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ABSTRACT: Speech Imagery (SI) is considered an in-
tuitive paradigm for Brain-Computer Interface designs
in particular for communication applications. In this
work, we use Electroencephalography (EEG) for offline
SI decoding. We recorded covert speech from 17 par-
ticipants. We tested two types of wavelet decomposition
techniques. Specifically, we considered coefficients from
6 decomposition levels with Discrete Wavelet Transform
(DWT) and multiple 2 Hz spaced packets with Wavelet
Packet Decomposition (WPD), we computed different
statistical features from such coefficients to form vec-
tor inputs for our binary-class classification approach.
We approached the issue of feature/sample gap by us-
ing the Maximum Relevance and Minimum Redundancy
(MRMR) feature selector algorithm to select the most
informative features. We achieved a mean accuracy of
76.6%± 16 and demonstrated the potential of WPD to
extract narrow-band features, and how its refined repre-
sentation outperforms DWT in SI decoding.

INTRODUCTION

Speech Imagery (SI) has become an attractive paradigm
due to its intuitiveness [1, 2]. The Brain-Computer In-
terface (BCI) user is prompted to covertly say or repeat
a speech unit (e.g., a letter, word, or phrase). With accu-
rate classification of such tasks, a user can convey differ-
ent messages or commands, e.g., to change an application
state. One potential application of SI-based BCIs is as an
assistive technology to restore communication for peo-
ple who have lost the ability to speak. Researchers have
approached SI-based BCI designs using different speech
units as vowels [3, 4], syllables [5, 6] or words [7, 8] and
were able to achieve higher than chance decoding accu-
racies suggesting the potential use of this paradigm.
To classify the speech unit from recorded EEG signal, in-
formative features need to be extracted, EEG dynamics
are known for their non-stationarity therefore a need for
techniques that capture time and frequency domain infor-
mation[9].
The widely known Fast Fourier Transform (FFT) has
been applied to extract SI frequency information, Bajes-
tani et.al (2022) [10] used FFT coefficients to classify be-
tween tasks with higher than-chance accuracy. Modified
forms of FFT have also shown promising results when

extracting SI features, the Discrete Gabor transform was
applied by Jahangiri et.al (2018) [6] where the coeffi-
cients helped identify the relevance of the gamma band
(> 60 Hz). Mel Frequency Cepstral Coefficients initially
used for audio decomposition were used as EEG features,
and showed classifiable properties between SI tasks [11,
12]. These FFT-based methods represent well-frequency
information but omit time domain features which may
also be important for SI decoding.

Wavelet Decomposition is a method proven useful in ex-
tracting both, time and frequency domain features [13,
14], in particular, Discrete Wavelet Transform (DWT)
has been used as a feature extraction technique in SI ap-
proaches [15, 16]. DWT decomposes the signal with a
transformation analogous to high and low-pass filtering.
However, it may not be optimal for accessing specific fre-
quency ranges as the obtained decomposition levels are
derived from the low-pass filtered version of the scaled
signal [17]. Additionally, Wavelet Packet Decomposition
(WPD) performs a more detailed representation as the de-
composition levels derive from the low and high-pass fil-
tered versions of the signal resulting in a representation
with more frequency ranges to access [18].

The issue of participant-dependent frequency variability
is known in the area of EEG decoding, as the prominent
frequencies elicited from imagery tasks tend to change
for individuals, the appropriate selection of frequency in-
formation would lead to better classification results [19],
thus we investigated the use of WPD to find participant-
specific frequency ranges and compare its performance
with features from fixed frequency ranges from DWT.

Due to the relatively small number of SI samples in com-
parison with the large number of features obtained from
the wavelet decomposition levels, a dimensionality re-
duction step is needed to select a reduced number of fea-
tures for optimal performance of a machine learning clas-
sifier. We investigated the capabilities of the Maximum
Relevance Minimum Redundancy (MRMR) feature se-
lection algorithm as it has proven useful for selecting in-
formative features from large feature sets [20].

We have chosen the two phonetically distinct monosyl-
labic words ‘left’ and ‘right’ for our SI experiments and
emphasized the participants to focus on the inner pronun-
ciation rather than its meaning.



Figure 1: Timeline of the experimental protocol.

MATERIALS AND METHODS

Participants: Seventeen right-handed able-bodied par-
ticipants (9 female) between the ages of 20 and 35 (µ =
25.65,σ = 8.3) were recruited from the student popula-
tion of the University of Essex. Participants received a
compensation voucher worth £10 (GBP) for their time.
All volunteers read, understood and signed the consent
form based on the recommendations of the Ethical Com-
mittee of the University of Essex in January 2023 (Refer-
ence Number ETH2223-0220).

EEG Instrumentation: EEG was recorded using a 64-
channel Biosemi Active-Two system. Electrode place-
ment was done via the international 10-20 system, plus
one electrode close to the pterion after each eyebrow for
electrooculography (EOG) and one electrode behind each
ear on the mastoids for electromyography (EMG) record-
ing. Data was recorded at a sampling rate of 2048 Hz
unaffected by hardware cut-off.

Experimental Protocol: Participants were seated in a
comfortable chair facing a 52-inch screen. A graphical
user interface developed with PsychToolbox 9.0 [21] in
Matlab R2022 was used to display the prompts over a
plain grey screen. We used a stimulus masking approach
where we first showed the imagery prompt and then had a
visual cue presented as a circle in the middle of the screen
that remained for 300 ms, having a flash-like effect. See
Figure 1 for the timeline of the experiment.
Participants were asked to perform the speech imagery of
the words ‘left’ and ‘right’ as soon as they saw the cue
stimulus.
We first presented a fixation cross for 2 seconds followed
by the imagery prompt for 6 seconds and a time-variant
(1.5–2 s) fixation cross before the cue. We cued our par-
ticipants with the described flash stimulus and proceded
to leave a plain screen for 5 seconds until the ‘relax’
prompt was shown.

Signal Analysis: Raw EEG data were first downsam-
pled to 1024 Hz from the original 2048 Hz, we then ap-
plied a notch filter (zero-phase, Hamming window FIR)
at a cutoff frequency of 50 Hz and its harmonics at 100 Hz
and 150 Hz to reduce the power line noise. We divided
the data into regularly spaced epochs from t1 = −2 s to
t2 = 8 s with respect to stimulus onset (t = 0), 25 tri-
als per class were initially recorded. Channels were vi-
sually inspected and rejected when they looked overly
noisy with respect to their neighbours. Epochs were vi-
sually inspected to reject those with bad movement ar-
tifacts. Between 4 to 7 epochs and 6 to 10 channels
were dropped for each participant. Common Average
Referencing (CAR) was then applied after to improve the

signal-to-noise ratio.
In order to remove EOG and EMG artifacts, the signal
components were estimated using Independent Compo-
nent Analysis (ICA) with the Picard algorithm [22] to se-
lect and discard components encompassing evident eye
blinks, lateral ocular movements or muscular artifacts
based on their spatial or temporal locations and frequency
distributions. Between one and four components were re-
moved for each participant. The remaining components
were used to reconstruct the data.

Feature Extraction: We used a 1.2-second-long post-
stimulus window and tested the signal decomposition al-
gorithms WPD, and DWT. We used Daubechies wavelet
(db4) as the mother wavelet as it has been widely used
for EEG approaches [8, 23].
DWT is known for its ability to represent time and fre-
quency information [14, 24], it assumes that a signal is
a linear combination of a particular set of wavelet func-
tions, and these functions are scaled and shifted versions
of a mother wavelet [17] WPD is a more refined version
of wavelet decomposition which solves the scaling lim-
itation of DWT as the decomposition happens on both
detail and approximation coefficients at each level gen-
erating a larger frequency space, thus for the 6th WPD
decomposition level, 64 packets of coefficients would be
obtained[18].
To decompose the signal we first applied a low-pass filter
(zero-phase, Hamming window FIR) at 128 Hz cut-off.
For DWT we considered 6 levels of detail coefficients,
D1(64–128 Hz), D2(32–64 Hz), D3(16–32 Hz), D4 (8–
16 Hz), D5 (4–8 Hz), D6 (2–4 Hz) and one of approx-
imation coefficients A6 (0–2 Hz). For WPD, we con-
sidered the 2 Hz step packets at the 6th decomposition
level. These packets encompassed frequencies from 4–
30 Hz and 70–128 Hz. We selected Alpha and Beta as
previous approaches found informative features in such
bands [10, 11, 25, 26] and also accounted for frequencies
higher than 70 to explore the gamma band, also known to
be relevant in SI-related activity [6, 27]. We did not con-
sider frequencies between 30–70 Hz for WPD to narrow
the number of options to select from therefore reducing
computation cost.
We computed the next statistical and wavelet features
from each level/packet: mean value, standard deviation,
root mean square, slope, kurtosis, energy, entropy, mean
absolute difference, negative turnings, positive turnings
and wave centroid.
To find the most informative features we tested the classi-
fication performance of each statistical feature from each
level/packet on a one-to-one basis, then combined the
features with the top 3 classification accuracies to check
for performance improvement.

Feature Selection: Each feature-level/packet combina-
tion formed a feature vector of shape channelsx1, as the
average number of epochs per class was 21 ±4, we aimed
for an ideal features vector shape of 10x1. To reduce
the vector dimensionality we used the Minimum Redun-
dancy Maximum Relevance (MRMR) method on every



run of our cross-validation procedure. MRMR aims to
maximize the relevance of features to the target variable
while minimizing the redundancy among selected fea-
tures [20], it uses a relevance score based on mutual in-
formation and a redundancy score based on Pearson cor-
relation.

Classification: For each participant, we had an aver-
age of 21 trials ±4 per class. We evaluated the 2-class
classification performance of our model with the median
accuracy from a 6-fold cross-validation. We repeated
the cross-validation 15 times, with a different seed at the
time, and used the median score of each repetition to bet-
ter estimate the model’s performance.
Linear discriminant analysis has been widely used in
BCIs. As large dimensionalities and overfitting are com-
mon problems in BCI, regularized LDA has been found to
be useful for small training sample settings, we used the
shrunken version of LDA [28], which adds a penalty term
to the loss function, using the scikit-learn library [29] and
the ‘auto’ shrinkage parameter that finds an optimal value
based on the lowest error.

RESULTS

To get the most informative frequency ranges from the
SI-EEG data, we recursively tested 11 statistical features
computed from WPD packet and DWT level coefficients,
we found the best-performing setting for each decompo-
sition modality and participant based on the classifica-
tion accuracy. We then reported the obtained accuracies
and compared the results as seen in Figure 2. The use of
features from multiple narrowed frequency intervals with
WPD achieved 13% higher accuracy than the limited lev-
els of decomposition from DWT, with (p < 0.01) from a
two-sample test. WPD scores are above the 99% confi-
dence interval, computed based on the trial number per
class [30], marked for the black horizontal lines, while
most of DWT results lay below this interval.
The MRMR algorithm for feature selection was shown to
be useful in reducing dimensionality while retaining in-
formative features. We have counted the occurrence of
selection of each WPD packet over cross-validation folds
and present them as a channel-feature heatmap in Figure
3. We observe that some relevant channels involve lo-
cations that may be reflecting speech processing-related
areas as left-central channels C1, C5, frontal-temporal
channel FT7 or temporal channel T7 one of the most se-
lected by our feature selection process. However, infor-
mative features spread across different regions, as with
Fp2 chosen along different frequencies or P8 highly rel-
evant on the frequency band (26–28 Hz). Even if neu-
ral dynamics are considered to be produced by left hemi-
sphere dominant processes [31–33], SI-relevant features
from EEG appeared to spread around different regions
depending on individuals.
Similar to frequency domain features, relevant informa-
tion seems to be spread along all the tested bands above
10 Hz with particular highlights on bands at 26–28 Hz,

Figure 2: Comparison of obtained accuracies between the DWT
and WPD decomposition methods across repeated 6-fold cross-
validation, black horizontal lines represent the 99% confidence
interval.

Figure 3: Heatmap of occurrences of channels vs features from
the MRMR algorithm on WPD features.

78–80 Hz and 122–124 Hz.
During our analysis, we checked for the statistical
features with discriminative properties between the SI
classes on DWT and WPD coefficients, we counted the
number of times that each feature gave a higher-than-
chance result, Figure 4 shows the occurrence of signifi-
cant results from each feature, where the slope of the co-
efficients, appeared as the most discriminative property
from these wavelet representations.

DISCUSSION

Research into the Speech Imagery paradigm is gaining
traction, different experiments and designs prove that SI
can be classified from EEG signals [3, 6, 7].
The Motor Imagery (MI) paradigm, whose event-related
desynchronization (synchronization) is well known to
have a predominant range of frequencies (Alpha and
Beta) and location in the central Motor Cortex [34, 35].
In contrast, the SI-related potentials are not fully under-



Figure 4: Occurrences of statistical features obtained from both
DWT and WPD.

stood [36].
Speech Imagery involves more complex processing for
the brain than MI [37], as a Language process, the brain
regions known to be active during speech processing may
be active during SI, the literature suggests that SI activ-
ity has a left hemisphere dominant processing, that in-
volves different brain regions. Some commonly men-
tioned regions are the temporal-parietal junction that has
been related to a memory and semantic decoding step, the
frontal-temporal regions possibly handling syllabification
and premotor and motor regions for the activity related to
the somatosensory SI experiences [33, 38, 39].
Out of the most relevant features by the MRMR selector,
we find channels located on regions that may be influ-
enced by areas known to be active during language pro-
duction, FT7 around Broca’s area, C1 in the Motor cor-
tex, T7 and C5 around the superior temporal region, P5
and P3 in the temporal parietal junction [33, 40]. How-
ever, the encountered relevant features are not restricted
to these areas and are spread around different regions, as
features from channels P8, TP8 or Fp2.
Studies of SI with Electrocorticography (ECOG) and
EEG have found that this imagery paradigm involves
broad-frequency dynamics and highlights the important
contribution from the gamma band (> 60 Hz) [6, 38, 41].
Our results suggest that many informative features come
from the narrow frequency ranges between 26–28 Hz,
78–80 Hz, or 122–124 Hz. It can also be noticed that rel-
evant features appeared to be chosen nearly continuously
in the Gamma range between 76–108 Hz but no features
were significantly chosen between 96–106 Hz. We have
tested WPD frequencies laying on Alpha, Beta and high
Gamma bands and found relevant information is spread
along different frequencies. Therefore we suggest that
future SI analysis should consider a broad spectrum of
the frequency domain.
The issue of participant-dependant frequency variability
in SI from EEG data was demonstrated in our compar-
ison between the two wavelet decomposition strategies.
The general decomposition levels extracted with DWT in
most of the cases did not lead to significant classification
performance, however selecting participant-specific nar-
row frequency bands with the use of WPD significantly
improved the classification accuracy, as shown in Fig-

ure 2. To test a decoding pipeline with multiple WPD
configurations can be computationally expensive due to
the total amount of available packets. In this work, we
have pointed out some frequency ranges in which com-
binations could be the starting testing point for future SI-
related work.
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