintibacter, Clostridium_XIVa and Oscillibacter, can be tied to less specific 
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classification of OTUs like “unclassified_Clostridiales” (also known as Eubacteriales) and 

Odoribacter to “unclassified_Bacteroidales”. Kineothrix and Acetifactor from DADA2 can also be 

linked to “unclassified_Lachnospiraceae” while Prevotella is potentially associated with 

“unclassified_Prevotellaceae” from the OTU output. Other unclassified taxa from the OTU pipeline, 

like Ruminococcaceae and Muribaculaceae, could be related to more specific taxa from the ASV 

pipeline, like the genera Faecalibaculum, Muribaculum and Paramuribaculum. In summary, there is 

no significant difference between both pipelines. The DADA2 pipeline with its default parameters was 

chosen for its stringency, specificity, and flexibility in handling more than one dataset, which is ideal 

for this meta-analysis. 

 

The remaining 47 datasets were processed following the default DADA2 pipeline mentioned above.  

8 datasets that failed to assign taxonomy were discarded from downstream analysis (table 3.2). 13 

more studies were excluded due to ambiguous metadata, resulting in 27 final datasets for meta-analysis 

inclusion (table 3.2). These 27 remaining datasets were narrowed down to 13 DSS datasets (elaborated 

in section 3.4) and processed using DADA2 (table 3.3) for meta-analysis as well as individual 

taxonomic profiling. 
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Figure 3.3: Top 20 features (OTU/ASV) from Kazakevych et al. (2020) study. Heat map of log 10 

transformation of the relative abundance of the 20 most prevalent taxa among the 3 groups (D = donor group, 

E = enriched microbiota group, NE = non-enriched microbiota group) generated by the Dumbrell (A) and 

DADA2 (B) pipelines at the genus level, with a prevalence threshold of 10% and abundance threshold of 1%. 

The orange circle marks taxa that do not match exactly in both pipelines. 

 

Table 3.2: Summary of the pre-processed datasets, trimming parameters, read tracking, feature counts 

and taxonomy assignment.  

Dataset 
Library 

Layout 

Trimming 

Parameters 
Total Reads 

Retained 

Reads 

Number of 

ASVs 

Assigned 

Taxonomy 

Surana et al. (2017) Single F=200 4092581 80% 1311 Yes 

Desai et al. (2016) Paired F=225; R=200 32044719 80% 2662 Yes 

Llewellyn et al. (2018) Single F=235 2699674 60% 579 Yes 

Britton et al. (2019) Single F=235 6125271 66% 708 Yes 

Levy et al. (2015) Paired F=250; R=225 38598798 0 N/A N/A 

Zhu et al. (2018) Paired R=200 954833 92% 737 Yes 

Leonardi et al. (2018) Paired F=175 3630819 58% 1809 Yes 

Schroeder et al. (2018) Paired F=215; R=190 4403799 74% 1491 Yes 

Seregin et al. (2017) Paired F=225; R=150 2939299 79% 1037 Yes 
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Contijoch et al. (2019) Single F=235 63634961 68% 7044 Yes 

Seishima et al. (2019) Paired F=225 5715167 79% 1717 Yes 

Miranda et al. (2018) Paired F=225 3106378 95% 1646 No 

Toubai et al. (2019) Paired F=225; R=150 1599481 79% 1356 Yes 

Tran et al. (2019) Single F=250 1296322 93% 1943 Yes 

Wheeler et al. (2016) Paired F=250 5544742 68% 2099 No 

Gerassy-Vainberg et al. 

(2018) 
Single F=200 5142274 83% 3093 Yes 

Sun et al. (2018) Paired F=175 8115438 89% 375 Yes 

Burrello et al. (2018) Paired 170_170 7693941 62% 1892 Yes 

Viennois et al. (2019) Single F=250 1655719 95% 1389 Yes 

Mamantopoulos et al. 

(2017) 
Paired F=200 24730088 88% 10575 Yes 

Schulfer et al. (2018) Single F=135 24988550 94% 1953 Yes 

Nagao-Kitamoto et al. 

(2020) 
Paired F=225; R=200 528551 78% 256 Yes 

Ihekweazu et al. (2019) Paired 235_165 5964106 71% 1623 Yes 

Canesso et al. (2018) Single F=250 443968 84% 668 Yes 

Schmidt et al. (2019) Paired F=215 4943256 89% 1215 Yes 

Spalinger et al. (2019) Paired F=220; R=220 18037481 72% 6318 Yes 

Moschen et al. (2016) Paired F=235 4069119 70% 2747 Yes 

Lemire et al. (2017) Paired F=250; R=225 14415841 0 N/A N/A 

Roy et al. (2017) Paired F=225 14595515 73% 8713 Yes 

Sarashina-Kida et al. 

(2017) 
Paired F=215 1408356 81% 1981 Yes 

Miyoshi et al. (2017) Paired F=250; R=225 13699727 0 N/A N/A 

Fachi et al. (2019) Paired F=185 6477281 87% 3012 Yes 

Kimura et al. (2020) Paired F=240; R=190 1772226 71% 996 Yes 

Reber et al. (2016) Single F=100 35605122 77% 1788 Yes 

Song et al. (2020) Paired F=200; R=150 3618167 82% 446 Yes 

Viladomiu et al. (2017) Paired F=200; R=150 3855419 79% 1765 Yes 

Nakajima et al. (2018) Paired F=175 11704644 83% 2941 Yes 

Cornick et al. (2019) Paired F=216; R=160 3163553 90% 1586 No 

Powell et al. (2015) Paired F=175; R=200 736302 73% 748 Yes 

Ramakrishnan et al. 

(2019) 
Paired F=225; R=160 12360516 81% 3228 Yes 

Wang et al. (2020) Paired F=200; R=200 12457760 0 N/A N/A 

Sun et al. (2019) Single F=180 631274 94% 2665 No 

Khan et al. (2020) Paired F=200 3471149 91% 1675 Yes 

Kim et al. (2020) Paired F=225 1125137 83% 1762 Yes 

Liu et al. (2020) Paired F=210 8275698 84% 927 Yes 

Ma et al. (2020) Paired F=260 705367 87% 971 Yes 

Kazakevych et al. (2020) Paired F=250; R=225 4641280 62% 1410 Yes 

Qi et al. (2020) Paired F=200 3461357 73% 3023 Yes 
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Table 3.3: Summary of DADA2 processed DSS datasets and meta-analysis of DSS datasets, grouping of 

DSS datasets which clustered based on “Condition” (group A), and grouping of DSS datasets that either 

clustered based on “Condition” or other variables (group B). 

Study 

Number 

of 

ASVs 

Number 

of 

Samples 

ASVs 

> 7000 

reads 

Samples 

> 7000 

reads 

ASVs 

post 

Rarefication 

Samples 

post 

Rarefication 

ASVs 

post 

Prevalence 

Filtering 

Samples 

post 

Prevalence 

Filtering 

Surana & Kasper 

(2017) 
1311 38 1311 38 1231 38 735 38 

Tran et al. (2019) 1943 56 1943 56 1665 54 665 54 

Spalinger et al. 

(2019) 
6318 292 6318 287 5788 287 1377 287 

Roy et al. (2017) 8713 448 8713 443 6950 443 528 443 

Song et al. (2020) 446 25 446 25 445 25 395 25 

Nakajima et al. 

(2018) 
2941 85 2941 85 2000 85 643 85 

Kazakevych et al. 

(2020) 
1410 43 1410 43 1394 43 433 43 

Qi et al. (2020) 1610 38 1610 38 1588 38 1035 38 

Mamantopoulos et 

al. (2017) 
10575 22 10575 22 3280 22 1047 22 

Schmidt et al. 

(2019) 
1215 32 1215 30 931 30 515 30 

Kimura et al. 

(2020) 
996 12 996 12 977 12 977 12 

Khan et al. (2020) 1675 49 1675 49 1671 49 1158 49 

Ma et al. (2020) 971 16 971 16 964 16 964 16 

MMUPHin (all 

DSS) 
42881 1156 42881 1142 712 1142 156 1142 

MMUPHin 

(group A) 
23278 1023 23278 1011 519 1011 147 1011 

MMUPHin 

(group B) 
3367 101 3367 101 353 101 183 101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 77 

3.4 Meta-Analysis on DSS Mouse Model Studies 

 
Meta-analysis Methods with a Uniform Pipeline for Heterogeneity in microbiome studies (MMUPHin) 

is an R package developed by the Huttenhower lab (Ma et al., 2020) and was used in this meta-analysis 

of microbial profiles from murine colitis datasets. The approach implemented by this package 

addresses the challenges faced when performing meta-analysis (or even regular analysis) on 

microbiome data such as strong batch effect, massive inter- and intra-population variations as well as 

zero-inflated compositional values.  

 

3.4.1 Batch Effect Adjustment and Meta-Analysis on All Datasets 

 
A total of 4,396 samples were processed for joint normalisation and batch effect adjustment using the 

R package MMUPHin. This package accounts for the quantitative challenges faced when analysing 

microbiome data, like zero inflation, strong batch effects and great variation both within and across 

samples. The substantial variability in experimental design across the studies contributed to 

inconsistent patterns across microbial profiles, even after batch effect adjustment. Permutation testing 

showed that the batch effect from studies accounts for about 44% of microbial profile variability. Only 

16% of the batch effect from studies was corrected using MMUPHin. The study effect was too great 

which made it difficult to draw a link between colitis and gut microbial composition, as demonstrated 

in the PCoA plots in figure 3.4A. Clustering samples based on colitis model, revealed that gut microbial 

profiles were highly influenced by the murine colitis model used in each study (figure 3.4B). Thus, in 

an attempt to reduce complexity of the highly variable data, samples employing one colitis model were 

selected for further analysis. Since the DSS mouse model is one of the most used models to study UC 

and around half of the studies in this meta-analysis were based on this model, downstream analysis 

focuses on those 14 datasets.   
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Figure 3.4: Visualisation of beta diversity (Bray-Curtis dissimilarity) across 4,396 microbial profiles 

from all datasets using PCoA plots coloured based on condition (A) and colitis model (B) before (left) 

and after batch-correction (right) shows high variability across samples even after adjusting for batch 

effect using MMUPHin.  

 

 

3.4.2 Meta-Analysis on DSS Datasets 

 
 

After changing the “Condition” variable in the metadata to reflect the stage of colitis more accurately 

(detailed in methods chapter) (“healthy”, “colitogenic”, “colitis), the study by Burello et al. was 

excluded from the analysis as it did not meet these criteria. Briefly, “healthy” samples were taken from 

A 

B 
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mice that did not experience colitis symptoms, “colitogenic” ones were sampled from mice before 

developing colitis while “colitis” samples were sequenced from mice experiencing colitis. 1,395 

samples were corrected for batch effect and normalised using MMUPHin. Multivariate Analysis of 

Variance (MANOVA) was used to assess the effect of batch effect adjustment calculated by the adonis 

function in the R package vegan (Okansen et al., 2020).   The test demonstrated that MMUPHin was 

able to reduce the batch effect by study variability from 35% to 25%. Despite the large effect of study 

on microbiome composition, pairwise comparison using the Wilcoxon Rank Sum test indicated 

significant differences between “colitogenic” and “healthy” microbiotas, as well as “colitogenic” and 

“colitis” microbiotas, and “healthy” and “colitis” microbiotas (p < 0.001). This is demonstrated in the 

ordination plots from figure 3.5, where samples from each condition mostly aggregate, rather than 

form separate clusters, using raw data and batch adjusted data with and without outlier samples (p < 

0.001, PERMANOVA).  

 

Further analysis of the data showed differentially abundant taxa that are associated with UC, whether 

it being its onset, presence, or absence. DESeq2 was used to identify differentially abundant taxa that 

are of statistical significance between different condition groups. DESeq2 was chosen over LEfSe, due 

to the latter’s reports of high false discovery rates (Nearing et al., 2022). Members of the order 

Erysipelotrichales, including Turicibacter, Clostridium cocleatum (now reclassified as Thomasclavelia 

cocleata), and Faecalibaculum, were more abundant in microbiotas from colitic mice. 

Erysipelotrichales species are known to be highly coated with IgA and have been associated with 

severe colitis in DSS-induced mice (Palm et al., 2014). Bacterial genera from Clostridiales (also known 

as Eubacteriales) and Bacteroidales were more prominent in inflammatory states (colitis and 

colitogenic conditions), except for Ruminoccus and Acetobacteroides, respectively, which were more 

abundant in healthy mice. Robinsoniella peoriensis was particularly enriched (21 log2 fold change) in 

the colitogenic group. This taxon has been previously linked with gut inflammation in IL10-/- mice 
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(Wohlgemuth et al., 2011) and is known to be a confounder in C. difficile infections (Roberts et al., 

2016). Other taxa, including Bifidobacteria, Rodentibacter, Akkermansia, Escherichia/Shigella spp., 

Helicobacter typhlonius and Lactobacillus intestinalis, were more abundant in non-healthy gut 

microbiotas and have been previously linked with IBD, inflammation and tumour development (Wang 

et al., 2014; Dingemanse et al., 2015; Chai et al., 2017; Fornefetti et al., 2018; Presti et al., 2019; 

Jochum et al., 2022). Healthy mice had higher proportions of the less described Acetobacteroides and 

Lachnospiraceae members that are known for their paradoxical roles in the human gut (Vacca et al., 

2020). Eggerthella lenta was vastly enriched (26 log2 fold change) in healthy mice despite its 

described role in Th17 activation in murine colitis (Alexander et al., 2021). Overall, there was a 

decrease in Firmicutes and an increase in Bacteroidetes species (figure 3.6).  
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Figure 3.5: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from all 

DSS datasets using PCoA plots coloured based on condition (left) and study (right) before (A) and after 

batch-correction with (B) and without (C) samples of less than 7000 reads using MMUPHin shows 

differences in gut microbial profiles across different condition groups. 

 

 

 

 

 
Figure 3.6: Bar plot demonstration of the mean of total abundance of each phylum present in the 

healthy, colitogenic an colitis groups, showing a reduction in Firmicutes/Bacteroidetes (F/B) ratio in the 

colitogenic group and an increase in F/B ratio in the colitis group when compared to the healthy group. 
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Figure 3.7: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa (at or above a  2 log2 fold change) at the 

lowest taxonomic classification from all samples in the 14 DSS datasets, grouped by condition (blue = healthy, yellow = colitogenic, orange = colitis) 

and identified by DESeq2 (only FDR-adjusted results with q > 0.01 are shown).   
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3.4.3 Meta-Analysis on Different Groupings of DSS Datasets 

 
In attempt to disentangle the datasets and simplify the results further, the meta-analysis was repeated 

using two groups of studies. The first group (A) included DSS studies from which samples clustered 

based on condition of the mouse (i.e., “healthy”, “colitogenic”, “colitis”) while the second group (B) 

included both samples from group A and additional samples which clustered based on other variables 

like treatment, genotype, and length of treatment (table 3.4). Clustering patterns of samples were 

identified by analysing each study separately (results in next section). MANOVA testing indicated a 

3% and a 4% reduction in batch effect post adjustment in group A and B, respectively. Ordination of 

the samples from both groups (figures 3.8 & 3.9) using Bray-Curtis Dissimilarity as a distance metric 

shows that there is a statistically significant condition-based grouping (p < 0.001).  Furthermore, a 

pairwise comparison indicated considerable differences between gut microbial communities of 

healthy, colitogenic and colitic mice, with the exception for healthy vs colitis in group A (table 3.5). 

 

Table 3.4: Grouping of studies used in meta-analysis. Group A included samples which clustered based 

on condition while group B samples formed clusters using other variables. 

Group A Group B 

Surana & Kasper (2017) Surana & Kasper (2017) 

Song et al. (2020) Song et al. (2020) 

Qi et al. (2020) Qi et al. (2020) 

 Tran et al. (2019) 

 Spalinger et al. (2019) 

 Roy et al. (2017) 

 Nakajima et al. (2018) 

  Kazakevych et al. (2020) 

 

Table 3.5: P values for Wilcoxon Rank Sum tests on group A and group B of DSS datasets. 

Group A 
 Colitis Colitogenic 

Colitogenic 5.66E-05 NA 

Healthy 0.71655166 0.0001344 

Group B 
 Colitis Colitogenic 

Colitogenic 1.36E-07 NA 

Healthy 2.47E-21 7.73E-07 
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Figure 3.8: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from 

group A using PCoA plots coloured based on condition (left) and study (right). Repeated for pre (A) 

and post batch-correction with (B) and without (C) samples of less than 7000 reads using MMUPHin 

shows differences in gut microbial profiles across different condition groups. 

Study Condition 

A 

B 

C 
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Figure 3.9: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from 

group B using PCoA plots coloured based on condition (left) and study (right). Repeated for pre (A) 

and post batch-correction with (B) and without (C) outlier samples of less than 7000 reads using 

MMUPHin shows differences in gut microbial profiles across different condition groups. 

Study Condition 

A 

C 

B 
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Figure 3.10: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa (at or above a  2 log2 fold change) at the 

lowest taxonomic classification from all group A samples, grouped by condition (blue = healthy, yellow = colitogenic, orange = colitis) and identified 

by DESeq2 (only FDR-adjusted results with q > 0.01 are shown).   
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Figure 3.11: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa (at or above a  2 log2 fold change) at the 

lowest taxonomic classification from all group B samples, grouped by condition (blue = healthy, yellow = colitogenic, orange = colitis) and identified 

by DESeq2 (only FDR-adjusted results with q > 0.01 are shown).  
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Differential analysis on both groups A and B highlighted numerous taxa prevalent in each of the 

condition groups. Some differentially abundant taxa were shared across both dataset groups in 

colitogenic and colitic mice, like Peptrostreptococcaceae, Escherichia/Shigella spp., Mailhella and 

Mucispirillum, which are known to be associated with colitis and even described as pathobionts (Berry 

et al., 2015; Wan et al., 2022; Sun et al., 2023).  Enrichment of the family Peptrostreptococcaceae in 

non-healthy groups is common with the analysis described in section 3.2 and has been reported in UC 

patients, increased especially in those with a C. difficile infection (Wan et al., 2022).  This observation 

coincides with the increased abundance of Clostridium spp. in colitis and colitogenic groups across 

the 3 different meta-analysis runs.  Lactobacillales, Erysipelotrichales, and Bacteroidales orders were 

also enriched in non-healthy mice as well as Lachnospiraceae in healthy ones, from both groups A and 

B.  Candidatus Saccharibacteria, described in association with murine colitis by Kazakevych et al. 

(2020), was more abundant in mice with colitis from group B. Inversely, this phylum was enriched in 

healthy mice from group A. This is probably due to differences in abundance of Saccharibacteria in 

the studies where this taxon was flagged as differentially abundant. Overall, differential abundance 

analyses showed that the microbial profiles of the 3 condition groups from all DSS datasets and group 

B were very similar compared to those from group A.



Results 90 

 

 

3.5 Taxonomic Profiling and Microbial Community Analysis 

 

 
This section discusses the results of community (beta diversity) and differential abundance analyses 

on each of the studies employing the DSS model. These datasets were individually analysed to: 

1) identify whether the same differences among microbiotas of mice with different health conditions 

detected in the meta-analysis were reflected in each dataset. 

2) find different ways to group the data, in order to simplify the results and deduce clearer 

associations with microbial members and health status. 

 

3.5.1 Surana & Kasper 

 
The authors of this study (Surana & Kasper, 2017) investigated the link between microbial composition 

and phenotypic variations in DSS-induced colitis. They used gnotobiotic mice colonised with either a 

mouse microbiota (MMb) or a human microbiota (HMb), that were previously generated and 

characterised in-house, in multiple co-housing experiments to triangulate microbial-phenotypic 

observations and identify a causative rather than implicative relationship between commensals and 

disease pathogenesis.   Surana & Kasper (2017) demonstrated that the bacterial family 

Lachnospiraceae protects against colitis-associated death.  

 

Following the same analysis workflow from the previous section, a pairwise comparison using 

Wilcoxon Rank Sum test showed a significant difference between microbiotas of colitogenic and 

colitic mice (p = 0.04) as well as healthy and colitogenic mice (p = 0.01) but no significant distinction 

between microbiotas from healthy and mice with colitis (p = 0.7). Ordination of a beta diversity 

measure (Bray-Curtis dissimilarity) shows microbiotas from healthy mice clustering away from those 

of colitic and colitogenic mice. PERMANOVA test confirmed that there is a significant difference in 
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microbial composition between the groups and that 41% of the variance in distances between samples 

can be attributed to the condition of the mice. Differential abundance analysis using DESeq2 

highlighted associations between bacterial taxa and health condition (figure 3.13). Two ASVs assigned 

to the genus Ligilactobacillus were more enriched in healthy murine guts from this study. Species from 

this genus, particularly L. salivarius, play a role in maintaining the intestinal barrier as well as curbing 

inflammation via reduction of inflammatory cytokines and increase in anti-inflammatory cytokines in 

both in vitro and in vivo models (Yao et al., 2021). Paramuribaculum was absent from healthy guts 

and present in the colitis group. While the genus itself and its role in IBD is poorly understood, the 

family it belongs to Muribaculaceae has been both positively and negatively linked to colitis (Shang 

et al. 2021). Another two less investigated taxa, Intestinimonas and Duncaniella, were found to be 

differentially and significantly abundant in both colitogenic and colitis groups. Both have been 

previously associated with colitis, the former with severe colitis symptoms and the latter as a protectant 

against DSS-induced injury in mice (Webb et al., 2018; Chang et al., 2021). Similar to the meta-

analysis, two different ASVs assigned to the family Lachnospiraceae have been tied to either the 

healthy or both disease groups. This probably due to the large number of genera ranked under this 

family with various functions, some of which can be beneficial and others harmful to the host (Vacca 

et al., 2020).  Like in group A, Enterococcus is also present in disease groups and depleted in the 

healthy group, which has been implicated in promoting colonic inflammation (Seishima et al., 2019).  
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Figure 3.12: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from 

Surana & Kasper (2017) using PCoA plots coloured based on condition (healthy = blue, colitogenic = 

green, colitis = red) shows differences in microbial populations across condition groups.  

 

 
Figure 3.13: Heatmap presenting the abundance (log10 transformed) of the differentially abundant 

taxa at the lowest taxonomic classification from Surana & Kasper (2017) samples, grouped by condition 

(blue = healthy, yellow = colitogenic, orange = colitis) and identified by DESeq2 (only FDR-adjusted 

results with q > 0.01 are shown).   

 

3.5.2 Tran et al. 
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This study (Tran et al., 2019) attempted to develop a vaccine against recurrent inflammation of the 

gut using purified flagellin injections. These injections protected against IL-10 deficiency-induced 

colitis but not DSS-induced colitis in mice. The authors ran the sequencing experiments of the 

flagellin-immunised Il10-/- mice pre-DSS exposure at different timepoints during weekly flagellin 

treatment. 

 

 
Figure 3.14: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from 

Tran et al. (2019) using PCoA plots coloured based on length of treatment (56 days = blue, 14 days = 

green, 0 days = red) shows differences in microbial composition at the various timepoints. 

 

Based on the established taxonomic pipeline, in this investigation, the condition of the mouse did not 

play a role in gut microbial composition (p = 0.6, Wilcoxon’s test) rather the length of treatment 

(time post flagellin injections) is what shaped the microbiome (p < 0.001, Wilcoxon’s test). The 

samples from different timepoints during treatment distinctly cluster as illustrated in figure 3.14. 

DESeq2 analysis showed a clear-cut distinction between microbiotas at different treatment 

timepoints when compared to condition (figure 3.15). A pairwise comparison between samples from 

day 0 and day 56 showed that despite there being significant differences in the taxa present across 
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both groups, most of them belonged to Bacteroidales or Clostridia. Most of these taxa, like Alistipes, 

Phocaeicola, Clostridium XIVa, Duncaniella and Limosillactobacillus have been previously 

associated with positive colitis outcomes or healthy status (Parker et al. 2020; Sun et al., 2022; Van 

den Abbeele et al., 2012; Chang et al., 2021; Liu et al. 2022). The inefficacy of the flagellin 

immunisation in DSS treated mice could be due to the abundance of Bacteroides acidifaciens at the 

56-day timepoint. Despite it being a SCFA producer, this species is a mucin degrader and might have 

amplified the effects of DSS on the gut barrier (Busbee et al., 2020). 

 

 
 

Figure 3.15: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa 

(at or above a ± 7 log2 fold change) at the lowest taxonomic classification from Tran et al. (2019) samples, 

grouped by condition (blue = healthy, yellow = colitogenic, orange = colitis) and length of treatment (sky 

blue = 0 days, lilac = 14 days, pink = 56 days). Plotted taxa were identified by a pairwise comparison of 

samples from timepoints 0 and 56 using DESeq2 (only FDR-adjusted results with q > 0.01 are shown).   
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3.5.3 Spalinger et al. 

 
Spalinger et al. (2019) were investigating the role of protein tyrosine phosphatase non-receptor type 

22 (PTPN22) in modulating IBD pathogenesis. By subjecting PTPN22 wildtype (WT), gene deletion 

(KO), and PTPN22 variant mice to 4 cycles of DSS (with a 10-day break in between each cycle) they 

found that the PTPN22 variant enhances the severity of colitis through the host’s response to changes 

in intestinal microbial composition.  

The structure of the microbiome varied significantly over the course of DSS treatment, while the 

condition of the mouse seemed to have minimal to no effect as identified by the analysis workflow 

(figure 3.16). Gut microbial composition at the end of the treatment (day 79) was drastically different 

than it was at day 0, day 16 and day 26 (p = 0.0087, p = 0.0106, p = 0.0431, respectively, Wilcoxon 

test). Pairwise comparison testing also showed significant changes in the microbiota at day 18 when 

compared to those from day 16 and 26 (p = 0.007 and p = 0.0271, respectively).  

 

A pairwise comparison of the DESeq2 results between the first (day 0) and last (day 79) timepoints 

showed a 22 log2 fold increase in Alloprevotella at day 79, indicating an inactive stage of UC or 

potential remission. There is a negative correlation between the abundance of this genus with 

inflammatory markers in mice (Gu et al., 2022) and it has also been associated with UC patients in 

remission post FMT treatment (Fan et al., 2019).  Microbiotas sequenced at day 0 had an abundance 

of taxa that are negatively and positively associated with UC. Members of the order Erysipelotrichales, 

including Dubosiella, Faecalibaculum, Turicibacter and C. cocleatum, were significantly enriched at 

the beginning of the treatment protocol (Li et al., 2022). As discussed in the meta-analysis, the 

abundance of these taxa is negatively associated with UC.  Moreover, potentially, pro-inflammatory 

taxa highlighted in the meta-analysis were also present in high numbers at day 0 and other early stages 

of the DSS treatment course in this study, like Bacteroidales (B. acidifaciens, Prevotella) (Iljazovic et 

al., 2021). There were also beneficial genera, like Alistipes, Odoribacter, Ligilactobacillus, 
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Duncaniella, Mucispirillum, Kineothrix and Clostridium XIVa, present in abundance at the first time 

point (Hiippala et al., 2020; Tao et al., 2021). Many of these taxa and/or the higher order they belong 

to have also been flagged up in the meta-analysis. 
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Figure 3.16: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from 

Spalinger et al. (2019) using PCoA plots coloured based on (A) condition (healthy = blue, colitogenic = 

green, colitis = red) and (B) length of treatment shows differences in microbial composition at the various 

timepoints. 

 

 

 

A 

B 
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Figure 3.17: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa 

(at or above a ± 22 log2 fold change) at the lowest taxonomic classification from Spalinger et al. (2019) 

samples, grouped by condition (blue = healthy, yellow = colitogenic, orange = colitis) and length of 

treatment (sky blue = 0 days, lilac = 8 days, pink = 12 days, green = 16 days, yellow = 18 days, orange = 

26 days, red = 79 days). Plotted taxa were identified by a pairwise comparison of samples from timepoints 

0 and 79 using DESeq2 (only FDR-adjusted results with q > 0.01 are shown).   

 

3.5.4 Roy et al. 

 
The work by Roy and colleagues (Roy et al., 2017) describes how innate and/or adaptive immunity 

driven by members of the gut microbiome is implicated in the development and severity of intestinal 

inflammation. To reach this conclusion they ran cohousing experiments using 6 SPF mouse lines as 
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before and after cohousing. Mice were treated with DSS and exhibited different intensities of colitis 

symptoms. SPF-1, SPF-5 and SPF-6 mice were characterised by mild colitis while SPF-2, SPF-4, SPF-

6 and DysN6 mice developed severe colitis.  

 

Beta diversity analysis using Bray-Curtis dissimilarity metric (figure 3.18) of this large dataset showed 

that microbiotas causing similar severities of colitis significantly clustered together. DESeq2 analysis 

identified differentially abundant taxa among the groups of mice that experienced mild and severe 

colitis. Adlercreutzia, a genus known to be depleted in UC patients (Shaw et al., 2016; Bandenas et 

al., 2022), was greatly enriched (25 log2 fold change) in the mild colitis group. The high abundance 

of this taxa could be a reason to why SPF-1, SPF-5, and SPF-6 mice had mild colitis symptoms. E. 

lenta was increased in the mild colitis group.  Different ASVs of the genus Paramuribaculum were 

abundant in both mild and severe colitis groups. Other members of Bacteroidales with positive 

(Marseilla aka Prevotella marseillensis), negative (Alloprevotella, Duncaniella, Parabacteroides 

distasonis) and mixed (Muribaculaceae) associations with UC were predominantly increased in mice 

experiencing severe colitis. The severe colitis group had relatively more increases in proinflammatory 

taxa, including H. typhlonius and Mucispirillum. 
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Figure 3.18: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from Roy 

et al. (2017) using PCoA plots coloured based on (A) condition (healthy = blue, colitogenic = green, colitis 

= red) and (B) intensity of disease and (C) treatment shows differences in microbial composition at the 

different disease intensities. 

 

 

 

 
 

Figure 3.19: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa 

(at or above a ± 5 log2 fold change) at the lowest taxonomic classification from Roy et al. (2017) samples, 

grouped by condition (blue = healthy, yellow = colitogenic, orange = colitis), treatment and disease 

intensity (green = mild, red = severe). Plotted taxa were identified by a pairwise comparison of samples 

from both mild and severe colitis groupings using DESeq2 (only FDR-adjusted results with q > 0.01 are 

shown).   

 

3.5.5 Song et al. 

 
Authors of this study (Song et al., 2020) discovered that bile acid metabolites produced by members 
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ASV229:Adlercreutzia
ASV1:Marseilla
ASV83:Muribaculum
ASV55:Paramuribaculum
ASV50:Muribaculaceae
ASV38:Paramuribaculum
ASV113:Muribaculaceae
ASV34:Helicobacter.typhlonius
ASV129:Parabacteroides.distasonis
ASV156:Duncaniella
ASV136:Muribaculum
ASV23:Alloprevotella
ASV93:Duncaniella
ASV147:Anaerotignum
ASV217:Muribaculaceae
ASV118:Duncaniella
ASV202:Mucispirillum
ASV166:Lachnospiraceae
ASV182:Mucispirillum
ASV173:Eggerthella.lenta
ASV190:Helicobacter
ASV181:Sutterellaceae
ASV212:Mucispirillum
ASV167:Limosilactobacillus
ASV65:Paramuribaculum
ASV204:Limosilactobacillus
ASV144:Lachnospiraceae
ASV87:Paramuribaculum
ASV215:Limosilactobacillus

Condition
Treatment
Intensity_of_Disease

Condition

Colitis
Colitogenic
Healthy

Treatment

cDysN6
cDysN6+SPF−2
cSPF−2
cSPF−2+DSS
DysN6
DysN6+gavage
SPF−1
SPF−2
SPF−3
SPF−4
SPF−5
SPF−6

Intensity of Disease

Mild

Severe

Abundance (log10)

0

1

2

3

4



Results 102 

acids ameliorates gut inflammation via commensal metabolic activities and analysed the microbiomes 

of mice put on either a nutrient-rich diet or a minimal diet, pre-DSS treatment.  

 

 
 

Figure 3.20: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from 

Song et al. (2020) using PCoA plots coloured based on condition (healthy = blue, colitogenic = red) shows 

differences in microbial populations across condition groups.  

 

Analysis of the Song et al. (2020) dataset showed that microbiotas of mice on the nutrient-rich diet 

were significantly different from those on the minimal diet (p = 2.47E-05). This can be visualised in 

the PCoA from figure 3.20. Further analysis corroborated the findings of the authors showing the 

abundance of taxa associated with gut inflammation, like Parasutterella and the genus Romboutsia 

of the Peptostreptococcaceae family (detected in the meta-analysis) in mice put on the minimal diet 

(figure 3.21). Anaerotignum, a bacteria associated with fibre degradation and bile acid metabolism 

was enriched in the colitogenic group (on the minimal diet) (Lesniak et al., 2022). Clostridiales 

species (Kineothrix, Dysosmobacter) generally associated with healthy microbiotas were of high 

abundance in microbiotas of mice fed the enriched diet. 
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Figure 3.21: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa 

(at or above a ± 12 log2 fold change) at the lowest taxonomic classification from Song et al. (2020) samples, 

grouped by condition (blue = healthy, yellow = colitogenic) and treatment (pink = rich diet, green = 

minimal diet). Plotted taxa were identified by a pairwise comparison of samples from both healthy and 

colitogenic condition groups using DESeq2 (only FDR-adjusted results with q > 0.01 are shown).   

 

 

3.5.6 Nakajima et al. 

 
Nakajima et al. (2018) found that IgA promotes the symbiotic relationship among bacteria, 

contributing to gut homeostasis through modulation of Mucus-Associated Functional Factors 

(MAFFs) in gut commensal. They created different lines of SPF mice with the commensals B. 

thetaiotaomicron and B. vulgatus carrying different variants of MAFF with, then sequenced their gut 

microbiomes prior DSS treatment. 
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Figure 3.22: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from 

Nakajima et al. (2018) using PCoA plots coloured based on (A) condition (healthy = blue, colitogenic = 

C 

B 
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red), (B) treatment and (C) genotype shows that microbial profiles varied across condition, treatment 

and genotypic groups. 

 

Wilcoxon’s test shows that there is a significant association between gut microbial composition and 

both the condition of the mice and the treatment they received (whether it was a microbial transfer or 

PBS). The latter is clearly demonstrated in PCoA plot (B) from figure 3.22. Proinflammatory genera 

like, Enterocloster, Robinsoniella, and Escherishia/Shigella spp. were highly abundant in microbiotas 

of colitogenic mice, two of which were also flagged in non-healthy mice from the meta-analysis (figure 

3.23 & 3.6).  Eisenbergiella, Hungatella and Dysosmobacter were enriched in healthy microbiotas in 

this study and group A meta-analysis. These genera have been previously negatively correlated with 

UC in mice and/or humans (Gryaznova et al., 2021; Schaubeck et al., 2016; Le Roy et al., 2022). 

 

 
 

 
Figure 3.23: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa 

(at or above a ± 8 log2 fold change) at the lowest taxonomic classification from Nakajima et al. (2018) 
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samples, grouped by condition (blue = healthy, yellow = colitogenic) and treatment (sky blue = antibiotics 

and microbiota transfer, lilac = antibiotics and PBS). Plotted taxa were identified by a pairwise 

comparison of samples from both healthy and colitogenic condition groups using DESeq2 (only FDR-

adjusted results with q > 0.01 are shown).   

 

 

3.5.7 Kazakevych et al. 
 

While investigating the role of chromatin remodelling factor Smarcad1 in murine colitis, the authors 

(Kazakevych et al., 2020) discovered the critical role played by the microbiome in DSS-induced colitis. 

Both WT and Smarcad1-KO mice developed DSS-induced colitis after being cohoused with donor 

mice known to be sensitive to DSS. The intestinal microbiota was characterised before and after 

cohousing, prior to DSS administration.  
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Figure 3.24: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from 

Kazakevych et al. (2020) using PCoA plots coloured based on (A) condition (healthy = blue, colitogenic = 

red) and (B) treatment shows that microbial profiles did not vary between condition groups and only 

slightly among treatment groups. 

 

 

Pairwise comparison testing on this dataset showed that the changes incurred on the host’s microbiome 

by the treatment (cohousing) were more substantial (p = 0.038) than those by the condition of the host 
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(p = 0.61). However, microbiotas among treatments did not vary enough to form separate clusters as 

shown in figure 3.24B. Further testing highlighted genera like Alistipes and Paramuribaculum as well 

as different ASVs assigned to the Lachnospiraceae family that were found more abundant in healthy 

or DSS-resistant mice (figure 3.25). While the previously mentioned taxa generally confer health, an 

IBD positively correlated genus, Faecalibaculum (Erysipelotrichales spp.), was also found in high 

numbers in DSS-resistant mice. Muribaculaceae species, Paramuribaculum and Muribaculum, were 

enriched in DSS-sensitive mice. Microbiotas of colitogenic mice also had a differential abundance of 

genera that are commonly found in healthy microbiomes like, Odoribacter, Agathobacter and 

Monoglobus.  

 
 

Figure 3.25: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa 

at the lowest taxonomic classification from Kazakevych et al. (2020) samples, grouped by condition (blue 

= healthy, yellow = colitogenic) and treatment (sky blue = no treatment, pink = no cohousing, green = 

cohousing). Plotted taxa were identified by a pairwise comparison of samples from both cohousing and 

non-cohousing treatment groups using DESeq2 (only FDR-adjusted results with q > 0.01 are shown).   
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3.5.8 Qi et al. 

 
The authors (Qi et al., 2020) examined the role of Enterobacteriaceae, like E. coli, in gut inflammation 

and found that deficiencies in Reg4 and complement factor D (CFD) led to intestinal inflammation 

due to overgrowth of E. coli. They characterised the gut microbial composition of WT mice and mice 

with the Reg4 gene deleted as well as CFD deficient mice before and after DSS exposure. 

 
 

Figure 3.26: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from Qi 

et al. (2020) using PCoA plots coloured based on condition (healthy = blue, colitis = red) shows differences 

in microbial populations across condition groups. 

 
In this study, the condition of the mouse highly affected its gut microbial composition (p = 8.8E-0.5, 

Wilcoxon) with gut communities from each condition group forming clear separate clusters (figure 

3.26). Bacterial taxa commonly associated with inflammation like Peptostreptococcaceae, 

Erysipelotrichales (Faecalibaculum, Turicibacter, C. cocleatum) and the opportunistic Bacteroidales 

species, B. thetaiotaomicron were enriched in the colitis group. Lachnospiraceae members with 

conflicting roles in UC were present in high numbers in colitic microbiotas. For instance, Blautia and 



Results 110 

Mediterraneibacter are known SCFA producers, however, they also produce aldehydes usually 

harmful to hosts as they trigger oxidation stress (Abdeulgheni et al., 2022). Other taxa common in 

non-healthy groups in the meta-analysis were also differentially abundant in the colitis group of this 

study, some of which are Mailhella, Escherichia/Shigella spp., Bifidobacterium spp., Helicobacter 

spp., Desulfovibrionaceae spp., and Parasutterella spp. Species negatively correlated with IBD were 

high in numbers in healthy microbiotas.  
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Figure 3.27: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa 

(at or above a ± 12 log2 fold change) at the lowest taxonomic classification from Qi et al. (2020) samples, 

grouped by condition (blue = healthy, orange = colitis). Plotted taxa were identified by a pairwise 

comparison of samples from both healthy and colitis condition groups using DESeq2 (only FDR-adjusted 

results with q > 0.01 are shown).   
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3.5.9 Mamantopoulos et al. 

 
Mamantopoulos et al. (2017) dismissed the suggested role for inflammasomes in intestinal 

inflammation through regulation of the gut microbiome by controlling for non-genetic confounders. 

They did so by characterising the microbial ecology of littermate-controlled Nlrp-6 deficient mice and 

previously germfree (GF) ASC-deficient mice with naturally formed gut microbiotas post birth, in two 

animal different animal facilities, before DSS treatment (i.e., all samples were considered as 

“colitogenic”).  

 
Figure 3.28: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from 

Mamantopoulos et al. (2017) using PCoA plots coloured based on genotype (Nlrp6 WT = blue, Nlrp6 KO 

= red) showed the absence of distinct microbial profiles in both genotypes. 

Analysis of this dataset showed that the gut microbial ecologies of Nlrp6 variants differed (0.018, 

Wilcoxon test) but were not distinctly different to form separate clusters as shown in figure 3.28. 

PERMANOVA testing showed that samples between both groups of genetically variant mice do not 

differ significantly. DESeq2 highlighted ASVs that were differentially abundant between both 

genotypes, most of which belonged to Bacteroidales (Muribaculaceae, Muribaculum and Duncaniella) 
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and Lachnospiraceae (figure 3.29). Along with Erysipelotrichaceae, these two bacterial taxonomic 

groups have been associated with mice of non-healthy conditions in the meta-analyses from section 3. 

As opposed to meta-analysis findings, Eggerthellaceae (genus Slackia) were highly abundant in 

colitogenic microbiomes of this study, while Deltaproteobacteria was enriched in both group B and 

this study. 

 

 

 
 

Figure 3.29: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa 

at the lowest taxonomic classification from Mamantopoulos et al. (2017) samples, grouped by condition 

(blue = Nlrp6 WT, orange = Nlrp6 KO). Plotted taxa were identified by a pairwise comparison of samples 

from both WT and KO genotype groups using DESeq2 (only FDR-adjusted results with q > 0.01 are 

shown).   

 

 

3.5.10 Schmidt et al. 

 
Authors from this study (Schmidt et al., 2019) inoculated GF mice with specific pathogen free (SPF) 

microbiota, before DSS exposure, to measure differences in barrier function, particularly in 

macrophage compartments. They found that the presence of a gut microbial community is a 

requirement for colonic macrophage infiltration post DSS treatment.  
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Both pairwise comparison testing, and beta diversity analysis (figure 3.30) of this dataset show no 

differences in microbiotas between different condition groups and treatment groups. DESeq2 identified 

Lachnospiraceae as the only differentially abundant taxa, which was massively enriched (25 log2 fold 

change) in the healthy group (figure 3.31).  

 
 

Figure 3.30: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from 

Schmidt et al. (2019) using PCoA plots coloured based on condition (Healthy = blue, Colitis = red) showed 

the absence of distinct microbial profiles in both conditions. 

 

 
 

Figure 3.31: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa 

at the lowest taxonomic classification from Schmidt et al. (2019) samples, grouped by condition (blue = 

Healthy, orange = colitis). Plotted taxa were identified by a pairwise comparison of samples from both 

healthy and colitis condition groups using DESeq2 (only FDR-adjusted results with q > 0.01 are shown).   
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3.5.11 Kimura et al. 

 
Kimura et al. (2020) investigated the role of the protein osteoprotegrin (OPG) in gut immunity and 

IBD. They generated Opg-/- mice which, along with a group of WT mice, were exposed to DSS. The 

authors concluded that deletion of Opg alleviated DSS-induced colitis. Gut ecology of both variants 

was characterised prior to DSS treatment.  

 

 
Figure 3.32: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from 

Kimura et al. (2020) using PCoA plots coloured based on genotype (Opg WT = blue, Opg KO = red) 

showed no significant differences in microbial profiles across both genotypes. 

 

Analysis of the data provided by Kimura et al. (2020) showed that gut microbiota, likely, does not 

play a role in the reduced symptoms of DSS-induced colitis in Opg-/- mice. Wilcoxon’s rank sum test 

showed no statistical difference between microbiotas of WT and Opg-/- mice, collectively. Beta 

diversity analysis using Bray-Curits dissimilarity as a distance metric also showed no significant 

difference in the microbiomes across samples of both mouse groups. However, a few taxa stood out 

in both groups with the differential abundance analysis. The bile acid producer, Phocea (reclassified 

as Merdimmobilis) was abundant in Opg-/- mice known for its negative correlation with IBD in 
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humans could be behind the amelioration of colitis symptoms (Thomas et al., 2022). WT group 

microbiotas were enriched with the beneficial commensal Hungatella (Rawat et al., 2022), the 

ambivalent Parabacteroides distasonis and the phylum Saccharibacteria which was positively 

associated with colitis in group B and Kazakevych et al. (2020) study.  

 
 

Figure 3.33: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa 

at the lowest taxonomic classification from Kimura et al. (2020) samples, grouped by genotype (blue = 

Opg WT, pink = Opg KO). Plotted taxa were identified by a pairwise comparison of samples from both 

Opg WT and Opg KO genotype groups using DESeq2 (only FDR-adjusted results with q > 0.01 are 

shown).   

 

3.5.12 Khan et al. 
 

The authors (Khan et al., 2020) studied the effect of simple sugars, including glucose, sucrose, and 

fructose, on the pathogenesis of colitis using the DSS model in WT and Il10-/- mice. Gut microbiota 

was characterised in WT mice before and after dietary changes. They noticed a worse colitis response 

to DSS in glucose-fed mice and an abundance of mucus-degrading bacteria, like A. muciniphila and 

B. fragilis.  

 

Wilcoxon’s rank sum test as well as beta diversity analysis done on this dataset (figure 3.34) showed 

no difference between microbiotas of “healthy” and colitogenic mice. However, the gut ecology of 

mice on the control diet varied considerably between that of mice on the fructose and sucrose diet (p 

= 0.002).  
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Figure 3.34: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from 

Khan et al. (2020) using PCoA plots coloured based on (A) condition (healthy = blue, colitogenic = red) 

and (B) treatment shows that microbial profiles did not vary significantly between condition groups and 

only slightly among treatment groups (sucrose and control). 

 

Due to the observed negative phenotypic effects of the glucose diet on colitis symptoms, a pairwise 

comparison was done between microbial profiles of mice on the control diet and the glucose diet. This 

analysis highlighted the increase in abundance of 16.2 log2 fold in colitis-associated Helicobacter 

species in mice on the glucose diet (Dingemanse et al., 2015). Bacteria of the less understood 

Muribaculaceae, like Paramuribaculum, were present in high numbers with increased dietary glucose 
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intake.  The same bacterial species have been observed in relatively high abundance in non-healthy 

groups of the meta-analysis. 

 
Figure 3.35: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa 

at the lowest taxonomic classification from Khan et al. (2020) samples, grouped by condition (blue = 

healthy, yellow = colitogenic) and treatment (sky blue = control diet, pink = fructose diet, green = glucose 

diet, yellow = sucrose diet). Plotted taxa were identified by a pairwise comparison of samples from both 

control and glucose diet groups using DESeq2 due to investigate the microbes behind the observed 

phenotype of worsened colitis (only FDR-adjusted results with q > 0.01 are shown).   

 

3.5.13 Ma et al. 

 
Ma et al. (2020) investigated the role of the protein Gasdermin D (GSDMD) in colitis and found it to 

be highly activated in DSS-treated mice, independently of the microbiota. They discovered this by 

cohousing WT mice with GSDMD and ASC deficient mice. ASC is a protein present upstream of 

GSDMD in the inflammatory signalling cascade. They characterised the gut microbiota of WT, 

GSDMD-/-, and ASC-/- mice pre DSS treatment. 

 

There was no statistically significant difference in microbiotas across healthy and colitogenic groups 

as well as between WT, GSDMD-/-, and ASC-/- mice. There is also no distinct clustering between the 
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mentioned groups as demonstrated in figure 38. However, there are differentially abundant taxa among 

the genetically variant mouse groups underlined by DESeq2 (figure 3.37B). Bacteroidales and 

Lachnospiraceae (except for ASV37) were enriched in ASC-/- mice and depleted in the other two mouse 

groups. Differential abundance analysis on the condition groups highlighted an association between 

colitis and the two taxa, Lachnospiraceae and Mucispirillum (figure 3.37A). The enriched taxa found 

in both heatmaps of figure 3.37 match the findings of the meta-analysis, specifically groups A and B. 

 
 

Figure 3.36: Visualisation of beta diversity (Bray-Curtis dissimilarity) across microbial profiles from Ma 

et al. (2020) using PCoA plots coloured based on (A) condition (healthy = blue, colitogenic = red) and (B) 

genotype shows that microbial profiles did not vary significantly between condition groups and genotype 

groups. 
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Figure 3.37: Heatmap presenting the abundance (log10 transformed) of the differentially abundant taxa 

at the lowest taxonomic classification from Ma et al. (2020) samples, grouped by condition (blue = healthy, 

yellow = colitogenic) and genotype (sky blue = ASC KO, pink = GSDMD KO, green = GSDMD WT) using 

DESeq2 (only FDR-adjusted results with q > 0.01 are shown).   

 

3.6 Results Summary 

 
Based on the combined results of the meta-analysis and single datasets it can be concluded that there 

are microbial patterns associated with an inflammatory (colitis) state as well as a pre inflammatory 

state (colitogenic), unified with a low Firmicutes/Bacteroidetes ratio. As highlighted in all 3 runs of 

the meta-analysis, the condition of the mouse plays a significant role in its gut microbial composition, 

except for the comparison between healthy and colitis mice investigated in group A. However, in some 
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single datasets, gut compositional changes were highly influenced by other extrinsic and intrinsic 

factors like, genotype, treatment, and the length of the treatment, rather than condition. This 

substantiates that gut flora structure is transient as it is perpetually subjected to environmental shifts. 

The majority of observed alterations in taxa abundances across conditions were in Bacteroidales and 

Clostridiales bacteria, as detected by the meta-analysis (tables 3.6 & 3.7) and across the individual 

studies. Clostridiales species were mainly associated with healthy or pre-inflammatory states 

(colitogenic) apart from a few taxa mostly belonging to the Peptostreptococcaceae family, like 

Rombutsia and Terrisporobacter, as well as Robinsoniella and Clostridium species. Taxa belonging to 

the order Bacteroidales were differentially abundant predominantly in colitogenic microbiotas, 

particularly Paramuribaculum, Duncaniella, Bacteroides and Muribaculum, except for Alistipes. 

These specific genera were only flagged in the single datasets and not the meta-analysis. The pattern 

of differential abundance described in Bacteroidales and Clostridiales species reflects the low 

Firmicutes/Bacteroidetes ratio observed in the investigated gut floras. Erysipelotrichales bacteria, 

including Faecalibaculum, C. cocleatum and Turicibacter, were increased in either colitogenic or 

colitic microbiotas. E. lenta was enriched in healthy microbiotas based on two of the meta-analysis 

runs. Other taxa including Bifidobacteria, Esherichia/Shigella spp., Sutterellaceae, and Helicobacter 

were linked with colitis in the meta-analysis and/or at least 3 studies. Details of the taxa highlighted 

above can be found in tables 3.6-3.8 below.  
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Table 3.6: Summary of differentially abundant taxa (detected by DESeq2) from the order Clostridiales (also known as Eubacteriales) down to the lowest taxonomy level detected (genus) across the meta-analysis and single studies. The ‘*’ denotes the presence of the 

taxa and its colour represents the condition group the taxa was abundant in (blue = healthy, yellow = colitogenic, orange = colitis). Other species include ASVs/taxa assigned to each of the listed families as well as other genera/species that fall under the same family but only 

detected in one study. Other Clostridiales includes ASVs assigned to the order or other comprising families that are not listed due to their low prevalence across studies. 

 
Clostridiales 

 
Lachnospiraceae Clostridiaceae Peptostreptococcaceae Ruminococcaceae Oscillospiraceae 

Other Clostridiales 

 Robinsoniella Eisenbergiella Blautia Mediterraneibacter Herbinix Anaerotignum Kineothrix Schaedlerella Other species Hungatella Clostridium XIVa Clostridium spp. Romboutsia Terrisporobacter Other species Ruminococcus Other species Dysosmobacter 

MMUPHin (all DSS) *               ***     ** * * * *     *** 

MMUPHin (group A)   * * *         *** *   *     * *   * *** 

MMUPHin (group B) *       *       ***     ** *   * *     *** 

Surana & Kasper (2017)     *           **                   ** 

Tran et al. (2019)               * **   *               * 

Spalinger et al. (2019)           * * * ***   * *               

Roy et al. (2017)           *     *                     

Song et al. (2020)           * *   **   *   *       * * * 

Nakajima et al. (2018) * *             * *               * ** 

Kazakevych et al. (2020)                 **                     

Qi et al. (2020)     * *         **     *   * *       * 

Mamantopoulos et al. (2017)                 *               *   * 

Schmidt et al. (2019)                 *                     

Kimura et al. (2020)                 * *                 * 

Khan et al. (2020)                 **               *     

Ma et al. (2020)                 **                     
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Table 3.7: Summary of differentially abundant taxa (detected by DESeq2) from the order Bacteroidales down to the lowest taxonomy level detected (genus) across the meta-analysis and single studies. The ‘*’ denotes the presence of the taxa and its colour represents the 

condition group the taxa was abundant in (blue = healthy, yellow = colitogenic, orange = colitis). Other Bacteroidales includes ASVs assigned to the order or other comprising families that are not listed due to their low prevalence across studies. 

 
Bacteroidales 

 
Muribaculaceae Bacteroidaceae Odoribacteriaceae Prevotellaceae Rikenellaceae Tennerellaceae 

Other Bacteroidales 

 
Paramuribaculum Duncaniella Bacteroides B.  acidafaciens B. thetaiotaomicron  Odoribacter Marseilla Alloprevotella Muribaculum Alistipes Parabacteroides P. distasonis 

MMUPHin (all DSS)         *   *           *** 

MMUPHin (group A)                     *   * 

MMUPHin (group B)         *               ** 

Surana & Kasper (2017) * *                       

Tran et al. (2019) ** ** ** **         ** **       

Spalinger et al. (2019) * * ** **   ** * *   **     ** 

Roy et al. (2017) * *           * *     *   

Song et al. (2020)                           

Nakajima et al. (2018)                           

Kazakevych et al. (2020) **         *     * *       

Qi et al. (2020)   * *   *           *   * 

Mamantopoulos et al. (2017)   *             *       * 

Schmidt et al. (2019)                           

Kimura et al. (2020)                       *   

Khan et al. (2020) * * * *                 ** 

Ma et al. (2020)                         * 
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Table 3.8: Summary of differentially abundant taxa (detected by DESeq2) from the order Erysipelotrichales and other taxa down to the lowest taxonomy level detected (species) across the meta-analysis and single studies. The ‘*’ denotes the presence of the taxa and its 

colour represents the condition group the taxa was abundant in (blue = healthy, yellow = colitogenic, orange = colitis). Other species include ASVs/taxa assigned to each of the listed orders as well as other genera/species that fall under the same family but only detected in one 

study.  

 
    Erysipelotrichales 

Others 

 
Eggerthellaceae Erysipelotrichaceae Coprobacillaceae Turicibacteraceae 

Other Species 

 
Eggerthella lenta Other Species Faecalibaculum Clostridium cocleatum Turicibacter Bifidobacteria Akkermansia Escherichia/Shigella spp. Sutterellaceae Helicobacter Paludicola Candidatus Saccharibacteria 

MMUPHin (all DSS) *   * * *   * * *   *     

MMUPHin (group A)           *     *       * 

MMUPHin (group B) *   * * *   * * * * * * * 

Surana & Kasper (2017)                           

Tran et al. (2019)           *         *     

Spalinger et al. (2019)     * * *     *           

Roy et al. (2017) * *               *       

Song et al. (2020)                   *       

Nakajima et al. (2018)                 *         

Kazakevych et al. (2020)     *                     

Qi et al. (2020)     * * * * *   * * * *   

Mamantopoulos et al. (2017)   *                       

Schmidt et al. (2019)                           

Kimura et al. (2020)                         * 

Khan et al. (2020)                           

Ma et al. (2020)              
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Chapter 4: Discussion  

 
4.1 Thesis Summary and Importance 

 

 
Meta-analysis of studies investigating gut microbial associations in murine UC using the DSS 

model suggests that there are specific taxa associated with UC, both the state of the disease 

itself and the period leading up to inflammation. In fact, most of the bacterial taxa that were 

differentially abundant in the colitis group were also present in colitogenic mice, when 

compared to the healthy group. Overall, there were no taxa unique to the colitis group and the 

relative abundance of bacterial taxa in general was lower. The harsh environment in the gut 

brought about by colitis-related inflammation probably made it inhospitable for commensals, 

thus depleting bacterial communities.    Meta-analysis of all the DSS datasets as well as group 

B datasets (with samples clustering based on variables like condition, genotype, treatment, 

length of treatment and intensity of disease) showed a clear link between Erysipelotrichales 

and colitis. Species from that bacteria order were increased in microbiotas of either colitogenic 

or colitic mice in the meta-analysis and in 7 out of the 13 datasets (this might not be reflected 

in heatmap due to the different log2 fold change threshold applied to each dataset when 

plotting). Members of Erysipelotrichia are known for their involvement in polyol metabolism, 

SCFA production, as well as host bile acid and lipid metabolism (Zhong et al., 2015; Tiffany 

et al., 2021; Lynch et al., 2021). Erysipelotrichaceae, Coprobacillaceae, and Turicibacteraceae 

are the three most prominent families, from this bacterial class, present in high abundance in 

colitogenic and colitic mice. While the other two families are less described, bacteria belonging 

to Erysipelotrichaceae are known to be highly immunogenic with their heavy coating of IgA 

and causing severe colitis symptoms in mice (Palm et al., 2014). Shifts in abundance of this 

family in IBD patients and animal models have been reported. Lower levels of 

Erysipelotrichaceae were observed in CD patients while higher levels of the same family were 
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detected in DSS-treated mice (Ren et al., 2020; Kaakoush, 2015).  Despite the enrichment of 

Erysipelotrichaceae species reported in mice with UC, a decrease of F. rodentium 

(Erysipelotrichales spp.) was observed in an inflammation-induced model of colitis associated 

colorectal cancer (CRC) (Zagato et al., 2015). F. rodentium was shown to metabolically impose 

an anti-tumorigenic effect by inhibiting HDAC activity through butyrate production (Zagato et 

al., 2015). UC is a known risk factor for developing CRC in humans and Holdemanella bifomis 

(human equivalent for F. rodentium) was also shown to have similar effects in humans (Zagato 

et al., 2015). Thus, the association of this species with colitis does not imply an inflammatory 

nature but possibly a beneficial one.  The few available studies on links between IBD and 

Turicibacter (Erysipelotrichales spp.) presented a reduction of the genus in DSS treated and 

TNBS (other colitis model) treated mice as well as CD patients (Ren et al., 2021; Hall, Kozik 

& Nakatsu, 2015; Ma et al., 2022). The genus seems to have difficulty thriving during 

inflammation based on their enrichment in mice with depleted CD8+ T cells (Presley et al., 

2010).  Eventhough, Turicibacter was enriched in the colitis group in this meta-analysis it is 

impossible to determine the level of inflammation during the reported “colitis” state in each 

study. The condition colitis was defined by sequencing samples from mice post DSS treatment, 

regardless of sampling time, introducing large variability between “colitis” samples. A very 

recent study investigated the metabolic activity of Turicibacter and described how 

modifications to host bile acids and lipid metabolism by the genus is strain dependant (Lynch 

et al., 2023). The strain-specific mechanistic differences could be another potential explanation 

to why Turicibacter was found highly abundant in this meta-analysis, opposite to what is 

described in the literature, since functional properties of taxa rather than their sole presense is 

what affects the host. The inconsistencies in the nature of the links between Erysipelotrichales 

species and colitis can be attributed to the poor characterisation and lack of functional studies 

on this group (Kaakoush, 2015). Based on my results and the current literature, the increased 
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presence of this group in colitogenic and colitic microbiotas does not necessarily imply that 

Erysipelotrichales are pro inflammatory species. 

 

The enrichment of Bacteroidales (belonging to Bacteroidetes phylum) species in colitogenic 

microbiotas found in this meta-analysis agrees with the widely accepted low 

Firmicutes/Bacteroidetes ratio found in IBD patients (Stojanov, Berlec, & Štrukelj, 2020). 

Many different Bacteroidales species were found differentially abundant across all 13 studies 

and B. thetaiotamicron, Marseilla (aka P. marseillensis) and Parabacteroides were the ones 

that stood out across the 3 meta-analyses. B. thetaiotaomicron has shown to be increased in UC 

providing benefit by ameliorating symptoms in UC patients and mice with CD (Delday et al., 

2019; Nomura et al., 2021). Very little is known about P. marseillensis except for its discovery 

in a patient with recurrent C. difficile infection (Yimagou et al. 2019). Generally, Prevotella 

species are prevalent in the gut flora, however, contradictory conclusions have been drawn 

about their effect on the host. Some members of the genus have been implicated in gut mucosal 

inflammation (Prasoodanan et al., 2021; Ijazovic et al., 2021) while others have been described 

for providing beneficial functions to their host, like improved glucose metabolism 

(Kovatcheva-Datchary et al., 2015). Thus, it is hard to draw a conclusion on the enrichment of 

P. marseillensis in colitis. It is also difficult to draw a conclusion on the role of P. distasonis in 

colitis. This ambivalent species has been described for its dichotomous role in IBD (Ejezi et 

al., 2021) which is another testament to the importance of investigating the functional 

properties of the gut microbiota. Acetobacteroides was found enriched in healthy mice and 

depleted in colitogenic and colitic mice. This meta-analysis is the first to describe an 

association between Acetobacteroides and UC. This genus is not well studied, however, a study 

characterising its only described species, A. hydrogenigenes, reported its carbohydrate 

fermentation activities and its involvement of acetate production (Su et al., 2014).  
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Changes in members of Clostridiales (belonging to Firmicutes phylum), particularly 

Lachnospiraceae bacteria, were highlighted by the meta-analyses. Alterations in the abundance 

of Lachnospiraceae species were observed in all 3 condition groups. Lachnospiraceaea are a 

family of obligate anaerobes that are core members of the gut microbial communities. They 

are considered to be one of the main producers of SCFAs in the gut (Vacca er al., 2020). 

Robinsoniella species as well as Herbinix were enriched in colitogenic microbiotas. R. 

peoriensis is a rising pathogen previously mistaken for C. difficile infections (Gomez et al., 

2011; Roberts et al., 2016; Krueger et al., 2022). Again, this genus/species is very poorly 

described, however, it has been reported for its SCFA production particularly acetate and 

succinate but not butyrate (Cotta et al., 2009). Two studies have reported a link between 

Robinsoniella and gut inflammation in an Il10-/- and DSS colitis mouse model (Wohlgemuth et 

al., 2011; Xie et al., 2022). Herbinix has been described for its cellulolytic activities as well as 

potential butyrate production, and this meta-analysis is the first evidence linking it to murine 

colitis (Koeck et al., 2015; Jung et al., 2021). Generally, members of the Lachnospiraceae 

family play conflicting roles in health and disease (Vacca et al., 2020). Numbers of Romboutsia 

and Terrisporobacter of the Peptostreptococcaceae family were also increased in microbiotas 

of mice with colitis. An increase in Peptostreptococcaceae has been linked with UC in humans 

(Alam et al., 2020). Romboutsia was first described in association with colitis only recently.  

Following that, another study reported the enrichment of the genus in UC patients (Rausch et 

al., 2023; Dahal et al., 2023). Terrisporobacter (previously classified as a Clostridium species) 

is yet another poorly represented species in IBD, though a recent study reported the decrease 

in abundance of the genera in treated CD paediatric patients (Sprockett et al., 2019). This meta-

analysis is probably the first to associate the genus with experimental UC.  
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Other genera like Bifidobacteria, Akkermansia, Helicobacter, and unclassified 

Escherichia/Shigella species were also found in higher numbers in colitis and colitogenic 

groups. Bifidobacterium species (B. bifidum and B. pseudolongum) are members of the gut and 

oral flora, usually with a protective effect against colitis and are typically found in lower 

abundance in UC patients as well as colitic mice (De Caro et al., 2016; Duranti et al., 2016; 

Singh et al., 2020; Guo et al., 2022).  However, pathogenic roles that may lead to septicaemia 

in immunocompromised hosts have been described (Pathak, Trilligan & Rapose, 2014; 

Esaiassen et al., 2017). These reports are a possible explanation to why Bifidobacterium species 

were found enriched in the disease groups from this meta-analysis. A. muciniphila is a mucin 

degrader, SCFA producing species and is known for the beneficial role it plays in the gut (Luo 

et al., 2022). It is usually highly abundant in healthy individuals and reduced during colitis. 

However, a study reported that the effects of A. muciniphila on DSS-induced colitic mice are 

strain specific, some strains were able to reverse DSS outcomes while another exacerbated it 

(Liu et al., 2021). Since there are no universal guidelines detailing phenotypic (besides 

weightloss and bloody stools) and histological colitis indicators in mice, samples from the 

colitis group might not necessarily reflect the inflammatory stage of UC accurately. Sampling 

time for colitis microbiomes could be equivalent to the remission state in humans, when 

inflammation has subsided and the mucosal lining is on the mend shifting the gut flora with an 

increase in mucosa-dwelling species. This could be a reason for the enrichment of the mucin-

degrading Akkermansia in the colitis group . On the other hand, the Helicobacter genus is 

known for its infectious repertoire. H. typhlonius and H. rodentium infections are very common 

in animal facilities and have been shown to affect inflammation severity in Il10-/- mice, even 

trigger IBD development in some cases (Chichlowski et al., 2008). Escherichia/Shigella sp. 

are unclassified Enterobacteriaceae members. Bacteria belonging to the family 
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Enterobacteriaceae are known to be harmful or pathobionts and are abundant in IBD patients 

(Baldelli et al., 2021). 

 

Despite the presence of thousands of studies linking gut microbes to health and IBD, there are 

many inconsistencies in the findings. These inconsistencies could be context dependent, 

however, lacking guidelines and experimental plans are two main reasons. There is no universal 

guide or set criteria for colitis severity in mice, leaving it open for personal interpretation which 

tends to be subjective.  Mouse diets can be very different across animal facilities which 

introduces variability when comparing microbial composition. Discrepancies also arise when 

mice of both sexes are used, and samples are not annotated nor compared for sex differences. 

Furthermore, variations in computation methods when analysing microbiome data is 

widespread. The field is yet undecided on the appropriate methods to use, whether is it during 

the pre-processing step (OTU vs ASV) or downstream analysis (i.e., taxonomic profiling and 

microbial community analysis). To identify consistent microbial markers, scientists should 

work towards controlling the mentioned variables. Due to the nature of this thesis, I was only 

able to control for computational variation like 16S rRNA sequence processing, taxonomic 

assignment, differential abundance testing as well as multiple testing corrections. Firstly, there 

are different bioinformatics pipelines used to analyse microbial amplicon sequences which are 

divided into two groups depending on the feature output, OTU or ASV. Each pipeline differs 

in sensitivity and specificity of output feature detection giving rise to varaitions in analysed 

16S rRNA sequences (Prodan et al., 2020). Taxonomic classification can be done using 4 

different databases with any of their multiple available training sets, which can affect the 

specificity of the taxonomic assignment resulting in more/less unclassified taxa. Downstream 

analysis methods like differential abundance testing can be done using different tools that have 

been shown to produce different outputs of with some overlap as well as variable statistical 
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robustness and false discovery rates, depending on subsequent pre-processing steps (mentioned 

above) (Nearing et al., 2022).  Changes in the discussed steps can introduce biological 

variations making it difficult to simply compare results from different studies. This meta-

analysis eliminated the chances of any microbial changes that could have risen from different 

computational methods, which are known to affect biological interpretations (Nearing et al., 

2022). While the taxa described in this work are just associations with UC in mice, they raise 

awareness about gaps in the field. Many of these taxa are poorly described in the literature and 

need to be investigated. Extensive work on defining the functional profiles of gut commensals 

as well as microbial co-dependencies is needed to understand the role they play in health and 

disease. This work sheds light on the complexity of assigning a cause-and-effect relationship 

between microbiome and IBD and the unattainability of defining a microbial signature for IBD 

due to confounding variables. 

 

4.2 Gut Microbial Associations with UC in Humans and Mice 

 

 
Results from this meta-analysis show a reduction in the butyrate-producing Firmicutes and an 

increase in acetate and propionate producing Bacteroidetes in colitogenic mice. This is also 

observed in human UC patients (Basha et al., 2022). Enterobacteriaceae were found in higher 

levels in UC patients which corresponds with the increase of an unclassified 

Escherichia/Shigella species in colitis and colitogenic mouse groups investigated (Ma et al., 

2022). E. lenta is likely beneficial to the host with a report of its abundance being a predictor 

of FMT success in UC patients as well as its abundance in healthy mouse group and 

depletion in colitis and colitogenic groups. (Li et al., 2020). The presence of 

Peptostreptococaceae as well as pathogenic species like Mycobacterium, adherent-invasive E. 

coli (AIEC), C. difficile, Helicobacter and Salmonella is more prominent in UC patients 

compared to healthy controls (Shen et al., 2018; Alam et al., 2020). Helicobacter and 

Clostridium species as well as Peptostreptococaceae species were differentially abundant in 

colitis and colitogenic groups indicating that there is a positive correlation between those 

pathogenic bacteria and UC. While Bacteroides species in general are depleted in UC 

patients, B. thetaiotaomicron is abundant in both UC patients and mice with a seemingly 

positive role (Wexler et al., 2007). B. thetaiotaomicron is highly adaptable and can switch 

between metabolising dietary and host polysaccharides depending on nutrient availability, 

which explains why it can thrive under harsh conditions like during inflammation (Wexler, 

2007).  This resourceful species has the ability of modulating the gut flora via the immune 

system (Cash et al., 2006). The often-depleted Lactobacilli were shown to prolong the 

remission state of UC in patients which suggests that they play an anti-inflammtory role in 

the host (Zocco et al., 2006). This is also reflected in their reduced abundance in colitic mice 
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from this meta-analysis. Most of these patterns in bacterial abundances were by the IBD 

Transcriptome and Metatranscriptome Meta-Analysis (TaMMA) framework (Massimino et 

al., 2021). This platform has a set of 26 publicly available transcriptomic and 

metatranscriptomic datasets from different human tissues, all batch-corrected and analysed 

using the same pipeline. Using this resource, I was able to confirm some of the patterns I 

found in individual datasets described earlier, like the increase of Enterobacteriaceae in UC 

stool samples, particularly Escherichia and Shigella species.  E. lenta was also found to be 

enriched by 1-fold in UC patients. Depending on the species, Clostridium bacteria were also 

differentially abundant in UC patients. However, IBD TaMMA reports an unsignificant 

changes in Bacteroides species between healthy subjects and those with colitis. Moreover, 

Peptostreptococcaceae seem to be only slightly more abundant in healthy individuals 

opposite to what was reported in this meta-analysis. This can be due to variations introduced 

by different pipelines or environmental differences. Overall, it is safe to say that microbial 

patterns detected by this meta-analysis in relation to UC can also, mostly, be found in 

humans.  

 

4.3 Limitations and Challenges 

 

 
There are several limitations of the work presented in this thesis imposed by study design and 

others by the framework of the available datasets. The first few potential biases introduced by 

study design were in the study selection step of this meta-analysis. To have a manageable list, 

I employed the addition an impact factor of 7 or greater as additional filter in the study 

selection. This choice does not confer journal bias but merely a mean to produce a compressed 

list of datasets for further screening as manually screening over 1800 publications would not 

have been feasible with the project’s timeline. Most of the studies generated by the search query 

were published in journals with an impact factor between 5 and 7, which means that many 

relevant datasets could have been included. However, with the recent developments in natural 

language processing (NLP) models, investigating that large number of studies would be 

possible and could be explored in future research. Another potential bias could be the different 

variables tested in some individual dataset. The meta-analysis tested for changes in gut 

microbiome structure across condition groups only. When analysing individual datasets, the 

effect of the condition on gut microbial composition was not always statistically significant 

and, in some studies, like Kimura et al. (2020) and Mamantopoulos et al. (2017), samples from 
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only one condition group was available making impossible to test for condition introducing 

variation when testing for differentially abundant taxa.  

 

As briefly mentioned in the previous section, a lack of standardised experimental system for 

murine colitis was a major issue faced when pre-processing the datasets for meta-analysis. As 

discussed in great length in chapter 1, diet plays a huge role in the structure of the microbiome. 

Unless diet was the main area of investigation it is often overlooked. The exact composition of 

standard chow diet is considered proprietary information and is not available to the public. It 

varies across manufacturers and can even change from one batch to another with no prior notice 

creating protential bias in the involved research (Pellizon, 2016). There should be an 

established control diet with a set composition for universal use in all non-diet related 

microbiome investigations. Colitis grading is another factor that needs to be standardised in 

UC mouse models.  There are no formal criteria defining colitis in mice nor grading of 

symptoms outlining colitis severity (equivalent to flare-ups and remission in humans), leaving 

it for personal interpretation by both authors of the study when interpreting results and myself 

during meta-analysis design. In addition to that, the criteria used by researchers to define the 

condition of the mice (healthy vs colitis), or the severity of the disease (if even mentioned) is 

often not described in the study. Therefore, condition grouping and intensity of disease was left 

to my personal interpretation (as described in the methods chapter) of the authors’ lacking 

description and likely introduced variability in results across mouse groups. Another issue 

encountered was poor curation of the metadata assigned to sequenced samples, where sample 

names were improperly annotated, the sequenced variable region of the 16S gene and the sex 

of mice were not always mentioned In fact, the majority of the studies included in this meta-

analysis conducted their experiments on male mice only when both human and animal studies 

have shown significant sex differences in intestinal microbial communities (Kim et al., 2020). 
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This again introduces bias and presents incomplete characterisation of associative links 

between UC and the gut flora. Finally, the shortage of studies investigating functional roles of 

gut bacteria in health and disease made it difficult to postulate the type of associative link 

between taxa and colitis. 

 

 

 

 

 

 

 

 

4.4 Future work 

 

 
The work done throughout this thesis only draws associative links between the gut microbiome 

and UC in the DSS mouse model. As highlighted in 3.3.1, the colitis murine model has a great 

effect on the structure of the gut microbial community. Thus, to be able to generalise the 

microbial patterns associated with UC a meta-analysis should include datasets employing other 

mouse models, like the Il10 KO model and the T cell transfer model. Other variables like, sex 

and extraction/sequencing kits, should also be considered when analysing the data to eliminate 

unwanted biases. Co-occurrence network analysis of bacterial associations with UC should be 

done to explore patterns and connections within and across microbial communities. The 

findings should also be validated in the wet lab to determine whether these associations are of 

causal nature or mere correlations. To better understand the role of the taxa in UC, colitis would 

be induced using DSS in gnotobiotic mice colonised with a synthetic microbiota including 

species like, Turicibacter, Faecalibaculum, C. cocleatum, Bifidobacteria, Helicobacter, 

Terrisporobacter and Herbinix, and microbial compositional changes would be characterised 

using 16S sequencing. Once a link has been established between microbes and the condition, 



Discussion 135 

their functional profiles would be identified using metagenomic and transcriptomic profiling 

followed by metabolomic assays. Functional profiling can be confirmed in vitro once 

appropriate culturing protocols are established. The meta-analysis workflow should be applied 

on human datasets and the results should be cross-checked to demonstrate the translatability of 

the data.  

 

 

 

 

4.5 Conclusions 

 

 
This meta-analysis drew links between microbes and colitogenic/colitic states. The main 

pattern observed was changes in taxa abundance from the orders Bacteroidales and 

Clostridiales (particularly Lachnospiraceae), with an increased abundance of Bacteroidales 

species in the colitogenic and/or colitis groups. This observation agrees with the widely 

accepted low Firmicutes/Bacteroidetes ratio detected in UC cases, whether in humans or mice 

(Stojanov, Berlec, & Štrukelj, 2020). Erysipelotrichales are predominant in colitogenic and 

colitis groups, as well as Bifidobacteria, Esherichia/Shigella spp., and Helicobacter. An 

associative link between two taxa, Terrisporobacter and Herbinix, and experimental UC was 

first reported in this thesis. I hypothesize that the presence of pro-inflammatory taxa like 

Escherichia/Shigella spp., Helicobacter, Robinsoniella and Peptrostreptococcaceae species is 

a predisposition to murine UC. A causal relationship between these taxa and UC cannot be 

deduced due to the lack of functional experiments. However, this work raises questions and 

areas in the field that need to be investigated in the future.  
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Chapter 5: Faecal matter transfer in GF shows that phenotypic 

changes in intestinal epithelial lining modulated by the immune system are 

microbiota dependent 

 
5.1 Chapter Overview 

 

 
In this chapter, the findings of another project I worked on, in collaboration with the Laboratory 

of Immunoinflammation at University of Campinas, Brazil, during my PhD are presented. 

These findings have been published in the journal Microbiome, in April 2023, under the title 

"Inulin diet uncovers complex diet-microbiota-immune cell interactions remodelling the gut 

epithelium”. My contribution to this study, detailed in the methods section of this chapter, 

includes 16S rRNA data processing and analysis for all microbiota characterisation 

experiments, except for the ones employing gnotobiotic mice. Briefly, the experimental design 

involved grouping mice based on their diet, inulin-rich and control diet, then identifying the 

composition of their microbiome 30 days post diet changes. This experiment was repeated and 

expanded on by inoculating germ-free mice with faeces from mice of either groups. Mice fed 

an inulin-rich diet and the germ-free mice inoculated from the latter mice exhibited phenotypic 

changes in the gut epithelium. I discuss the results of the analysis I did on the 16S rRNA 

sequencing data from those two experiments linking it to the project as a whole in the 

manuscript summary. Since this work does not investigate gut microbial associations with UC, 

I was not able to include it in my meta-analysis and is instead described here in a separate 

chapter.   

 

5.2 Manuscript Summary 

 
In summary, dose-dependent phenotypic changes in the gut epithelium, including a 25% 

deepening of colonic crypts and lengthening of the caecum and colon, were observed in mice 
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fed an inulin (fermentable fibre) rich diet (10%) for 30 days. EdU incorporation assay, flow 

cytometry, immunostaining and clonogenicity assays all confirmed that these modulations 

were due to increased cell proliferation rates in colonic crypts.  Lineage tracing demonstrated 

the enhanced proliferative activity of colonic crypt dwelling Lgr5+ stem cells in inulin fed mice. 

Bulk RNA sequencing of intestinal epithelial cells (IECs) showed an upregulation of genes 

involved in cell cycle pathways as well as DNA replication and repair pathways while single-

cell RNA sequencing (scRNAseq) analysis indicated a two-fold increase in proliferative cells 

in inulin fed mice compared to the control group. Further analysis of scRNAseq data showed 

that inulin has an impact on proliferation and differentiation of colonic epithelial cells with an 

increase in cycling cells and goblet cells as well as their expression of mucus-associated genes. 

The described modulatory phenotype elicited by an inulin diet seemed to be microbiota 

dependent. The increased proliferative activity in colonic crypts was only observed in SPF and 

was absent in GF and antibiotic treated mice. 16S analysis of faecal samples from SPF mice 

showed an increase in Bacteroidetes species, particularly Bacteroides and Duncaniella. FMT 

from inulin fed SPF to GF mice induced the same phenotypic even when dietary inulin was not 

supplied. To reduce variation and complexity of the gut microbiome the diet experiment was 

repeated using gnotobiotic mice colonised with a synthetic microbiota of 13 fully sequenced 

human commensal strains (including B. ovatus, B. uniformis, B. thetaiotamicron, B. caccae, 

Barnesiella intestinihominis, Roseburia intestinalis, Eubacterium rectale, Marvinbryantia 

formatexigens, Clostridium symbiosum, Collinsella aerofaciens, E. coli HS, Desulfovibrio 

piger and A. muciniphila). The phenotype was again observed in the gnotobiotic mice with 

alterations in the microbiome, particularly an enrichment of two Bacteroides species and C. 

aerofaciens. Bacteroidales was the only overlapping taxa when comparing the microbiotas of 

the three mouse groups (SPF, GF + FMT, and gnotobiotic mice), with a significant increase in 

abundance. Further experimental work showed that dietary inulin increased expression of Il22 
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as well as the number of proinflammatory Th17 cells. The inulin-induced phenotype was not 

just microbiota-dependent but also reliant on interactions with γδ T cells and their secreted 

cytokine Il22. This study shows the complexity of defining the role or assigning a causative 

association between microbes and phenotypic changes let alone disease manifestations.  

 

5.3 Methods 

 
The pipelines used to process and analyse the data in this study are mostly similar to those 

covered in the chapter 2. The main differences were in the analysis methods, which will be 

highlighted in the 5.3.2.  

 

5.3.1 Data Processing 

 
The provided de-multiplexed 16S rRNA sequences were processed using the DADA2 pipeline 

(Callahan et al., 2016) after passing FastQC quality checks. The reverse reads were of poor 

quality and failed the checks, preventing paired read merging, thus only the forward reads were 

used in downstream analysis.  The default DADA2 parameters used and only modified at the 

trimming step to account for primer sequence contamination. The FASTQ files were then 

filtered based on the error rates and quality scores generated by the DADA2 algorithm. 

Following this, the reads were denoised and summarised into amplicon sequence variants 

(ASVs) rather than operational taxonomic units (OTUs), then filtered for chimeric sequences. 

Taxonomy was assigned using the RDP Classifier training set 18 (Wang et al., 2017).  

 

5.3.2 Data Analysis and Taxonomic Profiling 
 

The phyloseq R package was used for downstream analysis, including the heatmap plots 

(McMurdie & Holmes, 2013). To explore the variability among sample groups, UniFrac 

distances between the samples were calculated and visualised using a PCoA plot. The statistical 
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significance between differences microbial in communities were tested using DESeq2 which 

is based on a negative binomial distribution (Wang et al., 2007). LEfSe analysis was used to 

determine the ASVs that were statistically different among the two experimental groups. LDA 

threshold of 2 was used and a significance alpha value of 0.5 was set for both the Kruskal-

Wallis and Wilcoxon tests. The top 20 ASVs were sorted by LDA scores and plotted to show 

the differentially abundant taxa that are statistically significant.  

 

5.4 Results 

 

5.4.1 Data Processing 
 

Processing the data from the first mouse experiment which included two experimental groups: 

inulin rich diet and control diet. In experiment 1, mice were placed on either of the two diets 

for 30 days, sampled for microbiota composition testing then euthanised. Experiment 2 was an 

expansion of experiment 1 where the sampled faeces were used for FMT in germ-free mice. 

The germ-free mice were then put on a chow diet for 21 days before their microbiomes were 

sampled and analysed. The sequences from both experiments were processed using the 

DADA2 pipeline as described in the methods section of this chapter. Read tracking, feature 

counts and taxonomy assignment were used to measure the success of the pipeline (table 5.1). 

In the first experiment, using pair-ended reads yielded either 0 reads or 15% of retained reads 

that were failing to align to taxonomy (table 5.1). The same was observed with experiment 2 

where the use of merged sequences resulted in low retained reads and failed taxonomy 

alignment, in some DADA2 runs. 76% of the sequences were retained with successful 

taxonomy alignment when the DADA2 pipeline was run on the forward reads only, thus only 

single reads were used to generate the ASV table (described in detail in chapter 3). 
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Table 5.1: Summary of the trimming parameters tested in the DADA2 pipeline and their 

corresponding read tracking, feature counts and taxonomy assignment information. 

Trimming 

Parameters 
Total Reads 

Retained 

Reads 

Number of 

ASVs 

Assigned 

Taxonomy 

Experiment 1 

F=250; R=225 

2258086  

15.4% 3212 No 

F=250; R=175 0% 0 No 

F=250 76.7% 871 Yes 

F=235; R=175 

Pooled 
59.1% 1580 Yes 

Experiment 2 

F=225; R=225 

1669462  

0% 56 No 

F=250; R=250 13.8% 56 Yes 

F=285; F=285 13.7% 1938 Yes 

F=285; F=285 

(Pooled) 
72% 2002 No 

F=235 76% 2706 Yes 

 

 

5.4.2 Data Analysis and Taxonomic Profiling 
 

As detailed in chapter 3, the ASV tables, taxonomy table and FASTA file were combined into 

a phyloseq object then used to generate a phylogenetic tree using ape and phangorn v. 2.11.1 

(Paradis & Schliep, 2019; Schliep et al., 2017).  Distances between the sample points were 

calculated using the UniFrac distance metric and plotted into a PCoA plot (figure 5.1). PCoA 

plot shows that the microbiotas from mice on the inulin-rich diet were different from those put 

on the control diet. PERMANOVA testing showed this to be statistically significant with about 

37% of the variation between samples is due to the chosen grouping i.e. the diet tested (figure 

5.1).  Duncaniella, Bacteroidales and Akkermansia were particularly enriched in mice fed an 

inulin-rich diet (figure 5.2A). These observations were not exactly replicated in the second 

experiment. FMT from mice of the different diet groups did not see to have a great effect on 

the overall gut microbial composition with no major shifts detected, despite the consistent 



Results 142 

phenotypic changes observed (figure 5.1B).  However, like the first experiment, the bacterial 

taxa Duncaniella and Bacteroidales were more abundant in mice receiving FMT from mice put 

on an inulin-rich diet (figure 5.2B).  This implies that these bacterial taxa are associated with 

the fibre inulin.  
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Figure 5.1: Visualisation of beta diversity (UniFrac) across microbial 

profiles from Corrêa et al. (2023) using PCoA plots coloured based on 

diet (Inulin = blue, Control = red) shows that microbial profiles varied 

significantly between diet groups in experiment 1 (A) but the same was 

not observed in the second experiment (B). 
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Figure 5.2: Inulin-rich diet implicated in gut microbial shifts. (A) Heatmap 

showing relatively abundant taxa across the two diets in experiment 1. (B) 

Barplot showing LDA scores from LEfSe analysis on differentially abundant taxa  

from mice in experiment 2 post chow diet. 
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5.5 Conclusion 

 
Based on my analysis combined with the other data presented in associated manuscript, it can 

be concluded that a diet high in inulin triggers microbiota-dependent phenotypic changes 

modulated by the immune system. Antibiotic treated mice as well as germ-free mice did not 

experience the gut epithelial changes with inulin supplementation. Duncaniella and 

Bacteroidales species have been associated with these modifications in the gut epithelium. 

Results from the experiment with the SPF mince further confirmed the enrichment of 

Bacteroidales members, specifically Bacteroidetes, when inulin was involved. Duncaniella 

was not one of the 13 strains present in the SPF mice, hence it was not flagged in the results. 

Further investigations highlighted the role of γδ T cells and their secreted Il22 in the observed 

phenotype. This further confirms that studying the microbiome in relation to a phenotype or 

disease in isolation is too simplistic and will not paint an accurate picture.  
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