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Quantifying lumbar sagittal plane
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Wearable sensors like inertial measurement units (IMUs), and those available as
smartphone or smartwatch applications, are increasingly used to quantify
lumbar mobility. Currently, wearable sensors have to be placed on the back to
measure lumbar mobility, meaning it cannot be used in unsupervised
environments. This study aims to compare lumbar sagittal plane angles
quantified from a wrist-worn against that of a lumbar-worn sensor. Twenty
healthy participants were recruited. An IMU was placed on the right wrist and
the L3 spinal level. Participants had to position their right forearm on their
abdomen, parallel to the floor. Three sets of three consecutive repetitions of
flexion, and extension were formed. Linear mixed models were performed to
quantify the effect of region (lumbar vs. wrist) on six outcomes [minimum,
maximum, range of motion (ROM) of flexion and extension]. Only flexion ROM
was significantly different between the wrist and lumbar sensors, with a mean
of 4.54° (95% CI = 1.82°–7.27°). Across all outcomes, the maximal difference
between a wrist-worn and lumbar-worn sensor was <8°. A wrist-worn IMU
sensor could be used to measure gross lumbar sagittal plane mobility in
place of a lumbar-worn IMU. This may be useful for remote monitoring
during rehabilitation.
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1 Introduction

Lumbar mobility is thought to be important for understanding the risk of low back

pain (LBP) (1), its recovery, and persistence (2, 3). The construct of lumbar mobility is

also tightly integrated within the philosophy of many treatment approaches, such as the

movement system impairment approach (4), cognitive functional therapy (CFT)

approach (5), and the mechanical diagnosis and therapy, McKenzie, approach (6).

The gold-standard method of measuring lumbar mobility is either video fluoroscopy

(7) or bone-pin studies (8). Neither of these techniques can be adopted routinely clinically

or in research, due to issues surrounding potential harm from radiation exposure,

invasiveness, and lack of equipment. Lumbar mobility can also be assessed using optical

motion cameras, with surface-mounted reflective markers (9), and inertial measurement

units (IMUs) (10), with studies reporting excellent reliability [e.g., test-retest intraclass

correlation coefficient >0.85 (11, 12)]. With significant recent advancements in

smartphone sensor technology and software applications (apps), coupled with near-

ubiquity of smartphone ownership, smartphones have emerged as a viable clinical

solution for the measurement of lumbar mobility (13).
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When using wearable sensors such as IMUs or those embedded

within smartphones, decisions have to be made on the optimal

location of sensor placement (10, 14). A previous study reported

that optimal position for the placement of an IMU was 25% of

the distance from the midpoint of the posterior superior iliac

spines to C7, when compared to the reference standard of optical

motion capture (14). When using a smartphone app (TiltMeter©)

for measuring lumbar mobility, another study required a clinician

to position the smartphone on T12 of the subject’s spine (15). A

requirement for positioning sensors on the lumbar spine limits

mobility assessments to a supervised environment, with assistance

from trained personnel. This precludes the ability for monitoring

lumbar mobility remotely, in free-living unsupervised environments.

A potential solution to these limitations for lumbar sensor

placement is to use sensors within wrist-worn smartwatches. For

example, the Apple Watch Ultra (Apple Computers Inc., Cupertino,

CA, USA) has native apps that utilise the in-built inclinometer (e.g.,

the “Compass” app) (16). Guo and colleagues demonstrated that

the inclinometer on smartwatches can be used to detect and

translate various hand gestures into input signals (17). To date,

sensors within smartwatches have been used primarily for physical

activity-monitoring (18). However, it is possible that by positioning

the forearm on the abdomen parallel to the floor (e.g., Figure 1), a

wrist-worn IMU could approximate the quantification of lumbar

mobility of a lumbar-worn IMU. This present study aims to

compare lumbar sagittal plane angles quantified from a wrist-worn

sensor against that of a lumbar-worn sensor. We hypothesise that

the lumbar sagittal plane angles will be similar when quantified

using a wrist- vs. a lumbar-worn IMU sensor.
2 Materials and methods

2.1 Experiment design and participants

This was a cross-sectional study design, in which data

collection took place between November 2022 to February 2023
FIGURE 1

(A) A posterior view showing the position of the lumbar and pelvis
sensors, (B) an anterior view showing the position of the wrist sensor.
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at the University of Essex, UK. Participants were recruited by

word of mouth, printed advertisements, and using social media

platforms (e.g., Instagram). Healthy participants were eligible for

the present study if they met the following inclusion criteria: (1)

aged between 18 and 40 years, (2) free from any restrictions in

lumbar spinal mobility, and (3) currently free from symptoms

emanating from the lumbar region, as self-reported. The study

was approved by the University of Essex Ethics Committee

(ETH2223-0474). All participants provided signed informed

consent prior to study enrolment.
2.2 Sample size

Sample size was calculated using the pwr package (v1.3-0) in R

software (v4.3.0). A previous study reported a correlation

magnitude of 0.6 in the lumbar motion angles when comparing

a wearable stretch sensor to optical motion cameras (19). To

detect a moderate correlation of 0.6 between the lumbar flexion

angles measured using the two methods, at a power of 0.8 and

an alpha of 0.05, 16 participants were required. 18 adult

participants (9 males, 9 females; mean [standard deviation] age

20.8 [1.6] years, body mass 65.8 [12.4], and height 1.7 [0.09] m)

who met the eligibility criteria were recruited.
2.3 Instruments

Three IMUs sampling at 200 Hz (Noraxon, USA) were

attached to the participant via adjustable straps supplied by the

manufacturer (Figure 1). One sensor was positioned on the

spinous process of the third lumbar (L3) vertebra, which was

identified through manual palpation. Another sensor was placed

on the dorsal surface of the distal right forearm. The third sensor

was placed on the posterior surface of the pelvis. The pelvic

sensor was required to enable the quantification of segment

angles relative to a static standing calibration posture (Figure 1).

The pelvic sensor was not used for any other calculations.
2.4 Data collection

Self-reported age (years), body mass (kg), height (m), and

gender were collected via online questionnaire (Qualtrics). For all

procedures, participants were instructed to stand with the feet

shoulder-width apart, and pointing forwards, as judged by the

assessor. Participants performed three sets of three consecutive

repetitions of full spinal flexion movements (i.e., nine repetitions

in total). Each set was interspersed by a static rest in the

standing position of one minute duration. Using a metronome

(Pro Metronome, free version) on a tablet computer (iPad, Apple

Computers, Cupertino, CA) set to 20 beats per minute (20), all

spinal movements occurred at a fixed pace with each half-cycle

of movement matching the metronome frequency (e.g., “beat”

neutral, “beat” maximally flexed, “beat” neutral, etc.). The IMU

sensor was calibrated prior to the start of each set with
frontiersin.org
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participants stood in an upright position. Participants were allowed

to familiarise themselves with the task prior to data collection, to

ensure syncing with the movement cadence.
2.5 Data processing

All processing was undertaken in Noraxon MyoResearch

software (MR3 3.18.98). All signals were not filtered. Two events

were visually identified from the angle signal from the lumbar

IMU, for each flexion or extension repetition: “start” where the

movement began, and “end” where the participant returned to

the upright position. The minimum, maximum, and RoM

(maximum-minimum) angles for each repletion were

automatically calculated by MyoResearch for each repetition and

provided as an average value for each set.
2.6 Statistical inference

All statistical analyses were performed using R (version 4.2.2),

with statistical significance defined by P-value <0.05. There were six

dependent variables, the minimum, maximum, and RoM for both

flexion and extension; the independent variable is the region with

two levels, lumbar and wrist. A linear mixed model was used to
FIGURE 2

Beta coefficients with 95% confidence interval, of the linear mixed models fo
(C) range of motion of lumbar flexion, (D) minimum lumbar extension angle,
extension.
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compare the effects of region on each of the six dependent

variables, with a subject-specific random intercept. Assumption

testing of normality and equivalence of variance was performed

by residual diagnostic plots.
3 Results

For the lumbar flexion angle, the minimum angle was not

significantly different between the wrist and lumbar sensors, with

a mean of −0.29° (95% CI =−1.53°–0.95°, t =−0.47, p = 0.642). The
maximum angle was not significantly different between the wrist

and lumbar sensors, with a mean of 1.51° (95% CI =−2.35°–5.36°,
t = 0.78, p = 0.440). The RoM was significantly different

between the wrist and lumbar sensors, with a mean of

4.52° (95% CI = 1.59°–7.44°, t = 3.07, p = 0.003) (Figure 2A-C).

For the lumbar extension angle, the minimum angle was not

significantly different between the wrist and lumbar sensors,

with a mean of 0.18° (95% CI = −0.55°–0.88°, t = 0.52,

p = 0.605). The maximum angle was not significantly different

between the wrist and lumbar sensors, with a mean of −0.66°
(95% CI = −2.32°–1.01°, t = −0.79, p = 0.434). The RoM was

not significantly different between the wrist and lumbar

sensors, with a mean of 1.22° (95% CI = −0.40°–2.84°, t = 1.50,

p = 0.137) (Figure 2D-E).
r (A) minimum lumbar flexion angle, (B) maximum lumbar flexion angle,
(E) maximum lumbar extension angle, and (F) range of motion of lumbar
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4 Discussion

Lumbar mobility is thought to be an important contributor to

the management of LBP. However, current clinical methods for

measuring lumbar mobility require another person to position

the IMU sensor on the lumbar spine, which precludes self-

monitoring in free-living, unsupervised environments. This study

compared lumbar segment flexion and extension angles using a

wrist-worn IMU sensor compared to one worn over the lumbar

spine. The findings from this study partially confirm the

hypothesis as only one out of six tested variables (flexion RoM)

displayed a significant difference between the two IMU positions.

Even though one out of six variables investigated was

statistically significant between the wrist- and lumbar-worn

sensors, the differences may not always be clinically significant.

The largest difference observed in the present study was on

average <5°, with an upper 95% CI limit of 8°. One study

reported that four different LBP subgroups have trunk segmental

flexion angles, measured using a single T12 IMU, of 111°, 97°,

89°, and 77° (21). Another study reported a difference of 23° in

maximal lumbar flexion RoM between individuals with and

without LBP when putting on a sock (22). Clinically, a recovery

of LBP has also been associated with a mean change of lumbar

sagittal plane RoM by 6 to 10° (23). A case-series study reported

a large change in trunk segmental flexion angle (T12 IMU)

by −25° was associated with a reduction in LBP intensity, but

day-to-day fluctuations in mobility can be <5° (16). This suggests

that a wrist-worn sensor would not be suitable for measuring

small fluctuations in lumbar mobility.

No studies to our knowledge have compared a wrist-worn IMU

against a lumbar-worm IMU for measuring lumbar mobility.

However, the differences in angles between regions obtained in

the present study were within the differences in angles obtained

in a previous study when comparing different spinal positions

for an IMU placement (14). When compared against optoelectric

motion capture, one study reported that different lumbar sensor

placements resulted in a root mean squared error varying from a

maximum of −12.5° to a minimum of −5° (14). This suggests

that the difference in lumbar segmental flexion angle measured

using a single IMU between different spinal positions is −7.5° (14).
This study is not without limitations. First, our participants had

a very narrow and healthy BMI range. Given that the wrist-worn

method requires placement of the forearm on the abdomen, the

accuracy of this method may be affected by people with different

anthropometric characteristics. Second, the present study

investigated the differences between sensors at one movement

speed. It is interesting to speculate if the results found presently

will generalise to faster movement speeds. A previous study

reported that the lumbar flexion angle measured using an IMU

of the same spinal bending task did not change when increasing

movement speed from 20 beats/min to 50/beats per min (24).

However, because the forearm has to be positioned on the

abdomen (Figure 1), higher spinal movement speeds may pose a

greater challenge to maintaining the forearm in the calibrated
Frontiers in Sports and Active Living 04
position, thus potentially compromising the accuracy of the

wrist-worn method.

In conclusion, a wrist-worn IMU sensor could be used to

measure gross lumbar sagittal plane mobility in place of a

lumbar-worn IMU. This may be especially useful for remote

clinical monitoring during rehabilitation when an external person

is not available to place a sensor on the lower back.
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