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Efficient Group Collaboration for Sensing Time 

Redundancy Optimization in Mobile Crowd Sensing 
Guisong Yang, Member, IEEE, Jian Sang, Hanqing Li, Xingyu He, Fanglei Sun, 

Jiangtao Wang, Haris Pervaiz, Member, IEEE 

Abstract—In mobile crowd sensing (MCS), complex tasks 

often require collaboration among multiple workers with 

diverse expertise and sensors. However, few studies consider 

the sensing time redundancy of multiple workers to complete 

a task collaboratively, and the subjective and objective 

collaboration willingness of participating workers in forming 

collaboration groups for different tasks. If solely focusing on 

enhancing workers' willingness to collaborate, it cannot 

guarantee the minimum time redundancy within the 

collaboration group, resulting in a decrease in the group's 

efficiency. Similarly, if only aiming to reduce sensing time 

redundancy among the workers in the collaboration group, it 

may lead to a loss of workers' willingness to collaborate, and 

the diminished motivation among workers will consequently 

reduce the group's efficiency. To address these challenges, this 

paper proposes EGC-STRO, a method for forming efficient 

collaboration groups in MCS that optimizes sensing time 

redundancy while balancing the workers’ cooperation 

willingness as constraints. First, this method proposes an 

evaluation indicator to select workers who meet their reward 

expectations, i.e., objective collaboration willingness, and uses 

an incentive mechanism based on bargaining game to maximize 

the overall interests. Furthermore, subjective collaboration 

willingness is defined and a collaboration worker selection 

algorithm is designed. The algorithm adds workers who meet 

both subjective and objective willingness requirements to the 

candidate set and selects workers with the smallest sensing 

redundancy time in the worker candidate set to join the final 

collaboration group. Simulation results demonstrate that 

compared with the baseline methods, our proposed EGC-STRO 

increases the worker engagement by about 5%-20%, increases 

the task coverage by 6%-25%, increases the platform utility by 
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17%-50%, and increases the worker utility by 20%-60%. 
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I. INTRODUCTION

obile Crowd Sensing (MCS) [1] is a novel and 

prominent paradigm of data acquisition, that can 

realize reasonable allocation and adequate coverage 

of sensing tasks. This paradigm takes advantage of mobile 

devices carried by workers to sense and collect information 

from the surrounding environment anytime and anywhere. 

Unlike the traditional way of deploying fixed sensors to collect 

data, MCS can be more flexible in meeting the demands of 

large-scale sensing applications, such as road and traffic 

detection [2]-[3], environment monitoring [4]-[6], and mobile 

social recommendation [7]-[9]. 

In MCS, one-task-to-one-worker scenarios (where each task 

requires only one worker to execute) have been widely 

considered by researchers [10]-[12]. With the development of 

MCS, tasks have become increasingly complex and tend to 

require multiple workers to cooperate. Thus, worker 

collaboration methods have emerged [13]-[15], which break 

down one whole task into smaller subtasks and recruit multiple 

workers to perform these smaller subtasks in a collaboration 

group. To promote collaboration sensing quality and reduce 

collaboration sensing costs, many factors have been considered, 

such as skill differences [16]-[19], collaboration probability 

[20], and collaboration costs related to time and computation 

[21]-[24]. However, most existing collaboration methods have 

neglected the sensing time redundancy problem, among 

workers, thus suffering from the data redundancy problem 

obtained during the overlapping sensing time in a collaboration 
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group. That is, when a collaboration worker group of multiple 

workers performs the same sensing task, the sensing time 

redundancy caused by the overlapping working time between 

workers will reduce high sensing costs and low sensing 

efficiency. Moreover, when considering the collaborations, the 

existing methods fail to take into account whether the subjective 

or objective collaboration willingness of workers to participate 

in sensing tasks meets their expected threshold, which may 

potentially affect the utility of the workers and the platform. For 

instance, consider a round-the-clock noise monitoring project 

where a significant number of participants coincidentally 

converge in one area of the city without proper organization or 

coordination. This situation would inevitably lead to redundant 

data and elevated monitoring expenses, caused by overlapping 

sensing duration. Therefore, joint consideration of the 

willingness of the collaboration workers and reducing their 

sensing time redundancy is a new challenging problem in group 

collaboration. 

To overcome the above challenge, an efficient collaboration 

group formation model for sensing time redundancy 

optimization in MCS is proposed, i.e., ECG-STRO. In ECG-

STRO, we first proposed objective collaboration willingness 

and subjective collaboration willingness as two key indicators 

to evaluate the willingness of a worker and to select the workers 

whose metric values meet the predetermined threshold to join 

the candidate worker set. On the one hand, the tradeoff between 

reward and cost for a task affects whether a worker is willing to 

join the collaboration group of the task, which can be referred 

to as the objective collaboration willingness of the worker. 

Therefore, this paper proposes an evaluation index, i.e., 

objective collaboration willingness, as one of the key two 

metrics to select a set of candidate workers that meet revenue 

expectations. In ECG-STRO, to evaluate the workers’ objective 

collaboration willingness and maximize the interests of the 

platform and workers, the bargaining game incentive 

mechanism is proposed to simulate the interaction between the 

platform and workers, and Nash equilibrium is solved as the 

solution for the optimal task pricing problem. If the optimal task 

price of a worker is achieved to serve a certain task, i.e., the 

optimal reward, is higher than the worker’s expected reward 

threshold, the worker is considered willing to participate in the 

task, and the optimal task price is denoted as the important 

indicator for joining the candidate set. 

On the other hand, the task preferences of workers are the 

primary factors in forming the collaboration group, which can 

be referred to as the subjective collaboration willingness of 

workers. Therefore, another evaluation index is proposed, more 

details are given in Section IV B. Then, for the selection of the 

workers of the candidate set, it is necessary to meet threshold 

conditions of both the objective and the subjective collaboration 

willingness. Furthermore, in ECG-STRO, to reduce sensing 

time redundancy and form an efficient collaboration group that 

meets workers’ objective and subjective willingness indicators, 

a novel collaboration group selection algorithm is proposed 

based on the minimization of the time redundancy among the 

workers in the obtained candidate worker set, to finally form a 

collaboration group. 

The main contributions of this paper are summarized as 

follows: 

1） In this paper, ECG-STRO is proposed to minimize

sensing time redundancy while considering subjective

and objective cooperation willingness as constraints.

In ECG-STRO, we innovatively propose objective

and subjective cooperation willingness as two key

indicators to preliminary select a candidate worker set

for further sensing time redundancy minimization. A

bargaining game based incentive mechanism is

proposed to evaluate the objective willingness, while

the subjective collaboration willingness is evaluated

based on workers’ browsing frequency and browsing

intensity.

2） Based on the proposed indicators, a candidate worker

set can be formed to narrow down the search scope for

the optimal sensing time redundancy solution. This

set comprises workers who meet both the objective

and subjective cooperation willingness thresholds. To

further minimize sensing time redundancy within the

collaboration group, ECG-STRO is proposed to

minimize  sensing time redundancy within the

candidate set.

3） The experiments and comparison with two baseline

algorithms show the effectiveness of ECG-STRO.

The task coverage is increased by at best 25% due to

the reduction of time redundancy, and the worker

engagement is increased by at best 20%. Due to the

incentive mechanism, the worker utility is increased

by at best 60%, and the platform utility is increased

by at best 50%.

The remainder of this paper is organized as follows. Section 

Ⅱ summarizes existing related studies. Section Ⅲ introduces the 

proposed system model and problem definition. A bargaining 

game incentive mechanism and an optimization model based on 

sensing time redundancy analysis are discussed in Section Ⅳ. 

Section Ⅴ gives the performance evaluation via analysis of the 

simulation results. Finally, conclusions are drawn in Section Ⅵ. 

II. RELATED WORK

A. Incentive Mechanism based on Game Theory in MCS

Currently, considering the limited capabilities and

selfishness of workers, how to attract them to participate in 

sensing activities and improve the system efficiency of MCS is 

a challenging problem.  

Some studies have proposed the usage of game theory to 

study the interaction between workers in MCS systems. In 

literature [25], the interactions between the requester and the 

sensors were formulated as a two-stage Stackelberg differential 

game model while considering the average behavior of sensors 

to solve the dynamic task pricing problem. The authors of [26] 

studied the problem of designing a suitable incentive 

mechanism combined with data quality under social influence. 

The authors of [27] considered the nondeterministic mobility of 

mobile users, where the platform only has the probability 



distribution about users' mobility. They designed an effective 

mechanism to collect high-quality data to maximize the 

expected social welfare. 

The above works only consider a single sensing task in a 

single sensing time slot. Further, the authors of [28] studied the 

multi-leader-multi-follower Stackelberg game based on deep 

reinforcement learning (DRL) to solve the problem of assigning 

sufficient and profitable incentives to multiple task originators 

and multiple sensing users in MCS. In literature [29], a tripartite 

evolutionary game model of crowdsourcing workers, 

crowdsourcing platforms, and task requesters was proposed. 

The model focuses on the evolutionary stability strategies and 

evolutionary trends of different participants. The authors of [30] 

established a public environment sensing model based on 

evolutionary game theory. Employing the Word-of-Mouth 

mode and Stackelberg game theory, in [31]，  the authors 

proposed the optimal strategies in mobile crowdsourcing 

focusing on profit-maximization. However, it overlooks the 

optimization of reducing sensing time redundancy and 

balancing cooperation willingness in efficient group formation. 

In the research of this paper, workers are generally rational 

and want to get more rewards. Similarly, the platform is also 

rational and wants to obtain the worker's sensing data with less 

payment. There is a conflict between these two sides. This 

conflict is essentially a pricing problem. Rubinstein-Stahl 

Bargaining Game is a theory that can describe the process of 

unlimited complete information bargaining and transform the 

above pricing problem into a bargaining model [32]. It is used 

for reference in this paper to design the incentive mechanism. 

B. Collaboration Sensing in MCS

Collaboration sensing is a paradigm based on teamwork, in

which workers with different abilities (or skills) are recruited to 

form collaboration groups and work together to complete 

complex tasks.  

To promote the quality of collaboration sensing, some 

researchers focus on analyzing the ability complementarity of 

workers. The authors of [16] designed a novel low-complexity 

collaboration mobile crowdsourcing recruitment approach 

relying on Graph Neural Networks (GNNs) to shrink the 

workers' search space and exploit a metaheuristic genetic 

algorithm to select appropriate workers. The authors of [17] 

proposed a hybrid approach in which requesters can hire a team 

with the required expertise and social connections to 

collaborate on tasks. The authors of [18] developed two team-

building strategies for the collaboration MCS framework to 

form virtual teams according to four criteria: professional level, 

the strength of social relations, cost of recruitment, and 

confidence level of recruiters. The authors of [19] aim to make 

opportunistic crowd sensing via the collaboration of workers 

with different abilities to detect urban phenomena. 

To further promote collaboration quality, in addition to 

ability complementarity, other factors must be considered, such 

as the collaboration probability among workers, collaboration 

cost on time, or computation. The authors of the literature [20] 

studied the Deadline-sensitive User Recruitment problem and 

proposed a probabilistic collaboration mobile crowd sensing 

method where mobile users perform sensing tasks with certain 

probabilities, and multiple users may be recruited 

collaboratively to perform a common task. The authors of [21] 

proposed two heuristic algorithms: CB-greedy and CB-local, 

based on greedy strategy and local search technique to solve the 

problem of cost-effective and budget-balanced task allocation 

problem in worker collaboration. In literature [22], 

CrowdTracking was proposed as a crowd-tracking system 

where people can collaboratively keep track of the moving 

vehicle by taking photos, especially in places where video 

cameras are insufficient. In literature [23], the purpose of 

collaboration sensing is to reduce both network traffic and 

computation in the cloud. The authors of [24] focused on the 

workload of team members in a cost- and quality-effective way 

and introduced the BeTogether middleware to solve the 

problem of worker workload balance. 

However, among the existing collaboration sensing methods, 

there is rare research to consider sensing time complementarity. 

Most existing collaboration sensing methods have neglected to 

sense time overlap among workers and suffered the data 

redundancy problem. Our work aims to minimize the sensing 

time redundancy between workers in a collaboration group. 

III. SYSTEM MODEL AND PROBLEM FORMULATION

The system model of this paper includes an MCS system model, 

which defines the scenario of the entire MCS system, an 

incentive game model, which defines the incentive mechanism 

between workers and the platform, and a collaboration group 

selection model to ensure efficient group collaboration. The 

notations used in this paper are summarized in Table I. 

TABLE I 

NOTATIONS USED 

Notations Description 

𝛤, 𝜋𝑗 Task set and the 𝑗th task 

𝑊, 𝑤𝑖 Worker set and the 𝑖th worker 

𝑠𝜋𝑗
, 𝑒𝜋𝑗

The start and end time of the 𝑗th task 

𝑠𝑤𝑖→𝜋𝑗
The start time of 𝑤𝑖 executing 𝜋𝑗

𝑒𝑤𝑖→𝜋𝑗
The completion time of 𝑤𝑖 executing 𝜋𝑗

𝕎𝑤𝑖→𝜋𝑗
The subjective collaboration willingness of 𝑤𝑖

executing 𝜋𝑗

ℛ𝑤𝑗𝑖
The remuneration paid to 𝑤𝑖 after completing 𝜋𝑗

𝑐𝑜𝑠𝑡𝑖
𝑗 Consumption during the execution of 𝜋𝑗 by 𝑤𝑖

𝑈𝑤𝑖

𝜋𝑗 The objective collaboration willingness and 

worker utility of 𝑤𝑖 executing 𝜋𝑗

𝑂(𝑤𝑖,𝑤𝑖+1)

𝜋𝑗 Sensing redundancy time between 𝑤𝑖 and 𝑤𝑖+1

𝜃 The objective collaboration willingness threshold 

ϰ The subjective collaboration willingness 

threshold 

𝑈𝑝 The platform utility 

𝑅𝑝 The revenue the platform obtains from suppliers 

𝑃 

𝑐𝑜𝑠𝑡𝑝

S 

The revenue paid by the platform to workers  

The platform consumption 

The Social Welfare 



MCS System Model

From the platform side, whether workers can be selected to 

join the same collaboration group for a task depends on the 

tradeoff between the reward and the cost for the task (which is 

related to the task pricing) and the time complementarity of 

their available sensing time. From the worker side, whether a 

worker is willing to join a collaboration group for a task 

depends on the task types that the workers are interested in 

(their subjective collaboration willingness) and the tradeoff 

between reward and cost for the task (their objective 

collaboration willingness). 

Fig. 1 shows the system model of EGC-STRO, which 

consists of service providers, a platform, and a large number of 

workers participating in sensing tasks. First, the service 

providers submit requests to the sensing platform, and the 

platform publishes these requests to workers as sensing tasks 

(Steps 1-2), while using the incentive mechanism based on the 

bargaining game to calculate workers’ optimal rewards as the 

objective collaboration willingness (Step 3). Then, the subject 

collaboration willingness, which represents workers’ task 

interests, and the objective collaboration willingness, are used 

as constraints. Workers who meet the constraint threshold are 

selected to join the candidate set (Step 4). Furthermore, an 

algorithm to form a collaboration group based on sensing time 

redundancy is used to complete the sensing task and upload 

sensing data to the platform (Step 5). Ultimately, the platform 

delivers data to the service provider and gets a reward (Steps 6-

8). 

Step 3 in Fig. 1 represents the first stage of EGC-STRO, 

which is based on the incentive mechanism of the bargaining 

game to maximize social welfare and derive workers’ objective 

willingness to cooperate. Steps 4 and 5 correspond to the second 

stage, which involves the collaboration group selection 

algorithm focused on minimizing time redundancy. In these 

steps, the candidate set is filtered based on subjective and 

objective collaboration willingness, and the algorithm is 

employed to identify efficient collaboration groups from the 

candidate set. 

Service providers: Individuals or groups with specific 

requests can act as service providers to purchase sensing data 

from the platform according to their application requirements. 

Service providers hope to purchase high-quality and reliable 

sensing data at a reasonable price and apply the acquired 

sensing data to various fields to provide various application 

services.  

Platform: The platform releases sensing tasks to workers or 

collaboration groups according to the needs of service providers, 

receives the perception information uploaded by workers or 

collaboration groups, and pays remuneration. The platform 

publishes the sensing task set 𝛤 = {𝜋1, … , 𝜋𝑗 , … , 𝜋𝑚}  to the

worker set 𝑊 = {𝑤1 , … , 𝑤𝑖 , … , 𝑤𝑛}.The attributes of the task 𝜋𝑗

include the starting time 𝑠𝜋𝑗
 of the task 𝜋𝑗, and the completion

time 𝑒𝜋𝑗
 of the task 𝜋𝑗.

Workers: Workers select tasks from the platform according 

to their interests and upload information about their sensing 

characteristics to the platform. Workers can also form 

cooperative groups to complete tasks together, which can 

increase efficiency. The task preferences of workers are 

primary factors in collaboration group formation, which reflect 

the subjective collaboration willingness of workers. The 

attributes of worker 𝑤𝑖  related to task 𝜋𝑗  include its starting

time 𝑠𝑤𝑖→𝜋𝑗
 to execute the task 𝜋𝑗, its completion time 𝑒𝑤𝑖→𝜋𝑗

to

execute the task   𝜋𝑗   and its subjective collaboration

willingness 𝕎𝑤𝑖→𝜋𝑗
 to execute the task 𝜋𝑗.

Candidate Set: The platform selects workers to form the 

candidate collaboration worker set, in which the workers’ 

indicators of both the subjective and the objective cooperative 

willingness are higher than the thresholds, respectively.  

Collaboration Groups: The platform unilaterally assigns 

the task to a group of workers based on the optimization 

algorithm to form the final collaboration group. 

... ...

...

...

Workers Platform Service Providers

Collaboration Groups

...

...

  Publishes 
sensing tasks

  Incentive 
mechanism

  Submit requsts

  Send 
sensing Data

  Pay the 
reward

  Form 
collaboration 

groups

  Upload sensing Data

Temperature Humidity Noise

Traffic Flow Air Quality

...

Candidate set

  Meet the subjective 
and objective willingness 

to cooperate

Fig. 1. System of collaboration MCS. 

From the platform side, whether workers can be selected to 

join the same collaboration group for a task depends on the 

tradeoff between reward and cost for the task (which is related 

to the task pricing) and the complementarity between their 

available sensing time. From the worker side, whether a worker 

is willing to join a collaboration group for a task depends on the 

task types that the workers are interested in (their subjective 

collaboration willingness) and the tradeoff between reward and 

cost for the task. 

B. Incentive Model between Workers and Platform

The purpose of the incentive mechanism in this paper is to

increase the benefits of workers and the platform, motivate 

more workers to participate in collaboration, and increase 

workers’ objective willingness to collaborate. Therefore, we 

use optimal social welfare to represent the incentive model, 

which includes worker utility and platform utility. 

Worker utility: For the worker 𝑤𝑖 , the MCS platform pays

remuneration ℛ𝑤𝑗𝑖
 according to the completion of the task 𝜋𝑗.

During the execution of the task, the worker consumption is 

recorded as 𝑐𝑜𝑠𝑡𝑖
𝑗
. Therefore, the worker utility function is

𝑈𝑤𝑖

𝜋𝑗
= ℛ𝑤𝑗𝑖

− 𝑐𝑜𝑠𝑡𝑖
𝑗
. (1) 

In this paper, we assume the above worker utility as the 

worker’s objective collaboration willingness. 



Platform utility: For the MCS platform, its utility depends 

on the service provider, the remuneration paid to workers and 

the platform’s consumption 𝑐𝑜𝑠𝑡𝑝,

𝑈𝑝 = 𝑅𝑝 − 𝑃 − 𝑐𝑜𝑠𝑡𝑝 , (2)

where 𝑅𝑝  represents the revenue the platform obtains from

suppliers, 𝑃 represents the remuneration paid by the platform to 

workers, it is equal to the sum of the wages of all workers. 

The formal definition of social welfare is 

S = (∑ 𝑈𝑤𝑖

𝜋𝑗

𝑤𝑖𝜖𝑊𝜋𝑗
,𝜋𝑗𝜖𝛤

) + 𝑈𝑝, (3) 

where 𝑤𝑖  represents the 𝑖th worker in the candidate set 𝑊𝜋𝑗
 for

executing the 𝑗th task, 𝜋𝑗 represents the 𝑗th task in the task set

𝛤. 

In the game, both users and the platform hope to maximize 

their utility and play games around the optimization of social 

welfare. This problem can be described as a social welfare 

maximization problem, defined as follows, 

max   S, (4) 

s. t.   𝑈𝑤𝑖

𝜋𝑗
≥ 0 𝑎𝑛𝑑 𝑈𝑝 ≥ 0 . (5) 

We use the Rubinstein-Stahl bargaining game to solve the 

social welfare maximization problem to improve workers' 

objective collaboration willingness for a collaboration group in 

Section Ⅳ.  

C. Problem Formulation

In our collaboration group formation model, we

comprehensively consider the following factors and the 

optimization objective, which include: 

Objective collaboration willingness: the objective 

collaboration willingness 𝑈𝑤𝑖

𝜋𝑗
, i.e. worker utility, which 

represents the objective collaboration willingness of worker 𝑤𝑖

to perform task 𝜋𝑗, and is determined by the remuneration paid

to the worker by the platform after an ongoing bargaining game 

between the platform and the worker. It will be addressed in 

Section IV and obtained by Eq. (22). 

Subjective collaboration willingness: the subjective 

collaboration willingness  𝕎𝑤𝑖→𝜋𝑗
, which represents the

subjective collaboration willingness of worker 𝑤𝑖  to perform

task 𝜋𝑗, and is determined by the worker's interest in the task,

i.e., the browsing intensity. It will be addressed in Section Ⅳ

and obtained by Algorithm 1.

Sensing time redundancy of the collaboration group: it is 

the total time that consists of multiple sensing time overlapping 

periods when a group of workers to collaborate a task, denoted 

as  𝑂𝜋𝑗
. We assume that a task is completed by relay from 𝑤1 to

𝑤𝑛. There may be a sensing time overlapping period in working

time between the two workers 𝑤𝑖and 𝑤𝑖+1, which leads to the

repeated generation of sensing data and reduces sensing 

efficiency. The optimization goal of this paper is to minimize 

the sensing time redundancy time to perform a task  More 

details will be addressed in Section Ⅳ.  

To form an efficient collaboration group, we try to select 

workers who meet the thresholds of their reward expectations 

and browsing interests (i.e., subjective and objective 

collaboration willingness) and minimize the sensing time 

redundancy of the collaboration group. That is, for the task 𝜋𝑗,

the objective willingness of the work  𝑤𝑖  to collaborate 𝑈𝑤𝑖

𝜋𝑗

must exceed the set threshold 𝜃, and the subjective willingness 

to collaborate 𝕎𝑤𝑖→𝜋𝑗
  must exceed the set threshold 𝜘. The

selection of collaboration workers aims to minimize the sensing 

redundancy time. To achieve this, we have developed a model 

by considering the above main optimization objective and the 

constraints. We can efficiently form collaboration groups for 

different tasks with minimal redundancy time, maximizing 

efficiency during the MCS activities. Thus, the problem is 

formulated as follows, 

min   ∑ 𝑂(𝑤𝑖,𝑤𝑖+1)

𝜋𝑗

𝑝

𝑖=0

, (6) 

s. t.   𝑂(𝑤𝑖,𝑤𝑖+1)

𝜋𝑗
≥ 0 𝑎𝑛𝑑 0 ≤ 𝑖 ≤ 𝑝 , (7) 

𝑈𝑤𝑖

𝜋𝑗
≥ 𝜃, (8) 

𝕎𝑤𝑖→𝜋𝑗
≥ 𝜘, (9) 

where, 𝑂(𝑤𝑖,𝑤𝑖+1)

𝜋𝑗
represents the sensing time overlapping period 

between the work wi  and the work wi+1  in the collaboration

group when they collaborate on the task𝜋𝑗 . 𝜃  represents the

objective collaboration willingness threshold, and 𝜘 represents 

the subjective collaboration willingness threshold. Workers 

who satisfy both of the aforementioned thresholds are chosen 

to be members of the candidate collaboration worker set, and 

the final collaboration group members are further selected by 

minimizing the sensing time redundancy from the candidate set. 

The specific implementation algorithm for the collaboration 

group formation model is described in Section Ⅳ of our 

research. 

IV. METHOD OF EGC-STRO

A. Incentive Mechanism Based on Bargaining Game

In this section, we first analyze the total cost of a

collaboration group and then design an incentive mechanism 

based on the Rubinstein-Stahl bargaining game to improve 

workers' objective collaboration willingness for a collaboration 

group.  

The sensing cost for worker 𝑤𝑖  to complete task 𝜋𝑗

comprises time and energy costs. Assuming that the sensing 

power of 𝑤𝑖  is 𝑝𝑤𝑖
, its available sensing time to execute task 𝜋𝑗

is 𝑒𝑤𝑖→𝜋𝑗
− 𝑠𝑤𝑖→𝜋𝑗

, and its sensing cost for task  𝜋𝑗  can be

expressed as follows: 

𝑐𝑜𝑠𝑡𝑤𝑖→𝜋𝑗
𝑡𝑖𝑚𝑒 = 𝑒𝑤𝑖→𝜋𝑗

− 𝑠𝑤𝑖→𝜋𝑗
, (10) 

𝑐𝑜𝑠𝑡𝑤𝑖→𝜋𝑗

𝑒𝑛𝑒𝑟𝑔𝑦
= 𝑝𝑤𝑖

𝑐𝑜𝑠𝑡𝑤𝑖→𝜋𝑗
𝑡𝑖𝑚𝑒 , (11) 

𝑐𝑜𝑠𝑡𝑤𝑖→𝜋𝑗
𝑠𝑒𝑛𝑠𝑒 = 𝜌𝑐𝑜𝑠𝑡𝑤𝑖→𝜋𝑗

𝑡𝑖𝑚𝑒 + 𝜎𝑐𝑜𝑠𝑡𝑤𝑖→𝜋𝑗

𝑒𝑛𝑒𝑟𝑔𝑦
, (12) 

where 𝑐𝑜𝑠𝑡𝑤𝑖→𝜋𝑗
𝑡𝑖𝑚𝑒 , 𝑐𝑜𝑠𝑡𝑤𝑖→𝜋𝑗

𝑒𝑛𝑒𝑟𝑔𝑦
and 𝑐𝑜𝑠𝑡𝑤𝑖→𝜋𝑗

𝑠𝑒𝑛𝑠𝑒  are the time cost, 



energy cost and sensing cost, respectively. 𝜌 and 𝜎 are positive 

proportion factors, such that 𝜌 + 𝜎 = 1. 

In our incentive mechanism, the platform is regarded as the 

buyer of sensing data and the workers in the collaboration 

groups are the sellers of sensing data. The buyer's bottom line 

price for task 𝜋𝑗 is 𝒫
𝑏𝑢𝑦

𝜋𝑗
, which represents the highest purchase 

price acceptable to the buyer and can be expressed as: 

𝒫
𝑏𝑢𝑦

𝜋𝑗
= 𝜑𝜋𝑗

(𝑒𝜋𝑗
− 𝑠𝜋𝑗

) , (13) 

where 𝜑𝜋𝑗
 refers to the maximum cost per unit of time spent on

task 𝜋𝑗, estimated by the platform.

Similarly, the seller (𝑤𝑖 → 𝜋𝑗)'s bottom line price for task 𝜋𝑗

is 𝒫𝑠𝑒𝑙𝑙

𝑤𝑖→𝜋𝑗
, which represents the lowest selling price acceptable 

to the seller and can be expressed by the following formula: 

𝒫𝑠𝑒𝑙𝑙

𝑤𝑖→𝜋𝑗
= (1 − 𝕎𝑤𝑖→𝜋𝑗

) ⋅ 𝑐𝑜𝑠𝑡𝑤𝑖→𝜋𝑗
𝑠𝑒𝑛𝑠𝑒 , (14)

where  𝑐𝑜𝑠𝑡𝑤𝑖→𝜋𝑗
𝑠𝑒𝑛𝑠𝑒  represents the actual cost of the worker 𝑤𝑖  to

execute task 𝜋𝑗.

The Rubinstein-Stahl bargaining process can be modeled as 

a game of splitting a piece of cake between two sides. It is 

assumed that 𝒫𝑠𝑒𝑙𝑙

𝑤𝑖→𝜋𝑗
is higher than 𝒫𝑏𝑢𝑦

𝜋𝑗
, and the "cake" is the 

difference between  𝒫𝑏𝑢𝑦

𝜋𝑗
and 𝒫𝑠𝑒𝑙𝑙

𝑤𝑖→𝜋𝑗
. This can be expressed as: 

𝑍 = 𝒫𝑠𝑒𝑙𝑙

𝑤𝑖→𝜋𝑗
− 𝒫𝑏𝑢𝑦

𝜋𝑗
> 0. (15) 

In our bargaining game model, after the seller makes an offer 

in the first round if the buyer accepts the offer, a deal will be 

made, and the game ends; otherwise, it will enter into the 

second round.  

In the second round, the buyer makes an offer, and the seller 

can also accept or reject this offer. If one side's offer is accepted 

by the other side during a round, the deal will be finalized, and 

the game will come to an end. However, if the offer is not 

accepted, the next round will commence, and the other side will 

have the opportunity to make an offer in the subsequent round. 

This process repeats until an offer is acceptable to both sides.  

Suppose the proportional share set in the 𝑟 th round is 𝜂𝑟 =
{𝜂𝑠𝑒𝑙𝑙

𝑟 , 𝜂𝑏𝑢𝑦
𝑟 }. 𝜂𝑠𝑒𝑙𝑙 represents the seller 𝑤𝑖 's proportional share

and 𝜂𝑏𝑢𝑦  represents the buyer's proportional share, 𝜂𝑠𝑒𝑙𝑙 +

𝜂𝑏𝑢𝑦 = 1, 𝜂𝑠𝑒𝑙𝑙 ≥ 0, 𝜂𝑏𝑢𝑦 ≥ 0. This bargaining game aims to

get a set of proportional shares {𝜂𝑠𝑒𝑙𝑙
∗ , 𝜂𝑏𝑢𝑦

∗ } acceptable to both

the buyer and the seller. 

Then the utility functions of the buyer and seller can be 

expressed as 

𝑈𝑠𝑒𝑙𝑙
𝑟 = λ𝑠𝑒𝑙𝑙

𝑟 𝜂𝑠𝑒𝑙𝑙
𝑟 𝑍, (16) 

𝑈𝑏𝑢𝑦
𝑟 = λ𝑏𝑢𝑦

𝑟 𝜂𝑏𝑢𝑦
𝑟 𝑍, (17) 

where λ𝑠𝑒𝑙𝑙 ∈ [0,1]  represents the seller's discount factor,

which is related to the average subjective willingness to 

collaborate of workers in 𝑊; and λ𝑏𝑢𝑦 ∈ [0,1] represents the

buyer's discount factor, which is related to the numbers of all 

optional collaboration groups for task 𝜋𝑗 in the platform. The

discount factor is the discount rate of the next round to the 

current round.  

For example, if a seller makes an offer 𝜂𝑠𝑒𝑙𝑙  in the current

round, the offer 𝜂𝑠𝑒𝑙𝑙
′  of the next round can only be discounted 

to be equal to the λ𝑠𝑒𝑙𝑙𝜂𝑠𝑒𝑙𝑙  and less than 𝜂𝑠𝑒𝑙𝑙  of the current

round. The discount factor is essentially determined by the 

bargaining workers' patience, which reflects the material cost 

and time cost of the bargaining process.  

As the number of rounds increases, the game cost becomes 

higher, which will reduce the utility value of both the buyer and 

the seller. Therefore, both sides should accept a reasonable offer 

as soon as possible.  

Since the bargaining game is a dynamic game with complete 

information, the Nash equilibrium of the game can be obtained 

[33]. The final price accepted by both the buyer and the seller 

is given as follows: 

𝜂𝑠𝑒𝑙𝑙
∗ =

1 − λ𝑏𝑢𝑦

1 − λ𝑏𝑢𝑦λ𝑠𝑒𝑙𝑙

, (18) 

𝜂𝑏𝑢𝑦
∗ =

λ𝑏𝑢𝑦(1 − λ𝑠𝑒𝑙𝑙)

1 − λ𝑏𝑢𝑦λ𝑠𝑒𝑙𝑙

. (19) 

According to the above formulas, the optimal reward ℛ 

given by the platform from the task  𝜋𝑗 to the worker 𝑤𝑖  can be

expressed as follows: 

ℛ𝑤𝑗𝑖
= 𝒫𝑠𝑒𝑙𝑙

𝑤𝑖→𝜋𝑗
+ 𝜂𝑠𝑒𝑙𝑙

∗ 𝑍. (20)

To stimulate the objective collaboration willingness of 

workers, maximize the interests of the workers in the 

collaboration group, and calculate the objective collaboration 

willingness 𝑈 of each worker to collaborate on the task through 

the bargaining game, Algorithm 1 is designed. The calculated 

objective collaboration willingness will be used as a constraint 

to select workers to the candidate collaboration worker set who 

meet the threshold of objective collaboration willingness. 

Algorithm 1 Incentive Mechanism Based on Bargaining 

Input: 𝜑, Γ, 𝑊, λ𝑏𝑢𝑦 , λ𝑠𝑒𝑙𝑙 ∈ [0,1].

Output: ℛ = {ℛ𝑤11
, … ℛ𝑤𝑗𝑖

, … ℛ𝑤𝑚𝑛
}, 𝑈.

1: 𝜂𝑠𝑒𝑙𝑙
∗ =

1−λ𝑏𝑢𝑦

1−λ𝑏𝑢𝑦λ𝑠𝑒𝑙𝑙

2: for each 𝜋𝑗 in Γ  do

3: 𝒫
𝑏𝑢𝑦

𝜋𝑗
= 𝜑𝜋𝑗

(𝑒𝜋𝑗
− 𝑠𝜋𝑗

)

4: for each 𝑤𝑖
′ in 𝑊 do

5: 𝒫𝑠𝑒𝑙𝑙

𝑤𝑖→𝜋𝑗
= (1 − 𝕎𝑤𝑖→𝜋𝑗

) ⋅ 𝑐𝑜𝑠𝑡𝑤𝑖→𝜋𝑗
𝑠𝑒𝑛𝑠𝑒

6: 𝑍 = 𝒫
𝑠𝑒𝑙𝑙

𝑤𝑖→𝜋𝑗
− 𝒫

𝑏𝑢𝑦

𝜋𝑗

7: ℛ𝑤𝑗𝑖
= 𝒫𝑠𝑒𝑙𝑙

𝑤𝑖→𝜋𝑗
+ 𝜂𝑠𝑒𝑙𝑙

∗ 𝑍

8:    end for 

9: ℛ ← ℛ ∪ ℛ𝑤𝑗𝑖
, 𝐶 ← 𝐶 ∪ 𝑐𝑜𝑠𝑡𝑖

𝑗

10: end for 

11: 𝑈 = ℛ − 𝐶 

12: Return ℛ, 𝑈 

The inputs of Algorithm 1 include the maximum cost per unit 

time 𝜑, the task set Γ, the worker set 𝑊, the discount factor 



λ𝑏𝑢𝑦 and λ𝑠𝑒𝑙𝑙 .

In the process of traversing 𝛤 in the outer loop (Lines 2-10) 

in Algorithm 1, we calculate 𝒫𝑏𝑢𝑦

𝜋𝑗
 (Line 3). In the process of

traversing 𝑊 in the inner loop (Lines 4-8), we calculate ℛ𝑤𝑗𝑖

(Line 7) caused by 𝒫
𝑠𝑒𝑙𝑙

𝑤𝑖→𝜋𝑗
(Line 5) and 𝑍(Line 6). The output

of Algorithm 1 is the optimal reward ℛ. The optimal reward 

obtained through the game serves as the objective willingness 

of workers to collaborate, providing an indicator for the 

subsequent generation of candidate sets. 

The time complexity of Algorithm 1 is caused by n times of 

the inner loop and m times of the outer loop. Therefore, the time 

complexity of Algorithm 1 is 𝑂(|𝑚 ∗ 𝑛|) , where 𝑛  is the 

number of workers and 𝑚 is the number of tasks. 

B. Optimization Model based on Sensing Time Redundancy

Analysis

In the collaboration group, the formation process of both the 

task preferences of workers (which reflects the subjective 

collaboration willingness of workers) and the sensing time 

redundancy among workers are considered. We will discuss 

these two factors, respectively. 

1) Evaluation of Subjective Collaboration Willingness

Recent studies in [34] and [35] show that the task preferences

of a worker are closely related to its browsing behaviors 

including browsing content, duration and frequency (all actions 

of a worker while interacting with the tasks).  

To accurately obtain the real-time preferences of a worker, 

we analyzed its browsing history over a preset statistical period. 

An example distribution diagram of the browsing duration of 

worker 𝑤𝑖  on task 𝜋𝑗 is shown in Fig. 2.
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Fig. 2. Distribution diagram of browsing duration of worker 

𝑤𝑖  on task 𝜋𝑗. 

Within the total statistical time period [0, 𝑇𝑏] (it ranges from

the beginning to the end of worker 𝑤𝑖 's browsing history, for

instance, in Fig. 2, the total statistical time period lasts 10 days), 

𝐿𝑔[𝑤𝑖→𝜋𝑗] is the 𝑔th browsing duration at the sampling starting

moment  𝑡𝑔[𝑤𝑖→𝜋𝑗] for worker 𝑤𝑖  on task  𝜋𝑗.

Within [0, 𝑇𝑏] , the browsing duration of worker 𝑤𝑖  at

different sampling starting moments have different weights 

𝜔 (𝑡𝑔[𝑤𝑖→𝜋𝑗]) , which can be defined as 𝜔 (𝑡𝑔[𝑤𝑖→𝜋𝑗]) =

𝑡𝑔[𝑤𝑖→𝜋𝑗]/𝑇𝑏 , that is, if a sampling starting moment is closer to

𝑇𝑏 , its corresponding browsing duration of worker 𝑤𝑖  will have

greater weight. For 𝐿𝑔[𝑤𝑖→𝜋𝑗] , the browsing intensity

𝐵𝐼(𝑡𝑔[𝑤𝑖→𝜋𝑗]) is

𝐵𝐼 (𝑡𝑔[𝑤𝑖→𝜋𝑗]) = 𝐿𝑔[𝑤𝑖→𝜋𝑗] ∙ 𝜔 (𝑡𝑔[𝑤𝑖→𝜋𝑗]) =
𝐿𝑔[𝑤𝑖→𝜋𝑗] ∙ 𝑡𝑔[𝑤𝑖→𝜋𝑗]

𝑇𝑏

, (21) 

therefore, for a worker 𝑤𝑖  with 𝐺  times of browsing, his

intensity of interest in task 𝜋𝑗 , namely its subjective

collaboration willingness to execute task 𝜋𝑗, is

𝕎𝑤𝑖→𝜋𝑗
= ∑ 𝐵𝐼 (𝑡𝑔[𝑤𝑖→𝜋𝑗])

𝐺

𝑔=1

= ∑
𝐿𝑔[𝑤𝑖→𝜋𝑗] ∙ 𝑡𝑔[𝑤𝑖→𝜋𝑗]

𝑇𝑏

𝐺

𝑔=1

. (22) 

The subjective collaboration willingness calculated by key 

factors such as the browsing intensity of workers' browsing 

tasks will be used as another constraint to select workers to join 

the candidate collaboration worker set who meet their threshold 

of subjective collaboration willingness. 

2) Sensing Time Redundancy Analysis

In this section, we take the process of selecting 𝑝 workers

continuously from the candidate collaboration worker set 𝑊𝜋𝑗

to form a final collaboration group 𝑃𝜋𝑗
 for task 𝜋𝑗  as an

example to illustrate the details of sensing time redundancy 

optimization.  

The worker 𝑤𝑖  has his sensing time interval when takes part

in the task 𝜋𝑗 as one collaboration group member, and the start

time the end time for the worker 𝑤𝑖  for the task 𝜋𝑗 is 𝑠𝑤𝑖→𝜋𝑗
 and

𝑒𝑤𝑖→𝜋𝑗
. The task 𝜋𝑗 has its own start and end time, i.e., 𝑠𝜋𝑗

 and

𝑒𝜋𝑗
. The start and end time of the task is independent of the

sensing time of workers. When the time for workers to perform 

the task ends, they will withdraw from the sensing task ahead 

of time. The total available sensing time of group 𝑃𝜋𝑗
 must

cover the time span required by task 𝜋𝑗 . For group 𝑃𝜋𝑗
, its

sensing time redundancy to execute task 𝜋𝑗  is caused by the

following three situations:  

As shown in Fig. 3(a), if there exists an overlap between the 

available sensing time of workers 𝑤𝑖
′  and 𝑤𝑖+1

′  (who are

selected to successively execute the task 𝜋𝑗 ,   the sensing time

redundancy for them will be calculated as 𝑂
(𝑤𝑖

′ ,𝑤𝑖+1
′ )

𝜋𝑗
=

𝑒𝑤𝑖
′→𝜋𝑗

−  𝑠𝑤𝑖+1
′ →𝜋𝑗

.

As shown in Fig. 3(b), if the available sensing time of the 

first selected worker 𝑤1
′  to join group 𝑃𝜋𝑗

 covers the starting

time of task 𝜋𝑗 (i.e.,𝑠𝑤1
′ →𝜋𝑗

<  𝑠𝜋𝑗
< 𝑒𝑤1

′ →𝜋𝑗
), the sensing time

redundancy will be the waiting time from the start sensing time 

of worker 𝑤1
′  to the start time to execute task 𝜋𝑗 at 𝑠𝜋𝑗

, which is

called the “head”, and denoted by ℎ𝑑𝑤1
′ →𝜋𝑗

.

As shown in Fig. 3(c), if the available sensing time of the last 

selected worker 𝑤𝑝
′  to join the group 𝑃𝜋𝑗

 covers the completion

time to execute the task 𝜋𝑗 (i.e., 𝑠𝑤𝑝
′ →𝜋𝑗

< 𝑒𝜋𝑗 < 𝑒𝑤𝑝
′ →𝜋𝑗

), the

sensing time redundancy will be the time span from 𝑒𝜋𝑗
 to the



completion time of worker 𝑤𝑝
′  to finish its sensing state at 

𝑒𝑤𝑝
′ →𝜋𝑗

, which is called the "tail", and denoted by 𝑡𝑙𝑤𝑝
′ →𝜋𝑗

.

To sum up, we define the total sensing time redundancy 

caused by the above three situations in the time span of the task 

𝜋𝑗 as the sensing time redundancy 𝑂𝜋𝑗
 of group 𝑃𝜋𝑗

, which may

include one ℎ𝑑𝑤1
′ →𝜋𝑗

, one 𝑡𝑙𝑤𝑝
′ →𝜋𝑗

, and multiple 𝑂
(𝑤𝑖

′ ,𝑤𝑖+1
′ )

𝜋𝑗
, as 

shown in Fig. 4  Therefore, 𝑂𝜋𝑗
 will be calculated as followings

𝑂𝜋𝑗
= ℎ𝑑𝑤1

′ →𝜋𝑗
+ ∑ 𝑂

(𝑤𝑖
′ ,𝑤𝑖+1

′ )

𝜋𝑗

𝑝−1

𝑖=1

+ 𝑡𝑙𝑤𝑝
′ →𝜋𝑗 

.     (23)

https://rsj.sh.gov.cn/tnprygs_17409/20230911/t0035_1418252.html
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Fig. 4. An example of calculating  𝑂𝜋𝑗

We provide an optimization model to minimize the ratio of 

sensing time redundancy in the collaboration worker selection 

process as given below: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑂𝜋𝑗

𝑒𝜋𝑗
− 𝑠𝜋𝑗

, (24) 

 𝑠. 𝑡.  𝕎𝑤𝑖
′→𝜋𝑗

≥ 𝜘  (𝑤𝑖
′ ∈ 𝑃𝜋𝑗

) , (24𝑎) 

𝑈
𝑤𝑖

′

𝜋𝑗
≥ 𝜃 (𝑤𝑖

′ ∈ 𝑃𝜋𝑗
) , (24𝑏) 

𝑒𝑤𝑝
′ →𝜋𝑗

− 𝑠𝑤1
′ →𝜋𝑗

≥ 𝑒𝜋𝑗
− 𝑠𝜋𝑗

, (24𝑐) 

𝑠𝑤1
′ →𝜋𝑗

≤ 𝑠𝜋𝑗
, (24𝑑) 

𝑒𝑤1
′ →𝜋𝑗

> 𝑠𝜋𝑗
, (24𝑒) 

𝑒𝑤𝑝
′ →𝜋𝑗

≥ 𝑒𝜋𝑗
, (24𝑓) 

𝑠𝑤𝑝
′ →𝜋𝑗

< 𝑒𝜋𝑗
, (24𝑔) 

𝑥𝑖 ≠ 1 𝑎𝑛𝑑 𝑥𝑖+1 ≠ 1(𝑥𝑖𝜖{0,1}), (24ℎ) 

where 𝑂𝜋𝑗
in (24) , as calculated by Eq. (23), represents the

sensing time redundancy in the task execution process of group 

𝑃𝜋𝑗
. The constraint (24a) indicates that the subjective

collaboration willingness of all members in collaboration group 

𝑃𝜋𝑗
 must be greater than the subjective collaboration

willingness threshold 𝜘 (0 ≤ 𝜘 ≤ 1) . The constraint (24b) 

indicates that the objective cooperation willingness of all 

members in the collaboration group 𝑃𝜋𝑗
 must be greater than the

threshold θ(0 ≤ θ ≤ 1). The constraint (24c) indicates that the 

total available sensing time of the collaboration group 𝑃𝜋𝑗
 to

execute task 𝜋𝑗 cannot be less than the time span of task 𝜋𝑗. The

constraints (24d)–(24e) indicate that the available sensing time 

of the first selected worker to execute task 𝜋𝑗 cannot be outside

the time span of task 𝜋𝑗, and the constraints (24f)–(24g) indicate

that the available sensing time of the last selected worker to 

execute task 𝜋𝑗 cannot be outside the time span of task 𝜋𝑗. (24h)

represents whether 𝑤𝑖  is selected, 𝑥𝑖 = 0 means not selected,

and 𝑥𝑖 = 1 means selected.
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Fig. 3. Schematic diagram of three situations of sensing time 

redundancy. 
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Fig. 5. An example of a collaboration group 

Fig. 5 shows an example of collaboration group formation. 

Fig. 5(a) shows the time span of task 𝜋1  and the available

sensing time of six workers {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6} to execute

task 𝜋1. Fig. 5(b) shows various optional collaboration groups

that meet the requirements of task 𝜋1 . According to their

corresponding sensing time redundancy, we find that the 

collaboration group 𝑃𝜋1
= {𝑤3, 𝑤6} has the minimum sensing

time redundancy of 0.03. Therefore, it is the optimal 

collaboration group for task 𝜋1.

To search for the optimal collaboration group with the 

minimum sensing time redundancy for task 𝜋𝑗 from worker set

𝑊, Algorithm 2 is proposed. 

Algorithm 2 Collaboration Worker Selection 

Input: 𝑊, 𝜋𝑗, 𝜘, 𝜃.

Output: 𝑃𝜋𝑗
.

Initialization: 



ℎ𝑑𝑚𝑖𝑛 ← ∞, ℱ ← 0 (ℱ is used to store current worker),

𝑂𝑚𝑖𝑛 ← ∞, ℳ ← 0, 𝑊𝜋𝑗
← ∅ (𝑊𝜋𝑗

 is the candidate set),

𝕎𝑤𝑖→𝜋𝑗
, 𝑈𝑤𝑖

𝜋𝑗
. 

// Step 1: form candidate set 

1: for 𝑖 ← 1 to 𝑛 do  

2: if  𝕎𝑤𝑖→𝜋𝑗
≥ 𝜘, 𝑈𝑤𝑖

𝜋𝑗
≥ 𝜃 then 

3: Append 𝑤𝑖  into 𝑊𝜋𝑗

4:    end if 

5:  end for 

// Step 2: selection of workers from the candidate set 

6: for 𝑖 ← 1 to 𝑊𝜋𝑗
. 𝑠𝑖𝑧𝑒() do

7: if 𝒙𝒊 = 0, 𝑠𝑐𝑖→𝜋𝑗
≤ 𝑠𝜋𝑗

< 𝑒𝑐𝑖→𝜋𝑗
then

8: if ℎ𝑑𝑐𝑖→𝜋𝑗
< ℎ𝑑𝑚𝑖𝑛 then

9: ℱ = 𝑐𝑖

10: ℎ𝑑𝑚𝑖𝑛 = ℎ𝑑𝑐𝑖→𝜋𝑗

11:     end if 

12:   end if 

13: end for 

14: Append ℱ into 𝑃𝜋𝑗
 and 𝒙𝒊 = 1 and 𝑒𝑐∗→𝜋𝑗

 = 𝑒𝑐𝑖→𝜋𝑗

15: while 𝑒𝑐∗→𝜋𝑗
≤ 𝑒𝜋𝑗

 𝑎𝑛𝑑  𝑠𝑐𝑖→𝜋𝑗
≥ 𝑠𝜋𝑗

do

16: for 𝑘 ← 1 (𝑘 ≠ 𝑖) to 𝑊𝜋𝑗
. 𝑠𝑖𝑧𝑒() do

17: 𝑂 = 𝑒𝑐∗→𝜋𝑗
− 𝑠𝑐𝑘→𝜋𝑗

18: if 𝑥𝑘 = 0, 𝑠𝑐𝑘→𝜋𝑗
≤ 𝑒𝑐∗→𝜋𝑗

, 𝑂 < 𝑂𝑚𝑖𝑛  then

19: ℳ = 𝑐𝑘

20: 𝑂𝑚𝑖𝑛 = 𝑒𝑐∗→𝜋𝑗
− 𝑠𝑐𝑘→𝜋𝑗

21:     end if 

22:   end for 

23: Append ℳ into 𝑃𝜋𝑗
 and 𝑥 ℳ = 1 and  𝑒𝑐∗→𝜋𝑗

 = 𝑒 ℳ→𝜋𝑗

24: end 

25: Return 𝑃𝜋𝑗

Lines 1-5 represent the selection of workers. The workers 

who meet the subjective and objective collaboration willingness 

thresholds will be selected into the candidate set. 

In the process of traversing the candidate set (Lines 6-13 of 

Algorithm 2), we calculate the “head” ( ℎ𝑑𝑐𝑖→𝜋𝑗
, 𝑐𝑖 ∈ 𝑊𝜋𝑗

)

caused by each worker and select the worker who causes the 

minimum “head” and has enough subjective and objective 

collaboration willingness to join the group 𝑃𝜋𝑗
 (Line 14) as the

first selected worker.  Lines 15–24 are used for selecting other 

workers and tail workers to join the collaboration group 𝑃𝜋𝑗
.

The starting time of the selected worker to execute task 𝜋𝑗

must be before the completion time to execute task 𝜋𝑗, and the

sensing time overlap between the two successively selected 

workers (𝑒𝑐∗→𝜋𝑗
− 𝑠𝑐

𝑖′→𝜋𝑗
) should be the minimum (Line 17).

As long as the completion time of the current last selected 

worker 𝑐∗ to execute task 𝜋𝑗 (𝑒𝑐∗→𝜋𝑗
) in the collaboration group

𝑃𝜋𝑗
 is less than or equal to the completion time of the task 𝜋𝑗

(𝑒𝜋𝑗
), Algorithm 2 proceeds to find the next worker suitable to

join the collaboration group 𝑃𝜋𝑗
. We assume there are enough

workers in the candidate work set to be selected to execute the 

task successively and the cases that negative overlapping 

sensing time of two workers among the candidate set are 

ignored in this paper.   

In the collaboration group selection algorithm, the time 

redundancy caused by overlapping working time is indeed a 

crucial consideration.  

When selecting the tail worker for a collaboration group, the 

algorithm prioritizes the overlap time with the previous worker 

rather than the time beyond the end of the task. By ignoring the 

time beyond the task end, the algorithm streamlines the 

selection process and ensures the enhanced utilization of 

resources within the collaboration group, resulting in increased 

effectiveness.  

In Algorithm 2, the time complexity of Step 1 and Step 2 is 

𝑂(𝑛) and 𝑂(𝑛 ∗ 𝑚), respectively. Where 𝑛 is the number of 

workers and 𝑚 is the number of tasks. Therefore, the time 

complexity of Algorithm 2 is at the level of 𝑂(𝑛2).

V. PERFORMANCE EVALUATION

In this section, simulations are conducted to compare the 

proposed EGC-STRO with the Stochastic Team Formation 

Algorithm (STFA) [17], and the Incentive Mechanism based on 

Reputation for collaborative sensing (IMR) [36]. STFA is a 

stochastic algorithm that exploits workers' social networks to 

recruit a suitable collaboration group for tasks according to a 

certain probability. IMR is a collaboration sensing method 

based on a reputation incentive mechanism, which collaborates 

by combining workers with similar reputation values that meet 

the threshold value. The time complexity of STFA is O(n), and 

the time complexity of IMR is O(n3). STFA and IMR can be 

compared with the proposed mechanism regarding worker 

engagement, task coverage, platform utility and worker utility.  

A. Simulation Setup

All simulations are conducted on a Windows 10 PC with an

Intel Core i7 2.2 GHz processor and 16 GB of memory. The 

specific data sets of tasks and workers are generated by a 

pseudo-random number generator and are preprocessed 

accordingly. Simulation results are averaged across 1000 

iterations for each test under the same simulation settings.  

To investigate the influence of the numbers of workers and 

tasks on the performance of EGC-STRO and baseline methods, 

when the number of workers 𝑛 is set as 200, the number of tasks 

𝑚 is varied from 25 to 500. When the number of tasks 𝑚 is set 

as 200, the number of workers 𝑛 is varied from 25 to 500. Five 

task types are assumed in the simulations.  

The starting time of tasks and the starting time of workers to 

execute tasks are generated according to the specified 

probability model:  the probabilities of the starting time points 

ranging from 0:00 to 6:00 and from 18:00 to 24:00 are both 0.1, 

and the probability of the starting time points ranging from 6:00 

to 18:00 is 0.8.  

The highest budget per unit of time φ is set to 2. The sensing 

power of the worker’s device pi is set to 1.

To study the influence of the discount factor on the optimal 

rewards of workers, the worker utility of the system is measured 

by varying the ratio between discount factors of the buyer and 

seller λ𝑠𝑒𝑙𝑙/λ𝑏𝑢𝑦, where λ𝑏𝑢𝑦 is set as a fixed value of 0.6.



Performance Metrics

In the simulations, we use worker engagement, task coverage, 

platform utility and worker utility to measure the performance 

of different methods. Worker engagement and worker utility 

can reflect the performances from the side of workers. Task 

coverage and platform utility can reflect the performances from 

the side of the platform aspect.  

1) Worker Engagement:

It is defined as 𝑟𝑤𝑜𝑟𝑘𝑒𝑟 =
𝑝𝑎𝑟

𝑛
, i.e., the ratio of the 

engagement number of workers 𝑝𝑎𝑟  to the total number of 

workers 𝑛.  

2) Task Coverage:

It is defined as 𝑟𝑡𝑎𝑠𝑘 =
𝑐𝑜𝑣

𝑚
, i.e., the ratio of the number of 

tasks covered by workers 𝑐𝑜𝑣 to the total number of tasks 𝑚. 

3) Platform Utility： 

It is an important metric to evaluate the budget feasibility of

the incentive mechanism, and is defined as 𝑈𝑝𝑙𝑎𝑡 = 𝑏 − 𝑝 ,

where 𝑏 is the total budget of the platform, and 𝑝 is the total 

compensation paid to all workers.  

4) Worker Utility： 

The sum of the utilities of all the workers, i.e., 𝑝𝑎𝑟 ×
𝑈𝑤𝑜𝑟𝑘𝑒𝑟 = 𝑟 − 𝑐, where 𝑈𝑤𝑜𝑟𝑘𝑒𝑟 is the worker’s average utility,

𝑟  is the total reward of all workers, and 𝑐  is the total 

compensation of all workers. 

C. Worker Engagement

As can be seen from Fig. 6, the proposed EGC-STRO has

higher worker engagement than IMR for different values of m 

and n. This is due to the proposed EGC-STRO having an 

effective incentive mechanism, which makes the workers' 

objective willingness to collaborate higher than the other two 

baseline methods and therefore increases worker engagement. 

As the number of tasks and the number of workers increases, 

the worker engagement of EGC-STRO tends to stabilize. 

The proposed EGC-STRO considers the complementarity of 

sensing time compared to IMR, so more workers with shorter 

available sensing time can be motivated to participate in the task. 

For different values of m, the difference between EGC-

STRO and STFA is small when m is small, and the worker 

engagement of EGC-STRO is much higher than that of STFA 

as m increases. This is because the advantage of EGC-STRO is 

more obvious when the number of tasks is fixed and the number 

of workers is larger.  

For different values of n, the worker engagement of EGC-

STRO is higher than that of STFA when n is small, and as n 

increases, the worker engagement of EGC-STRO does not 

differ much from that of STFA. This is because with the same 

number of tasks, the more the number of workers, the closer the 

worker engagement is to the fixed value. 

As shown in Fig. 6(a), worker engagement in the three 

methods increases with the increase of 𝑚. This is because when 

the number of workers 𝑛 is fixed and the number of tasks 𝑚 

increases, the chance for workers to join collaboration groups 

will increase. Fig. 6(b) shows that, when n ranges from 25 to 

500, worker engagement in the three methods decreases with 

the increase of 𝑛. This is because, under the condition that the 

number of tasks 𝑚  is fixed and the number of workers 𝑛 

increases, there will be more idle workers. Compared with other 

algorithms, the EGC-STRO increases worker engagement by 5% 

and 20% at best under the condition of different numbers of 

workers and tasks in Fig. 6.  

Fig. 6. Comparison of worker engagement. 

D. Task Coverage

As shown in Fig. 7, the task coverage rate of the proposed

EGC-STRO is significantly better than the other baseline 

methods, especially IMR, for different values of m and n. This 

is because the proposed EGC-STRO can reduce the sensing 

time redundancy of workers, which makes workers perform 

more tasks in a limited time and greatly improves the efficiency 

of workers, that is, it enables workers to perform more tasks in 

a preset time period. Moreover, an effective incentive 

mechanism makes the objective collaboration willingness of 

workers higher than the other two baseline methods, which 

increases worker participation and indirectly increases task 

coverage. As the number of tasks and the number of workers 

increases, the task coverage of EGC-STRO tends to stabilize. 

Fig. 7. Comparison of task coverage. 

As illustrated in Fig. 7(a), the task coverage of all three 

methods declines as the value of m increases. Notably, as m 

grows substantially larger, the task coverage decreases very 

little. This is because the redundancy of workers leads to higher 

task coverage when n is fixed m is small, and as m increases, 

there are more unassigned tasks due to the lack of workers, 

which leads to lower task coverage. 

From Fig. 7(b), it can be observed that the task coverage of 

the three methods increases with the increasing n. This is 

because the increase in the number of workers n makes there 

are sufficient workers to complete the rationed tasks, which 

directly reduces the number of unassigned tasks, resulting in 

higher task coverage. As the number of workers increases, the 

task coverage of the three methods converges to the same value. 

Compared with other algorithms, EGC-STRO increases task 

coverage by 6% and 25% at best under the condition of different 



numbers of workers and tasks in Fig. 7. 

E. Platform Utility

As can be seen from Fig. 8, the method in this paper has a

higher platform utility than the two baseline methods. The 

reason is that the other collaboration sensing methods have the 

problem of sensing time redundancy, and their platforms bear 

the cost of sensing time redundancy in the process of pricing 

with collaboration groups, and there is no effective incentive 

mechanism to minimize the cost of the platform, resulting in 

lower platform utility. As the number of tasks and the number 

of workers increases, the platform utility of EGC-STRO tends 

to stabilize. 

In Fig. 8(a), the platform utilities of the three methods 

increase with the number of tasks, and the growth rate remains 

stable. This is because, with a sufficient number of workers, the 

more tasks provided, the more tasks workers can perform, and 

the more transactions between the collaboration group and the 

platform, and thus the platform utility increases accordingly.  

In Fig. 8(b), the average platform utility increases with the 

number of workers for all methods. When the number of 

workers increases in the interval [25,200], the platform utility 

increases significantly. The platform utility tends to level off 

when the number of workers exceeds 200. This is because when 

the number of workers reaches 200, the fixed number of tasks 

prevents the remaining workers from engaging in sensing 

collaboration, thus reaching saturation. If there are no more 

tasks to perform, no more transactions can be generated, the 

utility of the platform will not increase and tends to converge. 

Compared with other algorithms, the EGC-STRO increases 

platform utility by 17% and 50% at best under the condition of 

different numbers of workers and tasks in Fig .8. 

Fig. 8. Comparison of platform utility. 

F. Worker Utility

As shown in Fig. 9(a) and Fig. 9(b), the worker utility of all

three methods increases as the number of tasks or workers 

increases. However, the proposed EGC-STRO has greater 

worker utility than the other baseline methods. This is because 

the method is more effective in motivating workers with shorter 

available sensing time to join the collaboration group, thus 

increasing the probability of executing large-span tasks. 

Moreover, the number of workers involved in sensing activities 

in the proposed EGC-STRO is relatively more significant 

compared to other methods, thus generating a relatively larger 

worker utility. In addition, because the bargaining game 

incentive mechanism of the proposed EGC-STRO makes 

workers' objective willingness to collaborate increase, more 

workers will be willing to join the collaboration group for 

collaboration sensing, which will have a certain impact on the 

overall utility of workers. As the number of tasks and the 

number of workers increases, the worker utility of EGC-STRO 

tends to stabilize. 

As shown in Fig. 9(a), as the number of tasks increases, the 

probability of workers being able to match the appropriate 

sensing task also increases, thus increasing worker utility. As 

shown in Fig. 9(b), the worker utility increases for all three 

methods as the number of staff increases, which is because the 

increase in the number of staff leads to an increase in the 

probability of performing the task.  

Fig. 9(c) and Fig. 9(d) show the worker utilities of the 

proposed EGC-STRO with different discount factors for 

different numbers of tasks and workers for the buyer (platform) 

and the seller (worker), respectively. The buyer's discount 

factor is set to a fixed value of 0.6, and the seller's discount 

factor is set to 0.3, 0.6, and 0.9 for all the proposed EGC-STRO 

algorithms, respectively. 

Fig. 9 shows that the more significant the seller's discount 

factor is, the larger the worker's utility will be. This is because 

when the seller's discount factor is more significant than the 

buyer's discount factor, the worker's utility is greater. In this 

case, the worker will be more patient in the bargaining game 

and therefore, their cost loss in the bargaining game will be 

smaller, and they can be rewarded closer to the bid price. 

Compared with other algorithms, the EGC-STRO increases 

worker utility (social welfare) by 20% and 60% at best under 

the condition of different numbers of workers and tasks in Fig. 

9.  

Fig. 9. Comparison of worker utility. 

VI. CONCLUSION

To attract more workers to participate in collaboration, 

reduce sensing data redundancy and improve the effectiveness 

of collaboration sensing, EGC-STRO is proposed in this paper. 

First, EGC-STRO incorporates an incentive mechanism to 



select employees based on their reward expectations, which is 

referred to as their objective willingness to collaborate. This 

mechanism utilizes the principles of a bargaining game to 

maximize the overall interests of the workers. By applying the 

concept of subgame perfect Nash equilibrium, EGC-STRO 

ensures that workers receive optimal rewards that align with 

their objective willingness to collaboration. Additionally, EGC-

STRO introduces a collaboration worker selection model that 

takes into account the subjective willingness to collaborate of 

the employees. When selecting workers for collaboration, the 

algorithm first identifies workers who meet both the subjective 

and objective preference thresholds and adds them to the 

candidate set. From this candidate set, the collaboration 

workers are then chosen sequentially based on the criterion of 

minimizing sensing redundancy time, thereby promoting the 

formation of efficient collaboration groups and potentially 

guarantee the worker and platform utilities. The experimental 

results show that compared with the other two baseline methods, 

EGC-STRO is efficient in terms of worker engagement, task 

coverage, platform utility, and worker utility. In future work, 

we will consider real-world datasets to further validate the 

algorithm and study worker collaboration scenarios from a 

spatial complementarity perspective. 
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