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Timing along the cardiac cycle modulates
neural signals of reward-based learning

Elsa F. Fouragnan 1,2,3 , Billy Hosking2,3, Yin Cheung1, Brooke Prakash1,
Matthew Rushworth 1,6 & Alejandra Sel1,4,5,6

Natural fluctuations in cardiac activity modulate brain activity associated with
sensory stimuli, as well as perceptual decisions about low magnitude, near-
threshold stimuli. However, little is known about the relationship between
fluctuations in heart activity and other internal representations. Here we
investigate whether the cardiac cycle relates to learning-related internal
representations – absolute and signed prediction errors. We combined
machine learning techniques with electroencephalography with both simple,
direct indices of task performance and computational model-derived indices
of learning. Our results demonstrate that just as people are more sensitive to
lowmagnitude, near-threshold sensory stimuli in certain cardiac phases, so are
they more sensitive to low magnitude absolute prediction errors in the same
cycles. However, this occurs even when the low magnitude prediction errors
are associated with clearly suprathreshold sensory events. In addition, parti-
cipants exhibiting stronger differences in their prediction error representa-
tions between cardiac cycles exhibited higher learning rates and greater task
accuracy.

In situations where we must make decisions based on noisy or
incomplete information - for example deciding whether to cross the
street on a foggy morning with poor visibility - our choices can be
modulated, albeit to a small degree, by the timing of the cardiac cycle.
Studies investigating near-threshold sensory events, like visual, audi-
tory or somatosensory events, have shown that timing in the cardiac
cycle (e.g., whether events happen during the systolic or diastolic
phases of the cardiac cycle) impacts the perception and reaction to
sensory cues through changes in associated neural signals1–3. Although
heart-brain interactions are starting to be understood in relation to
sensory-driven processes, it is unclear whether the cardiac cycle has a
similar relationship with other internal representations which are non-
sensory but which, like sensory stimuli, mediate decision-making4–9.
Here we focus on amuch-studied internal representation – the reward
prediction error [PE]10 – and investigate whether the cardiac cycle also

determines the impact that each PE will have on learning. Importantly,
themagnitude of the PE can be dissociated from themagnitude of the
accompanying sensory stimulus. This makes it possible to determine
whether the cardiac cycle has an impact on near-threshold PEs even if
the PEs are associated with clearly suprathreshold sensory stimuli.

Adaptive decisions rely on accurate subjective value estimates
associated with past experience of choices and their consequences.
These values can be formally defined through the reinforcement
learning framework11 that uses the differencebetween expectation and
outcome (the PE) to update values associated with choices. A choice
that led to a positive outcome is more likely to be associated with a
higher value than a choice that did not. While the signed PE represents
how much better or worse the value of an outcome is compared to
what was expected, the absolute PE (also called ‘salience’, ‘surprise’, or
‘unsigned PE’) represents how much an outcome differs from

Received: 4 July 2022

Accepted: 14 March 2024

Check for updates

1Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK. 2Brain Research
Imaging Centre (BRIC), Faculty of Health, University of Plymouth, Plymouth PL6 8BU, UK. 3School of Psychology, Faculty of Health, University of Plymouth,
Plymouth PL4 8AA, UK. 4Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK. 5Essex ESNEFT
Psychological Research Unit for Behaviour, Health andWellbeing, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK. 6These authors contributed
equally: Matthew Rushworth, Alejandra Sel. e-mail: elsa.fouragnan@plymouth.ac.uk

Nature Communications |         (2024) 15:2976 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-1485-0332
http://orcid.org/0000-0003-1485-0332
http://orcid.org/0000-0003-1485-0332
http://orcid.org/0000-0003-1485-0332
http://orcid.org/0000-0003-1485-0332
http://orcid.org/0000-0002-5578-9884
http://orcid.org/0000-0002-5578-9884
http://orcid.org/0000-0002-5578-9884
http://orcid.org/0000-0002-5578-9884
http://orcid.org/0000-0002-5578-9884
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46921-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46921-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46921-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46921-5&domain=pdf
mailto:elsa.fouragnan@plymouth.ac.uk


expectations regardless of whether it is better or worse12. Activity in
separate neural networks has been related to the signed PE and
absolute PE13,14. It has thus been hypothesised that these twoquantities
represent two different dimensions of learning. Whereas positive and
negative signed PEs lead to the reinforcement or extinction of the
choices that led to them15, the absolute PEs candetermine the extent to
which the associations between outcome and expectations need to be
adjusted13,16. Even if a choice leads to a clearly suprathreshold sensory
event, the PE it entails might be large, small, or even near-threshold
depending onwhat the decisionmaker’s prior expectations were. This
means that we can examine whether near-threshold PEs relate to the
cardiac cycle even if they are associated with suprathreshold sensory
events.

The cardiac cycle is a series of contractions and relaxations that
help the heart pump blood throughout the body. Each cardiac cycle
has a diastolic phase (also known as diastole) in which the heart
chambers relax and fill with blood, and a systolic phase (also known as
systole) in which the heart chambers contract and pump blood to the
periphery. These two physiological phases are differentially signalled
to the brain through baroreceptor firing during systole and by a pause
in firing during diastole. These signals are linked to activity in brain-
stem regions such as periaqueductal grey as well as forebrain regions
such anterior cingulate cortex (ACC), anterior insula (AI), amygdala,
and orbitofrontal cortex (OFC)17,18. Behavioural and neuroimaging
research suggests that sensory perception and executive control are
affected differently by the heart phase2,19,20. Although such a distinc-
tion remains debated21, the studies show that participants are more
sensitive to perceiving visual, auditory and somatosensory signals
during diastole and less sensitive during systole when key sensory
brain regions receive cardiac-related afferent signals increasing the
excitability levels in these regions. By contrast, executive processes
such as attention switching, active sampling andmotor controlmay be
enhanced during systole as opposed to diastole. This suggests that
different cognitive processes may be prioritised at different points in
the cardiac cycle3,22.

Learning is affected by states of cognitive and physiological
arousal that can fluctuate over time23. For example, it is long estab-
lished that heart rate slows down in situations such as learning that
require attention to the environment24. Although the exact functional
role of cardiac deceleration on cognition is still under debate25,26, heart
rate deceleration - which involves longer diastolic phase, is appre-
ciated as a physiologicalmechanism that better prepares the organism
to take in sensory stimuli and respond to them27. Our aim in the current
study is to examine the relationship between the cardiac cycle and
quantitative indices of the learning process such as signed and abso-
lute PEs. Model estimates of signed and absolute PE can capture cog-
nitive and physiological fluctuations as learning progresses. Although
model estimates are good predictors of behavioural change28, studies
exploiting concurrent trial-by-trial physiological changes can offer
additional explanatory power when analysing behaviours or neural
data related to signed and absolute PE. For example, some studies have
used changes in eye gaze or pupil dilation to disentangle attentional
and learning processes involved in PE coding29. Others have used
single-trial variability in EEG to expose latent brain states related to PE,
thereby complementing more conventional model-based fMRI ana-
lyses. Using such trial-by-trial estimates has revealed the temporal and
spatial neural correlates of these learning signals in human and animal
brains13,30. Signed PE-related activity has been reported in a number of
brain areas but absolute PE-related activity has beenmost often linked
to ACC and AI13,29,31–33 – in or adjacent to brain areas associated with
cardiac-related activity22. In addition, recent studies have shown that
absolute PE-related activity appears shortly after the outcome while
signed PE-related activity has a longer latency after the outcome13,30.

Because absolute PE information is neurally encoded early after
outcome onset and given the adjacency of brain areas encoding both

saliency and cardiac activity, we hypothesised that cardiac signals
might interact with the impact that the absolute PE, as opposed to the
signed PE, has on learning. By analogy with the variation in the impact
of near-threshold perception that occurs in relation to the cardiac
cycle, we investigated variation in the impact of near-threshold abso-
lute PEs on learning as a function of the cardiac cycle. We did this by
capitalising on a whole-brain machine learning technique and high
temporal resolution data; we exploit trial-by-trial variability in the
cardiac-related signal to investigate separately how changes in abso-
lute PE and signed PE throughout the task aremodulated (enhanced or
decreased) by the two cardiac phases. We hypothesise that the timing
within the cardiac cycle (e.g., whether a decision outcome occurs at
cardiac diastole or cardiac systole) modulates the strength of the
neural representation of the outcome. In line with previous evidence
showing a better ability to perceive information during diastole as
opposed to systole2,21, we hypothesise that near-threshold absolute PE
events regardless of their perceptual magnitude will be better repre-
sented at diastole than systole. If this is the case, then internal sub-
jective representations of choice value will reflect time points within
the cardiac cycle when they are constructed.

Here, we first show that there is an intrinsic relationship between
the absolute PE dimension of decision outcome and theHEP, which we
refer to as absPE-HEP. In addition, we demonstrate that the timing of a
reward-related outcome, with respect to the cardiac cycle, mediates
the absPE-HEP magnitude as well as learning and overall performance
in the task. More specifically, absPE-HEP during the first HEP after
outcome, was lower if the outcome happened at systole than diastole.
Across participants, this difference was related to learning rates in the
computational model and ultimately performance as indexed by a
simple, computational model-independent measure – the number of
rewards received in the task. Furthermore, the relationship between
absPE-HEP and learning is only observed in the block of the task where
learning was possible.

Results
Statistics of the reward environment predict learning
Participants carried out a reward-guided decision task inspired by
previous credit assignment tasks34,35. On each trial, subjects were
shown two visual cues that are associated with different category-
specific brain areas (a face and a house) and asked to predict which
colour (orange or blue) was most likely to follow (Fig. 1a, b). Partici-
pants made choices by pressing corresponding left or right buttons to
indicate their prediction of orange or blue. The actual outcome (a
single colour) was thendisplayed. Participants were instructed that the
chance of the correct colour being blue or orange depended only on
the cue-outcome prediction strength and the recent outcome history.
While participants performed the task, we recorded neural responses
to heartbeats with EEG and ECG (Fig. 1a) during the outcome which
included a four-second period to ensure that multiple heartbeats
would be recorded (mean: 4.58, std ±0.85). To modulate learning
throughout the task, participants performed tasks employing four
association schemes presented in separate blocks. There were three
predictive schemes with high associations between cues and colours
(highly predictive anticorrelated [HCA], highly predictive correlated
[HPC], and variable predictive schemes [VP]) and one scheme with no
associations between cues and colours (non-predictive scheme [NP])
(Fig. 1c). Initial analyses confirmed that the cue-colour prediction
strength (which determined reward contingencies) was the primary
modulator of adaptive behaviour in the task including performance
and reaction time (Fig. 1f, g). Indeed, and as expected, participants
reaction times were faster in HPA blocks than the others and generally
more accurate in the highly predictive blocks (HPA and HPC) com-
pared to the other two (VP and NP).

To investigate the two dimensions of learning (signed and abso-
lute PE), we modelled participants’ choices using four reinforcement
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learning models which differed in few ways. The first model learns
simple cue values for face and house (Simple Cue model). The second
model has a recency weighting at the time of learning which updated
the value estimate for the second of the two presented cuesmore than
the first. The thirdmodel learns expected value for the differential pair
of cues and the last one has trial-wise learning rates, which we refer to
as the dynamic learning rate model (see “Computational modelling”
section). For all models, we estimated free parameters by likelihood
maximisation and Laplace approximation of model evidence to cal-
culate the integrated Bayesian Information Criterion (BIC) and the
exceedance probability respectively (this can now be found in Sup-
plementary Fig. 1A–C). Bayesian model comparison revealed that a
Simple Cue model explains the data better (Lower BIC values indicate
better model fit, SimC model: BIC= 9350, RW model: BIC= 9370,
DYNAmodel: BIC = 9400, CUNJ: BIC = 9390). Exceedance probabilities
for the models based on approximate posterior probabilities sug-
gested that our Simple Cue model outperformed the others (φ =0.95;
Supplementary Fig. 1C insert). Having established the goodness of fit
of the Simple Cue model to behaviour (Supplementary Fig. 1D) all
further analyses were conducted using the outcome-related signals
estimated with this model (Fig. 1d, e, h, l). Parameter recovery36,37 was

also performed on the best model and presented in Supplementary
Fig. 1E and Supplementary Table 1.

Grand average modulation of cardiac-related neural signals in
learning-related dimensions
We next looked for EEG signatures of the heartbeat-evoked potential
(HEP). Figure 2a presents the topographical characteristics of the HEP
based on the averaged HEP recorded during the outcome (see
“Methods” section for the construction of the ERP for the HEP). A
morphology analysis revealed that the HEP was widely distributed
along frontocentral and centro-parietal areas including the following
spatial regions (Frontocentral sites: F1, Fz, F2, FC1, FCz, CF2; Centro-
parietal sites: C1, Cz, C2, CP1, CPz, CP2 as in Fig. 2a). We then probed
whether these EEG HEP signatures were modulated as a function of
learning. To do this, we looked at two dimensions of learning aswell as
outcome valence. The two dimensions of learning included the fully
parametric signed PE signal and the absolute PE also called salience
(which connotes how surprising an outcome is). This approach
has the advantage of looking at two orthogonal RL signals as seen in
Fig. 1h. The outcome valence was simply correct versus incorrect
outcomes.

Fig. 1 | Schematic representation of the task and RL results for all four asso-
ciation schemes, highly predictive anticorrelated (HA), highly predictive cor-
related (HC), variable predictive (VP) and non-predictive (NP). a Representation
of the task and cardiac-related neural signals (HEP) recorded at outcome for 4 s -
enough to record on average 3.5 HEPs. b Example of association between cues and
predicted colour for one versionof the task (anti-correlated blocks– see “Methods”
section). c Prediction strengths for each block. d Model prediction of choices.
e Learning rates from the best fitting model. f, g Reaction times and performance
(mean reward across the four blocks) h left panel Definition of absolute and signed
PE. h Right panel Each coloured pattern illustrates a different way in which activity

in a neural structuremaymanifest if it is sensitive to different aspects of outcomes
and their associated PE (locked at time of feedback). The blue pattern illustrates
activity as a function of outcome valence – in a categorical manner as either
positive or negative. The red pattern shows a monotonically increasing response
profile consistent with a continually varying PE representation. The black pattern is
continually varying as a function of the difference between the outcome and the
expectation in an unsigned fashion. i Signed PEs are illustrated after averaging
across all participants and all blocks, for the example of a task like that illustrated in
panel (c). j Absolute PEs are similarly illustrated after averaging across participants
and across blocks (k, l) and using the same format as for panels (i, j).
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The results of the cluster-based permutation analysis (see
“Methods” section) revealed an increasedHEP amplitude for trials with
negative signed PEs in comparison to positive signed PEs
(Monte–Carlo p-value = 0.004, Cohen D =0.695) between 198 and 252
in the frontocentral sites (Fig. 2b). We also found a significant differ-
ence between correct and incorrect outcomes at a cluster around
250ms after feedback (Fig. 2c, Cohen D =0.696) in the same cluster.
When contrasting trials in the absolute PE domain, we found multiple
time point with significant difference in the HEP amplitude between
the high surprising trials as opposed to the low surprising trials
(Monte–Carlo p-values < 0.003, Cohen D= −0.724 cluster 1 and Cohen
D= −1.17 cluster 2); these differences were observed in two clusters:
cluster 1 with latencies 252–292 ms where a greater HEP amplitude for
high vs low surprising trials was observed, and a cluster between 418
and 464 ms where the negative HEP deflection exhibited a greater
amplitude for lowvs high surprising trials. Both clusterswere observed
in the centro-parietal sites (Fig. 2d).

The HEP is related to trial-by-trial variation in the absolute PE
dimension
Rather than inspecting specific electrode averages, we next wanted
to search for EEG heartbeat features that predict the learning axes.
We thus moved on to identify the whole-brain heartbeat-evoked
neural components of learning by using a multivariate single-trial
discriminant analysis of the EEG (regularised Fisher Discriminant
analysis, see “Methods” section) of the HEP-locked signals. More
specifically, for each participant, we used the average of the HEP for
each outcome (see Fig. 3a) and calculated the linear weights asso-
ciated with each electrode that maximally separated (1) positive and
negative signed PEs (Fig. 3e) and (2) high versus low magnitude of
absolute PE (i.e., the size of the unsigned PE which describes how
surprising the outcome is) (Fig. 3a). We did this over multiple tem-
poral windows and quantified the classification performance by
using the area under the curve (Az) using a leave-one out approach.
This method has been well established in EEG data analysis13,38,39.

Fp1
Fpz

Fp2

AF8AF7
AF3 AF4

F7 F5 F3 F1 Fz F2 F4 F6 F8

FT8FC6FC4FC2FCzFC1FC3FC5FT7

T7 C5 C3 C1 Cz C2 C4 C6 T8

TP8CP6CP4CP2CPzCP1CP3CP5TP7

P7 P5 P3 P1 Pz P2 P4 P6 P8

PO8
PO4POzPO3

PO7

O1 Oz O2
xlim=[-0.2 0.6]
ylim=[-1 1]

TP9 TP10

Fronto-central electrodes

+PE
-PE

Correct
Incorrect

High absPE
Low absPE

a

uV
 (E

EG
 a

m
pl

itu
de

s)

uV
 (E

EG
 a

m
pl

itu
de

s)
b

c d
Centro-parietal electrodes

diff

diff

diff

-200 -100 0 100 200 300 400 500 600

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
-200 -100 0 100 200 300 400 500 600

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Centro-parietal electrodes

-200 -100 0 100 200 300 400 500 600

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

ms

msms

uV
 (E

EG
 a

m
pl

itu
de

s)

Fig. 2 | HEPmorphology and results. aGrand averagewaveforms across the scalp
time-locked to the onset of the R‐wave which is the biggest electrical wave gener-
ated during normal conduction (time 0ms, see “Methods” section). The set of
electrodes clustered by ROIs (colour‐coded) for the frontocentral and central-
parietal electrodes are represented for further analyses (b–d) HEP waveforms
across all trials following the onset of the R‐wave (at time 0ms) are shown sepa-
rately (averaged all HEPs after feedback). This is presented for positive andnegative

signed prediction errors (PEs) for the frontal cluster in (b); correct vs incorrect
outcome in (c); and for high and low surprising outcomes (absolute PEs) in (d). The
dotted line represents the difference between the conditions (represented in red
and blue). The shaded areas represent the timewindowswhere there is a significant
difference between conditions (N = 32 participants) revealed by cluster‐based
permutation analysis (two-sided).
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Using this machine learning approach, we showed the presence of a
large heart-related component reliably discriminating – even in
individual participants (see Supplementary Fig. 2) – between very
high versus very low absolute PE outcomes. This component peaked
in the time range 100–300 milliseconds after the R-wave (see EEG
analysis for R-wave definition; Fig. 3a, b). On the other hand, we did
not observe any heart-related component discriminating between
positive and negative PEs (Fig. 3f). By contrast, as noted, a grand
average response difference between positive and negative signed
PEs was identified in the ERP in frontocentral electrodes (Fig. 2b). In
conjunction, the two results suggest that there is, on average, a dif-
ference in cardiac-related signals when the valence of the signed PE is
positive or negative but that trial-by-trial variability in the HEP does
not statistically covary on a trial-by-trial basis with the trial-by-trial
change in signed PE (Fig. 3f).

In summary, the different analysis approaches (ERP and machine
learning) suggest the possibility of a number of relationships between
HEP and learning signals but converge in suggesting an especially clear
link, even at the trial-by-trial level, between the HEP and absolute PEs
connoting how surprising or salient an outcome is. We therefore
focussed our analysis on the HEP component carrying absolute PE
information that we refer to as absPE-HEP. It is important to note that
the regularised Fisher discriminant analysis and the mass-univariate
analysis rely on fundamentally distinctive features of EEG data. The

mass-univariate analysis focuses on discriminating amplitude changes
of event-related potentials resulting from averaging all trials in a few
electrodes. By contrast, the machine learning approach capitalises on
the trial-to-trial variability of the EEG data computed across all the
recording sites which allows us to accurately measure the changes in
the HEP signal that fluctuate with time on a trial-by-trial basis whilst
learning is taking place.

To test whether the heart-related absolute PE (absPE-HEP) was
parametrically modulated by the model absolute PE estimated in our
model (rather than responding categorically to very high vs. very low
absolute PE), we then calculated the discriminator amplitudes for trials
with intermediate absolute PE levels (i.e. low absolute PE [0.25–0.50];
andhigh absolute PE [0.5–0.75])whichwerenotoriginallyused to train
the classifier (also called the “unseen” data). To do so, we applied the
spatial weights of the peak discrimination performance for the
extreme outcome absolute PE levels to the EEG data with intermediate
values. We expected that the discriminator amplitudes for these pre-
viously “unseen” trials would increase linearly as a function of absolute
PE. Thus, the resulting mean amplitude at the time of peak dis-
crimination would proceed from very low < low<medium< very high
absolute PE. This is indeed what we found (Fig. 3c, blue: intermediate
categories, grey: categories used for discrimination) confirming the
linear relationship between the absPE-HEP component and its model-
based counterpart (test on the left-out data: t31 = −7.303; p < 0.001;
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Fig. 3 | Machine learning discrimination. a Description of the data used for the
absolute prediction error (PE) discrimination at time of outcome: we used the
highest and lowest quantiles based on absolute PE (salience or surprise) as esti-
mates for high and lowabsolute PE respectively. The analysiswas performed on the
HEP-locked EEGdata.bDiscriminator performance (cross-validated Area under the
curve, Az) during absolute PE discrimination (low vs. high surprising outcomes),
averaged across subjects (N = 32 participants). The dotted line represents the
average Az value leading to a significance level of P =0.01, estimated using a
bootstrap test (two-sided). Shaded error bars are standard errors across subjects.
This analysis used all first three HEP after outcomes. The scalp map represents the
spatial topography of the absolute PE component. cMean discriminator output (y)
for the absolute PE component, binned in four quantiles based on model-based
absolute PE estimates, showing a parametric response along the absolute PE
dimension. Purple bins indicate trials used to train the classifier, while blue bins

contain “unseen” data with intermediate absolute PE levels. Points are individual
subjects. d The same analysis as in Fig. 3b (N = 32 participants) for each HEP after
outcome. Blue represents the first heartbeat after outcome, red the second and
green the third. The dotted line represents the average Az value leading to a sig-
nificance level of P =0.01, estimated using a bootstrap test (two-sided). Shaded
error bars are standard errors across subjects. The scalpmap represents the spatial
topography of the absolute PE component. e Description of the data used for the
signed PE discrimination: we used outcomes defined by the RL model as either
positive or negative PEs. f Discriminator performance (cross-validated Az) during
signed PE discrimination (positive versus negative PE), across all HEP after out-
come, averaged across subjects (N = 32participants). Thedotted line represents the
average Az value leading to a significance level of P =0.01, estimated using a
bootstrap test (two-sided). Shaded error bars are standard errors across subjects.
No components were identified.
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CI = [−0.118 −0.066], Cohen D = −1.129) and also the generalisability
and robustness of our machine learning approach. Having applied the
estimated electrode weights to single-trial data to produce a mea-
surement of the discriminating component amplitudes (representing
the distance of individual trials from the discriminating hyperplane),
we thereafter used these amplitudes for all subsequent analyses
involving absPE-HEP.

Thus far, we have demonstrated that the largest the temporal
component locked atR-wave onset, the biggestwave generatedduring
normal heart conduction (see “Methods” section for full definition) for
all heart-evoked signals collected during the feedback period linked
with the absolute PE. However, the extent to which this temporal
component was driven by the first, second, or third heartbeat that
occurred in the outcome period remained unknown. Next, we there-
fore repeated our multivariate analysis independently for each of the
threepossibleHEP timespost-outcome, sequentially, across all trials to
better understand the temporal dynamics of the absPE-HEP modula-
tion. This approach allowed us to determinewhich heartbeatwasmost
related to absolute PE. Applying this method, we showed that only the
first HEP after feedback contained information about absolute PE that
could be revealed with machine learning techniques, in the range
100–300 milliseconds after heartbeat onset (Fig. 3d). This finding
indicates that the first heartbeat after outcome is the one that relates
most to the representation of the absolute PE of the outcome, sug-
gesting that the timing of the outcome with respect to the cardiac

cyclemight be important in determining howparticipants update their
internal representations of decision outcomes. Because our results
highlight the importance of considering the first HEP after feedback
rather than averaging all HEP after feedback, we also decided to redo
our initial ERP analyses using only the first HEP after feedback albeit a
lower statistical power. This is presented in Supplementary Fig. 5.

Effect of the cardiac cycle timing on the absPE-HEP amplitude
Having identified an HEP component associated with absolute PE
(absPE-HEP), we next asked whether the timing of the outcome along
the cardiac cycle further modulated the amplitude of this signal. In
other words, we examined whether themagnitude of the absPE-HEP in
the EEG epoch related to the first heartbeat after feedbackonsetwould
be higher or lower when the outcome was presented during diastole
compared to systole. This would be an indication that internal sub-
jective representations of how surprising an outcome is (compared to
expectation), depend on the natural oscillation of the heart. To answer
this question, we identified all outcomes with onsets which happened
at diastole and all outcomes with onsets which happened at systole
(see Fig. 4a). This split allowed us to compute the mean absPE-HEP for
heartbeats after outcomes presented at diastole, and after outcomes
presented at systole. Importantly, although the outcome onset was
defined according to the systole anddiastoleperiods in the previousR-
wave, the absPE-HEP component that we analysed were defined in the
closestR-wave (see “Methods” section).Naturally, as thediastole phase
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Fig. 4 | Influence of the cardiac cycle on the absPE-HEP and learning.
a Schematic description of the systole and diastole phases. In red and blue are the
systole and diastole periods respectively. Below is a representation of two example
trials on which outcome onsets happened at systole or diastole. We then looked at
the EEG response locked to the next heartbeat. b Mean amplitude difference
between the absPE-HEPof thefirst heartbeat after all outcomespresented at systole
versus diastole (N = 32). A violin plot is used to present all individual participants’
averages, as well as the mean and SEM. c Mean amplitude difference in the absPE-
HEP for the low salient outcomes presented at systole versus diastole across sub-
jects (N = 32 participants). d Mean amplitude difference in absPE-HEP for the high
salient outcomes presented at systole versus diastole (N = 32 participants) – in
b, c data are presented as mean values ± SE e A logistic regression analysis showed
that switch/stay (1/0) could be predicted by several predictors, including the

Absolute PEs (participants were more likely to switch after a highly surprising
outcome) but also residual absPE-HEP (predictors depicted from left to right:
Systole/Diastole, Single-trial variability, Absolute PE, Systole/Diastole by Single-trial
variability, Systole/Diastole by Absolute PE) f–k Results of the correlation between
the regression coefficient for each participant between absPE-HEP and systole/
diastole and the mean reward and learning rates in the task. In red, the fit of the
robust regression. Any of these results remain true evenwhen including a covariate
indexing features of the external outcome type – reward and absolute PE from the
model. Particularly, in f learning rates – all task blocks g learning rates – predictive
blocks h learning rates – non-predictive blocks i reward – all task blocks j reward –

predictive blocks k reward – non-predictive blocks. We did not adjust the p-value
for multiple comparison.

Article https://doi.org/10.1038/s41467-024-46921-5

Nature Communications |         (2024) 15:2976 6



is longer on average than the systole phase, we expect a higher number
of outcomes presented during the diastole phase (m = 65 ± 5 and
54 ± 5 – N: 32, mean and SD for diastole and systole, respectively). We
also found that all other aspects of the task were not statistically dif-
ferent in these conditions. The frequency of occurrence of both con-
ditions was not statistically different in the different learning blocks
employed in the task (e.g. predictive or non-predictive; see “Methods”
section; systole F3 = 0.2, p =0.893, η2 = 0.005; diastole F3 = 0.2,
p =0.896, η2 = 0.005, Supplementary Fig. 3a). The two phases were
also associated with levels of overall reward received in the task that
were not statistically different (t31 = 0.8046, p =0.427, CI = [−0.008
0.02], Cohen D =0.14, Supplementary Fig. 3b), unsigned PEs from the
RL model (t31 = −0.058, p = 0.954, CI = [−0.026 0.025], Cohen
D= −0.01, Fig. 4d) or signed PE (t31 = −0.72, p =0.477, CI = [−0.042
0.02], Cohen D = −0.12).

Having split the outcomes according to the cardiac cycle, we then
moved on to test whether the associated absPE-HEP depended on
whether the outcome was presented at systole or diastole. This is
indeed what we found. The mean absPE-HEP was more negative when
outcomes were presented at the diastole compared to the systole
phase (t-test: t31 = 2.8460, p = 0.007, CI = [0.0107 0.065], Cohen
D=0.55, Fig. 4b). Similarly, we tested, with a mixed effects linear
model, whether the STV couldbe predicted by amore complexmodel,
including the trial-by-trial model-based absolute PE which is expected
to covary with STV, the heart cycle (categorical variable) and the
interaction term. Beyond the linear relationship between absolute PE
and single-trial HEPwhich is to be expected (also see Fig. 3c) - such that
this relationship increased as absolute PEs became smaller (main effect
of absPE in mixed-effect model: t122 = 3.539, p <0.001, 95% CI, [0.11
0.39], Partial Eta2 = 0.644), we also found amain effect of cardiac cycle
on the STV (main effect of heart cycle in mixed-effect model:
t122 = −2.336, p = 0.021, 95% CI, [−0.35 −0.03], Partial Eta2 = 0.05;
interaction effect: heart cycle*absolute PE: t122 = 1.96, p = 0.052, 95%CI,
[−0.0008 0.2], Partial Eta2 = 0.035). Another analysis, independent of
the previous one, showed the difference between the STV absPE-
HEP < 50% percentile for systole and systole (Fig. 4c). This confirms
that timing within the cardiac cycle modulates neural signals of
absolute PE and that these representations are stronger after an out-
come is presented at diastole compared to systole.

We then decided to investigate the relationship between infor-
mation provided to participants on single trials and the cardiac cycle
to test the idea that it should be possible to see a link between trial-
by-trial variation in absPE-HEP and trial-by trial variation in updating
of the values estimated for each choice. To do this we investigated
whether the absPE-HEP at outcome (t) could predict change in
choices in the next trial at t + 1. To do so, we ran an additional mixed-
effect model to predict choice switching behaviours at t + 1 with the
residual absPE-HEP variance at t (after controlling for the part of the
absPE-HEP that was collinear with the absolute PE) and added the
systole and diastole as a separate regressor. Our results showed that
participants were more likely to switch after a highly surprising
outcome (see Supplementary Table 2, results for AbsPE) aligning
with previous reports13 but also that higher residual variance in
absPE-HEP, even after controlling for that part of the absPE-HEP that
was collinear with absolute PE, also predicted switch behaviours on
the next trials (see Supplementary Table 2, results for STV). In addi-
tion, while the relationship between the cardiac cycle on the trials (t)
(whether the outcome’s onset happened at systole or diastole) and
switch at (t + 1) did not reach conventional significance (results for
SysDias: p = 0.059, see Supplementary Table 2), the interaction term
between SySDias and absPE was significant (p = 0.035, see Supple-
mentary Table 2, SysDias: AbsPE). This indicates, that, as absPE
decreases, the impact of the cardiac cycle on the next trial increases.
The GLM is presented on Fig. 4E and all statistics reported in Sup-
plementary Table 2.

We then asked whether these differences in the way naturally
occurring bodily oscillations modulate the neural signals that deter-
mine learning can also mediate participants’ decisions (which should
be guided by learning that is based on the same neural signals). As we
had found amore negative absPE-HEPwhen outcomes were presented
at diastole compared to systole, we wondered whether interindividual
differences in the link between the cardiac cycle and the absPE-HEP
component co-varied with task performance and learning. We thus
first ran a regression analysis for each participant to test the extent to
which the cardiac cycle influenced their neural activity. Participants
with a higher regression coefficient would have a stronger decrease in
the absPE-HEP for outcomes presented atdiastole compared to systole
(see Fig. 4f–k). We expect these participants to be the ones showing a
greater propensity for learning as their sensitivity to near-threshold
events would be enhanced. These should also be the ones who ulti-
mately receive more rewards overall. To test this hypothesis, in a
second step, we ran a correlation between the regression coefficient
and the mean reward and learning rates in the task. In line with our
predictions, we found that participants showing a higher difference in
absPE-HEP between diastole and systole were the participants that had
higher learning rates and better task performance as indexed by the
total number of rewards received (learning rates: t30 = 2.176, p =0.037,
Pearson r = 0.391; reward: t30 = 2.74, p = 0.01, Pearson r = 0.366;
Fig. 4f, i). In summary, we can link interindividual variation in cardiac
modulation of learning signals to interindividual variation in the
parameters of a computational model of learning and to individual
variation in an index of behaviour – overall rewards – independent of
the computational model. To further examine the relationship
between diastole-based absPE-HEP-related neural indices and learning,
we examined task blocks where learning was possible (predictive
blocks) or not possible (non-predictive blocks). The relationship was
only present in the blocks in which learning was possible (predictive
blocks: learning rates: t30 = 2.17, p = 0.038; Pearson r =0.372; reward:
t30 = 3.21, p = 0.003, Pearson r =0.334; Fig. 4g, j; non-predictive blocks:
learning rates: t30 = −0.006, p =0.99; Pearson r =0.116; reward:
t30 = 0.736, p =0.467, Pearson r = 0.14; Fig. 4h, k). These results remain
true even when including a covariate indexing features of the external
outcome type – reward and absolute PE from themodel as opposed to
the internal, subjective, absolute prediction error represented in the
absPE-HEP (see Supplementary Fig. 4).

Discussion
In this study, we combined machine learning-based analysis techni-
ques and EEG to investigate the contribution of cardiac-related neural
signals on several dimensions of reward-based learning. Our results
demonstrate that theHEP recorded during the presentationof reward-
related outcomesdiscriminates betweendifferent levels of absolute PE
outcome. By contrast, the magnitude of the HEP was not statistically
different when contrasting positive versus negative signed PEs. The
absolute PE and signed PE components of reward learning subserve
different functional roles in learning13,16,33; whilst signed PE is asso-
ciated with approach-avoidance behaviour, absolute PE, also called
salience impacts on future attentional engagement; an effect that is
determined by the magnitude of the discrepancy between prior
expectations and outcome. During learning, we found that single-trial
HEP sizes were also related to absolute PE sizes when decision out-
comes occurred. Moreover, some of the variation in the absPE-HEP
also predicted whether participants were more likely to shift to a dif-
ferent decision when the decision they had just made had led to a
surprising outcome. In other words, the absPE-HEP did not predispose
participants to make one choice or another but larger absPE-HEP were
associatedwith surprising feedback information and this was linked to
learning.

The relationship between the cardiac cycle and learning is ana-
logous to some cardiac-related effects that have been reported in the

Article https://doi.org/10.1038/s41467-024-46921-5

Nature Communications |         (2024) 15:2976 7



context of decision-making. For example, cardiac responses in
decision-related brain areas such as ventromedial prefrontal cortex are
larger when the decision-related information will have a bigger impact
on the decisionsmade4. Both in the decision-making results previously
reported and in the current study, neural responses to the cardiac
cycle are related to how impactful concurrent information will be on
behaviour rather than with a particular type of behaviour. Similarly,
single neuron responses recorded in adjacent orbitofrontal and ante-
rior cingulate brain areas in macaques also vary with heart rate and
heart rate is associatedwith a general increase in the speedof decision-
making5.

Cardiac neurophysiological responses often convey not only
information about the current bodily state, but they also carry pre-
dictions of how the bodily system should organise internal resources
to deal with expected future sensory information40,41. These cardiac
predictions are often accompanied by a modulation of attentional
responses to upcoming stimuli that, ultimately, are homeostatically
relevant. In thisway, it hasbeen suggested that the internal bodily state
determines perceptual stimulus salience in relation to homoeostatic
levels40,42. For example, a stimulus occurring when resources are
sparser may be perceived as more salient than a stimulus occurring
when more resources are available. The absPE-HEP might signal that
more attention needs to be deployed to the current outcomegiven the
current bodily state. In this way a bodily signal might modulate
learning.

Neuronal models of interoception conceptualise cardiac predic-
tions as afferent signals projecting to agranular visceromotor areas in
frontal cortex and anterior insula cortex, which serves as the primary
interoceptive cortex43,44. The anterior insula is argued to be a main
neural source for the HEP along with other interconnected areas such
as the cingulate and the somatosensory cortices45–47. These brain
regions belong to a wider network, often referred to as the salience
network, which is sensitive to homeostatically relevant stimuli inde-
pendent of whether their valence is negative (penalising) or positive
(reinforcing)31. It is becoming increasingly clear that neural responses
in the absolute PE network rise quickly after an outcome is
revealed30,38. Here we observe that the HEP is parametrically modu-
lated by the outcome’s absolute PE and that this is mainly due to the
first heartbeat recorded immediately after the outcome onset. This
means that HEP magnitude changes recorded immediately after out-
come can be used as a proxy for attentional allocation to the internal
representation of absolute PE.

It is worth noting that our current results do not allow us to
support the idea that cardiac deceleration – i.e., longer diastolic pha-
ses, serves to make the organism better equipped to intake sensory
stimuli and respond to them27. Future studies should tackle this lim-
itation and further investigate the precise relationship between trial-
by-trial amplitude changes in the HEP and humans’ ability to integrate
sensory information after a positive or negative feedback.

Previous studies have carefully time-locked the presentation of
stimuli to the cardiac phase to investigate differences in the way that
stimuli are processed2,6,21. For example, tactile stimuli presented at
diastole aremore frequentlydetected than those presented at systole2.
Conversely, the ability to control movements is facilitated during
cardiac systole8 – albeit this tendency reverses when emotional cues
are present9. However, sensory or learning information is not pre-
sented in such a phase-locked manner in our everyday lives. By
investigating how participants naturally receive information relevant
for learning and assign credit for outcomes to objects maintained in
memory, with respect to the natural timing of the cardiac cycle, we
have adopted an ecological approach to studying brain-heart interac-
tions in the context of learning and decision-making. Previous studies,
adopting a similar approach, have shown that people actively seek
information in the world, or more precisely sample the world through
active sensing, as a function of the cardiac cycle. For example, in an

active sampling visual paradigm, saccades and visual fixations are
more likely to occur in the quiescent phase of the cardiac cycle (e.g.
diastole)48. Similar work suggests that people actively adjust sensory
sampling so that more time is spent in the diastole period in which
perceptual sensory sensitivity is enhanced49. Moreover, in dyadic
interactions actions are more likely to take place during diastole, and
also the observer is less likely to experience a heartbeat (systolic
phase) when observing movement endpoints7. In our study, we have
shown that the magnitude of the single-trial HEP is stronger when the
outcome appeared during the diastole period in comparison to the
systole period (Fig. 4). This suggests that the phase of the cardiac cycle
is an important modulator of internal representation and cognition
and influences the way in which we naturally receive information.

Importantly, we also observed that the influence of the cardiac
cycle on the absPE-HEP magnitude progressively increased as the
outcome absolute PE became smaller. In outcomes with near-
threshold absolute PEs, the absPE-HEP magnitude increase was pre-
dominantly observed when the outcome was presented at diastole
(Fig. 4). This means that when the decisionmaker’s prior expectations
are close to the outcome (i.e., small adjustments between expectations
and outcomes) learning is more likely to occur during the quiescent
phase of the cardiac cycle than during the active, systolic phase.
Neuronal excitability is influenced by the cardiac cycle; whilst neural
signals from the baroreceptors occurring at systole attenuate con-
current brain activity24,50 and impair informationprocessing, enhanced
excitability and perceptual processing is observed during diastole2,20.
Formally, enhanced neuronal excitability may increase neural gain,
which directly translates into an increase of the breadth of attention
towards the aspects of the environment towhich one is predisposed to
attend51. Here we show that in instances where learning happens in
small increments because the PE-related surprise is not very salient,
learning is enhanced during diastole compared to systole, helping to
update prior expectations even when there is little new information
available.

Beyond showing modulations of the absPE-HEP amplitude timed
to different phases of the cardiac cycle, our results demonstrate that
these heart cycle-specific neuronal changes translate into individual
differences in overall learning. Individuals that exhibited higher dif-
ferences in the absPE-HEP magnitude changes to outcomes presented
at diastole versus systole also showed higher learning rates and better
overall task performance. Individual differences in cardiac neural
responses have long been established52. For example, HEP amplitude
modulation often present during observation of highly salient stimuli
is stronger for individuals with greater self-reported empathy scores53.
Also, individuals with low cardiac interoceptive sensitivity show
greater difficulty retrieving information presented at systole in com-
parison to those with high interoceptive sensitivity54. Additionally, we
found that these individual differences in the relationship between the
cardiac cycle and absolute PE encoding were only true in task blocks
where learning was taking place versus blocks where learning was
precluded (i.e., random contingency between colours and stimuli).
Increased and decreased cardiac sensitivity has also been shown to
help or hinder adaptive intuitive decision-making when the generated
cardiac predictions favour advantageous choices - i.e., when learning is
taking place; however, the opposite is true when predictions are
towards disadvantageous choices55.

Our finding that absPE-HEP representation depends on the heart
cycle might also be described in terms of periodical modulations of
internal value representations in a predictive coding framework.
According to this framework, the brain is constantly creating and
updating predictive internal models of sensory inputs, including both
exteroceptive and interoceptive signals such as the heartbeat. As each
heartbeat and its accompanying pulse wave cause temporary physio-
logical changes throughout the body, the brain treats these recurring
cardiac signals as predictable events and attenuates them to reduce
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the chances of mistaking these self-generated signals for external
stimuli56–58. As a consequence, for example, in the context of somato-
sensory events, sensory discrimination is less accurate during systole
than diastole59. However, here, we have shown that even if the sensory
information is the same, the extent to which an absolute PE affects
learning is also linked to the cardiac cycle; the degree to which an
internal model of a cue-outcome association is strengthened depends
on the cardiac cycle, in line with a predictive coding account for car-
diac phase-related internal fluctuations.

Methods
This study was approved by the University of Oxford Medical Science
Interdivisional Research Ethics Committee, Oxford RECC, No.
R55856/RE002.

Participants
Thirty-five healthy, right-handed adults participated in the experiment.
Three participants were excluded due to excessive noise in the EEG
signal so that data from 32 participants were included in the analyses
(24 ± 7.13; 10; 0.83 ±0.13); where numbers correspond to mean age ±
SD; number of female participants, handiness mean± SD; asmeasured
by the Edinburgh handedness inventory60. Participants gender was
determined based on self-report and it was not considered as an
experimental variable in our design because there is no prior evidence
of gender difference in the processes investigated. All participants
were naïve to the task, had no personal or familial history of neuro-
logical or psychiatric disease, were right-handed, gave written
informed consent (Medical Science Interdivisional Research Ethics
Committee, Oxford RECC, No. R55856/RE002), and receivedmonetary
compensation for their participation. Sample sizes were determined
based on previous studies that have used similar reward learning
paradigms to investigate brain responses during learning13,34,38 and
studies that have measured the HEP to investigate neural responses to
heartbeats in humans2,61. No statistical method was used to pre-
determine sample size.

Stimuli
Stimuli consisted of pictures of 10 faces and 10 houses (512 × 512 pix-
els), two circles in blue and orange (125 × 125 pixels). All the stimuli
were equalised for luminance and contrast. The outcome images
consistedof a tickand a cross,whichwere also equalised for luminance
and contrast. The face database was provided by the Max-Planck
Institute for Biological Cybernetics in Tuebingen, Germany62.

Experimental design
Participants were seated in a dimly lit, sound-attenuated, and elec-
trically shielded chamber in front of a monitor at a distance of 70 cm.
EEG was recorded using a 64-channels cap (see “EEG data collection”
section) while participants performed a reward-based learning task.
Participants’ ECGwas recordedwith a standardEEGelectrode attached
to their chest to monitor heart activity throughout the session. The
experiment consisted of eight blocks of 60 trials (480 trials in total)
separated by small breaks, following a repeated measures design. At
the beginning of each block, the association between colours and
objects changed. Two new objects were presented in each block: a
house and a face. Each object was uniquely associated with a colour
according to different schemes. There was a total of four types of
blocks: three predictive blocks (in which objects predicted outcomes)
and one non-predictive block (from which predictive associations
between objects and outcomes were absent). The three predictive
blocks contained the following associations: (1) both stimuli were
highly predictive and there was a negative correlation between each
stimulus and respective associated outcomes (i.e., each stimulus pre-
dicted a different colour), (2) both stimuli were highly predictive and
positively correlated in the outcomes that they predicted (i.e., both

stimuli predicted the same colour), (3) only one stimulus was highly
predictive and the other non-predictive. In the non-predictive block,
the two objects were not associated with any colours.

Learning task
We used amodified version of the weather prediction task. In a typical
version of the task, participants have to predict the weather (rain/sun)
on the basis of probabilistic cues. To avoid any subjective preference,
we changed the sun/rain to twoneutral colours (light blue/orange).We
also presented one object at a time to isolate the EEG responses to
faces and houses. On each trial, participants first saw a fixation cross
for 500ms, followed by the presentation of one stimulus that could be
either a face or a house (500ms). This was repeated for the second
object (same timing). Eachpossiblepair of objects: Face-House,House-
Face, Face-Face and House-House were presented equally often and
counterbalanced across a block. After the presentation of both
objects, participants had to make a decision between two colours,
orange and blue on the basis of their estimates of the association
between the objects and colours as well as on the basis of what the
particular combination of objects would be likely to predict. For
example, if the house predicted orange deterministically (100%), the
facepredictedblue and theywerepresented together, then therewas a
50%/50% chance of getting a blue/orange. If, however, the face was
presented twice, then the outcome was blue, 100% of the time. The
decision phase lasted 1200ms. After participantsmade their decisions,
they saw the outcome of their choice for 4000ms, which allowed us to
record on average four heartbeats per outcome (mean: 4.58, std ±0.85
across trials). After the task, participants were given a debrief and paid
£20 for their participation. They were told that they would receive a
fixed payment for participation (£15 per hour) and an additional
amount (up to a maximum of £5) based on the outcome of a random
subset of trials selected at the end of the experiment (excluding ‘lost’
trials). No further details regarding the mapping between earned
points and the final payoff were given to the subjects.

Computational modelling
Four RL models were used:

Simple Cues model and Conjunction models. We built on a Rein-
forcement Learning framework to implement our first twoModels that
computed aPredictionVariablePV either after summingup the equally
weighted stimulus-outcome association strengths for each cue V1 and
V2 that is updated after each cue is presented (SimpleCue Model) or
after a Face-Face V1, Face-House V2 or House-House V3 (Conjunction
Model) is presented. Any cue or pair of cues is updated such as:

Vc,n+ 1 =Vc, n +α * PE ð1Þ

where PE is the prediction error (Outcome – PVn). Note that absolute
PE does not explicitly update value estimates in this model. PV is then
converted to a choice probability following the equation:

p= 1=ð1 + e ðβ * ðPV�0:5Þ+ γ *Cn� 1ÞÞ ð2Þ

where β is the inverse temperature, or exploration parameter, and γ
represents the choice stickiness34,63 (the degree to which choices are
likely to simply be repeated from trial-to trial regardless of outcome).
Cn − 1 is the choice in the previous trial (orange choice coded as +1 and
blue choice coded as −1). V is the item–outcome association strength
of each item, O is the outcome in the current trial (orange outcome
coded as +1 and blue outcome coded as 0), and α is the learning rate
shared by both items. The subscript n represents the current trial, and
n + 1 represents the updated trial. There are three free parameters in
this model: the learning rate α, the exploration parameter β, and the
choice stickiness factor γ.
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Recencyweightingmodel. Thismodel is very similar in essence to the
SimpleCue Model but also presents a recency weighting at the time of
learning which updates the value estimate for the second of the two
presented cues more than the first (RL_HEP_rw). In this model, the
value of the most recently presented cue is more strongly updated
than the first one as a function of an additional free parameter trace.
This model has four free parameters.

Dynamic learning rate model. We implemented a model in which
the learning rate scales with the slope of the smoothed |PE|. This
model reprises Pearce-Hall’s theory that surprise drives the acqui-
sition of stochastic stimulus-outcome contingencies. In this new
model, the smoothing of the unsigned |PE| (the degree of which is
regulated by a free parameter rho) should render the inference
process about whether a change has occurred in the environment
more robust to any inherent task stochasticity. Moreover, an addi-
tional free parameter gamma controls the extent to which the
dynamic updating of the learning rate is influenced by the slope. For
example, whilst lower values of gamma yield substantial trial-by-
trial changes of the dynamic learning rate even in the presence of
small slope estimates (that is, low surprise), higher values of gamma
result in a more stable learning rate even in the presence of sig-
nificant slope estimates (that is, high surprise). Hence, this model
also allows for the possibility that subjects might be employing a
relatively fixed learning rate.

Model fitting. All RL modelling was conducted in Matlab (version
2020a). We used an iterative expectation-maximization (EM) algo-
rithm as in previous work63 to fit the models. During the expectation
procedure, we computed the maximum posterior likelihood (NPLi)
calculated with the parameter vector hi of each block i (i 2 1::Nf g),
given the choices and group-level Gaussian distributions over the
parameters (mean vector mu and standard deviations sigma) as per
the following:

NPLi =maxh

�X
t

logð pt choicejhð Þ� �

+
X

mu,sigma
logðnormpdf ðhjmu,sigmaÞÞ

� ð3Þ

hi =argmaxh

�X
t

logð pt choicejhð Þ� �

+
X

mu,sigma
log normpdf hjmu,sigmað Þð Þ

� ð4Þ

The first part of the equation describes the likelihood of the
observed choices given a vector of free parameters and the second
part captures the likelihoodof theseparameters given a normal group-
level distribution. We initialised the group-level Gaussians as unin-
formative priors with means of 0.1 (plus some added noise) and var-
iance of 100. During the maximisation step, we recomputed mu and
sigma based on the estimated set of hi and their Hessian matrixHi (as
calculated with Matlab’s fminunc) overall N sessions.

mu=
1
N

X
i

hi ð5Þ

sigma2 =
1
N

X
i

�
h2
i +diagðpinv H i

� �Þ
�
�mu2 ð6Þ

where the diagonal terms of the inverted Hessianmatrix (computed in
Matlab with diag(pinv(Hi))) give the second moment around hi,
approximating the variance, and thus the inverse of the uncertainty
with which the parameter can be estimated.

We repeated expectation and maximisation steps iteratively until
convergence of the posterior likelihood NPLi summed over the group
or a maximum of 800 steps. Convergence was defined as a change in
NPLi <0.001 from one iteration to the next.

Model comparison. We compared fitted models by calculating their
integrated BIC (BICint)

28,63,64. For this, we drew k = 1000 samples of
parameter vector hi per session i from the Gaussian population dis-
tributions using the final estimates of mu and sigma, and computed
the negative log-likelihood (NLLi,k) of each sample and session using
the equation (corresponding to the first part in equation 1).

NLLi,k = �
X
t

log pt choicejhi,k

� �� �
ð7Þ

Next, we integrated the NLLi,k over samples k and sessions i and
calculated BICint based on the integrated log-likelihood (iLog) in the
following way:

iLog =
X
i

log
X2000
k = 1

e�NLLi,k=2000

 !
ð8Þ

BICint = � 2 × iLog +Np× log
X
i

Nti

 !
ð9Þ

Np refers to the number of free parameters per model and Nti
refers to the number of trials per session i.

As a second index of model fit, we used the Laplace approxima-
tion to calculate the log model evidence (LME) per session i based on
NPLi (see equation 1):

LMEi = � NPLi �
1
2
log det H i

� �� �
+
Np
2

log 2πð Þ ð10Þ

We submitted the LME scores to spm_BMS65 to compute the
‘exceedance probability’, the posterior probability that one model is
the most likely model used by the population among a given set of
models. In addition, we computed the session-wise difference in LME
between two candidate models (the best and second best) to
approximate log Bayes factors, i.e. the ratio of posterior probability of
the models given the data.

Parameter recovery
We used the equations 1 and 2 with the fitted parameter to create
synthetic choices based on p (probability of choice), with a simple rule:
for p < 0.5, the choice would be orange choice and for p > 0.5 the
choice would be blue. We then fitted the model to the synthetic data.

EEG and ECG recording
EEG was recorded with sintered Ag/AgCl electrodes from 62 scalp
electrodes mounted equidistantly on an elastic electrode cap (64Ch-
Standard-BrainCap for TMS with Multitrodes; EasyCap; two cap sizes,
56 cm and 58 cm head circumference). The distance between electro-
des was on average 3.3 cm and 3.5 cm for the 56 cm and the 58 cm cap,
respectively. The Ground electrode was located centrally at the elec-
trode site corresponding toAFz in the 10/20 system. An additional ECG
electrode was placed on the participants’ chests around 12 cm below
the left clavicle. All electrodes were referenced to the right mastoid
and re-referenced to the arithmetic average reference of all electrodes
off-line. Continuous EEG was recorded using BrainAmp amplifiers
(BrainProducts, Munich, Germany; 0.1μV analogue-to-digital conver-
sion resolution; 1000Hz sampling rate; 0.01-100Hz online cut-off
filters).
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EEG data analysis
Off-line EEG analysis was performed using Fieldtrip (https://www.
fieldtriptoolbox.org/). The data was digitally band-pass-filtered
between 0.5 and 40Hz. Bad/missing channels were restored using a
FieldTrip-based spline interpolation (1–2 electrodes per participant on
average). Detection of R-peaks in the ECG recording was done using
the Pan-Tompkins algorithm as implemented in MATLAB66. Next, the
data were segmented into intervals time-locked to either the onset of
the feedback, or the R-peak onset of the heartbeat R-waves occurring
during the feedback period, or the onset of the visual images (faces/
houses). The R‐wave is the biggest wave (indicating the changing
direction of the electrical stimulus as it passes through the heart’s
conduction system) generated during normal conduction and the first
upward deflection after the P-wave part of the QRS complex as pre-
sented in Fig. 4a. TheR-peakof theR-wave determines the time0msof
our HEP.

The intervals time-locked to the feedback onset were segmented
into 4.9 s intervals starting from 0.9 s before the feedback onset. The
intervals time-locked to the onset of the R-wave were segmented into
0.8 s intervals starting from 0.2 s before the R-wave onset. The inter-
vals time-locked to the onset of the visual images were segmented into
0.7 s intervals starting from 0.2 s before the stimulus onset. This was
done separately for positive versus negative PEs, high versus low
absolute PE, and for correct versus incorrect trials.

Automatic artefact rejection was performed excluding trials and
channels whose variance (z scores) across the experimental session
exceeded a threshold of 20 μV. This was combined with visual
inspection for all participants eliminating large technical and
movement-related artefacts. Physiological artefacts such as eye blinks,
saccades and the volume-conducted cardiac-field artefact (CFA) were
corrected, in all participants, by means of independent component
analysis (RUNICA, logistic Infomax algorithm) as implemented in the
FieldTrip toolbox. Importantly, thedata could alsobe contaminatedby
stereotypedmovement of tissue or sensor with the pulsed blood flow,
which becomes averaged together into a voltage change. These arte-
facts would likely arise due to the motion of EEG electrodes as a result
of local pulsatile movement of the scalp during the cardiac cycle,
because of varying blood flow through scalp vessels during cardiac
rhythms. Stereotyped movements of tissue or the sensor with the
pulsed blood flow of the BCG artefact are characterised by their tem-
poral relation with the cardiac rhythms captured by electro-
cardiogram. Several methods have been used to deal with these
artefacts but one of the most successful methods is, in fact, ICA
removal13,38,67. Those independent components (4.78on average across
participants; 1.13 SD) whose timing and topography resembled the
characteristics of the physiological artefacts were removed. The CFA
represents a challenge to the analysis of theHEP because the averaging
of the data around theR-peak amplifies theCFA that are time-locked to
the heartbeat68. Nonetheless, ICA has been shown to be of high effi-
ciency in the removal of the independent components representing
CFAs from the EEG signal47,69–71. The IC identification and selection
process were guided by visual inspection of their properties, based on
time course and scalp topography. ECG channels were excluded from
the analysis and the signal was then re-referenced to the arithmetic
average of all electrodes.

For the ERP analysis, the segments were baseline-corrected using
an interval from −0.15 s to −0.05 s for the segments time-locked to theR-
wave onset, an interval from −0.9 s to −0.1 s for the segments time-
locked to feedback, and interval from −0.2 s to −0.05 s for the segments
time-locked to the visual stimulus onset. To further ensure that the HEP
changes that we observe are not influenced by CFA artefacts, and they
are truly locked to the participants’ heartbeat, we created surrogate R‐
peaks by shifting the onset of the original R‐peak45,47. R‐peaks were
shifted within a time window of −500 to +500ms and they were shifted
by the same amount separately for each subject and each of the four

learning blocks. We subsequently applied the same criteria for calcu-
lating HEP amplitude and submitted these surrogate values to the
cluster-based permutation test as described below.

Topography and statistical analysis of the ERPs
In light of the considerable variability in the polarity, latency and scalp
distribution of the HEP [9, 10] we adopted a non-parametric, cluster-
based permutation approach to first determine the HEP morphology,
and then estimate any HEP amplitude modulation as a function of
learning. Subject-wise activation time-courses were extracted and
passed to the statistical analysis procedure in FieldTrip, the details of
which are described by Maris and Oostenveld72,73; Subject-wise acti-
vation time-courses were compared to identify statistically significant
clusters in the time and spatial domain using a FieldTrip-based analysis
across all time points and electrode sites. FieldTrip uses a non-
parametric method73 to address the multiple comparison problem. T-
values of adjacent temporal and frequencypoints whose p-values were
less than 0.05 were clustered by adding their t-values, and this
cumulative statistic is used for inferential statistics at the cluster level.
This procedure, i.e., the calculation of t-values at each temporal point
followed by clustering of adjacent t-values, was repeated 5000 times,
with randomised swapping and resampling of the subject-wise time-
frequency activity before each repetition. This Monte–Carlo method
results in a non-parametric estimate of the P-value representing the
statistical significance of the identified cluster.

The topographical distribution of the neural phenomena com-
prising the HEP was defined by computing mean voltages of the HEP
time-locked to R-wave onset for all trials at the group-level using the
cluster-based permutation test (one-tailed test) including all electro-
des sites and across the entire time window where the HEP typically
takes place, this is, 0.1–0.5 s41,61,74,75. In this analysis, no a-priori elec-
trode clusters were formed (all active electrodes were treated as a
distinct variable); one-tailed test was used to allow the contrast
between the mean voltage of the HEP for all trials against zero. The
topography analysis revealed a number of electrodes widely spread
along the frontal, centro-frontal andposterior areaswhere theHEPwas
distributed. These electrodes were then organised in 2 ROIs, a fron-
tocentral ROI and a centro-parietal ROI, according to their spatial
distribution (Fig. 2a) for further processing.

Next, we used the cluster-based permutation approach as imple-
mented in Fieldtrip (see below) to test if HEP varied across the two
main dimensions of learning: signed and absolute PE as well as correct
versus incorrect outcomes. Since this method allows the comparison
of only two conditions, we first organised the trials in two categories.
We thus computed averaged signals aggregating trials with positive PE
versus negative PE; and trials with high absolute PE versus low absolute
PE and trials with correct versus incorrect outcome. Thereafter, we ran
three parallel contrasts on averagedHEP contrasting trials with correct
versus incorrect valence; trials with high positive PE versus negative PE;
and trials with high absolute PE versus low absolute PE, by means of
within-subject non-parametric cluster-based permutation analysis as
described above and represented in Fig. 2b. A non-parametric, cluster-
based permutation approach is an efficient way of dealing with the
multiple comparison problem that prevents biases in pre-selecting
time-windows avoiding inflation of type I error rate. Thus, the statis-
tical analyses were performed across the entire time window in which
the HEP typically takes place (0.1–0.6 s) and restricted to the ROIs
defined according to the HEP morphology analyses. This is a non-
parametric test that does not assume normality of the data. Further-
more, given the repeated nature of the design (within-subject design),
the variance between group comparisons should be comparable. For
each comparison, subject-wise activations at electrode sites circum-
scribed in the ROI were extracted and passed to the analysis proce-
dure. To avoid spurious findings, significant effects of 15 milliseconds
or shorter were discarded from further analysis. Where appropriate,
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p-values were corrected for multiple comparisons using Bonferroni-
Holms correction.

Multivariate analyses
We hypothesised that the HEP, that is, the epoched EEG data synchro-
nised to the heart at time of outcomes, may be associated with reward-
based learning dimensions. To investigate this idea, we used a linear
multivariate classifier, with a sliding window approach, on the HEP data.
Specifically, we searched for a projection of the multidimensional EEG
signal, xi(t), where i= 1…T and T is the total number of trials, within
short time windows that achieved maximal discrimination between
binary groups of trials as described in Fouragnan and colleagues13,38.
Locked to the heartbeat, these binary groups included: (1) positive
versus negative signed PEs, (2) very high and very low absolute PEs.

All analyses were performed on windows with a length of
N = 60ms and the window centre τ was shifted from −100 to 600ms
relative to the heartbeat onset, in 10-ms increments. We applied a
regularised Fisher discriminant analysis to find the spatial weighting,
w(τ), that maximally discriminated between the binary groups
described above, arriving at a one-dimensional projection yi(τ), for
each trial i and a given window τ:

yi τð Þ= 1
N

Xt = τ +N=2

t = τ�N=2

wðτÞ?xiðtÞ ð11Þ

where yi(τ), is organised as a vector of single-trial discriminator
amplitudes (1 × Trials), the spatial filter, w(τ), is organised as a vector
with asmanyweights as there are channels in thedata (1 × 64) anddata,
xi(τ), is organised as a matrix, with dimensions (64 × Trials/Samples).
We adopted this approach to identify all time windows τ yielding
significant discriminationperformance in theheart-relatedperiod. The
projection vectors w at each time window τ were estimated as:
w = Sc(m2–m1) where mi is the estimated mean of condition i and
Sc = 1/2(S1 + S2) is the estimated common covariance matrix (that is,
the average of the condition-wise empirical covariance matrices, with
T = number of trials). To treat potential estimation errors, we replaced
the condition-wise covariance matrices with regularised versions of
these matrices, with λ∈[0, 1] being the regularisation term and ν the
average eigenvalue of the original Si (that is, trace(Si)/62). Note that
λ =0 yields unregularised estimation and λ = 1 assumes spherical
covariance matrices. Here we optimised λ for each participant using a
leave-one-out trial cross validation procedure across the entire post-
outcome period.

We quantified the performance of the discriminator for each time
window using the area under a receiver operating characteristic curve,
referred to as an Az value, using a leave-one-out trial procedure. To
assess the significance of the discriminator, we used a bootstrapping
technique where we performed the leave-one-out test after rando-
mising the trial labels. We repeated this randomisation procedure
1000 times to produce a probability distribution for Az (normally
distributed) and estimated the Az leading to a significance level
of P < 0.01.

Given the linearity of our model, we also computed scalp topo-
graphies of the discriminating components resulting from equation (1)
by estimating a forward model as:

aðτÞ= xðτÞyðτÞ
yðτÞ?yðτÞ ð12Þ

where yi(τ) is now shownas a vector y(τ), where each row is from trial i,
and xi(τ) is organised as a matrix, x(τ), where rows are channels and
columns are trials, all for time window τ. These forwardmodels can be
viewed as scalp plots and interpreted as the coupling between the
discriminating components and the observed EEG.

Diastole versus systole definition
Considering the biphasic nature of cardiac activity, we compared the
cardiac neural response to absolute PE between the systolic and dia-
stolic ventricular phases, namely, for simplicity, systole and diastole. We
defined systole as the time between the R-peak and 300ms after R-peak
(to coincide with the end of T-wave) (Fig. 3a)17,76. We used the systolic
offset of each cardiac cycle to define the onset of the diastole period,
which ended at the R-peak. The non-equal length of systole and diastole
meant that we were more likely (~60%) to have an outcome onset in the
diastole phases of the cardiac cycle. Each outcome was categorised
depending on whether the stimulus occurred during systole or diastole.
The average number of trials categorised as systole was 54.57 and as
diastole was 65.35 with standard deviation of 4.99 and 5.05 respectively.
Importantly, when an outcome was assigned to systole or diastole, the
assignment depended on that outcome’s timing with respect to a cur-
rent R-wave. However, the absolute PE-related HEP that were used for
analysis in this work (Fig. 4) related to the next R-wave.

Regression analysis
To examine the association between the cardiac cycle (i.e. diastole: 1,
and systole: 0) and the neural cardiac-related signal, we performed the
following logistic regression analysis (separately for each participant):

HEP∼β1 * cardiac cycle + ð1jsubjectÞ ð13Þ

We then tested whether the regression coefficients across parti-
cipants (β1 values in Eq. 3) came from a distribution with a mean dif-
ferent from zero (using a t-test). Data were tested for normality using a
Kolmogorov–Smirnov test. To control for potential confound of out-
come, we also performed the following logistic regression analysis
(separately for each participant):

HEP∼β1 * cardiac cycle +β2 * outcome valence

+β3 * outcome surprise+ ð1jsubjectÞ ð14Þ

We then tested whether the regression coefficients across parti-
cipants (β1 values in Eq. 4) came from a distribution with a mean dif-
ferent from zero (using a two tailed t-test).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We have deposited all choice, EEG and ECG raw data in an OSF repo-
sitory. All reinforcement learning results in this paper are derived from
these data alone. The link to the data repository is: https://osf.io/
qgw7h/ (https://doi.org/10.17605/OSF.IO/QGW7H). Source data are
also provided as a Source Data file. Source data are provided with
this paper.

Code availability
The code of the reinforcement-modelling pipeline including model
comparisons implemented in Matlab, as well as the Machine
Learning code used on the EEG and the EEG preprocessing pipeline
have been deposited in the following GitHub repository: https://
github.com/efouragnan/EEG-CRS_learning. (https://doi.org/10.
5281/zenodo.10370532).
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