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Abstract

Algorithmic Mechanism Design (AMD) is an interdisciplinary field that bridges

economics and computer science and aims to design mechanisms for systems

with self-interested agents. This study focuses on motivating truthful informa-

tion disclosure while optimizing social goals. Traditional payment-based mecha-

nisms cannot be effectively applied to some of these problems, but we can utilize

approximate mechanisms to obtain truthfulness without recourse to payments.

One of the well-established problems in approximate mechanism design with-

out money is the facility location problem. In this context, agents possess private

positions along a line, and the goal is to determine the location of a public facility

while motivating truthful disclosures and achieving optimal social outcomes.

This thesis presents contributions across three key dimensions of facility lo-

cation problems: (1) Heterogeneous Two-Facility Location Problem: Addressing

a discrete setting where agents occupy nodes on a line graph and possess pri-

vate preferences for two facilities, the research introduces deterministic strategy-

proof mechanisms with improved approximation ratios, surpassing existing ap-

proaches. (2) Two-Facility Location with Candidate Positions: Investigating an-

other variant, where agents have private positions and known preferences for

two facilities, the study identifies deterministic strategy-proof mechanisms that

achieve the best possible approximation ratios for social and maximum costs.
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(3) Distributed Facility Location Problem: A set of agents with positions on

the line of real numbers are partitioned into disjoint districts, we designed de-

terministic distributed mechanisms that satisfy various criteria of interest and

achieve the best possible distortion bounds. The research analyzes two mech-

anism classes: Unrestricted, where agents directly provide truthful positions,

and strategy-proof, designed to incentivize honesty. The study establishes tight

bounds for various social objectives, including average social cost, max cost, and

other fairness-inspired criteria.

In summary, approximate mechanism design without money addresses com-

plex challenges in multi-agent systems, creating mechanisms that promote truth-

fulness and optimize societal objectives. This thesis introduces innovative mech-

anisms and provides comprehensive insights into facility location problems from

three distinct perspectives.
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Chapter 1

Introduction

Algorithmic game theory (AGT) [Roughgarden, 2010] is a multidisciplinary area

in the intersection of computer science and economics. Its central goal is to ana-

lyze and design algorithms when input is given from selfish, strategic agents. In

problems considered in this area, the agents aim to maximize their own profit,

possibly by misreporting their input, which may lead to system inefficiency. Typ-

ical objectives include the study of the existence of stable outcomes (known as

equilibria), the analysis of system efficiency in these outcomes, and the design of

mechanisms that lead to efficient equilibria that may also enjoy other properties.

The focus of this thesis is on a particular class of interesting problems in AGT

(known as facility location games) and the design of efficient mechanisms for

them that have the property to incentivize the strategic agents report their input

truthfully.

1.1 Algorithmic Mechanism Design

A subarea of AGT is that of Algorithmic Mechanism Design (AMD), where the

main objective is to design mechanisms (define the rules of the game) for multi-
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1.1. ALGORITHMIC MECHANISM DESIGN 2

ple self-interested participants, ensuring that their actions lead to equilibra with

good mechanism performance and no participant has incentive to deviate to af-

fect the mechanism performance. Key goals include revenue maximization and

social welfare maximization. In AMD we want strategyproofness in combina-

tion with approximately optimal system efficiency, rather than strategyproofness

combined with other axioms as in classic Mechanism Design that has been stud-

ied in Economics. Moreover, it prioritizes computational efficiency, dismissing

mechanisms that can’t be efficiently implemented in polynomial time as unsuit-

able solutions.

As a result, we tend to exclude classical economic mechanisms, such as the

Vickrey-Clark-Groves(VCG) Auction [Vickrey, 1961]. In this auction, the high-

est bidder receives the item but pays an amount equal to the second highest

bidder, thus incentivizing honest bidding. It extends this principle to the case

where there are multiple items seeking to optimize the total value of the players

while requiring a fee that reflects the value of the forgoing allocation. However,

despite the theoretical beauty of the VCG mechanism (it is an optimal mecha-

nism which means the worst-case results from this mechanism are comparable

to the best results for all mechanisms and can make sure each participant doesn’t

have any incentive to deviate), its general applicability is limited by practical fac-

tors. One of the most significant limitations is computational issues. For exam-

ple, determining the optimal allocation in combinatorial auctions is known to be

NP-hard, indicating immense computational complexity [Roughgarden, 2010].

While methods such as approximation algorithms can provide solutions to opti-

mization problems, using such approximations introduces a potential drawback.

It may compromise the strategyproofness of the mechanism, which means that
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participants may not find it in their best interest to be completely honest [Nisan

and Ronen, 1999]. Generally, AMD can be divided into two main parts, whether

involving money [Nisan and Ronen, 1999] or not [Procaccia and Tennenholtz,

2013]. The field of mechanism design with money has permeated various do-

mains, including combinatorial auctions [Sandholm, 2002, Dobzinski et al., 2006,

Mu’Alem and Nisan, 2008, Assadi and Singla, 2020, Assadi et al., 2021], keyword

search auctions [Aggarwal et al., 2006, Zhou et al., 2008], sponsored search auc-

tions [Qin et al., 2015, Roberts et al., 2016] and social welfare maximization[Briest

et al., 2005, Filos-Ratsikas et al., 2014, Filos-Ratsikas and Miltersen, 2014, Huang

et al., 2019, Rahmattalabi et al., 2021, Banerjee et al., 2022].

Payments are easily challenged when it comes to social choice settings. For

example, even if it is the same thing, different people will have different inner

prices for it, and we need to have something else to quantify them. Or in elec-

tions, the introduction of money will cause corruption. In addition, Schummer

and Vohra [2007] states that ‘money cannot be used as a medium of compensa-

tion in many important contexts’ because of ethical considerations (such as in

political decision-making) or legal considerations (such as in organ donation).

So, it is natural to ask whether it is possible to design some mechanisms that

do not require payment; these mechanisms are called strategyproof in the social

choice literature. Subsequently, approximate mechanism design without money

has been applied in many different settings like in fair division [Cole et al., 2013,

Amanatidis et al., 2017, 2023, Bei et al., 2020], voting [Aziz and Lam, 2021, Feld-

man et al., 2016, Filos-Ratsikas and Voudouris, 2021, Anshelevich et al., 2022],

and applications in kidney exchange [Caragiannis et al., 2011, Ashlagi et al., 2015,

McElfresh et al., 2019, Freedman et al., 2020].
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1.2 Facility Location Problems and Games

The facility location problem (FLP) has been studied extensively in various dif-

ferent disciplines, including operations research, computational geometry, and

approximation algorithms [Hochbaum, 1982, Williamson and Shmoys, 2011]. In

its fundamental formulation, the facility location problem comprises a set of po-

tential facility points and a set of demand points. The task is to choose a subset of

facilities to open, aiming to minimize the total or max distance from each demand

point to its nearest facility.

The facility location problem has also been studied from the perspective of

game theory. When the objective is to decide where to place a single facility

given single-peaked preferences of a set of agents (such as when the agents are

positioned on a line and report their private positions), Moulin [1980] showed

that the class of strategyproof mechanisms (i.e., those that incentivize the agents

to report their positions truthfully) consists of generalized median rules, which

choose to place the facility at the median of a set of points that includes the

positions of the agents and a set of (possibly) empty positions.

More recently, Procaccia and Tennenholtz [2013] considered the single-facility

location game on the line from the perspective of approximate mechanism design

without money, aiming to identify strategyproof mechanisms that also achieve

a good approximation of the social objective functions, such as the social cost

(total distance of agents from the chosen facility location) or the maximum cost.

Procaccia and Tennenholtz showed that the optimal social cost can always

be achieved by the Median mechanism, which is strategyproof and operates as

follows: if the total number of all agents is odd, it selects the median location

of the agents’ positions; if the total number is even, it selects the left median of
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all agents’ positions. For the maximum cost, Procaccia and Tennenholtz showed

that the deterministic strategyproof mechanism Two-Extreme is 2-approximate.

This mechanism operates as follows: it selects the leftmost (or rightmost) agent’s

location to be the facility location. Procaccia and Tennenholtz also showed that

the approximation ratio of any strategyproof deterministic mechanism for the

maximum cost is at least 2.

Procaccia and Tennenholtz also considered a randomized strategyproof mech-

anisms to get a better bound for the maximum cost. They showed that the mech-

anism which selects the leftmost agent’s location with probability 1/4, the right-

most agent’s location with probability 1/4, and their midpoint with probability

1/2 achieves an upper bound of 3/2, which is the best possible among all ran-

domized mechanisms.

Alon et al. [2010] designed strategyproof mechanism for more general metrics

(circles and general graphs) to extend this problem. Tang et al. [2020a] charac-

terized group-strategyproof mechanisms for the single facility location game in

strictly convex space and proved (almost) tight bound for the social cost of n/2

and maximum cost of 2.

Beyond the single-facility location game, many variants that consider multiple

facilities, constrained spaces, or heterogeneous preferences have been studied.

We discuss these below.

1.2.1 Two-facility Location Games

In the truthful two-facility location problem, the objective is to locate two facil-

ities. The individual cost of an agent is equal to the distance from the closest

facility. For the social cost, Procaccia and Tennenholtz [2013] showed a con-



1.2. FACILITY LOCATION PROBLEMS AND GAMES 6

stant lower bound of 3/2 on the approximation ratio of all deterministic mecha-

nisms and a linear upper bound of n−2 by using the Two-Extremes mechanism.

Later, Lu et al. [2009] improved the deterministic lower bound from 3/2 to 2, pro-

posed a randomized strategyproof mechanism with approximation ratio of n/2

and proved the social cost approximation ratio of any strategyproof randomized

mechanism is at least 1.045. Furthermore, Lu et al. [2010] showed an asymptot-

ically linear lower bound of Ω(n) for deterministic mechanisms, before Fotakis

and Tzamos [2014] finally showed that the exact bound is n− 2. Lu et al. [2010]

also proposed the randomized Proportional mechanism which is 4-approximate.

For the maximum cost objective, Procaccia and Tennenholtz [2013] showed

that the Two-Extremes mechanism is 2-approximate and that the approximation

of any deterministic strategyproof mechanism is at least 2. Further, by using

randomization, Procaccia and Tennenholtz proved that the approximation ratio

of any randomized strategyproof mechanism is at least 3/2 and designed a ran-

domized strategyproof mechanism with approximation ratio of 5/3.

1.2.2 Multiple facilities

Escoffier et al. [2011] focused on locating n−1 facilities in general metric spaces

and trees by using deterministic and randomized strategyproof mechanisms with

respect to the utilitarian and egalitarian objectives. As a result, they showed

linear upper bounds and constant lower bounds.

Fotakis and Tzamos [2014] considered k-facility location games, where n

strategic agents report their locations in a metric space and a mechanism maps

them to k facilities. Their main result is an elegant characterization of determinis-

tic strategyproof mechanisms with a bounded approximation ratio for 2-Facility
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Location on the line. Then, they showed that for every k ≥ 3, there do not

exist any deterministic anonymous strategyproof mechanisms with a bounded

approximation ratio for k-Facility location on the line, even for simple instances

with k + 1 agents. Moreover, building on the characterization for the line, they

show that there do not exist any deterministic strategyproof mechanisms with

a bounded approximation ratio for 2-Facility location and instances with n ≥ 3

agents located in a star.

For any given concave cost functions, Fotakis and Tzamos [2016] showed that

the randomized group strategyproof mechanism Equal-Cost achieves a bounded

approximation ratio for all k and n. In particular, its approximation ratio is at

most 2 for the max cost and at most n for the social cost. Their result implies an

interesting separation between deterministic mechanisms, whose approximation

ratio for max cost jumps from 2 to unbounded when k increases from 2 to 3, and

randomized mechanisms, whose approximation ratio remains at most 2 for all k.

1.2.3 Obnoxious Facility Location

The obnoxious facility location problem is a classic research direction in the lit-

erature on algorithms and optimization which is first studied by Church and

Garfinkel [1978]. They dealt with the problem of locating a point on a network

so as to maximize the sum of its weighted distances to the nodes.Cheng et al.

[2013b] studied this problem on a network (path, circle or tree). Ye et al. [2015]

focus on designing strategyproof mechanisms on the real line with two objective

functions (maximizing the sum of squares of distances and maximizing the sum

of distances). Ibara and Nagamochi [2012] completely characterized the class

of (group) strategyproof mechanisms with exactly two candidates in the gen-
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eral metric and showed that there exists a 4-approximation group strategyproof

mechanism in any metric space.

1.2.4 Heterogeneous Facility Location

A recent stream of papers have focused on heterogeneous facility location prob-

lems with multiple facilities (typically, two) that are different in nature (e.g., a

school and a bar). As such, the agents care both for the location and the types

of the facilities, aiming for the facilities they like the most to be as close to their

position as possible. To give an example, a family would like to be closer to a

school than to a bar, whereas a single person might want the opposite. Many

settings have been proposed to model the different preferences the agents may

have about the facilities.

Dual preferences. The first heterogeneous facility location model, combin-

ing elements from the classic single-facility location problem and the obnoxious

single-facility location problem [Cheng et al., 2011, 2013a], was independently

proposed and studied by Feigenbaum and Sethuraman [2015] and Zou and Li

[2015]. In this setting, there are two facilities to be located on the real line,

and the agents have dual preferences over the facilities; that is, an agent likes

or dislikes a facility. The authors showed bounds on the approximation ratio

of deterministic and randomized strategyproof mechanisms for different cases

depending on whether the positions or the preferences of the agents are their

private information (and can thus lie about them). Kyropoulou et al. [2019] con-

sidered an extension of this model, where the location space of the two facilities

is a constrained region of the Euclidean space.
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Approval preferences. Serafino and Ventre [2016] studied a discrete version,

where the line is a discrete graph, the agents occupy nodes of the line (which is

common knowledge) and have approval preferences over two facilities (that is,

an agent either likes a facility or is indifferent about it), which can only be placed

at different nodes of the line. Given facility locations, the cost of an agent is de-

fined as the total distance from the facilities she approves. Serafino and Ventre

presented bounds on the approximation ratio of deterministic and randomized

mechanisms in terms of both social objectives of interest. In particular, for the

social cost, they showed that the best possible approximation ratio of determin-

istic mechanisms is between 9/8 and n − 1, where n is the number of agents.

In contrast, they designed a randomized mechanism that always outputs a solu-

tion with minimum expected social cost. For the maximum cost objective, they

showed that the best possible approximation ratio of deterministic mechanisms

is between 3/2 and 3, and that of randomized mechanisms is between 4/3 and

3/2. Anastasiadis and Deligkas [2018] considered a model that combines dual

and optional preferences, in the sense that the agents can like, dislike or be in-

different about a facility.

Chen et al. [2020] studied a continuous setting with agents that have approval

preferences over the facilities. The authors consider two different cost functions

of the agents, one that is equal to the distance from the closest facility that the

agent approves, and one that is equal to the distance from the farthest such fa-

cility. Li et al. [2020] studied an extension of this setting in more general metrics

(beyond the line), and designed mechanisms that improve some results of Chen

et al.. Deligkas et al. [2023] considered a similar preference model, but with the

difference that the goal is to locate just one of the facilities (and, more generally,
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k out of m), and not all of them.

Fractional preferences. Fong et al. [2018] proposed a fractional preference

model for the facility location game with two facilities that serve the same pur-

pose, where each agent, besides his location information, has also a fractional

preference to indicate how well they prefer the facilities. The preference for each

facility is in the range [0, 1] such that the sum of the preferences for all facilities

is 1. The utility of an agent is a function of the distance of the agent from the

facilities multiplied by the preferences. Duan et al. [2021] later generalized the

minimum distance setting by allowing for private fractional preferences over the

two facilities.

1.2.5 Facility Location with Candidate Locations

Sui and Boutilier [2015] were among the first to consider truthful facility location

problems with candidate locations (referred to as constrained facility location),

with a focus on achieving approximate strategyproofness by bounding the in-

centives of the agents to manipulate; for multiple facilities, they considered only

the homogeneous case where each agent’s individual cost is the distance to the

closest facility. Feldman et al. [2016] considered a candidate selection problem

with a fixed set of candidates, a model which translates into a single-facility lo-

cation problem where the facility can only be placed at a location from a given

set of discrete candidate locations. They focused on the social cost objective and,

among other results, proved that the Median mechanism that places the facility

at the location closest to the position reported by the median agent, achieves an

upper bound of 3; they also showed that this is the best possible bound among

deterministic mechanisms.
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Tang et al. [2020b] considered a setting with two facilities, which can be placed

at locations chosen from a set of candidate ones, allowing the facilities to be

placed even at the same location. The positions of the agents are assumed to

be private information and an agent’s individual cost is defined as her distance

from the closest facility. They proved an upper bound of 2n − 3 for the social

cost objective and a tight bound of 3 for the maximum cost. They also considered

the case of a single facility and the max cost objective, for which they showed a

bound of 3 (extending the work of Feldman et al. [2016] who only focused on the

social cost). Walsh [2021] considered a similar setting, where one or more facili-

ties can only be placed at different subintervals of the line, and showed bounds on

the approximation ratio of strategyproof mechanisms for many social objective

functions, beyond the classic ones. Zhao et al. [2023] studied a slightly different

setting, in which the agents have known approval preferences over the two dif-

ferent facilities and their individual costs are defined as their distance from the

farthest facility among the ones they approve. For homogeneous agent prefer-

ences, they showed a tight bound of 3 for both the social cost and the max cost

objectives, while for general, heterogeneous preferences, they showed an upper

bound of 2n + 1 for the social cost, and an upper bound of 9 for the maximum

cost. Their results for general preferences were recently improved by Lotfi and

Voudouris [2023] to 11 and 5 for the social cost and the max cost, respectively.

Xu et al. [2021] considered a setting where two facilities must be located so

that there is a minimum distance between them (not at specific given candidate

locations). They showed results for two types of individual costs. The first one

is the total distance (assuming that the facilities play a different role, and thus

the agents are interested in both of them) and showed that, for any minimum
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distance requirement, the optimal solution for the social cost or the maximum

cost can be attained by a strategyproof mechanism. The second one is the min-

imum distance (assuming that the facilities are of the same type, and thus the

agents are interested only in their closest one), and showed that the approxima-

tion ratio of strategyproof mechanisms is unbounded. They also considered the

case where the facility is obnoxious and showed a bound that depends on the

minimum distance parameter.

Gai et al. [2022] considered the setting of obnoxious facility location games

with candidate locations. For obnoxious single facility location games under so-

cial utility objective, they presented a tight bound of 3. For obnoxious heteroge-

neous two-facility location games, they proved an upper bound of 2 and lower

bound of 3
2 for the social cost objective.

1.2.6 Distributed Facility Location

Filos-Ratsikas and Voudouris [2021] considered a distributed facility location set-

ting in which the agents are partitioned into districts and a mechanism works in

two steps: It first chooses a representative location for each district of agents,

and then chooses one of the representatives as the final facility location. Filos-

Ratsikas and Voudouris focused on the social cost objective and showed a tight

bound of 3 among all possible deterministic mechanisms. Similar distributed set-

tings were previously considered in the more general context of utilitarian and

metric social choice [Filos-Ratsikas et al., 2020, Anshelevich et al., 2022], aiming

to model settings where decisions are first made at a local level, among disjoint

sets of agents, and then these decisions are aggregated into a collective outcome,

such as in elections.
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1.3 Structure of the Thesis

In chapter 3, we revisit the discrete heterogeneous two-facility location problem

that was first considered by Serafino and Ventre [2016], in which there is a set of

agents that occupy nodes of a line graph and have private approval preferences

over two facilities. When the facilities are located at some nodes of the line,

each agent suffers a cost that is equal to her total distance from the facilities

she approves. The goal is to decide where to locate the two facilities so as to

(a) incentivize the agents to truthfully report their preferences and (b) achieve

a good approximation of the minimum total (social) cost or the maximum cost

among all agents.

Contribution. For both objectives, we design deterministic strategyproof mech-

anisms with approximation ratios that significantly outperform the state of the

art and complement these results with (almost) tight lower bounds. In particu-

lar, for the social cost, we show an upper bound of 17/4 and a lower bound of

4/3 (the lower bound is tight for instances with three agents). For the max cost,

we show a tight bound of 2. Our results have been published as [Kanellopoulos

et al., 2023b].

In chapter 4, we study a truthful two-facility location problem in which a set

of agents have private positions on the line of real numbers and known approval

preferences over two facilities. Given the locations of the two facilities, the cost

of an agent is the total distance from the facilities she approves. The goal is to

decide where to place the facilities from a given finite set of candidate locations

so as to (a) approximately optimize desired social objectives, and (b) incentivize

the agents to truthfully report their private positions.
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Contribution. We focus on the class of deterministic strategyproof mechanisms

and pinpoint the ones with approximation ratio in terms of the social cost (i.e.,

the total cost of the agents) and the max cost. In particular, for the social cost of

doubleton instances (in which all agents approve both facilities), we show that

the best possible approximation ratio of strategyproof mechanisms is between

1+
√
2 and 3. For singleton instances (in which each agent approves one facility),

we show a lower bound of 3. Then, for general instances, we show an upper

bound of 7. For the max cost of doubleton instances, we show that the best

possible approximation ratio is between 2 and 3. We show a tight bound of 3 for

singleton and general instances, respectively. Our results have been published

as [Kanellopoulos et al., 2023a].

In chapter 5, we study the distributed facility location problem that was first

considered by Filos-Ratsikas and Voudouris [2021], where a set of agents with

positions on the line of real numbers are partitioned into disjoint districts, and the

goal is to choose a point to satisfy certain criteria, such as optimize an objective

function or avoid strategic behavior. A mechanism in our distributed setting

works in two steps: For each district it chooses a point that is representative of

the positions reported by the agents in the district, and then decides one of these

representative points as the final output. We consider two classes of mechanisms:

Unrestricted mechanisms which assume that the agents directly provide their

true positions as input, and strategyproof mechanisms which deal with strategic

agents and aim to incentivize them to truthfully report their positions.

Contribution. For both classes, we show tight bounds on the best possible approx-

imation in terms of several minimization social objectives, including the average

social cost and the max cost, as well as other fairness-inspired objectives that are
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tailor-made for the distributed setting, in particular, the max-of-average and the

average-of-max. Our results have been published as [Filos-Ratsikas et al., 2024].
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1.4 List of Publications

My primary research interest lies in the intersection of Algorithmic Mechanism

Design , specifically focusing on mechanisms for distributed and heterogeneous

facility location problems without money. This research addresses the design and

evaluation of mechanisms that encourage truthful reporting of information while

optimizing social welfare objectives. Notable contributions in this field are de-

tailed in a series of papers, where I explore strategic behavior in systems without

payments, propose new approximate mechanisms, and provide thorough analy-

ses on these mechanisms.

My contributions on these topics can be best summarized by the following

papers1:

1. ’On Discrete Truthful Heterogeneous Two-Facility Location’

Panagiotis Kanellopoulos, Alexandros A. Voudouris, Rongsen Zhang. In

Proceedings of the Thirty-First International Joint Conference on Artificial In-

telligence(IJCAI 2022)

2. ’Settling the Distortion of Distributed Facility Location’

Aris Filos-Ratsikas, Panagiotis Kanellopoulos, Alexandros A. Voudouris,

Rongsen Zhang. In proceedings of the 2023 International Conference on Au-

tonomous Agents and Multiagent Systems(AAMAS 2023)

1The order of authors is alphabetical.
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3. ’Mechanism Design for Heterogeneous and Distributed Facility Lo-

cation Problems’(Extend Abstract)

Rongsen Zhang. In proceedings of the 2023 International Conference on Au-

tonomous Agents and Multiagent Systems(AAMAS 2023)

4. ’Truthful Two-Facility Location with Candidate Locations’

Panagiotis Kanellopoulos, Alexandros A. Voudouris, Rongsen Zhang. In

proceedings of the 16th International Symposium on Algorithmic GameTheory

(SAGT 2023)

5. ’On discrete truthful heterogeneous two-facility location’

Panagiotis Kanellopoulos, Alexandros A Voudouris, Rongsen Zhang. Arti-

ficial Intelligence 328 (2024) p. 104066. Elsevier, 2024

6. ’The distortion of distributed facility location’

Aris Filos-Ratsikas, Panagiotis Kanellopoulos, Alexandros A Voudouris,

Rongsen Zhang. SIAM Journal on Discrete Mathematics 37.2 (2023) pp.

779–799. SIAM, 2023



Chapter 2

Preliminaries

We consider facility location problems in this thesis. An instance I of a facility

location problem consists of a set N of n ≥ 2 agents and a set F consisting

of at most two facilities, f1 and potentially f2 as well. Each agent is associated

with a position on a line (which can either be a discrete graph or continuous).

When |F | = 2, the agents may also have approval preferences pi ∈ {0, 1}|F | over

the two facilities: If pij = 1, agent i ∈ N approves facility j ∈ {1, 2}. When

|F | = 1, we assume that pijs’ are trivially set to 1. Then, we denote by Nj the

set of agents that approve facility fj if |F | ̸= 1, i.e., i ∈ Nj if pij = 1. Clearly,

the two sets N1 and N2 need not be disjoint if there are agents that approve both

facilities.

A feasible solution is w = (wj)j∈|F | determines the location wj of each facility

fj ∈ F . The locations can be chosen from a set of candidate locations; this set

can either be finite (i.e., it consists of a given set of points or nodes on the line)

or infinite (i.e., it consists of any point on the line of real numbers). When there

are two facilities to be located, we also require that they are located at different

points, that is, w1 ̸= w2. Given a feasible solution w for instance I , the cost of

18
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any agent i in instance I is the (total) distance from her position to the location

of the facility or facilities she approves, i.e.,

costi(w|I) =
∑
j∈F

pij · d(i, j),

where d(x, y) = |x−y| denotes the distance between any two points x and y on

the line, |F | denotes the number of facilities in the setting, |F | is at most 2. Since

the line is a special metric space, the distances satisfy the triangle inequality,

which states that d(x, y) ≤ d(x, z) + d(z, y) for any three points x, y and z on

the line, with the equality being true when z ∈ [x, y].

A mechanism M takes as input an instance I(not only the reported private

information, but also the public information), and outputs a feasible solution;

we will denote by M(I) the output of M when given information about I as

input. To determine the quality of the solutions computed by mechanisms, we

consider two natural objective social functions that have been considered exten-

sively within the truthful facility location literature. Given an instance I , the

social cost of a feasible solution w is the total cost of all the agents, i.e.,

SC(w|I) =
∑
i∈N

costi(w|I).

The max cost of w is the maximum cost among all agents, i.e.,

MC(w|I) = max
i∈N

costi(w|I).

Let SC∗(I) = minw SC(w|I) be the minimum possible social cost for instance

I , achieved by any feasible solution. Similarly, let MC∗(I) = minw MC(w|I) be

the minimum possible maximum cost for I .
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For any social objective f ∈ {SC,MC}, the f -approximation ratio of a mecha-

nism M is the worst-case ratio (over all possible instances) between the objective

value of the solution computed by M over the minimum possible objective value

among all feasible solutions, i.e.,

ρ(M) = sup
I

f(M(I)|I)
f ∗(I)

.

A mechanism M is said to be strategyproof if the solution M(I) it returns

when given as input any instance I is such that there is no agent i with incentive

to misreport their private information (it will be the preference p′i or location x′i)

to decrease her individual cost, that is,

costi(M(I)|I) ≤ costi(M(x′i/p
′
i, I−i)|I),

where I−i is any instance in which all agents besides i report the same private

information as in I .

In this thesis we will consider different types of facility location problems with

different assumptions about the private information of the agents and how the

mechanisms can operate. We will refine the basic definitions presented in the

following chapters. In all cases, our goals are to (a) design mechanisms with

an as low f -approximation ratio as possible (close to 1), and (b) incentivise the

agents truthfully report their private information.



Chapter 3

On Discrete Truthful Heterogeneous

Two-Facility Location

3.1 Definitions and notation

We consider the discrete two-facility location problem in this chapter.

Besides the basic condition in chapter 2, the instance I in this chapter consists

of a line graph with m ≥ n nodes. Hence, each agent occupies a node xi of

the line, such that different agents occupy different nodes. We define yj is the

position of the leftmost median agent in Nj . The position profile x consists not

only of the position of agents but also of the possible empty nodes. The position

profile is assumed to be common knowledge and each agent i also has private ap-

proval preference. As x and p include all the information related to an instance,

we denote I = (x,p).

Given a feasible solution w = (w1, w2), the cost of any agent i in instance I

is her total distance from the facilities she approves, i.e.,

21
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costi(w|I) =
∑

j∈{1,2}

pij · d(i, j),

A mechanismM is said to be strategyproof in this chapter if the solutionM(I)

it computes when given as input the instance I = (x,p) is such that no agent i

has incentive to report a false preference p′i ̸= pi

costi(M(I)|I) ≤ costi(M(x, (p′i,p−i))|I),

where (p′i,p−i) is the preference profile according to which agent i’s prefer-

ence is p′

i, while the preference of any other agent is the same as in p.

3.2 Overview of Contribution

The main technical difficulty in designing deterministic strategyproof mecha-

nisms with low approximation ratio in terms of the social cost is the constraint

of locating the two facilities at different nodes. If each agent approves only a

single facility, then locating each facility to the median agent among those that

approve it would be a strategyproof mechanism with minimum social cost. How-

ever, in general, there might exist agents that approve both facilities, in which

case the medians for the two facilities could coincide, and any choice of how to

break this tie could lead to some agent having incentive to misreport.

The upper bounds shown by Serafino and Ventre for the social and the max-

imum cost both follow by the same deterministic mechanism, named TwoEx-

tremes, which works along the lines of the mechanism considered by Procaccia
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and Tennenholtz [2013] for homogeneous 2-facility location. TwoExtremes lo-

cates one of the facilities at the node occupied by the leftmost agent among those

that approve it, and the other facility at the node occupied by the rightmost agent

among those that approve it; in case of a collision, one of the facilities is moved

a node to the left or the right. There are two main reasons for the deficiency

of TwoExtremes: (i) the boundary agents (leftmost and rightmost) among those

that approve a facility may be rather far away from the median such agent, whose

node would be the ideal location for the facility, and (ii), it does not exploit the

available information about the position of the agents in any way. Our improved

mechanisms take care of these two reasons: We place the facilities closer to me-

dian agents (without breaking strategyproofness), and exploit the information

about the agent positions of the agents.

For the social cost, we design the Fixed-or-Median-Nearest-Empty (FMNE)

mechanism with an approximation ratio of at most 17/4 = 4.25. The mechanism

switches between two cases based on the structure of the line: If there are no

empty nodes, it fixes the locations of the facilities to be the two central nodes

of the line; otherwise, if there are empty nodes, it locates one of the facilities

at the position of the median agent among those that approve it, and the other

facility at one of the nearest empty nodes to the median agent among those that

approve it. We complement this result with an improved lower bound of 4/3

on the approximation ratio of all mechanisms, which follows by two instances

with only three agents and no empty nodes. Motivated by this lower bound

construction, we then focus on instances with three agents, and design the 3-

agent Priority-Dictatorship mechanism that achieves the best-possible bound

of 4/3.
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Lower bound Upper bound
Social cost 4/3⋆ (9/8) 17/4 (n− 1)

Maximum cost 2 (3/2) 2 (3)
Table 3.1: An overview of our bounds on the approximation ratio of deterministic strategyproof mechanisms for the social
cost and the maximum cost. The bounds in parentheses are the previously best known ones shown by Serafino and Ventre
[2016]. The lower bound of 4/3 marked with a ⋆ is tight for instances with three agents.

For the maximum cost, we design a parameterized class of mechanisms α-

Left-Right (α-LR), each member of which partitions the line into two parts,

from the first node to node α, and from node α + 1 to the last node. Then, the

decision about the locations of the facilities is based on the preferences of the

agents included in the two parts. We show that all mechanisms of the class are

strategyproof, and there are members with approximation ratio at most 2. In

particular, when the size m of the line is an even number, the bound is achieved

by m/2-LR, and when m is odd, it is achieved by (m + 1)/2-LR. Finally, we

show a tight lower bound of 2 on the approximation ratio of all strategyproof

mechanisms, using a construction involving a sequence of five instances with

three agents and no empty nodes.

An overview of our bounds, and how they compare to the previously best ones

shown by Serafino and Ventre [2016], is given in Table 3.1.

3.3 Social cost: A general constant upper bound

We start with the social cost objective. For general instances with n agents,

we design the strategyproof mechanism Fixed-or-Median-Nearest-Empty

(FMNE) with approximation ratio 17/4, thus greatly improving upon the pre-

vious bound of n− 1 of Serafino and Ventre [2016]. Our mechanism exploits the

known information about the position profile, and distinguishes between two

cases depending on whether the given instance contains empty nodes or not. If
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Mechanism 1: Fixed-or-Median-Nearest-Empty (FMNE)
Input: Instance I with n agents ;
Output: Feasible solution w = (w1, w2) ;
if there are no empty nodes then // Fixed part

w1 ← ⌊n/2⌋;
w2 ← ⌊n/2⌋+ 1;

else // Median-Nearest-Empty part
for j ∈ {1, 2} do

yj ← position of the leftmost median agent in Nj ;
w1 ← y1;
w2 ← nearest empty node to y2, breaking ties in favor of the rightmost
such empty node;

there are no empty nodes, FMNE locates the facilities next to each other at cen-

tral nodes of the line (in particular, nodes ⌊n/2⌋ and ⌊n/2⌋+1); this is the Fixed

part of the mechanism. If there are empty nodes, FMNE locates facility 1 at the

node occupied by the median agent among those that approve facility 1, and fa-

cility 2 at the empty node that is nearest to the node occupied by the median

agent among those that approve facility 2; this is the Median-Nearest-Empty

part of the mechanism. See Mechanism 1.

Theorem 3.3.1. FMNE is strategyproof.

Proof. Consider an arbitrary instance I . The mechanism is clearly strategyproof

if there are no empty nodes in I as the locations of the facilities are fixed and

independent of the preferences of the agents. So, it remains to consider the case

where I contains empty nodes. Let i be an arbitrary agent. We switch between

the following three cases:

Agent i approves only facility 1 (i ∈ N1 \ N2). Suppose without loss of

generality that xi ≤ y1. Any misreport of agent i can only lead to a median

y′1 among the agents that approve facility 1 which is farther away from xi. In

particular, if i misreports that she approves only facility 2, then y′1 ≥ y1, whereas
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if i misreports that she approves both facilities, then y′1 = y1.

Agent i approves only facility 2 (i ∈ N2 \ N1). Suppose without loss of

generality that facility 2 is positioned at some empty node ewithxe > y2. Denote

by y′2 the median node occupied by the agents that approve facility 2 when i

misreports.

• If agent i misreports that she approves both facilities, then y′2 = y2, and

hence the position of facility 2 as well as the cost of agent i remain the same.

• If xi ≤ y2 and agent i misreports that she only approves facility 1, then

y′2 ≥ y2. As a result, either e continues to be the nearest empty node to y′2

and the cost of i remains exactly the same, or another empty node e′ with

xe′ > xe becomes the nearest empty node to y′2, and the cost of i strictly

increases.

• If xi > y2 and agent i misreports that she only approves facility 1, then

y′2 ≤ y2. As a result, either e continues to be the nearest empty node to y′2,

or another empty node e with xe′ < y2 < xe becomes the nearest empty

node to y′2. In any case, the cost of i does not decrease.

Agent i approves both facilities (i ∈ N1∩N2). Since the cost of agent i is the

sum of costs she derives from the two facilities and we decide where to locate

each facility independently from the other facility, the same arguments for the

previous two cases show that no possible misreport can lead to a strictly lower

cost.

To argue about the approximation ratio of FMNE, we will distinguish between

instances with and without empty nodes. In our proofs, we exploit the following

lower bounds on the optimal social cost; we include the proof for completeness.
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Here, 1 {X} is equal to 1 if the event X is true, and 0 otherwise.

Lemma 3.3.2 ([Serafino and Ventre, 2016]). For any instance I in which there are

nj agents that approve facility j ∈ {1, 2}, it holds that

SC∗(I) ≥ 1

4

(
n2
1 + n2

2 − 1 {n1 odd} − 1 {n2 odd}
)

≥ 1

4

(
n2
1 + n2

2 − 2

)
.

Proof. We argue about each facility j ∈ {1, 2} independently. When nj is odd,

the optimal allocation can, at best, have facility j at one of these nj nodes and

have two agents at distance i, for i ∈ {1, . . . , nj−1
2 } from j; the total cost due to

facility j is then n2
j−1
4 . When nj is even, the optimal allocation can, at best, place

facility j facility at one of the nj nodes and have two agents at distance i, for

i ∈ {1, . . . , nj

2 − 1}, and an agent at distance nj

2 ; the total cost due to facility j

in this case is then n2
j

4 .

For instances without empty nodes and n ≥ 5, we will show that the ap-

proximation ratio of FMNE (in particular, its Fixed part) is at most 3; note that

for n ≤ 4, the TwoExtremes mechanism of Serafino and Ventre [2016] is 3-

approximate.

Theorem 3.3.3. For any instance with n ≥ 5 agents and no empty nodes, the

SC-approximation ratio of FMNE is at most 3.

Proof. Consider an instance I and recall that Nj denotes the set of agents that

approve facility j. Let n1 = |N1|, n2 = |N2|, and b = |N1 ∩N2|; clearly, it holds

that n = n1 + n2 − b.

We first consider the case where n is even, i.e., n ≥ 6. For any agent i, with i ∈

{1, . . . , n}, the maximum distance of i to a facility is |n/2+1− i|. Furthermore,
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each of the b agents that approve both facilities faces an added cost of at most

n/2 due to the distance to the agent’s nearest facility. Therefore, the total cost of

the solution w computed by the mechanism is bounded by

SC(w|I) ≤ 2

n/2∑
i=1

i+ b · n
2

=
n

2
·
(n
2
+ 1
)
+ b · n

2

=
n2
1 + n2

2 + b2 + 2n1n2 − 2bn1 − 2bn2 + 2n1 + 2n2 − 2b

4

+
bn1 + bn2 − b2

2

≤ n2
1 + n2

2 + 2n1n2 + 2n1 + 2n2

4
,

where the second equality holds since n = n1+n2− b, while the last inequality

holds since b ≥ 0.

By Lemma 3.3.2, SC∗(I) ≥ 1
4

(
n2
1 + n2

2 − 2
)
, and thus the approximation ratio

is bounded by

SC(w|I)
SC∗(I)

≤ n2
1 + n2

2 + 2n1n2 + 2n1 + 2n2

n2
1 + n2

2 − 2
.

To prove the claim, it suffices to show that, when n1 + n2 ≥ 6, it holds that

n2
1 + n2

2 + 2n1n2 + 2n1 + 2n2 ≤ 3n2
1 + 3n2

2 − 6, i.e., (n1 − n2)
2 + n2

1 + n2
2 ≥

2n1 + 2n2 + 6. Observe that, when n1 + n2 ≥ 6, it holds that n2
1 + n2

2 ≥

3(n1 + n2) ≥ 2n1 + 2n2 + 6; the claim follows.

We now consider the case where n ≥ 5 is odd; the analysis is slightly more

involved, but follows along similar lines. Observe that the maximum distance of

any agent i positioned at some of the first (n − 1)/2 nodes from a facility (in

particular, facility 2) is (n+1)/2− i, while the maximum distance of any agent i
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positioned at some of the last (n+1)/2 nodes from a facility (in this case, facility

1) is i− (n− 1)/2. Furthermore, each of the b agents that approve both facilities

faces an added cost of at most (n − 1)/2. So, the total cost of the solution w

computed by the mechanism is bounded by

SC(w|I) ≤
(n−1)/2∑

i=1

i+

(n+1)/2∑
i=1

i+ b · n− 1

2

=
(n+ 1)2

4
+ b · n− 1

2

=
n2
1 + n2

2 + b2 + 2n1n2 − 2bn1 − 2bn2 + 2n1 + 2n2 − 2b+ 1

4

+
bn1 + bn2 − b2 − b

2

=
n2
1 + n2

2 + 2n1n2 + 2n1 + 2n2 + 1− b2 − 4b

4
,

where, again, the second equality holds since n = n1 + n2 − b.

By Lemma 3.3.2, SC∗(I) ≥ 1
4

(
n2
1 + n2

2 − 1 {n1 odd} − 1 {n2 odd}
)
, and thus

the approximation ratio is bounded by

SC(w|I)
SC∗(I)

≤ n2
1 + n2

2 + 2n1n2 + 2n1 + 2n2 + 1− b2 − 4b

n2
1 + n2

2 − 1 {n1 odd} − 1 {n2 odd}
.

To prove the claim it suffices to show that (n1 − n2)
2 + n2

1 + n2
2 + b2 + 4b ≥

2n1 + 2n1 + 1 + 3(1 {n1 odd} + 1 {n2 odd}). If b ≥ 1, then n1 + n2 ≥ 6, and

the claim follows since (n1−n2)
2+n2

1+n2
2 ≥ 2(n1+n2+1) holds in this case.

Otherwise, when b = 0, then exactly one of n1, n2 is odd and it suffices to show

that (n1 − n2)
2 + n2

1 + n2
2 ≥ 2n1 + 2n2 + 4. Since (n1 − n2)

2 ≥ 1, this always

holds if n1 + n2 ≥ 5.

For instances with at least one empty node, we will show that the approxima-

tion ratio of FMNE (in particular, its Median-Nearest-Empty part) is 17/4 for
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any n ≥ 6; observe that the TwoExtremes mechanism of Serafino and Ventre

[2016] achieves an approximation ratio of at most 4 when n ≤ 5. Our proof for

the approximation ratio of FMNE in this case relies on the following technical

lemma.

Lemma 3.3.4. Let f(x, y) = y2+4xy+2y+1
x2+y2−2 . For non-negative integers x, y such that

x+ y ≥ 6, it holds f(x, y) ≤ 13/4.

Proof. First, observe that f(x, y) can be written as f(x, y) = 1 + −x2+4xy+2y+3
x2+y2−2 .

It suffices to limit our attention to the values of x, y for which f(x, y) > 3, i.e., to

these x, y such that −x
2+4xy+2y+3
x2+y2−2 > 2. By rearranging, we obtain −x2 + 4xy +

2y + 3 > 2x2 + 2y2 − 4, and, therefore, −x2 + 2y + 7 > 2(x− y)2.

Let y = x+k for some integer k and rewrite the last inequality as−x2+2x+

7 > 2(k2−k). Clearly, for x ≥ 4 the inequality never holds as the left-hand-side

term is negative and the right-hand-side term is always non-negative. Hence,

we obtain that f(x ≥ 4, y) < 13/4. For the remaining values of x, i.e., when

x ∈ {0, 1, 2, 3}, recall that x+ y ≥ 6, i.e., 2x+ k ≥ 6. When x = 0, it must be

k ≥ 6 and the inequality does not hold, as 7 < 60. When x = 1, we have k ≥ 4

and, again, the inequality does not hold, as 8 < 24. For x = 2, we obtain k ≥ 2

and the inequality becomes 7 > 2(k2 − k), which holds only when k = 2; in

this case, f(2, 4) = 19/6 < 13/4. Finally, for x = 3, we have that k ≥ 0 and the

inequality becomes 4 > 2(k2−k) which holds for k ∈ {0, 1}. The proof follows

by observing that max{f(3, 3), f(3, 4)} = max{13/4, 73/23} ≤ 13/4.

We are now ready to prove the bound for instances with empty nodes.

Theorem 3.3.5. For any instance with n ≥ 6 and at least one empty node, the

SC-approximation ratio of FMNE is at most 17/4.
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Proof. Consider any instance I . We first argue a bit about the optimal social cost

of I . A solution that minimizes the social cost locates each facility j ∈ {1, 2} to

the node yj occupied by a median agent in Nj . However, this solution might not

be feasible if y1 = y2, and so the optimal social cost can only be larger. We have

that

SC∗(I) ≥
∑
i∈N1

d(xi, y1) +
∑
i∈N2

d(xi, y2). (3.1)

Now, let us focus on the social cost of the solution w computed by the mech-

anism. Let e be the empty node where facility 2 is located; without loss of gen-

erality, we can assume that xe > y2. Combined with the fact that facility 1 is

located at y1, we have that w = (y1, xe), and

SC(w|I) =
∑
i∈N1

d(xi, y1) +
∑
i∈N2

d(xi, xe).

The first term appears in the lower bound of the optimal social cost given by

Inequality (3.1), so all we need to do is bound the second term of the above ex-

pression.

We partition the set N2 into three sets L, M and R depending on the positions

of the agents in N2 compared to y2 and xe, as follows:

• L = {i ∈ N2 : xi ≤ y2};

• M = {i ∈ N2 : xi ∈ (y2, xe)};

• R = {i ∈ N2 : xi > xe}.

By the definition of median, we have that |L| ≥ |M | + |R|; in particular, this

is an equality if n2 = |N2| is even, and a strict inequality if n2 is odd (as L also
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includes the median agent in this case). Observe that

• For every agent i ∈M , there exists a unique agent in j ∈ L such that

d(xj, xe) = d(xj, xi) + d(xi, xe)

= d(xj, y2) + d(xi, y2) + d(xi, xe).

• For every agent i ∈ R, there exists a unique agent j ∈ L such that

d(xj, xe) + d(xi, xe) = d(xj, y2) + d(y2, xe) + d(xi, xe)

= d(xj, y2) + d(xi, y2).

Hence, we have that

∑
i∈N2

d(xi, xe) =
∑
i∈L

d(xi, xe) +
∑
i∈M

d(xi, xe) +
∑
i∈R

d(xi, xe)

≤
∑
i∈N2

d(xi, y2) + d(y2, xe)1 {n2 odd}+ 2 ·
∑
i∈M

d(xi, xe).

Next, we will bound the second and third terms of the above expression. Since

each agent occupies a different node, we can upper-bound the total distance of

the agents in M as follows:

d(y2, xe)1 {n2 odd}+ 2 ·
∑
i∈M

d(xi, xe)

≤ d(y2, xe)1 {n2 odd}+ 2 ·
(
d(y2, xe)− 1 + d(y2, xe)− 2 + . . .+ d(y2, xe)− |M |

)
= −|M |2 + (2d(y2, xe)− 1)|M |+ d(y2, xe)1 {n2 odd} .

Now observe that d(y2, xe) > |M | (since all agents in M are between y2 and e);
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thus, the last expression in the above derivation is an increasing function in terms

of |M |. It is clearly also an increasing function in terms of d(y2, xe). Since |M | ≤
1
2(n2−1 {n2 odd}) and d(y2, xe) ≤ n1+1+|M | ≤ n1+1+ 1

2(n2−1 {n2 odd}),

by doing calculations and also using the fact that 1 {n2 odd} ≤ 1, we obtain

d(y2, xe)1 {n2 odd}+ 2 ·
∑
i∈M

d(xi, xe) ≤
1

4

(
n2
2 + 4n1n2 + 2n2 + 1

)
.

By putting everything together, we have

SC(w|I) ≤
∑
i∈N1

d(xi, y1) +
∑
i∈N2

d(xi, y2) +
1

4

(
n2
2 + 4n1n2 + 2n2 + 1

)
≤ SC∗(I) +

1

4

(
n2
2 + 4n1n2 + 2n2 + 1

)
.

By Lemma 3.3.2, we have SC∗(I) ≥ 1
4

(
n2
1 + n2

2 − 2
)
, and thus the approximation

ratio is bounded by

SC(w|I)
SC∗(I)

≤ 1 +
n2
2 + 4n1n2 + 2n2 + 1

n2
1 + n2

2 − 2
.

The bound of 17/4 follows by applying Lemma 3.3.4 withx = n1 and y = n2.

We conclude this section by showing that our analysis of the approximation

ratio of FMNE is tight.

Lemma 3.3.6. There exists an instance with n ≥ 5 and no empty nodes such that

the SC-approximation ratio of FMNE is at least 3, and an instance with n ≥ 6 and

at least one empty node such that the SC-approximation ratio of FMNE is at least

17/4.

Proof. For the Fixed part of FMNE consider the following instance I1 with 5

agents and no empty nodes. The first two agents approve only facility 2, and



3.4. SOCIAL COST: A TIGHT BOUND FOR INSTANCES WITH THREE AGENTS34

the last three agents approve only facility 1. The mechanism outputs the solu-

tion (2, 3), that is, it locates facility 1 at the second node and facility 2 at the third

node. The social cost of this solution is SC((2, 3)|I1) = 9. However, an optimal

solution is (4, 2) with social cost SC∗(I1) = 3, leading to an approximation ratio

of 3.

For the Median-Nearest-Empty part of FMNE consider the following in-

stance I2 with 6 agents and one empty node. The first three nodes are occu-

pied by agents that approve only facility 2, the next three nodes are occupied by

agents that approve only facility 1, and the last node is empty. The mechanism

outputs the solution (5, 7), that is it locates facility 1 at node 5 and facility 2 at

the empty node. This solution has social cost SC((5, 7)|I2) = 17. In contrast, an

optimal solution is (5, 2) with SC∗(I2) = 4, leading to an approximation ratio of

17/4.

3.4 Social cost: A tight bound for instances with three agents

In this section, we restrict to instances with three agents (and possibly many

empty nodes). We show a tight bound of 4/3 on the approximation ratio of

strategyproof mechanisms. In particular, we present a rather simple instance

without empty nodes showing that the approximation ratio of any strategyproof

mechanism is at least 4/3; this improves upon the previous lower bound of 9/8

shown by Serafino and Ventre [2016]. We complement this result by designing

a mechanism that achieves the bound of 4/3 when given as input any instance

with three agents.

Theorem 3.4.1. The SC-approximation ratio of any strategyproof mechanism is at

least 4/3.
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Proof. We consider two instances with three agents and no empty nodes. In the

first instance I1, all agents approve both facilities. Clearly, any mechanism must

locate a facility to the first or the third node (or, perhaps, both). Without loss of

generality, suppose the mechanism locates facility 2 at the third node.

In the second instance I2, the first two agents approve both facilities, while the

third agent approves only facility 2 (that is, the only difference between I1 and

I2 is the preference of the third agent). Since facility 2 is located at the third node

in I1, the same must happen in I2; otherwise, agent 3 would have cost at least 1

in I2 and incentive to misreport that she approves both facilities, thus changing

I2 to I1, and decreasing her cost to 0. However, both possible feasible solutions

w1 = (1, 3) and w2 = (2, 3) have social cost 4 in I2, whereas an optimal solution

(such as w∗ = (1, 2)) has social cost 3; the theorem follows.

Next, we design the 3-agent mechanism Priority-Dictatorship, which is

strategyproof and has an approximation ratio of at most 4/3. Consider any in-

stance with three agents; for convenience, we call the agents ℓ, c, and r and let

xℓ < xc < xr. Without loss of generality, we assume that c is closer to r than

to ℓ, that is, xr − xc ≤ xc − xℓ. Our mechanism gives priority to the central

agent over the right agent, and does not take into account the preference of the

left agent at all. In particular, the mechanism locates at xc one of the facilities

that agent c approves, and decides the location of the other facility based on the

preference of agent r. See Mechanism 2 for a formal description. We first show

that the mechanism is strategyproof.

Theorem 3.4.2. Priority-Dictatorship is strategyproof.

Proof. Consider any instance with three agents ℓ, c and r such that xℓ < xc < xr.

Since the preference of agent ℓ is not taken into account, ℓ cannot affect the
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Mechanism 2: Priority-Dictatorship
Input: Instance I with three agents ℓ, c, and r such that xℓ < xc < xr ;
Output: Feasible solution w ;
if c ∈ N1 \N2 then

if r ∈ N2 then
w← (xc, xr);

else
w← (xc, xℓ);

else if c ∈ N2 \N1 then
if r ∈ N1 then

w← (xr, xc);
else

w← (xℓ, xc);
else

if r ∈ N2 then
w← (xc, xc + 1);

else
w← (xc + 1, xc);

outcome and thus has no incentive to misreport. In addition, the mechanism

always locates at xc one of the facilities that c approves, and if c approves both

facilities, the other facility is located at xc + 1; hence, the cost of c is always

minimized. Finally, to see why agent r also has no incentive to misreport, it

suffices to observe that in all cases (where the preference of agent c is fixed) the

location of the facility that r approves is either independent of her preference,

or is closer to her position than if she misreports. As an example, if c ∈ N1 \N2,

facility 1 is located at xc independently from the report of r, and facility 2 is

located at xr if r approves it. Hence, agent r minimizes her cost by being truthful.

The same holds for the remaining two cases.

Next, we show the upper bound of 4/3 on the approximation ratio of the mech-

anism.

Theorem 3.4.3. For instances with three agents, the SC-approximation ratio of

Priority-Dictatorship is at most 4/3.
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Proof. Consider any instance I with three agents ℓ, c and r. We distinguish be-

tween the three cases considered by the mechanism.

• If c ∈ N1 \N2, c is a median agent for facility 1.

– If r ∈ N2, the outcome is (xc, xr), and the approximation ratio is 1 as r

is a median agent for facility 2.

– If r ∈ N1 \ N2, the outcome is (xc, xℓ), and the approximation ratio is

again 1 as either ℓ is a median agent for facility 2, or all agents approve

only facility 1.

• If c ∈ N2 \N1, due to symmetry to the above case, the approximation ratio

is again 1.

• If c ∈ N1∩N2, c is a median agent for both facilities. The approximation ratio

is 1 in the following cases: (a) c is the uniquemedian for both facilities, which

happens when ℓ and r approve the same set of facilities; (b) r is a median

for the facility located at xc + 1 (so that this facility is located in-between

median agents), which happens when ℓ and r approve a single (different)

facility, or when ℓ ∈ N1 \ N2 and r ∈ N1 ∩ N2. So, we can consider the

remaining three cases. Let α = xc − xℓ ≥ 1 and β = xr − xc ≥ 1.

– ℓ ∈ N1 ∩N2, c ∈ N1 ∩N2, r ∈ N2 \N1. One possible optimal solution

is (xℓ, xc) with social cost 2α + β. The solution (xc, xc + 1) computed

by the mechanism has social cost 2α+β+1. Hence, the approximation

ratio is 2α+β+1
2α+β = 1+ 1

2α+β . As this is a non-increasing function in terms

of α and β, it attains its maximum value of 4/3 for α = β = 1.

– ℓ ∈ N2\N1, c ∈ N1∩N2, r ∈ N1∩N2. One possible optimal solution is

(xr, xc) with social cost α + 2β. The solution (xc, xc + 1) computed by
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the mechanism has social costα+2β+1. Hence, the approximation ratio

is α+2β+1
α+2β = 1 + 1

α+2β . This is again a non-increasing function in terms

of α and β, and thus attains its maximum value of 4/3 for α = β = 1.

– ℓ ∈ N1 ∩N2, c ∈ N1 ∩N2, r ∈ N1 \N2. One possible optimal solution

is (xc, xℓ) with social cost 2α + β. The solution (xc + 1, xc) computed

by the mechanism has social cost 2α+β+1. Hence, the approximation

ratio is 2α+β+1
2α+β = 1 + 1

2α+β , which is maximized once again to 4/3 for

α = β = 1.

The proof is now complete.

3.5 Maximum cost

We now turn our attention to the maximum cost. For this objective, Serafino

and Ventre [2016] showed an upper bound of 3 on the approximation ratio of the

TwoExtemes mechanism, and a lower bound of 3/2 on the approximation ratio

of any strategyproof mechanism. We improve both bounds, by showing a tight

bound of 2.

3.5.1 Improving the upper bound

To achieve the improved upper bound of 2, we consider a class of mechanisms

that use only the part of the line that is occupied, from the first to the last occu-

pied node, with possible empty nodes in-between; with some abuse of notation,

we denote by m the size of exactly this part of the line. These mechanisms,

termed α-Left-Right, are parameterized by an integer α ∈ {1, . . . ,m−1}, and

their general idea is as follows: They partition the line into two parts depending
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Mechanism 3: α-Left-Right
Input: Instance I with n agents;
Output: Feasible solution w = (w1, w2);
L← left part of line from node 1 to node α;
N(L)← agents that occupy nodes in L;
R← right part of line from node α + 1 to node m;
N(R)← agents that occupy nodes in R;
// (case 1): Each part includes agents that approve only one, different
facility
if ∃X, Y ∈ {L,R}: N1 = N(X) and N2 = N(Y ) then

w1 ← median node of line defined by N(X) (ties in favor of nodes
farther from α);
w2 ← median node of line defined by N(Y ) (ties in favor of nodes
farther from α);

// (case 2): One part includes agents that approve only one facility
else if ∃ ℓ ∈ {1, 2}, X ∈ {L,R}: Nℓ ⊆ N(X) then

if Nℓ is empty then
X ← L;

wℓ ← median node of line defined by N(X) (ties in favor of nodes
farther from α);
w3−ℓ ← β ∈ {α, α + 1} \X ;

// (case 3): Both parts include agents from N1 and N2
else

w1 ← rightmost node of L;
w2 ← leftmost node of R;

on the value of α, and then decide where to locate the facilities based on the pref-

erences of the agents occupying nodes in these two parts. See Mechanism 3 for

a formal description. We first show that every α-Left-Right is strategyproof.

Theorem 3.5.1. For any α ∈ {1, . . . ,m− 1}, mechanism α-LR is strategyproof.

Proof. Consider any instance. We distinguish between the three cases considered

by the mechanism.

True preferences are as in case 1. The mechanism locates facility 1 at the

median node of the line defined by N(X), and facility 2 at the median node of

the line defined by N(Y ). It suffices to show that any agent i ∈ N1 has no

incentive to deviate; the case i ∈ N2 is symmetric. If i is the unique agent in
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N(X), then she occupies the median node of the line defined by N(X), where

facility 1 is located, and thus has zero cost. So, we can assume that there is some

agent in N(X) \ {i}. If agent i misreports by approving either just facility 2 or

both facilities, then we transition to case 2 with N1 ⊆ N(X), meaning that the

location of facility 1 remains the median of the line defined by N(X). So, agent

i cannot decrease her cost, and has no incentive to deviate.

True preferences are as in case 2. Suppose that N1 ⊆ N(L), while N2 has

agents in both L and R; all other cases that fall under case 2 are symmetric. So,

the mechanism locates facility 1 at the median node of the line defined by N(L),

and facility 2 at the leftmost node ofR. Consider any agent i, and switch between

all possible preferences of i:

• i ∈ N1. Since all agents in N(R) approve only facility 2, we can never

transition to case 3 when i misreports. Also, agent i is indifferent between

cases 1 and case 2 if she only approves facility 1, and prefers case 2 to case

1 if she approves both facilities (since her position is closer to the leftmost

node of R than to the median node of N(R)). So, agent i has no incentive

to misreport.

• i ∈ (N2\N1)∩N(L). Similarly to the above case, we can never transition to

case 3when imisreports. Now, i strictly prefers case 2 to case 1, as she wants

facility 2 to be located at the leftmost node of R, so her cost is minimized,

and has no incentive to misreport.

• i ∈ (N2\N1)∩N(R). Note that i approves only facility 2. If she misreports

that she approves both facilities, then we transition to case 3, where the

location of facility 2 remains the same. If she misreports that she approves
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only facility 1, then either the outcome remains the same if there is another

agent in N(R), or we transition to a symmetric case of case 2, where N2 ⊆

N(L) (while N1 has agents in both L and R), thus changing the location of

facility 2 from the leftmost node of R to the median node of the line defined

by N(L). As this would increase the cost of agent i, she has no incentive to

misreport.

True preferences are as in case 3. Since each of N(L) and N(R) contains

agents from both N1 and N2, the mechanism locates facility 1 at the rightmost

node of L, and facility 2 at the leftmost node of R. Consider any agent i ∈

Nℓ ∩N(X), where ℓ ∈ {1, 2} and X ∈ {L,R}. Observe that if for each facility

j ∈ {1, 2} there exists some agent in N(X) \ {i} that approves j, then agent

i cannot affect the outcome; no matter what i reports, we are still in case 3. So,

we can assume that for some j ∈ {1, 2}, all agents in N(X) \ {i} approve only

facility j. Since we are in case 3, we can also assume that j ̸= ℓ (of course, agent

i might also approve j). To change the case considered by the mechanism, i must

completely agree with the other agents in N(X) and report that she approves

only facility j. This leads to a symmetric case of case 2, where Nℓ ⊆ N({L,R}\

X) (andNj contains agents in bothL andR), and hence facility ℓ is located at the

median node of the line defined by N({L,R} \X) and facility j is still located

at either α or α+1. Clearly, the cost of agent i can only increase as facility ℓ has

moved farther away.

Next, we focus on the approximation ratio of α-LR mechanisms for the max

cost. We distinguish between cases where the size m of the line is an even or

odd number, and show that there are values of α such that α-LR achieves an

approximation ratio of at most 2. Before we do this, we prove a lemma providing
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lower bounds on the optimal max cost of a given instance, which we will use

extensively.

Lemma 3.5.2. Let I be an instance. The following are true:

(a) If there are two agents positioned at x and y > x, and q ∈ {0, 1, 2} is the

number of facilities they both approve, then

MC∗(I) ≥ q · y − x

2
.

(b) If there is an agent positioned at x that approves both facilities, an agent posi-

tioned at y > x that approves facility 1, and an agent positioned at z > y that

approves facility 2, then

MC∗(I) ≥
⌈
y + z − 2x

3

⌉
.

Proof. To show the two properties, we use the fact that the optimal cost for an

instance is at least the optimal cost when we restrict to any subset of agents and

any subset of facilities, in which case we aim to balance the cost of all the agents

involved. We have:

(a) We begin with the case q = 1 as the claim holds trivially when q = 0. Clearly,

if we place the facility before x or after y, the claim holds. So, let us assume that

we place the facility at node a such that x ≤ a ≤ y. The cost of the agent at

node x is then (at least) a − x, while the cost of the agent at node y is (at least)

y− a. The claim follows since it cannot be that both a− x and y− a are strictly

less than y−x
2 .

When q = 2, the claim follows if at least one facility is placed before x or

after y. Let us assume that we place the facilities at nodes a and b such that
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x ≤ min{a, b} < max{a, b} ≤ y. The cost of the agent at node x is then

a+ b− 2x, while the cost of the agent at node y is 2y− a− b. The claim follows

since it cannot be that both a+ b−2x and 2y−a− b are strictly less than y−x.

(b) In this case, we want to locate facility 1 at some node a ∈ [x, y] and facility

2 at some node b ∈ [x, z], such that the maximum cost among the three agents

is minimized. The cost of the agent at node x is then a+ b− 2x, the cost of the

agent at y is y − a, while the cost of the agent at z is z − b. As the sum of costs

equals y + z − 2x, it cannot be the case that all three costs are strictly less than
y+z−2x

3 . The claim follows since any cost must be an integer.

We are now ready to bound the approximation ratio of particular α-LR mech-

anisms. We start with instances where m is an even number, for which we use

α = m/2; that is, we partition the line into two parts of equal size.

Theorem 3.5.3. When m is even, the MC-approximation ratio of m/2-LR is at

most 2.

Proof. Consider any instance I . We distinguish between the three cases consid-

ered by the mechanism.

Case 1. Since the agents inN(X) approve only facility 1 and the agents inN(Y )

approve only facility 2, locating facility 1 at the median node of the line defined

by N(X), and facility 2 at the median node of the line defined by N(Y ) is the

optimal solution.

Case 2. Suppose that N1 ⊆ N(L) and that N2 contains agents in both N(L) and

N(R); this is one of the symmetric instances captured by case 2. The mechanism

locates facility 1 at the median node yL (with 1 ≤ yL ≤ ⌊m+2
4 ⌋) of the line defined

by N(L), and facility 2 at node m
2 + 1 (the leftmost node of R). We distinguish
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between the following cases depending on the preferences of the agents with the

maximum cost for the solution w computed by the mechanism.

• The cost of the mechanism is equal to the cost of an agent that ap-

proves a single facility. As all agents that approve facility 1 are in N(L),

and facility 1 is located at the median of the line defined by N(L), the cost of

any agent that approves only facility 1 can be at most max{⌊m+2
4 ⌋− 1, m2 −

⌊m+2
4 ⌋} ≤

m
4 . Since facility 2 is located at node m

2 + 1, the cost of any

agent that approves only facility 2 can be at most m
2 + 1 − 1 = m

2 . Hence,

MC(w|I) ≤ m
2 . As N2 contains at least one agent in N(L), there exists

at least one agent at a node x ≤ m
2 that approves facility 2. By applying

Lemma 3.5.2(a) with x and y = m, we have that MC∗(I) ≥ m−x
2 ≥ m

4 ,

yielding that the approximation ratio is at most 2.

• The cost of the mechanism is equal to the cost of an agent that ap-

proves both facilities. Since we are in case 2 with N1 ⊆ NL, let x ≤ m/2

be the position of the agent i that approves both facilities and has the maxi-

mum cost among all such agents. The cost of agent i, and thus of the mech-

anism, is MC(w|I) = |x− yL|+ m
2 + 1− x.

If x > yL, we have MC(w|I) = m
2 + 1− yL ≤ m

2 . As in the case where the

cost is due to an agent that approves a single facility, we have MC∗(I) ≥ m
4 ,

and thus the approximation ratio is at most 2.

Otherwise, if x ≤ yL, we have MC(w|I) = m
2 + 1 + yL − 2x ≤

3(m+2)
4 − 2x. Since agent i and the agent at node m both approve facility

2, by Lemma 3.5.2(a), we have that MC∗(I) ≥ m−x
2 . Hence, the approxima-

tion ratio is at most 3m+6−8x
2m−2x . As this is a non-increasing function in terms

of x, it attains its maximum value of 3m−2
2m−2 for x = 1. For every m ≥ 2, it
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holds that 3m−2
2m−2 ≤ 2.

Case 3. Recall that the mechanism locates facility 1 at m
2 (rightmost node of L),

and facility 2 at m
2 + 1 (leftmost node of R). Without loss of generality, we can

assume that the agent at node 1 approves facility 1 (and possibly also facility 2).

We switch between the following two subcases:

• The cost of the mechanism is equal to the cost of an agent that ap-

proves a single facility. Then, MC(w|I) ≤ m
2 (the distance between node

1 and node m
2 + 1). As we are in case 3, there exists an agent at some node

y ≥ m
2 + 1 that approves facility 1, and by our assumption that the agent

at node 1 approves facility 1, Lemma 3.5.2(a) gives MC∗(I) ≥ y−1
2 ≥

m
4 . So,

the approximation ratio is at most 2.

• The cost of the mechanism is equal to the cost of an agent that ap-

proves both facilities. Without loss of generality, let x ≤ m/2 be the

position of the agent i that has the maximum cost among all agents that ap-

prove both facilities. Then, MC(w|I) = m
2 − x+ m

2 + 1− x = m+ 1− 2x.

As the agent at node m approves some facility that is also approved by i,

by Lemma 3.5.2(a), we get MC∗(I) ≥ m−x
2 . The approximation ratio is

2 · m+1−2x
m−x , which is a non-increasing function in terms of x, and attains

its maximum value of 2 for x = 1.

In any case, the approximation ratio of the mechanism is 2, and the theorem

follows.

For instances with odd m, we use α = (m+ 1)/2. The proof of the following

theorem is similar in structure with the previous theorem for even m, but is

slightly more complicated.
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Theorem 3.5.4. Whenm is odd, the MC-approximation ratio of (m+ 1)/2-LR is

at most 2.

Proof. Consider any instance I . We distinguish between the three cases consid-

ered by the mechanism.

Case 1. Since the agents in N(X) approve only facility 1, and the agents in

N(Y ) approve only facility 2, locating facility 1 at the median node of the line

defined by N(X), and facility 2 at the median node of the line defined by N(Y )

is the optimal outcome.

Case 2. Suppose that N1 ⊆ N(L) and that N2 contains agents in both N(L) and

N(R); this is one of the symmetric instances captured by case 2. The mechanism

locates facility 1 at the median node yL (with 1 ≤ yL ≤ ⌊m+3
4 ⌋) of the line

defined by N(L), and facility 2 at node m+1
2 +1 = m+3

2 (the leftmost node of R).

We distinguish between the following cases depending on the preferences of the

agents with the maximum cost for the solution w computed by the mechanism.

• The cost of the mechanism is equal to the cost of an agent that ap-

proves a single facility. As all agents that approve facility 1 are in N(L),

and facility 1 is located at the median of the line defined by N(L), the cost

of any agent that approves only facility 1 can be at most max{⌊m+3
4 ⌋ −

1, m+1
2 − ⌊

m+3
4 ⌋} ≤

m+1
4 . Let x ≤ m+1

2 be the position of the leftmost agent

that approves facility 2. Since the agent at node m also approves facility

2, by Lemma 3.5.2(a), we have that MC∗(I) ≥ m−x
2 . We now distinguish

between two subcases, based on the value of x.

If x = m+1
2 , the maximum cost among agents that approve facility 2 is at

most m − m+3
2 = m−3

2 , and thus MC(w|I) ≤ max
{
m+1
4 , m−32

}
. Since
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MC∗(I) ≥ m−1
4 , the approximation ratio is at most 2.

Otherwise, if x ≤ m−1
2 , the maximum cost among agents that approve facil-

ity 2 is a most m+3
2 − 1 = m+1

2 , and thus MC(w|I) ≤ max
{
m+1
4 , m+1

2

}
=

m+1
2 . Since MC∗(I) ≥ m−x

2 ≥
m+1
4 , the approximation ratio is again at most

2.

• The cost of the mechanism is equal to the cost of an agent that ap-

proves both facilities. Since we are in case 2 with N1 ⊆ NL, let x ≤ m+1
2

be the position of the agent i that approves both facilities and has the maxi-

mum cost among all such agents. The cost of agent i, and thus of the mech-

anism, is MC(w|I) = |x− yL|+ m+3
2 − x.

If x ≤ yL, then since yL ≤ m+3
4 , we have that MC(w|I) = m+3

2 +yL−2x ≤
3(m+3)

4 − 2x. As node m is occupied by an agent that approves facility 2, by

Lemma 3.5.2(a), we have that MC∗(I) ≥ m−x
2 , and thus the approximation

ratio is 3m+9−8x
2m−2x . This is a non-increasing function of x ≥ 1, and attains its

maximum value of 3m+1
2m−2 for x = 1. For every m ≥ 5, it holds that 3m+1

2m−2 ≤ 2.

When m = 3, for x ≤ yL to be true, it has to be the case that x = yL = 1; so,

the cost of agent i forw is 2, while MC∗(I) ≥ 1, leading to an approximation

ratio of at most 2.

Otherwise, if x > yL, for yL = 1 to be possible, it would have to be the case

that m = 3 and x = 2; then, the cost of agent i is 2, while MC∗(I) ≥ 1, and

so the approximation ratio is at most 2. Hence, assume that yL ≥ 2. Then,

we have MC(w|I) = m+3
2 − yL ≤ m−1

2 . Since x ≤ m+1
2 and the agent at

node m approves facility 2, by Lemma 3.5.2(a), we have that MC∗(I) ≥ m−1
4 ,

and the approximation ratio is at most 2.
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Case 3. Recall that in this case the mechanism locates facility 1 at m+1
2 , and

facility 2 at m+3
2 . Without loss of generality, we assume that the agent at node 1

approves facility 1 (and possibly also facility 2). We switch between two subcases:

• The cost of the mechanism is equal to the cost of an agent that ap-

proves a single facility. Then, MC(w|I) ≤ m+3
2 − 1 = m+1

2 . As we are

in case 3, there exists an agent at some node y ≥ m+3
2 that approves facil-

ity 1, and by our assumption that the agent at node 1 approves facility 1,

Lemma 3.5.2(a) gives MC∗(I) ≥ y−1
2 ≥

m+1
4 , and the approximation ratio is

at most 2.

• The cost of the mechanism is equal to the cost of an agent that ap-

proves both facilities. Without loss of generality, let x ≤ m+1
2 be the

position of the agent i that has the maximum cost among agents that ap-

prove both facilities. Then, MC(w|I) = m+1
2 − x+ m+3

2 − x = m− 2x+2.

Since we are in case 3, in N(R), there exists an agent that approves facility 1

and an agent that approves facility 2. Consider the following two subcases:

If there is an agent j at some node y ≥ m+3
2 that approves both facilities,

then, by Lemma 3.5.2(a), MC∗(I) ≥ y−x ≥ m+3
2 −x, and the approximation

ratio is at most 2 · m−2x+2
m−2x+3 ≤ 2.

Otherwise, if there is no agent inN(R) that approves both facilities, suppose

that the agent at nodem approves facility 2, and there exists an agent at some

node y ∈
[
m+3
2 ,m

)
that approves facility 1. If x = 1, then MC(w|I) ≤ m

and, by Lemma 3.5.2(b), MC∗(I) ≥ ⌈y+m−2
3 ⌉ ≥ ⌈m2 −

1
6⌉ = m+1

2 ; hence,

the approximation ratio is at most 2. If x ≥ 2, it suffices to use the bound

MC∗(I) ≥ m−x
2 implied by Lemma 3.5.2(a), to get an upper bound of 2 ·

m−2x+2
m−x on the approximation ratio. This is a non-increasing function of x,
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and thus attains its maximum value of 2 for x = 2.

In any case, the approximation ratio is at most 2, and the proof is complete.

3.5.2 A tight lower bound

We conclude the presentation of our technical results with a tight lower bound

of 2 on the approximation ratio of any strategyproof mechanism with respect to

the maximum cost objective.

Theorem 3.5.5. The MC-approximation ratio of any strategyproof mechanism is

at least 2.

Proof. Suppose that there exists a strategyproof mechanism M with approxima-

tion ratio strictly smaller than 2. We will reach a contradiction by examining a

series of instances, all of which involve three agents and no empty nodes; see

also Figure 3.1.

We begin with instance I1, in which the first and third agents approve only

facility 1, while the second agent approves only facility 2. Clearly, M must return

either (2, 3) or (2, 1) as MC((2, 3)|I1) = MC((2, 1)|I1) = 1; any solution where

facility 1 is not placed at the second node has maximum cost 2, and returning

such a solution would contradict the assumption that the approximation ratio of

M is strictly smaller than 2. Without loss of generality, let us assume that M

returns the solution (2, 3).

Next, consider instance I2, in which the first agent approves only facility 1,

while the remaining agents approve only facility 2. M must output either (2, 3)

or (1, 3) due to strategyproofness. Indeed, any solution where facility 2 is not

placed at the third node leads to a cost of at least 1 for the third agent. But

then, that agent would misreport that she only approves facility 1, thus leading
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to instance I1, and obtain a cost of 0 for the resulting solution (2, 3).

If M returns (2, 3) for instance I2, consider instance I3, in which the first

agent approves both facilities, while the other two agents approve facility 2. M

must return the optimal solution (1, 2) with MC((1, 2)|I3) = 1, since any other

solution leads to a maximum cost of at least 2. In this case, however, the first

agent in I2 would misreport that she approves both facilities to reduce her cost

from 1 to 0; this contradicts the assumption that M is strategyproof.

Otherwise, when M returns (1, 3) for I2, consider instance I4, in which the

first agent approves only facility 1, the second agent approves both facilities,

and the last agent approves only facility 2. There are two optimal solutions in I4,

(2, 3) and (1, 2), with MC((2, 3)|I4) = MC((1, 2)|I4) = 1; any other solution

has maximum cost 2. Out of these solutions, (1, 2) would give the second agent

in I2 incentive to misreport that she approves both facilities to reduce her cost

from 1 to 0. Hence, M must return (2, 3)when given as input I4. To conclude the

proof, consider instance I5, in which the first two agents approve both facilities,

while the third agent approves only facility 2. The optimal solution is (1, 2)

with MC((1, 2)|I5) = 1; any other solution has maximum cost of at least 2.

But then, the first agent in I4 has incentive to misreport that she approves both

facilities to reduce her cost from 1 to 0; this again contradicts the fact that M is

strategyproof.
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{1, 0}

1

{0, 1}

2

{1, 0}

(a) Instance I1: let M return (2, 3).

{1, 0}

1

{0, 1}

2

{0, 1}

(b) Instance I2: the case where M returns (2, 3).

1

{1, 0} {0, 1}

2

{0, 1}

(c) Instance I2: the case where M returns (1, 3).

1

{1, 1}

2

{0, 1} {0, 1}

(d) Instance I3: M cannot return (1, 2) due to case (b); hence,
it is (at least) 2-approximate.

{1, 0}

1

{1, 1}

2

{0, 1}

(e) Instance I4: M must return either (1, 2) or (2, 3) since it
is better than 2-approximate. It cannot, however, return (1, 2)
due to case (c).

1

{1, 1}

2

{1, 1} {0, 1}

(f) Instance I5: M cannot return (1, 2) due to case (e); hence,
it is (at least) 2-approximate.

Figure 3.1: The instances used in the proof of Theorem 3.5.5. Each instance has 3 agents and no empty nodes. The agent
preferences appear below each node, while the facility assignment appears above the nodes. A black font denotes the mech-
anism’s assignment, while a red font denotes an optimal but excluded assignment. Blue arrows denote how instances are
related when a single agent’s preferences change.



Chapter 4

Heterogeneous Two-Facility Location

with Candidate Locations

4.1 Definitions and notation

We consider the two-facility location problem with candidate locations in this

chapter.

Besides the private position profile x and known approval preference pro-

file p,there is a set of m ≥ 2 candidate locations C where the facilities can be

located in this chapter. To be concise, we denote an instance using the tuple

I = (x,p, C).

A feasible solution in this chapter is a pair w = (w1, w2) ∈ C2 of candidate

locations with w1 ̸= w2, where the two facilities can be placed; that is, for each

j ∈ [2], Fj is placed at wj . Given a feasible solution w, the cost of any agent i in

instance I is her total distance from the facilities she approves, i.e.,

52
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costi(w|I) =
∑

j∈{1,2}

pij · d(xi, wj),

A mechanism is said to be strategyproof if the solution M(I) it returns when

given as input any instance I = (x,p, C) is such that there is no agent i with

incentive to misreport a position x′i ̸= xi to decrease her individual cost, that is,

costi(M(I)|I) ≤ costi(M((x′i,x),p, C)|I),

where (x′i,x−i) is the position profile obtained by x when only agent i reports

a different position x′i.

Finally, let us introduce some further notation and terminology that will be

useful. Any agent that approves both facilities belongs to the intersectionN1∩N2

and has a doubleton preference. Any agent that approves one facility belongs

to either N1 \ N2 or N2 \ N1 and has a singleton preference. Besides general

instances (with agents that have any type of approval preferences), we will also

pay particular attention to the following two classes of instances:

• Doubleton: All agents have a doubleton preference, that is, N1 ∩N2 = N ;

• Singleton: All agents have a singleton preference, that is, N1 ∩N2 = ∅.

We will also denote by mj , ℓj , and rj the median1, leftmost, and rightmost, re-

spectively, agent in Nj . In addition, for any agent i we denote by t(i) and s(i)

the closest and the second closest, respectively, candidate location to i.
1Without loss of generality, we break potential ties in favor of the leftmost median agent.
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Social cost Max cost
Doubleton [1 +

√
2, 3] [2, 3]

Singleton 3 3

General [3, 7] 3

Table 4.1: An overview of the bounds that we show in this paper on the approximation ratio of deterministic strategyproof
mechanisms for the different combinations of social objectives functions (social cost and max cost) and agent preferences
(doubleton, singleton, or general).

4.2 Overview of contribution

Our goal is to design mechanisms that take as input the positions reported by

the agents, and, using also the available information about the preferences of

the agents, decide where to place the two facilities, so that (a) a social objec-

tive function is (approximately) optimized, and (b) the agents are incentivized

to truthfully report their positions. As in previous work, we consider the well-

known social cost (the total individual cost of the agents) and the max cost (the

maximum individual cost over all agents) as our social objective functions. We

treat separately the class of instances in which all agents approve both facilities

(to which we refer as doubleton), the class of instances in which all agents ap-

prove one facility (to which we refer as singleton), and the general class of all

possible instances. For all possible combinations of objectives and types of pref-

erences, we design deterministic strategyproof mechanisms with small, constant

approximation ratios. An overview of our results is given in Table 4.1.

In Section 4.3 we consider the social cost and show the following results:

• For doubleton instances (in which all agents approve both facilities), we

show that the best possible approximation ratio of strategyproof mecha-

nisms is between 1 +
√
2 and 3. Our upper bound follows by a mechanism,

which places the facilities at the two candidate locations closest to the me-

dian agent; this is the natural extension of the Median mechanism which
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achieves the best possible approximation ratio of 3 for the single-facility

location problem [Feldman et al., 2016]. These results can be found in Sec-

tion 4.3.1.

• For singleton instances (in which each agent approves one facility), we first

observe that no strategyproof mechanism can achieve an approximation ra-

tio better than 3; this follows from the fact that the problem is now a general-

ization of the single-facility location problem. The main technical difficulty,

which does not allow us to simply treat a singleton instance as two separate

single-facility location problems (one for each facility), is that the facilities

cannot be placed at the same location. We circumvent this difficulty and

show a tight upper bound of 3 by considering a mechanism that places each

facility at the available candidate location closest to the median agent among

those that approve it. To decide the order in which the facilities are placed,

we first perform a voting step that allows the agents that approve each fa-

cility to decide if they prefer the closest or second-closest candidate location

to the respective median agent; this is necessary since just blindly choosing

the order of placing the facilities leads to a mechanism with a rather large

approximation ratio. These results are presented in Section 4.3.2.

• For general instances, we show an upper bound of 7 by considering a mecha-

nism which switches between two cases depending on the cardinalities of the

sets of agents with different preferences. In particular, when there is a large

number of agents that approve both facilities, we run the simple median

mechanism we used for doubleton instances by ignoring the other agents.

Otherwise, we run a mechanism that places the facility that is approved by

most agents at the location closest to the median of the agents that approve
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only it, while the other facility is placed at the available location that is clos-

est to the median of the agents that approve it. These results are presented

in Section 4.3.3. Our bound of 7 for general instances significantly improves

upon the bound of 22 that Lotfi and Voudouris [2023] showed via a reduc-

tion between the model in which the individual cost of an agent is the dis-

tance to the farthest facility among the ones she approves and our model (in

which the individual cost of an agent is the distance to all the facilities she

approves).

In Section 4.4, we turn our attention to the max cost objective and show the

following results:

• For doubleton instances, we show that the best possible approximation ratio

is between 2 and 3. Our upper bound follows by a simple mechanism that

places the facilities at the available candidate locations closest to the leftmost

agent; see Section 4.4.1.

• For singleton instances, we show a tight bound of 3 by considering a mech-

anism that places the two facilities at the candidate locations closest to some

agents among those that approve. The main difficulty here is to decide which

agents to pick. In particular, after placing the first facility at the candidate

location closest to one of the agents that approve it (such as the leftmost), we

then need to dynamically decide whether the second facility can be placed

closer to the leftmost or rightmost among the agents that approve it, or nei-

ther of them. This again is done by a voting-like procedure that is used to

decide the order of the agents that approve the second facility relative to the

two candidate locations that are closest to where the first facility has been

placed.
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• For general instances, we show a tight bound of 3 by splitting the class of

all instances into those that consist of at least one agent that approves both

facilities (in which case we employ the mechanism for doubleton instances)

and the remaining instances which are singleton (and we employ the corre-

sponding mechanism).

Finally, in Section 4.5, we consider a slightly simpler model in which the two

facilities are allowed to be placed at the same candidate location. For this model,

we manage to show improved, tight bounds on the approximation ratio of de-

terministic mechanisms for doubleton and general instances for both the social

and the max cost (the problem is not interesting for singleton instances). This is

possible because we can now avoid possible misreports by agents with double-

ton preferences, which in turn allows us to consider a class of mechanisms that

is not strategyproof when the facilities are constrained to be placed at different

locations.

4.3 Social cost

In this section we will focus on the social cost. We will show that the best possible

approximation ratio of strategyproof mechanisms is between 1 +
√
2 and 3 for

doubleton instances, exactly 3 for singleton instances, and between 3 and 7 for

general instances.

4.3.1 Doubleton instances

We start with the case of doubleton instances in which all agents approve both fa-

cilities. Recall that for the single-facility location problem, Feldman et al. [2016]

showed that the best possible approximation ratio of 3 is achieved by the Me-
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dian mechanism, which places the facility at the candidate location closest to

the position reported by the median agent m. We can generalize this mechanism

by placing the two facilities at the two candidate locations that are closest to the

position reported by m; that is, F1 is placed at w1 = t(m) and F2 is placed at

w2 = s(m); see Mechanism 4. It is not hard to show that this is a strategyproof

mechanism; the median agent minimizes her cost and any other agent would

have to become the median agent to manipulate the outcome which could only

lead to placing the facilities farther away. We next show that the mechanism

achieves an approximation ratio of at most 3, but cannot do better; we remark

that this result has also been independently shown by Gai et al. [2024] when all

agents are of type-II in their model.

Mechanism 4:Median
Input: Reported positions of agents with doubleton preferences;
Output: Facility locations w = (w1, w2);
m← median agent in N1 ∩N2;
w1 ← t(m);
w2 ← s(m);

Theorem 4.3.1. For doubleton instances, the approximation ratio of the Median

mechanism is at most 3, and this is tight.

Proof. Let o = (o1, o2) be an optimal solution. Since the position of the median

agent minimizes the total distance of all agents, we have that

∑
i∈N

d(i,m) ≤
∑
i∈N

d(i, x)

for any point x of the line (including o1 and o2), and thus

2
∑
i∈N

d(i,m) ≤
∑
i∈N

d(i, o1) +
∑
i∈N

d(i, o2) = SC(o).
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Also, since t(m) and s(m) are the two closest candidate locations to m, we have

that d(m, t(m)) ≤ d(m,x) for any candidate location x, and there exists o ∈

{o1, o2} such that d(m, s(m)) ≤ d(m, o); let õ ∈ {o1, o2}\{o}. Therefore, using

these facts and the triangle inequality, we obtain

SC(w) =
∑
i∈N

(
d(i, t(m)) + d(i, s(m))

)
≤ 2

∑
i∈N

d(i,m) +
∑
i∈N

d(m, t(m)) +
∑
i∈N

d(m, s(m))

≤ SC(o) +
∑
i∈N

d(m, õ) +
∑
i∈N

d(m, o)

≤ SC(o) + 2
∑
i∈N

d(i,m) +
∑
i∈N

d(i, õ) +
∑
i∈N

d(i, o)

≤ 3 · SC(o).

The analysis of the mechanism is tight due to the following instance: There

are four candidate locations at 0, ε, 1 − ε, and 1, for some infinitesimal ε > 0.

There are also two agents positioned at 1/2 − ε and 1, respectively. Let the

first agent be the median one (in case the second agent is the median, there is

a symmetric instance). Then, the two facilities are placed at 0 and ε for a social

cost of approximately 3, whereas the optimal solution is to place the facilities

at 1 − ε and 1 for a social cost of approximately 1, leading to a lower bound of

nearly 3.

We next show a lower bound of 1 +
√
2 on the approximation ratio of any

strategyproof mechanism.

Theorem 4.3.2. For doubleton instances, the approximation ratio of any strate-

gyproof mechanism is at least 1 +
√
2− δ, for any δ > 0.
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Proof. Let ε > 0 be an infinitesimal. We will consider instances with four candi-

date locations, two in the ε-neighborhood of 0 (for example, −ε and ε) and two

in the ε-neighborhood of 2 (for example, 2− ε and 2+ ε). To simplify the calcu-

lations in the remainder of the proof, we will assume that there can be candidate

locations at the same point of the line, so that we have two candidate locations

at 0 and two at 2.

First, consider the following generic instance I with the aforementioned can-

didate locations: There is at least one agent at 0, at least one agent at 2, while

each remaining agent is arbitrarily located at a location from {0, 1− ε, 1+ ε, 2}.

We make the following observation: Any solution returned by a strategyproof

mechanism when given as input I must also be returned when given as input

any of the following two instances:

• J1: Same as I with the difference that an agent j1 has been moved from 0 to

1− ε.

• J2: Same as I with the difference that an agent j2 has been moved from 2 to

1 + ε.

Suppose towards a contradiction that this is not true for J1; similar arguments

can be used for J2. We consider the following cases:

• Both facilities are placed at 2 in I . If this is not done in J1, then j1 can

misreport her position as 1− ε in I so that the instance becomes J1 and at

least one facility moves to her true position 0.

• Both facilities are placed at 0 in I . If this is not done in J1, then j1 can

misreport her position as 0 in J1 so that the instance becomes I and both

facilities move to 0 which is closer to her true position 1−ε, a contradiction.
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A B

0 2

(a) The initial instance I1.

A B

0 21− ε

(b) The instance obtained after moving the agents in A from 0 to 1− ε in Case 1 and Case 3.

A B

0 21 + ε

(c) The instance obtained after moving the agents in B from 2 to 1 + ε in Case 2.

Figure 4.1: The instances used in the proof of the lower bound of 1 +
√
2 in terms of the social cost for doubleton instances

(Theorem 4.3.2). Set A consists of αn agents and set B consists of (1 − α)n agents; all of them approve both facilities.
Rectangles represent candidate locations; recall that we assume that there are two candidate locations arbitrarily close to 0
and two candidate locations arbitrarily close to 2.

• One facility is placed at 0 and the other is placed at 2 in I . Observe that it

cannot be the case that both facilities are placed at 0 in J1 since that would

mean that j1 can misreport her position in I as 1 − ε so that the instance

becomes J1 and both facilities move to her true position 0. So, the only

possibility of having a different solution in I and J1 is that both facilities

are placed at 2 in J1. But then, j1 can misreport her true position as 0 in J1

so that the instance becomes I and one of the facilities moves to 0 which is

closer to her true position.

Hence, the same solution must be computed by the mechanism when given I or

J1 as input.

Now, consider an arbitrary strategyproof mechanism and let α =
√
2 − 1;

note that α is such that 1+α
1−α = 1

α = 1 +
√
2. Let I1 be the following instance

with the aforementioned candidate locations: αn agents are at 0 and (1 − α)n

agents are at 2. See Figure 4.1a. We consider the following cases depending on

the solution returned by the mechanism when given I1 as input:
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Case 1: The mechanism places both facilities at 0. We consider the sequence of

instances obtained by moving one by one theαn agents that are positioned at 0 in

I1 to 1−ε; see Figure 4.1b. By the observation above, the mechanism must return

the same solution for any two consecutive instances of this sequence (essentially,

the first one is of type I and the second one is of type J1), which means that the

mechanism must eventually return the same solution for all of them. Therefore,

the mechanism must place both facilities at 0 in the last instance of this sequence,

where αn agents are at 1 − ε and the remaining (1 − α)n agents are at 2. This

solution has social cost 2αn + 4(1 − α)n = 2(2 − α)n. However, the solution

that places both facilities at 2 has social cost 2αn, leading to an approximation

ratio of 2
α − 1 > 1 +

√
2.

Case 2: The mechanism places both facilities at 2. Similarly to Case 1 above,

we now consider the sequence of instances obtained by moving one by one the

(1 − α)n agents that are positioned at 2 in I1 to 1 + ε; see Figure 4.1c. Again,

by the observation above, the mechanism must return the same solution for any

two consecutive instances of this sequence (the first one is of type I and the

second one is of type J2), which means that the mechanism must eventually

return the same solution for all of them. Therefore, the mechanism must place

both facilities at 2 in the last instance of this sequence, where αn agents are at

0 and the remaining (1 − α)n agents are at 1 + ε. This solution has social cost

4αn+2(1−α)n = 2(1+α)n. However, the solution that places both facilities at

0 has social cost 2(1−α)n, leading to an approximation ratio of 1+α
1−α = 1+

√
2.

Case 3: The mechanism places one facility at 0 and the other at 2. We consider

the same sequence of instances as in Case 1. This results in that the mechanism

must place one facility at 0 and the other at 2 when given as input the instance
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where αn agents are at 1− ε while the remaining (1−α)n agents are at 2. This

solution has social cost 2αn + 2(1 − α)n = 2n. However, the solution that

places both facilities at 2 has social cost 2αn, leading to an approximation ratio

of 1
α = 1 +

√
2.

4.3.2 Singleton instances

It is not hard to observe that our two-facility problem with singleton instances is

more general than the single-facility location problem studied by Feldman et al.

[2016]; indeed, there are singleton instances in which all agents approve the same

facility, and thus the location of the other facility does not affect the social cost

nor the approximation ratio. Consequently, we cannot hope to achieve an ap-

proximation ratio better than 3. For completeness, we include here a slightly

different proof of the lower bound of 3 for all strategyproof mechanisms with

instances that involve agents that approve different facilities. Recall that, for

singleton instances, N1 ∩N2 = ∅.

Theorem 4.3.3. For singleton instances, the approximation ratio of any strate-

gyproof mechanism is at least 3− δ, for any δ > 0.

Proof. Let ε > 0 be an infinitesimal and consider an instance I1 with two can-

didate locations at −1 and 1, and two agents positioned at ε > 0 such that one

of them approves F1 while the other approves F2; see Figure 4.2a. There are two

possible solutions, (−1, 1) or (1,−1). Without loss of generality, suppose that

(1,−1) is the solution chosen by an arbitrary strategyproof mechanism.

Next, consider instance I2, which is the same as I1, with the only difference

that the agent that approvesF2 is moved from ε to 1; see Figure 4.2b. To maintain

strategyproofness, the solution (1,−1)must be returned in I2 as well; otherwise,
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i, j

−1 1ε

(a) Instance I1.

i j

−1 1ε

(b) Instance I2.

Figure 4.2: The two instances used in the proof of the lower bound of 3 in terms of the social cost for the general case
(Theorem 4.3.3). Agent i approves F1 and agent j approves F2. Rectangles represent candidate locations.

the moving agent would have decreased her cost in I1 from 1 + ε to 1− ε. This

solution has social cost 1 − ε + 2 = 3 − ε, whereas the other solution (−1, 1)

has social cost just 1 + ε, leading to a lower bound of 3− δ, for any δ > 0.

Since there is an adaptation of the Median mechanism that achieves an ap-

proximation ratio of 3 for doubleton instances (see Theorem 4.3.1), one might

wonder if there is a variant that can do so for singleton instances as well. In par-

ticular, the natural extension of Median is to place F1 at the candidate location

closest to the (leftmost) median agent m1 of N1, and F2 at the available candidate

location closest to the (leftmost) median agent m2 of N2. While this seems like a

good idea at first glance, the following example shows that it fails to achieve the

desired approximation ratio bound.

Example 4.3.4. Consider an instance with two candidate locations at 0 and 2.

For some x ≥ 1, there are 2x+1 agents that approve only F1 such that x+1 of

them are located at 1− ε and the other x are located at 2. There are also 2x+ 1

agents that approve only F2 and are all located at 0. According to the definition

of the mechanism, F1 is placed at 0 (which is the candidate location closest to

the median agent in N1), and then F2 is placed at 2 as 0 is now occupied and 2

is available. This solution has social cost approximately (x + 2x) + 4x = 7x,

whereas the solution that places F1 at 2 and F2 at 0 has social cost approximately
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x, leading to an approximation ratio of nearly 7.

The issue with the aforementioned variant of the Median mechanism is the

order in which it decides to place the facilities. If it were to place F2 first and

F1 second then it would have made the optimal choice in the example. How-

ever, there is a symmetric example that would again lead to a lower bound of

approximately 7. So, the mechanism needs to be able to dynamically determine

the order in which it places F1 and F2. This brings us to the following idea: We

will again place each facility one after the other at the closest candidate location

to the median among the agents that approve it. However, the facility that is

placed first (and thus has priority in case the median agents of N1 and N2 are

closer to the same candidate location) is the one with stronger majority in terms

of the number of agents that approve it who are closer to the top choice of the

median agent rather than her second choice; ties are broken in favor of the fa-

cility that is approved by most agents, which is assumed to be F1 without loss

of generality. We refer to this mechanism as Proportional-Majority-Median;

see Mechanism 5 for a more formal description.

Mechanism 5: Proportional-Majority-Median
Input: Reported positions of agents with singleton preferences;
Output: Facility locations w = (w1, w2);
for j ∈ [2] do

mj ← median agent in Nj ;
Sj ← set of agents in Nj (weakly) closer to t(mj) than to s(mj);

if 2|S1| − |N1| ≥ 2|S2| − |N2| then
j ← 1;

else
j ← 2;

wj ← t(mj);
if t(m3−j) is available then

w3−j ← t(m3−j);
else

w3−j ← s(m3−j);
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We first show that this mechanism is strategyproof; it is not hard to observe

that this must be true as the mechanism is a composition of variants of two simple

strategyproof mechanisms (median plus majority voting).

Theorem 4.3.5. Proportional-Majority-Median is strategyproof.

Proof. Clearly, if t(m1) ̸= t(m2) then no agent has incentive to deviate as then

the facilities are placed at t(m1) and t(m2) independently of whether 2|Sj| −

|Nj| ≥ 2|S3−j| − |N3−j| or not for j ∈ [2]. So, it suffices to consider the case

where t(m1) = t(m2) and 2|Sj| − |Nj| ≥ 2|S3−j| − |N3−j| for some j ∈ [2],

leading to wj = t(mj) and w3−j = s(m3−j), solving ties in favor of F1.

• mj and any agent i ∈ Nj that is closer to t(mj) than to s(mj) have no

incentive to deviate as t(mj) is the best choice for them.

• Any agent i ∈ Nj that is closer to s(mj) than to t(mj) has no incentive to

deviate, as going closer to t(mj) can only increase the quantity 2|Sj| − |Nj|

and cannot change the outcome.

• m3−j and any agent i ∈ N3−j that is closer to t(m3−j) than to s(m3−j)

have no incentive to deviate as moving closer to s(m3−j) would decrease

the quantity 2|S3−j| − |N3−j| and would not change the outcome.

• Any agent i ∈ N3−j that is closer to s(m3−j) than to t(m3−j) has no incen-

tive to deviate as s(m3−j) is the best choice for her.

So, the mechanism is strategyproof.

Next, we show the upper bound of 3 on the approximation ratio.

Theorem 4.3.6. The approximation ratio of Proportional-Majority-Median is

at most 3.
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Proof. Let o = (o1, o2) be an optimal solution; without loss of generality, we can

assume that w1 < w2 and o1 < o2. We consider the following two cases:

Case 1: t(m1) ̸= t(m2). Then, we have that w1 = t(m1) and w2 = t(m2). By

the properties of the median, for any j ∈ [2], we have that

∑
i∈Nj

d(i,mj) ≤
∑
i∈Nj

d(i, x)

for any point x of the line, including oj . Also, by the definition of t(mj), we have

that d(mj, t(mj)) ≤ d(mj, x) for any candidate location x, again including oj .

Therefore, using these facts and the triangle inequality, we obtain

SC(w) =
∑
j∈[2]

∑
i∈Nj

d(i, t(mj))

≤
∑
j∈[2]

∑
i∈Nj

d(i,mj) +
∑
j∈[2]

∑
i∈Nj

d(mj, t(mj))

≤
∑
j∈[2]

∑
i∈Nj

d(i,mj) +
∑
j∈[2]

∑
i∈Nj

d(mj, oj)

≤ 2 ·
∑
j∈[2]

∑
i∈Nj

d(i,mj) +
∑
j∈[2]

∑
i∈Nj

d(i, oj)

≤ 3 ·
∑
j∈[2]

∑
i∈Nj

d(i, oj)

= 3 · SC(o).

Case 2: t(m1) = t(m2). We can without loss of generality focus on the case

where 2|S1| − |N1| ≥ 2|S2| − |N2|; the case where the inequality is the other

way around can be handled using similar arguments. So, w1 = t(m1) and w2 =

s(m2). Note that |S1| ≥ |N1|/2 and |S2| ≥ |N2|/2. If m2 is closer to s(m2)

than to o2, then we can repeat the arguments of Case 1 to obtain an upper bound
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of 3. So, it suffices to focus on the case where m2 is closer to o2 than to s(m2),

which means that o2 = t(m2), and thus o1 < w1 = o2 < w2. Now, observe the

following:

• Sincem1 is closer tow1 than to o1, we can move the agents in S1 at o1+w1

2 and

the remaining |N1| − |S1| agents at o1. Doing this, the approximation ratio

cannot decrease (as we move towards o1 and either towards w1 at the same

rate or away from w1), m1 remains the median agent of N1 since |S1| ≥

|N1|/2, and it is still true that t(m1) = w1.

• We have that m2 is closer to o2 than to w2. If m2 ≤ o2, then we can move the

agents of N2 as follows: each agent in S2 is moved at o2 and the remaining

|N2| − |S2| agents of N2 (who are closer to w2 than to o2) at o2+w2

2 . Doing

this, the approximation ratio cannot decrease, m2 remains the median agent

of N2 as |S2| ≥ |N2|/2, and clearly, it is still true that s(m2) = w2.

If m2 > o2, then we can move the agents of N2 as follows: |N2|/2 agents at

o2, |S2| − |N2|/2 agents at m2, and the remaining |N2| − |S2| agents (who

are closer to w2 than to o2) at o2+w2

2 . Doing this, the approximation ratio

cannot decrease, m2 remains the median agent of N2 as |S2| ≥ |N2|/2, and

clearly, it is still true that s(m2) = w2.

It is not hard to observe that the first case (m2 ≤ o2) is worse in terms of

approximation ratio than the second case (m2 > o2) as more agents are

exactly at their optimal location. So, it suffices to consider this one.

Based on the above, in the worst case, we have
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SC(w) = (|N1| − |S1|)(w1 − o1) + |S1|
w1 − o1

2

+ |S2|(w2 − o2) + (|N2| − |S2|)
w2 − o2

2
.

and

SC(o) = |S1|
w1 − o1

2
+ (|N2| − |S2|)

w2 − o2
2

.

Hence,

SC(w)

SC(o)
= 1 + 2 · (|N1| − |S1|)(w1 − o1) + |S2|(w2 − o2)

|S1|(w1 − o1) + (|N2| − |S2|)(w2 − o2)

≤ 1 + 2 · |N1| − |S1|+ |S2|
|S1|+ |N2| − |S2|

≤ 3,

where the last inequality holds as 2|S1| − |N1| ≥ 2|S2| − |N2| and the first

inequality follows since |S1| ≥ |N1|/2, |S2| ≥ |N2|/2, and w2− o2 ≤ o2− o1 =

w1 − o1; the last is true as s(m2) = w2 and thus m2, who is located at o2 = w1

in this worst-case instance, is closer to w2 than to o1.

4.3.3 General instances

To tackle the general case, we consider the following mechanism. Let j∗ =

argmaxj∈[2] |Nj \N3−j|.

• If |N1 ∩ N2| ≥ |Nj∗ \ N3−j∗|, then run the Median mechanism with input

the agents of N1 ∩N2 (ignoring all other agents).

• Otherwise, choosewj∗ to be the candidate location closest to the medianmj∗
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of Nj∗ \ N3−j∗ (we slightly abuse notation here as mj∗ would normally be

the median of Nj∗), and w3−j∗ to be the available candidate location closest

to the median m3−j∗ of N3−j∗ ; we refer to this mechanism as Alternate-

Median.

Note that Median was shown to be strategyproof in Section 4.3.1. As for

Alternate-Median, it is strategyproof since agents in Nj∗ \N3−j∗ have no in-

centive to misreport and affect the choice of mj∗ and wj∗ , while agents in N3−j∗

cannot affect the choice of wj∗ and have no incentive to misreport and affect the

choice of m3−j∗ and w3−j∗ ; any misreport can only push the median, and the cor-

responding nearest location, farther away. Since the two cases are independent

(the cardinalities of the sets of agents with different approval preferences are

known), the mechanism combining Median and Alternate-Median is strate-

gyproof.

We will bound the approximation ratio of the mechanism with the following

two theorems which bound the approximation ratio of the mechanism in the two

cases. Without loss of generality, to simplify our notation, let j∗ = 1.

Theorem 4.3.7. For general instances with |N1 ∩ N2| ≥ |N1 \ N2|, the approxi-

mation ratio of Median (mechanism 4) is at most 7.

Proof. By Theorem 4.3.1, we have that

∑
i∈N1∩N2

∑
j∈[2]

d(i, wj) ≤ 3 ·
∑

i∈N1∩N2

∑
j∈[2]

d(i, oj).

For the agents in N1 \ N2, by the triangle inequality and since |N1 \ N2| ≤
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|N1 ∩N2|, we have

∑
i∈N1\N2

d(i, w1) ≤
∑

i∈N1\N2

d(i, o1) + |N1 \N2| · d(w1, o1)

≤
∑

i∈N1\N2

d(i, o1) +
∑

i∈N1∩N2

d(w1, o1)

≤
∑

i∈N1\N2

d(i, o1) +
∑

i∈N1∩N2

(
d(i, w1) + d(i, o1)

)
.

Similarly, for the agents in N2 \N1, since |N2 \N1| ≤ |N1 \N2| ≤ |N1 ∩N2|,

we have

∑
i∈N2\N1

d(i, w2) ≤
∑

i∈N2\N1

d(i, o2) +
∑

i∈N1∩N2

(
d(i, w2) + d(i, o2)

)
.

By combining these, we have

SC(w) ≤ 3 · SC(o) +
∑

i∈N1∩N2

∑
j∈[2]

(
d(i, wj) + d(i, oj)

)
≤ 3 · SC(o) + 4 ·

∑
i∈N1∩N2

∑
j∈[2]

d(i, oj)

≤ 7 · SC(o).

Therefore, the approximation ratio is at most 7.

Theorem 4.3.8. For general instances with |N1 ∩ N2| ≤ |N1 \ N2|, the approxi-

mation ratio of Alternate-Median is at most 7.

Proof. We consider the following cases:

Case 1: t(m1) ̸= t(m2). Then, we have that w1 = t(m1) and w2 = t(m2). By
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the properties of the median, we have that

∑
i∈N1\N2

d(i,m1) ≤
∑

i∈N1\N2

d(i, x)

and ∑
i∈N2

d(i,m2) ≤
∑
i∈N2

d(i, x)

for any point x of the line, including o1 and o2. Also, by the definition of t(mj)

for j ∈ [2], we have that d(mj, wj) ≤ d(mj, x) for any candidate location x, in-

cluding oj . Therefore, using these facts and the triangle inequality, we bound the

contribution of the different types of agents to the social cost of w. In particular,

for the agents of N1 \N2, we have

∑
i∈N1\N2

d(i, w1) ≤
∑

i∈N1\N2

(
d(i,m1) + d(m1, w1)

)

≤
∑

i∈N1\N2

(
d(i,m1) + d(m1, o1)

)

≤
∑

i∈N1\N2

(
2 · d(i,m1) + d(i, o1)

)
≤ 3 ·

∑
i∈N1\N2

d(i, o1).

Similarly, for the agents of N2, we have

∑
i∈N2

d(i, w2) ≤ 3 ·
∑
i∈N2

d(i, o2).

For the agents of N1∩N2 in terms of w1, using the triangle inequality, we obtain

∑
i∈N1∩N2

d(i, w1) ≤
∑

i∈N1∩N2

d(i, o1) + |N1 ∩N2| · d(w1, o1)
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≤
∑

i∈N1∩N2

d(i, o1) +
∑

i∈N1\N2

d(w1, o1)

=
∑

i∈N1∩N2

d(i, o1) +
∑

i∈N1\N2

(
d(i, w1) + d(i, o1)

)
≤

∑
i∈N1∩N2

d(i, o1) + 4 ·
∑

i∈N1\N2

d(i, o1).

By putting everything together, we obtain an upper bound of 7.

Case 2: t(m1) = t(m2). In this case, we have that w1 = t(m1) = t(m2) and

w2 = s(m2). Clearly, if d(m2, w2) ≤ d(m2, o2), we get an upper bound of

7, similarly to Case 1. So, we can assume that d(m2, w2) > d(m2, o2), which

combined with the fact that w2 = s(m2), implies that o2 = t(m2) = w1. For

the agents in N1 \N2, since w1 = t(m1), we have a 3-approximation guarantee

(using the same arguments as above):

∑
i∈N1\N2

d(i, w1) ≤ 3 ·
∑

i∈N1\N2

d(i, o1).

For the agents in N1 ∩N2 in terms of w1, similarly to Case 1, we have

∑
i∈N1∩N2

d(i, w1) ≤
∑

i∈N1∩N2

(
d(i, o1) + d(o1, w1)

)
=

∑
i∈N1∩N2

d(i, o1) + |N1 ∩N2| · d(o1, w1).

For the agents in N2 = (N2 \N1)∪ (N1∩N2) in terms of w2, since d(m2, w2) ≤

d(m2, o1), w1 = o2, and m2 minimizes the total distance of the agents in N2 from

any other point of the line, by the triangle inequality, we have

∑
i∈N2

d(i, w2) ≤
∑
i∈N2

(
d(i,m2) + d(m2, w2)

)
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≤
∑
i∈N2

(
d(i,m2) + d(m2, o1)

)
≤
∑
i∈N2

(
d(i,m2) + d(m2, o2) + d(o1, o2)

)
≤
∑
i∈N2

(
2d(i,m2) + d(i, o2) + d(o1, w1)

)
≤ 3 ·

∑
i∈N2

d(i, o2) + |N2| · d(o1, w1).

So, by putting everything together and using the fact that |N2| = |N2 \ N1| +

|N2 ∩N1|, we have

SC(w) ≤ 3 ·
∑

i∈N1\N2

d(i, o1) + 3 ·
∑
i∈N2

d(i, o2) +
∑

i∈N1∩N2

d(i, o1)

+ |N1 ∩N2| · d(o1, w1) + |N2| · d(o1, w1)

≤ 3 · SC(o) +
(
|N2 \N1|+ 2 · |N1 ∩N2|

)
· d(o1, w1).

Sincew1 = t(m1), half of the agents inN1\N2 suffer a cost of at least d(o1, w1)/2

in the optimal solution. Also, all the agents of N1 ∩ N2 suffer a cost of at least

d(o1, o2)/2 = d(o1, w1)/2, and thus

SC(o) ≥
(
|N1 \N2|

4
+
|N1 ∩N2|

2

)
d(o1, w1).

Hence, since |N2 \N1| ≤ |N1 \N2|, the approximation ratio is at most

3 + 4 · |N2 \N1|+ 2|N1 ∩N2|
|N1 \N2|+ 2|N1 ∩N2|

≤ 7.

Consequently, the approximation ratio is overall at most 7.

Using Theorem 4.3.7 and Theorem 4.3.8, we obtain the following result.
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Corollary 4.3.9. For general instances, there is a strategyproof mechanism with

approximation ratio at most 7.

4.4 Max cost

In this section, we turn our attention to the max cost objective for which we

show that the best possible approximation ratio of strategyproof mechanisms is

between 2 and 3 for doubleton instances, and exactly 3 for singleton and general

preferences.

4.4.1 Doubleton instances

For the upper bound, we consider a simple mechanism that places both facilities

at the candidate locations that are closest to the leftmost agent ℓ. We refer to

this mechanism as Leftmost; see Mechanism 6. It is not hard to show that this

mechanism is strategyproof and that it achieves an approximation ratio of 3.

Mechanism 6: Leftmost
Input: Reported positions of agents;
Output: Facility locations w = (w1, w2) ;
ℓ← leftmost agent in N1 ∩N2;
w1 ← t(ℓ);
w2 ← s(ℓ);

Theorem 4.4.1. For doubleton instances, Leftmost is strategyproof and achieves

an approximation ratio of at most 3.

Proof. For the strategyproofness of the mechanism, consider any agent i; recall

that i approves both facilities. To affect the outcome, agent i would have report

a position that lies at the left of ℓ. However, changing the leftmost agent position
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can only lead to placing the facilities at locations farther away from i, and hence

i has no incentive to misreport.

For the approximation ratio, let o = (o1, o2) be an optimal solution. Clearly,

there exist x ∈ {o1, o2} and y ∈ {o1, o2} \ {x} such that d(ℓ, w1) ≤ d(ℓ, x) and

d(ℓ, w2) ≤ d(ℓ, y). Let i be the (rightmost) agent who determines the max cost

of the mechanism. Using the triangle inequality, we have

MC(w) = d(i, w1) + d(i, w2)

≤
(
d(i, x) + d(ℓ, x) + d(ℓ, w1)

)
+

(
d(i, y) + d(ℓ, y) + d(ℓ, w2)

)
≤ 3max

j∈N

(
d(j, x) + d(j, y)

)
= 3 ·MC(o).

Therefore, the approximation ratio is at most 3.

We next show a slightly weaker lower bound of 2 on the approximation ratio

of any strategyproof mechanism.

Theorem 4.4.2. For doubleton instances, the approximation ratio of any determin-

istic strategyproof mechanism is at least 2− δ, for any δ > 0.

Proof. Consider the following instance I1: There are three candidate locations at

−1, 0, and 1 and two agents (that approve both facilities) positioned at −ε and

ε, respectively, for some infinitesimal ε > 0. Since there are two facilities to be

located, at least one of them must be placed at−1 or 1; see Figure 4.3a. Without

loss of generality, let us assume that a facility is placed at 1.

Now, consider the instance I2, which is the same as I1 with the only difference

that the agent at −ε has been moved to −1; see Figure 4.3b. To maintain strate-
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i j

−1 10 ε−ε

(a) Instance I1.

i j

−1 10 ε

(b) Instance I2.

Figure 4.3: The two instances used in the proof of the lower bound of 2 in terms of the max cost for doubleton instances
(Theorem 4.4.2). Both agents i and j approve both facilities. Rectangles represent candidate locations.

gyproofness, a facility must be placed at 1 in I2 as well; otherwise, the agent at

−ε in I1 would misreport her location as −1 to affect the outcome and decrease

her cost. So, in I2, any strategyproof mechanism either places one facility at −1

and one facility at 1, for a max cost of 2, or one facility at 0 and one facility at

1, for a max cost of 3. However, placing one facility at −1 and one facility at 0

leads to max cost 1+ ε, and thus an approximation ratio of at least 2− δ, for any

δ > 0.

4.4.2 Singleton instances

As argued at the beginning of Section 4.3.2, instances in which all agents ap-

prove one of the facilities are equivalent to having just this one facility to place.

Consequently, by the work of Tang et al. [2020b], we cannot hope to achieve an

approximation ratio better than 3 for singleton instances. For completeness, we

include a simple proof of this lower bound here.

Theorem 4.4.3. For singleton instances, the approximation ratio of any strate-

gyproof mechanism is at least 3− δ, for any δ > 0.

Proof. Consider the following instance I1: There are two candidate locations at

−1 and 1 and two agents approving only F1 positioned at−ε and ε, respectively,

for some infinitesimal ε > 0; see Figure 4.4a. Without loss of generality, we can
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i j

−1 1ε−ε

(a) Instance I1.

i j

−2 −1 1ε

(b) Instance I2.

Figure 4.4: The two instances used in the proof of the lower bound of 3 in terms of the max cost for singleton instances
(Theorem 4.4.3). Both agents i and j approve facility F1. Rectangles represent candidate locations.

assume that F1 is placed at 1 and F2 at −1.

Now, consider the instance I2, which is the same as I1 with the only difference

that the agent at −ε has been moved to −2; see Figure 4.4b. To maintain strate-

gyproofness, F1 must be placed at 1 in I2 as well; otherwise, the agent at −ε in

I1 would misreport her position as −2 to decrease her cost from 1 + ε to 1− ε.

This leads to a max cost of 3, when a max cost of 1 + ε is possible by placing F1

at −1. Therefore, the approximation ratio is at least 3− δ, for any δ > 0.

A first idea towards an upper bound could be to place F1 at the closest can-

didate location to the leftmost agent ℓ1 of N1, and F2 at the closest available

candidate location to an agent of N2, such as the leftmost agent ℓ2 or the right-

most agent r2. While these mechanisms are clearly strategyproof, it is not hard

to observe that they cannot achieve a good enough approximation ratio.

Example 4.4.4. If we place F1 at t(ℓ1) and F2 at t(r2) or s(r2) depending on

availability, then consider the following instance: There are three candidate lo-

cations at 0, 2, and 6. There is an agent ℓ1 that approves F1 at 1 + ε, an agent

ℓ2 that approves F2 at 1, and another agent r2 that approves F2 at 3 + ε, for

some infinitesimal ε > 0. So, we place F1 at 2 and F2 at 6 for a max cost of 5

(determined by r2). On the other hand, we could place F1 at 0 and F2 at 2 for a

max cost of approximately 1, leading to an approximation ratio of 5. Clearly, if
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we chose ℓ2 instead of r2 to determine the location of F2, there is a symmetric

instance leading again to the same lower bound.

The above example illustrates that it is not always a good idea to choose a

priori ℓ2 or r2 to determine where to place F2, especially when the closest can-

didate location to them might not be available after placing F1. Instead, we need

to carefully decide whether ℓ2 or r2 or neither of them is the best one to choose

where to place F2. We make this decision as follows: We “ask” ℓ2 and r2 to “vote”

over two candidate locations; the candidate location L that is the closest at the

left of t(ℓ1) (where F1 is placed) and the candidate location R that is the closest

at the right of t(ℓ1). If ℓ2 and r2 “agree”, then they are both on the same side of

the midpoint of the interval defined by L and R, and thus depending on whether

they are on the left side (agree on L) or the right side (agree on R), we allow r2

or ℓ2, respectively, to make the choice of where to place F2. If they “disagree”,

they are on different sides of the interval’s midpoint, so neither ℓ2 nor r2 should

make a choice of where to place F2; in this case, the closest of L and R to t(ℓ1)

is a good candidate location to place F2. This idea is formalized in Mechanism 7,

which we call Vote-for-Priority.

We first show that Vote-for-Priority is strategyproof.

Theorem 4.4.5. For singleton instances, Vote-for-Priority is strategyproof.

Proof. Observe that no agent in N1 has incentive to misreport as facility F1 is

located at the closest candidate location to ℓ1; indeed, ℓ1 is content while no

agent would like to misreport to become the leftmost agent of N1 as then F1

will either remain at the same location or could be moved farther away. For the

agents of N2, we consider each case separately depending on which is the true

profile. Denote by w2 the location of F2 when the agents report their positions
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Mechanism 7: Vote-for-Priority
Input: Reported positions of agents with singleton preferences;
Output: Facility locations w = (w1, w2);
ℓ1 ← leftmost agent in N1;
ℓ2 ← leftmost agent in N2;
r2 ← rightmost agent in N2;
w1 ← t(ℓ1);
L← closest candidate location at the left of w1;
R← closest candidate location at the right of w1;
// (case 1) ℓ2 and r2 agree that L is closer, so r2 gets to choose
if ℓ2 and r2 are both closer to L than to R then

if t(r2) is available then
w2 ← t(r2);

else
w2 ← s(r2);

// (case 2) ℓ2 and r2 agree that R is closer, so ℓ2 gets to choose
else if ℓ2 and r2 are both closer to R than to L then

if t(ℓ2) is available then
w2 ← t(ℓ2);

else
w2 ← s(ℓ2);

// (case 3) ℓ2 and r2 disagree, so choose the closest of L and R to w1
else

w2 ← argminx∈{L,R}{|w1 − x|};

truthfully.

(Case 1) Clearly, r2 has no incentive to deviate. Consider an agent i ∈ N2, other

than r2, that deviates and misreports a position g.

• If g ≤ r2, then the location F2 is still w2.

• If g ∈
(
r2,

L+R
2

]
, agent i becomes the rightmost agent but we are still in Case

1. So, the location of F2 becomes the closest available location to g, which is

either w2 or some candidate location at the right of w2. This means that the

cost of i either remains the same or increases, and thus i has no incentive to

misreport such a position.

• If g > L+R
2 , agent i becomes the rightmost agent and the location of F2 is
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determined by Case 3, i.e., becomes y = argminx∈{L,R}{|w1−x|}. Since the

true rightmost agent r2 is closer to L than to R, it holds that w2 ≤ L ≤ y.

This again means that the cost of i either remains the same or increases, and

thus i has no incentive to misreport such a position.

(Case 2) This is symmetric to Case 1.

(Case 3) Observe that any deviation that still leads to Case 3 does not affect the

outcome of the mechanism as w2 = argminx∈{L,R}{|w1− x|}. Hence, no agent

i ∈ N2\{ℓ2, r2} can affect the outcome as any possible misreported position can

either be at the left of ℓ2 or the right of r2, which means that we are still in Case 3.

Now, let us assume that r2 misreports so that the location of F2 is determined by

Case 1. Since, in that case, all agents are closer to L than to R, and there are no

other available candidate locations in the interval [L,R] (since w1 is occupied by

F1), F2 can only be placed at some location y ≤ L, which is clearly not better for

r2. A symmetric argument for ℓ2 shows that again no agent can misreport.

Next, we show that Vote-for-Priority achieves an approximation ratio of at

most 3.

Theorem 4.4.6. For singleton instances, the approximation ratio of

Vote-for-Priority is at most 3.

Proof. If the max cost of the mechanism is due to an agent i ∈ N1, the choice

w1 = t(ℓ1) implies that d(ℓ1, w1) ≤ d(ℓ1, o1), and thus, by the triangle inequal-

ity, we have that

MC(w) = d(i, w1)

≤ d(i, o1) + d(ℓ1, o1) + d(ℓ1, w1)
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≤ d(i, o1) + 2 · d(ℓ1, o1)

≤ 3 ·MC(o).

So, we now focus on the case where the max cost of the mechanism is determined

by an agent in N2 and we may assume that w2 ̸= o2 as otherwise the claim holds

trivially. Due to the symmetry of Case 1 and Case 2, it suffices to bound the

approximation ratio in Case 1 and in Case 3. In any of these cases, if there is an

agent of N2 that is closer to w2 than to o2, then, similarly to above, by applying

the triangle inequality, we can again show that the approximation ratio is at most

3. Thus, we will assume that all agents of N2 are closer to o2 than to w2, which

means that w1 = o2. To see that, note that, in Case 1, o2 has to be unavailable

as it must hold t(r2) = o2, while in Case 3, w2 is the closest candidate location

among L and R to w1 (and thus ℓ2 cannot be at the left of L if L is chosen and

r2 cannot be at the right of R if R is chosen). Due to this, o1 cannot be w1 and

we have the following two possibilities:

• If o1 ≤ L, then d(ℓ1, o1) ≥ d(ℓ1, L).

• If o1 ≥ R, then d(ℓ1, o1) ≥ d(ℓ1, R).

(Case 1) Since t(r2) = w1 = o2 and w2 is the closest available candidate location

to r2, it has to be the case that w2 = L. Let i ∈ {ℓ2, r2} be the agent of N2 that

gives the max cost.

• If o1 ≤ L, then due to the triangle inequality, and the facts that o2 = w1 and

d(ℓ1, o1) ≥ d(ℓ1, L), we have

MC(w) = d(i, L) ≤ d(i, o2) + d(ℓ1, o2) + d(ℓ1, L)
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= d(i, o2) + d(ℓ1, w1) + d(ℓ1, L)

≤ d(i, o2) + d(ℓ1, o1) + d(ℓ1, o1)

≤ 3 ·MC(o).

• If o1 ≥ R, then due to the triangle inequality, and the facts that o2 = w1,

d(i, L) ≤ d(i, R) and d(ℓ1, o1) ≥ d(ℓ1, R), we have

MC(w) = d(i, L) ≤ d(i, R) ≤ d(i, o2) + d(ℓ1, o2) + d(ℓ1, R)

= d(i, o2) + d(ℓ1, w1) + d(ℓ1, R)

≤ d(i, o2) + d(ℓ1, o1) + d(ℓ1, o1)

≤ 3 ·MC(o).

(Case 3) Without loss of generality, let us assume that w2 = R; the case where

w2 = L is symmetric. So, d(R,w1) = d(R, o2) ≤ d(L, o2) = d(L,w1). Since

r2 ≤ R, the max cost of the mechanism is determined by agent ℓ2.

• If o1 ≥ R, then due to the triangle inequality, and the facts that w1 = o2 and

d(ℓ1, o1) ≥ d(ℓ1, R), we have

MC(w) = d(ℓ2, R) ≤ d(ℓ2, o2) + d(ℓ1, o2) + d(ℓ1, R)

= d(ℓ2, o2) + d(ℓ1, w1) + d(ℓ1, R)

≤ d(ℓ2, o2) + d(ℓ1, o1) + d(ℓ1, o1)

≤ 3 ·MC(o).

• If o1 ≤ L, then due to the triangle inequality, and the facts that d(R, o2) ≤
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d(L, o2), w1 = o2 and d(ℓ1, o1) ≥ d(ℓ1, L), we have

MC(w) = d(ℓ2, R) ≤ d(ℓ2, o2) + d(R, o2)

≤ d(ℓ2, o2) + d(L, o2)

≤ d(ℓ2, o2) + d(ℓ1, o2) + d(ℓ1, L)

= d(ℓ2, o2) + d(ℓ1, w1) + d(ℓ1, L)

≤ d(ℓ2, o2) + d(ℓ1, o1) + d(ℓ1, o1)

≤ 3 ·MC(o).

This completes the proof.

4.4.3 General instances

To tackle the general case, we consider a mechanism that runs Leftmost in

case the instance consists of at least one agent with doubleton preference, and

Vote-for-Priority in case the instance is singleton. It is not hard to observe that

Leftmost is strategyproof even when there are agents with singleton preference;

its decision is fully determined by the leftmost agent with doubleton preference

and the input of any other agent is ignored. Hence, the mechanism is overall

strategyproof. We will now show that Leftmost still achieves an approximation

ratio of at most 3when it is applied, which will allow us to show an overall bound

of 3.

Theorem 4.4.7. For instances with at least one agent with doubleton preference,

the approximation ratio of Leftmost is at most 3.

Proof. We consider cases depending on the preference of the agent i that deter-

mines the max cost of the mechanism. Let ℓ be the leftmost agent in N1 ∩ N2,
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and recall that w1 = t(ℓ) and w2 = s(ℓ).

(Case 1) The max cost is determined by an agent i ∈ N1 \ N2. Then, by the

triangle inequality and since d(ℓ, w1) ≤ d(ℓ, o2), we have

MC(w) = d(i, w1) ≤ d(i, o1) + d(ℓ, o1) + d(ℓ, w1)

≤ d(i, o1) + d(ℓ, o1) + d(ℓ, o2)

≤ 2 ·MC(o).

(Case 2) The max cost is determined by an agent i ∈ N2 \N1. Since w2 = s(ℓ),

there exists x ∈ {o1, o2} such that d(ℓ, w2) ≤ d(ℓ, x) ≤ MC(o). Hence, by the

triangle inequality, we have

MC(w) = d(i, w2) ≤ d(i, o2) + d(ℓ, o2) + d(ℓ, w2) ≤ 3 ·MC(o).

(Case 3) The max cost is determined by an agent i ∈ N1 ∩N2. Then, following

the proof of Theorem 4.4.1 for doubleton instances, we can show an upper bound

of 3.

By combining Theorem 4.4.7 and Theorem 4.4.6, we obtain the following result.

Corollary 4.4.8. For general instances, there is a strategyproof mechanism with

approximation ratio at most 3.

4.5 Allowing same facility locations

In this last section we explore the simpler model in which the two facilities can be

placed at the same candidate location. We show tight bounds on the approxima-

tion ratio of deterministic mechanisms for doubleton and general instances (we
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Social cost Max cost
Doubleton 1 +

√
2 2

General 3 3

Table 4.2: Overview of the tight bounds for the model where the two facilities are allowed to be placed at the same candidate
location.

will not consider singleton instances separately as the approximation ratio turns

out to be exactly the same as for general instances). Our results for this model

are summarized in Table 4.2.

All the mechanisms we will consider in this section place the facilities at the

closest locations to some fixed agents that approve them. In particular, given

the positions reported by the agents, for some qj ∈ [n], we place each facility

Fj at t(ij), where ij is the qj-th ordered agent in Nj . It is not hard to verify

that all such mechanisms are strategyproof. Indeed, to change the outcome of

the mechanism, an agent in Nj would have to report a position that changes the

qj-th ordered agent in Nj , but this would mean that the facilities that this agent

approves might move farther away from the true position of the agent.

Before we continue we remark that the fact that facilities can be placed at

the same location is crucial for our mechanisms to be strategyproof since this

eliminates possible misreports by the qj-th ordered agents who determine where

the facilities are placed. To be more specific, suppose that we try to adapt this

mechanism for the main model that we considered in the previous sections in

which the two facilities can only be placed at different locations. Then, in case

t(i1) = t(i2) we would have to resolve this collision somehow, for example by

giving priority to one of these agents, say i1, and placing F1 at w1 = t(i1) and

thenF2 at some other locationw2 that is a function of i2 such as s(i2). However, if

i1 approves both facilities, it might be the case that w2 is not close to her position,
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and thus she prefers to misreport that she is closer to s(i1) rather than t(i1),

leading to F1 being placed at s(i1) and then F2 at t(i2) = t(i1). Such misreports

cannot happen when facilities are allowed to be placed at the same location.

4.5.1 Social cost

We start with the case of doubleton instances for which we show a tight bound

of 1+
√
2. The lower bound follows by observing that the proof of Theorem 4.3.2

holds even when facilities are allowed to be placed at the same location; in par-

ticular, in the proof of that theorem we made the simplification that there are

two candidate location at 2 and −2, thus having capacity for both facilities. For

the upper bound, first observe that the Median mechanism from Section 4.3.1

can also be adapted to the current model (by placing both facilities to the loca-

tion closest to the median agent), but it is not hard to show that it still cannot

achieve an approximation ratio better than 3. To improve upon the bound of

3, we consider a family of mechanisms, which, for a parameter α ∈ (0, 1/2),

place one facility at the candidate location closest to the position reported by the

αn-leftmost agent, and the other facility at the candidate location closest to the

position reported by the (1−α)n-leftmost agent2. We refer to such mechanisms

as α-Statistic; see Mechanism 8 for a description. It is not hard to observe that,

for any α ∈ (0, 1/2), the mechanism is strategyproof since it falls within the

class of mechanisms we described earlier with q1 = αn and q2 = (1− α)n. We

now focus on bounding the approximation ratio.

Theorem 4.5.1. For doubleton instances, the approximation ratio of
2Formally, it would be the ⌈αn⌉-leftmost and the ⌈(1 − α)n⌉-leftmost agent, respectively, and we require that ⌈αn⌉ < ⌈(1 − α)n⌉.

This can be guaranteed by creating an identical number of copies for each agent and running the mechanism on the modified instance; the
approximation ratio for the modified instance is exactly the same as for the original instance. We omit the ceilings to make the exposition
clearer.
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Mechanism 8: α-Statistic
Input: Reported positions of agents with doubleton preferences;
Output: Facility locations w = (w1, w2);
i← αn-leftmost agent;
j ← (1− α)n-leftmost agent;
w1 ← t(i);
w2 ← t(j);

(√
2− 1

)
-Statistic is at most 1 +

√
2.

Proof. We have α =
√
2 − 1 and note that 1+α

1−α = 1
α = 1 +

√
2. If o is a

location that minimizes the total distance from the agent positions, then for any

x and y such that o ≤ x ≤ y or y ≤ x ≤ o, it holds that
∑

i∈N d(i, o) ≤∑
i∈N d(i, x) ≤

∑
i∈N d(i, y). Hence, since the individual cost of each agent is

the sum of distances from both facilities, there exists an optimal solution o =

(o1, o2) such that o1 = o2 = o. Without loss of generality, we assume that

w1 ≤ w2, and it must be the case that w1 ̸= o or w2 ̸= o since otherwise the

approximation ratio would be 1. We consider the following cases:

Case 1: w1 < o = w2 (the case w1 = o < w2 is symmetric).

By the definition of the mechanism, there is a set S of αn agents that are closer

to w1 than to o. Hence, we have

SC(w) =
∑
i∈S

d(i, w1) +
∑
i̸∈S

d(i, w1) +
∑
i∈N

d(i, o)

≤
∑
i∈S

d(i, o) +
∑
i̸∈S

(
d(i, o) + d(w1, o)

)
+
∑
i∈N

d(i, o)

= SC(o) + (1− α)n · d(w1, o)
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and

SC(o) ≥ 2 · αn · d(w1, o)

2
= αn · d(w1, o).

Therefore, the approximation ratio is at most 1 + 1−α
α = 1

α = 1 +
√
2.

Case 2: w1 < o < w2.

By the definition of the mechanism, there is a set S1 of αn agent that are closer

to w1 than to o, i.e., d(i, w1) ≤ d(i, o) for every i ∈ S1, and thus d(i, o) ≥

d(o, w1)/2. Similarly, there is another set S2 of αn agents that are closer to w2

than to o, i.e., d(i, w2) ≤ d(i, o) for every i ∈ S2, and thus d(i, o) ≥ d(o, w2)/2.

By combining these facts with the triangle inequality, we have

SC(w) =
∑
i∈S1

(
d(i, w1) + d(i, w2)

)
+
∑
i∈S2

(
d(i, w1) + d(i, w2)

)
+

∑
i̸∈S1∪S2

(
d(i, w1) + d(i, w2)

)
≤
∑
i∈S1

(
2 · d(i, o) + d(o, w2)

)
+
∑
i∈S2

(
2 · d(i, o) + d(o, w1)

)
+

∑
i ̸∈S1∪S2

(
2 · d(i, o) + d(o, w1) + d(o, w2)

)
= SC(o) + (1− α)n

(
d(o, w1) + d(o, w2)

)
.

We can also bound the optimal social cost as follows:

SC(o) ≥ 2 · αnd(o, w1)

2
+ 2 · αnd(o, w2)

2
= αn

(
d(o, w1) + d(o, w2)

)

Consequently, the approximation ratio is at most 1 + 1−α
α = 1/α = 1 +

√
2.

Case 3: o < w = w1 = w2 (the case w1 = w2 = w < o is symmetric).
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By the definition of the mechanism, there is a set S of (1− α)n agents that are

closer to w than to o. Hence, by the triangle inequality, we have

SC(w) = 2 ·
∑
i∈S

d(i, w) + 2 ·
∑
i̸∈S

d(i, w)

≤ 2 ·
∑
i∈S

d(i, o) + 2 ·
∑
i ̸∈S

(
d(i, o) + d(o, w)

)
= SC(o) + 2αn · d(o, w).

and

SC(o) ≥ 2 · (1− α)n · d(o, w)
2

= (1− α)n · d(o, w)

Therefore, the approximation ratio is at most 1 + 2α
1−α = 1+α

1−α = 1 +
√
2.

Case 4: o < w1 < w2 (the case w1 < w2 < o is symmetric).

Clearly, since o < w1 < w2, d(o, w2) = d(o, w1) + d(w1, w2). By the definition

of the mechanism, there is a set S of (1− α)n agents who are closer to w1 than

to o, i.e., d(i, w1) ≤ d(i, o) for every i ∈ S, and thus d(i, o) ≥ d(o, w1)/2. Also,

there is a set T ⊂ S of αn agents who are closer to w2 than to w1, i.e., d(i, w2) ≤

d(i, w1) ≤ d(i, o) for every i ∈ T , and thus d(i, o) ≥ d(o, w1) + d(w1, w2)/2.

By combining these two facts with the triangle inequality, we have

SC(w) =
∑
i̸∈S

(
d(i, w1) + d(i, w2)

)
+
∑
i∈S\T

(
d(i, w1) + d(i, w2)

)

+
∑
i∈T

(
d(i, w1) + d(i, w2)

)
≤
∑
i̸∈S

(
2 · d(i, o) + d(o, w1) + d(o, w2)

)
+
∑
i∈S\T

(
2 · d(i, o) + d(o, w2)

)
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+ 2 ·
∑
i∈T

d(i, o)

= SC(o) + α

(
d(o, w1) + d(o, w2)

)
+ (1− 2α)d(o, w2)

= SC(o) + αd(o, w1) + (1− α)d(o, w2)

= SC(o) + d(o, w1) + (1− α)d(w1, w2).

For the optimal social cost, we have

SC(o) ≥ 2|S \ T |d(o, w1)

2
+ 2|T |

(
d(o, w1) +

d(w1, w2)

2

)
= d(o, w1) + αd(w1, w2).

Hence, the approximation ratio is at most 1 + 1−α
α = 1/α = 1 +

√
2.

For general instances we show a tight bound of 3. The lower bound follows

by the fact that when all agents have singleton preferences, then the problem re-

duces to two independent single-facility location problems, and the best possible

approximation ratio for each of them is 3 [Feldman et al., 2016]; alternatively, one

can verify that the proof of Theorem 4.3.3 holds even when the facilities can be

placed at the same location. For the upper bound, we consider the Two-Medians

mechanism, which independently places each facility Fj at the location closest

to the median agent mj ∈ Nj .

Theorem 4.5.2. For general instances, the approximation ratio of Two-Medians

is at most 3.

Proof. Using the fact that the median agent mj minimizes the total distance of all
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the agents in Nj , the fact that wj = t(mj), and the triangle inequality, we have

SC(w) =
∑
j∈[2]

∑
i∈Nj

d(i, wj)

≤
∑
j∈[2]

∑
i∈Nj

(
d(i,mj) + d(mj, wj)

)

≤
∑
j∈[2]

∑
i∈Nj

(
d(i,mj) + d(mj, oj)

)

≤
∑
j∈[2]

∑
i∈Nj

(
2 · d(i,mj) + d(i, oj)

)
≤ 3 ·

∑
j∈[2]

∑
i∈Nj

d(i, oj),

and thus the approximation ratio is at most 3.

4.5.2 Max cost

We now consider the max cost and start by showing a tight bound of 2 for dou-

bleton instances. The lower bound follows by a sequence of instances similar to

those in the proof of Theorem 4.4.2 but just with two candidate locations.

Theorem 4.5.3. For doubleton instances, the approximation ratio of any determin-

istic strategyproof mechanism is at least 2− δ, for any δ > 0.

Proof. Consider an arbitrary deterministic mechanisms and the following in-

stance I1: There are two candidate locations at −1 and 1 and two agents (that

approve both facilities) positioned at −ε and ε, respectively, for some infinitesi-

mal ε > 0.

First, suppose that the mechanism places both facilities at one of the two lo-

cations, say −1. Then, consider the instance I2 in which the agent at ε in I1

moves to 1 in I2, while the other agent remains at −ε. The mechanism must
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still place both facilities at−1 in I2 since otherwise the agent that moved would

decrease her cost. However, MC(−1,−1) ≈ 6 and MC(1, 1) ≈ 2, leading to an

approximation ratio of at least 3.

Second, support that the mechanism places one facility at −1 and the other

at 1. Then, consider the instance I3 in which the agent at ε in I1 moves to 2

in I3, while the other agent remains at −ε. The mechanism must either still

output the solution (−1, 1) or the solution (−1,−1), but it cannot output (1, 1)

as then the agent that moved would decrease her cost. However, MC(−1, 1) ≈ 4,

MC(−1,−1) = 6, and MC(1, 1) = 2, leading to an approximation ratio of at

least 2.

For the upper bound, we consider the mechanism that places F1 at the candi-

date location closest to the leftmost agent ℓ and F2 at the candidate location

closest to the rightmost agent r. We refer to this mechanism as Leftmost-

Rightmost; see Mechanism 9.

Mechanism 9: Leftmost-Rightmost
Input: Reported positions of agents with doubleton preferences;
Output: Facility locations w = (w1, w2) ;
ℓ← leftmost agent in N1 ∩N2;
r ← rightmost agent in N1 ∩N2;
w1 ← t(ℓ);
w2 ← t(r);

Theorem 4.5.4. For doubleton instances, the approximation ratio of Leftmost-

Rightmost is at most 2.

Proof. Let i ∈ {ℓ, r} be the agent that determines the max cost of the mechanism,

and j ∈ {ℓ, r} \ {i}. Let o = (o1, o2) be an optimal solution. Since w1 = t(ℓ)
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and w2 = t(r), by the triangle inequality and the definition of t(·), we have

MC(w) = d(i, t(i)) + d(i, t(j))

≤ d(i, t(i)) + d(i, o2) + d(j, o2) + d(j, t(j))

≤ d(i, o1) + d(i, o2) + d(j, o2) + d(j, o1) ≤ 2 ·MC(o).

Therefore, the approximation ratio is at most 2 in any case.

For general instances, it is not hard to obtain a tight upper bound of 3. The

lower bound follows again by the fact that with singleton preferences the prob-

lem is equivalent to two independent single-facility location problems, while the

upper bounds follows by the variant of the Leftmost mechanism that places Fj

at the leftmost agent ℓj ∈ Nj .

Theorem 4.5.5. For general instances, the approximation ratio of Leftmost is at

most 3.

Proof. Let i be the agent that determines the max cost of the mechanism. By the

triangle inequality and the definition of t(·), we have

MC(w) =
∑

j∈[2]:i∈Nj

d(i, wj) ≤
∑

j∈[2]:i∈Nj

(
d(i, oj) + d(ℓj, oj) + d(ℓj, wj)

)

≤
∑

j∈[2]:i∈Nj

(
d(i, oj) + 2 · d(ℓj, oj)

)
≤ 3 ·MC(o).

Hence the approximation ratio is at most 3.



Chapter 5

Settling the Approximation Ratio of

Distributed Facility Location

5.1 Definitions and notation

We consider one-facility location problems in this chapter.

With the basic definition in chapter 2, the instance I in this chapter is a tuple

I = (N,x, D), where

• N is a set of n agents.

• x = (xi)i∈N is a vector containing the position xi ∈ R of agent i on the line

of real numbers.

• D = {d1, ..., dk} is a set of k ≥ 1 districts. Each district d ∈ D contains

a set Nd ⊆ N of agents such that Nd ∩ Nd′ = ∅ and
⋃

d∈D Nd = N . By

nd = |Nd| we denote the number of agents in d; when nd := λ := n/k for

every d ∈ D, we say that the districts are symmetric.

A distributed mechanism M is used to decide the location of a facility based on

the positions reported by the agents and the composition of the districts. In

95
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particular, given an instance I , a distributed mechanism works by implementing

the following two steps:

• Step 1: For each district d ∈ D, using only the positions of the agents in Nd,

the mechanism chooses a representative location yd ∈ R for the district.

• Step 2: Given the size and the representative locations of the districts, the

mechanism outputs a single location M(I) ∈ {yd}d∈D as the winner.

If a location z is chosen, then the distance δ(xi, z) = |xi−z| between the position

xi of agent i and z is the individual cost of agent i for z.

5.1.1 Social objectives and strategyproofness

We design deterministic distributed mechanisms that satisfy various criteria of

interest and achieve the best possible approximation ratio bounds. First, we aim

to design distributed mechanisms to approximately optimize social objectives

that are functions of the distances between the chosen locations and the positions

of the agents. Following the work of Anshelevich et al. [2022], we focus on the

following objectives:

• The Average cost (or average social cost) of location z is the average total

individual cost of all agents for z:

1

n

∑
i∈N

δ(xi, z) =
1

n

∑
d∈D

∑
i∈Nd

δ(xi, z).

• The Max cost of location z is the maximum individual cost over all agents

for z:

max
i∈N

δ(xi, z) = max
d∈D

max
i∈Nd

δ(xi, z).
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• The Average-of-Max cost of location z is the average sum over each district

of the maximum individual cost therein:

1

k

∑
d∈D

{
max
i∈Nd

δ(xi, z)

}
.

• The Max-of-Average cost of location z is the maximum over each district of

the average total individual cost therein:

max
d∈D

{
1

nd

∑
i∈Nd

δ(xi, z)

}
.

To simplify our notation, whenever the social objective is clear from context,

we will use cost(w|I) to denote the cost of w ∈ R according to the objective

function at hand in instance I . Whenever I is clear from context, we will drop

it from notation and simply write cost(w); this will mostly be done in the proofs

of our upper bounds.

Another goal is to design mechanisms that are resilient to strategic manip-

ulation, that is, they do not allow the agents to unilaterally affect the outcome

in their favor (i.e., lead to a location with smaller individual cost) by reporting

false positions. Formally, a mechanism is strategyproof if for any pair of instances

I = (N, (x−i, xi), D) and J = (N, (x−i, x
′
i), D) that differ in the position of a

single agent i, it holds that δ(xi,M(I)) ≤ δ(xi,M(J)).

5.1.2 Useful observations

Before we proceed with the presentation of our main technical results in the

upcoming sections, we first state some useful properties. The bounds on the

approximation ratio of some of our mechanisms will follow by characterizing
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worst-case instances, and for that we will need the inequality

α + γ

β + γ
<

α

β
, (5.1)

which holds for any α > β ≥ 0 and γ > 0.

Another useful observation is that any distributed mechanism with finite ap-

proximation ratio with respect to any of the social objectives that we consider

must be cardinally unanimous. Formally, a mechanism is cardinally-unanimous

if it chooses the representative location of a district to be z whenever all agents

in the district are positioned at z.

Lemma 5.1.1. Any distributed mechanism that achieves finite

approximation ratio with respect to any social objective F ∈

{Average,Max,Average-of-Max,Max-of-Average} must be cardinally-unanimous.

Proof. Let M be a distributed mechanism that is not cardinally-unanimous. Con-

sequently, there must exist a location z such that when all the agents of a district

are positioned at z, the mechanism decides the representative location of the

district to be some y ̸= z. Now, consider an instance in which all agents (no

matter which district they belong to) are positioned at z. Given the behavior of

the mechanism, y is the representative location of all districts, and thus it must

be the winner. However, cost(w) = 0 and cost(y) > 0 for any social objective

F , and thus the approximation ratio is unbounded. So, to achieve finite approx-

imation ratio, any mechanism must be cardinally-unanimous.

We next show that a class of p-Statistic-of-qd-Statistic distributed mechanisms

is strategyproof. Let p ∈ [k] and qd ∈ [nd] for any district d. The p-Statistic-of-

qd-Statistic mechanism first chooses the representative location of each district
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d to be the position of the qd-th ordered agent therein, and then outputs the p-th

ordered representative location as the winner. For example, if p = ⌊(k + 1)/2⌋

and qd = ⌊(nd + 1)/2⌋, the mechanism selects the position of the (leftmost)

median agent in each district to be its representative location and then selects

the (leftmost) median representative location as the winner. All strategyproof

mechanisms that achieve the best possible approximation ratio for the various

social objectives we consider are members of this class. The next lemma shows

that any such mechanism is strategyproof, and will allow us to only focus on

bounding the approximation ratio in the next sections.

Lemma 5.1.2. Let p ∈ [k] and qd ∈ [nd] for d ∈ D. Then, the p-Statistic-of-qd-

Statistic mechanism is strategyproof.

Proof. Let M be the p-Statistic-of-qd-Statistic mechanism. Consider any instance

I = (N,x, D) and let w = M(I) be the location chosen by M . Let i be any

agent that belongs to some district d ∈ D that is represented by y. If the position

of i is the final winner, then i clearly has no incentive to deviate. So, without loss

of generality, assume that the winner is some location w > xi. Observe that

to affect the outcome of the mechanism, agent i must first be able to affect the

representative of d. We distinguish between the following cases.

• If y < xi, then agent i would have to report a position x′i < y to change the

representative of d, but such a position cannot affect the final winner as the

order of representatives remains the same (w would still be at the right of

the representative for district d).

• If y > w, then agent i would have to report a position x′i > y to change the

representative of d to x′i. However, this again cannot affect the final winner

as the order of representatives remains the same (w would still be at the left
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of the representative for district d).

• If y ∈ [xi, w], then agent i could potentially affect the outcome by reporting

a position x′i > w to change the order of representatives, but this would lead

to a higher individual cost as the new winner x′i would be farther away.

Hence, agent i has no incentive to deviate, thus proving that the mechanism is

strategyproof.

5.2 Overview of Contribution

Our first contribution is the design of a novel mechanism that achieves an ap-

proximation ratio of 2 for the average cost; as mentioned above, this settles a

question left open in the work of Filos-Ratsikas and Voudouris [2021] in the af-

firmative, matching their lower bound of 2. For the remaining objectives we

provide mechanisms as well as lower bounds establishing that these mechanisms

achieve the best possible approximation ratio. The precise bounds are shown in

the first column of Table 5.1. Quite interestingly, and perhaps unexpectedly, our

mechanism for the Average-of-Max objective is optimal, that is, it achieves an

approximation ratio of 1. This demonstrates that for this particular objective, the

distributed nature of the decision making does not influence the quality of the

decision at all, and stands in contrast to the results of Anshelevich et al. [2022]

for the same objective in the discrete setting.

Next, we consider strategyproof mechanisms, i.e., mechanisms that do not in-

centivize the agents to misreport their locations. This type of mechanisms were

considered by Filos-Ratsikas and Voudouris [2021] who settled their approxima-

tion ratio for the social cost. For the remaining three objectives, strategyproof
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Unrestricted Strategyproof
Average 2 (Section 5.3) 3⋆

Max 2 (Section 5.4) 2 (Section 5.4)
Average-of-Max 1 (Section 5.5.1) 1 +

√
2 (Section 5.5.2)

Max-of-Average 2 (Section 5.6.1) 1 +
√
2 (Section 5.6.2)

Table 5.1: Overview of our tight approximation ratio bounds for deterministic distributed mechanisms. The bound of 3 for
the social cost and the class of strategyproof mechanisms marked with a ⋆ is due to Filos-Ratsikas and Voudouris [2021].

mechanisms have not been previously studied, not even in the discrete setting

of Anshelevich et al. [2022]. We show tight bounds by carefully composing cen-

tralized statistics mechanisms for choosing the district representatives and the

final location; in particular, depending on the objective at hand, we appropri-

ately choose the values of two parameters p and q to define mechanisms that

work by choosing the position of the q-th agent in a district as its representative,

and then select the p-th representative as the output location. Our results for

strategyproof mechanisms are shown in the second column of Table 5.1.

5.3 Average social cost

5.3.1 Unrestricted mechanisms

We begin with the social cost (Sum) objective. In previous work, Filos-Ratsikas

and Voudouris [2021] showed that the Median-of-Medians mechanism (that

is, the ⌊λ/2⌋-Statistic-of-⌊k/2⌋-Statistic mechanism) has approximation ra-

tio at most 3, and this is best possible strategyproof mechanism. For the class of

unrestricted mechanisms, they showed a lower bound of 2, thus leaving a gap be-

tween 2 and 3. Here, we complete the picture by showing a tight bound of 2 for

unrestricted mechanisms. We do this by considering the Weighted-Median-

of-TruncatedAvg mechanism which works as follows: For each district, the



5.3. AVERAGE SOCIAL COST 102

mechanism considers a set of nd/2 agents ranging from the (nd/4 + 1)-th left-

most to the (3nd/4)-th leftmost1, and chooses their average as the representative

location of the district. Then, it chooses the median representative location as the

final location. See Mechanism 10 for a detailed description.

Mechanism 10:Weighted-Median-of-TruncatedAvg
for each district d ∈ D do

Sd := {i ∈ Nd : i is at least the (nd/4 + 1)-th and at most the (3 ·
nd/4)-th leftmost agent};
yd :=

∑
i∈Sd

xi

|Sd| ;
return w := Mediand∈D{ynd

d };

To bound the approximation ratio of Weighted-Median-of-TruncatedAvg,

we characterize the structure of worst-case instances, where the approximation

ratio of the mechanism is maximized and is strictly larger than 1. For such an

instance I , let w be the location chosen by the mechanism when given as input

a worst-case instance, and denote by o the optimal location; since the objective

is the average social cost, o is the position of the median agent (or any point

between the positions of the median agents in case of an even total number of

agents). Without loss of generality, we assume that w < o; the case w > o is

symmetric.

We first show that there are cases where, starting from an instance with ap-

proximation ratio strictly larger than 1, moving particular agents to appropriate

intervals, leads to new instances that have strictly worse approximation ratio.

This transformation will be useful when characterizing the worst-case instances

for the mechanism.

1For simplicity, we present the mechanism assuming that the number of agents in each district is a multiple of 4; extending the description
of the mechanism and the proof is straightforward.
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Lemma 5.3.1. Let I and J be two instances that differ on the position of a single

agent i, such that w is the location chosen by the mechanism when given any of the

two instances as input, and o is the optimal location for I . The approximation ratio

of the mechanism when given J as input is strictly larger than its approximation

ratio when given I as input in the following cases:

(a) i is positioned at xi < o in I , and at x′i ∈ (xi, o] in J ;

(b) i is positioned at xi > o in I , and at x′i ∈ [o, xi) in J .

Proof. Since the optimal location o′ for J satisfies the inequality cost(o′|J) ≤

cost(o|J), it suffices to show that

cost(w|I)
cost(o|I)

<
cost(w|J)
cost(o|J)

,

which would then imply that

cost(w|I)
cost(o|I)

<
cost(w|J)
cost(o′|J)

.

For (a), we have that δ(xi, w) ≤ δ(xi, x
′
i) + δ(x′i, w) by the triangle inequality,

and also δ(xi, o) = δ(xi, x
′
i) + δ(x′i, o); recall our assumption that w < o. So,

cost(w|I)
cost(o|I)

=

∑
j ̸=i δ(xj, w) + δ(xi, w)∑
j ̸=i δ(xj, o) + δ(xi, o)

≤
∑

j ̸=i δ(xj, w) + δ(xi, x
′
i) + δ(x′i, w)∑

j ̸=i δ(xj, o) + δ(xi, x′i) + δ(x′i, o)
.

Since the approximation ratio of the mechanism when given I as input is strictly

larger than 1 and the distances are non-negative, we can apply Inequality (5.1)

with α =
∑

j ̸=i δ(xj, w) + δ(x′i, w), β =
∑

j ̸=i δ(xj, o) + δ(x′i, o) and γ =
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δ(xi, x
′
i), to obtain

cost(w|I)
cost(o|I)

<

∑
j ̸=i δ(xj, w) + δ(x′i, w)∑
j ̸=i δ(xj, o) + δ(x′i, o)

=
cost(w|J)
cost(o|J)

.

For (b), observe that δ(xi, w) = δ(xi, x
′
i) + δ(x′i, w) and δ(xi, o) = δ(xi, x

′
i) +

δ(x′i, o). Therefore, the desired inequality again follows by appropriately apply-

ing Inequality (5.1).

We are now ready to show that the worst-case instance I has the following

properties:

• At least k/2 districts have representative w (Lemma 5.3.2);

• o can be the only other district representative and all agents in such districts

are positioned at o (Lemma 5.3.3).

Lemma 5.3.2. In the worst-case instance I , there are no district representatives to

the left of w.

Proof. Suppose towards a contradiction that the worst-case instance I is such

that there is a district d with representative y < w. Since y is an average of some

agent positions in d, there is a set of agents S ⊆ Sd with xi ≤ w for every i ∈ S.

We move each agent i ∈ S to a new position x′i such that xi < x′i ≤ w and

the truncated average of the agents in d becomes w. Clearly, the outcome of the

mechanism, as well as the optimal location, remain the same in the new instance;

w is still the median representative, and the position of the overall median agent

did not change. By Lemma 5.3.1(a) and since w < o, moving any agent i ∈ S to

x′i ≤ w leads to a new instance with strictly larger approximation ratio, which

contradicts the fact that we start from a worst-case instance.
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Lemma 5.3.3. In the worst-case instance I , besides w, the only other district rep-

resentative can be o, and all agents in such districts are positioned on o.

Proof. Suppose towards a contradiction that the worst-case instance I is such

that there exists a district d with representative y ̸∈ {w, o}. We move every

agent i ∈ Nd from xi to x′i = o. Hence, the truncated average of the agents in

d changes from y to o. By Lemma 5.3.2 and since w is the (weighted) median

representative, we have that at least half of the multiset defined by district rep-

resentatives coincide with w. Consequently, the outcome of the mechanism is

not affected when we move the agents of d. The optimal location also remains

the same as the median agent location does not change. By Lemma 5.3.1, the

approximation ratio of the new instance we obtain after moving each agent i (ir-

respective of whether xi < o or xi > o) is strictly larger than the approximation

ratio of instance I , contradicting the fact that it is a worst-case instance.

We also argue that it suffices to focus on the case where the worst-case in-

stance I consists of just two districts that are in fact symmetric; this will simplify

the last part of our proof.

Lemma 5.3.4. There exists a worst-case instance with two symmetric districts, one

with representative w and one with representative o.

Proof. Consider any worst-case instance, and let Dw and Do denote the sets

of districts that have representative w and o, respectively. We first argue that∑
d∈Dw

nd =
∑

d∈Do
nd. Note that since w is a median among all copies

of representatives, we have
∑

d∈Dw
nd ≥

∑
d∈Do

nd. Let us assume that∑
d∈Dw

nd >
∑

d∈Do
nd; we will reach a contradiction by creating a new in-

stance, with strictly larger approximation ratio, that has one additional district

with
∑

d∈Dw
nd−

∑
d∈Do

nd agents positioned at o. Clearly, in this new instance
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the mechanism again outputs w, while the optimal location remains o. Since the

agents in the newly added district contribute 0 to the optimal cost and strictly

greater than 0 to the social cost of w, the approximation ratio is strictly larger.

Now, since
∑

d∈Dw
nd =

∑
d∈Do

nd and all agents in districts with represen-

tative o are positioned at o (by Lemma 5.3.3), we can redistribute the agents in

districts with representative o in a different set of districts, so that for any district

d ∈ Dw there is a dedicated district d′ ∈ Do with nd = nd′ . Note that w and o

remain the same in this instance and so does the approximation ratio. We can

then, without loss of generality, limit our focus on worst-case instances with just

two symmetric districts, one with representative w and one with representative

o.

Having shown that it suffices to consider a worst-case instance with two sym-

metric districts, where district dw has representative w while district do has all

agents positioned at o, we now argue about the agent positions in dw; recall that

each district has size λ = n/2 in this case. Let ℓ and r be the locations of the

(λ/4 + 1)- and 3λ/4-leftmost agent, respectively, in dw (i.e., the leftmost and

rightmost location among agents in Sdw). Clearly, it holds that ℓ ≤ w ≤ r. We

argue that r ≤ o, and that all agents not in Sdw are either at ℓ or at o.

Lemma 5.3.5. In district dw, r ≤ o.

Proof. Suppose towards a contradiction that the worst-case instance I is such that

r > o in dw, and thus ℓ < w. Let L be the set of agents in Sdw that are positioned

to the left of or at w, and R the set of agents in Sdw that are positioned to the
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right of o. By the definition of w, for any set Q ⊆ L, we have

w =
2

λ

∑
i∈L

xi +
∑
i∈R

xi +
∑

i∈Sdw\(L∪R)

xi


=

2

λ

∑
i∈L

xi +
∑
i∈R

(xi − o) +
∑
i∈R

o+
∑

i∈Sdw\(L∪R)

xi


=

2

λ

∑
i∈L\Q

xi +
∑
i∈Q

xi +
1

|Q|
∑
j∈R

(xj − o)

+
∑
i∈R

o+
∑

i∈Sdw\(L∪R)

xi

 .

Consequently, there must exist a set L< ⊆ L such that xi+ 1
|L<|

∑
j∈R(xj−o) ≤

w < o for every i ∈ L<; if no such set exists, then the last expression above

would be strictly larger than w. We obtain a new instance J by moving all agents

in R from xi to x′i = o and all agents in L< from xi to x′i = xi+
1
|L<|

∑
j∈R(xj−

o). Clearly, w is still the representative of dw and o the optimal location. By

Lemma 5.3.1, since all agents that moved are closer to o in J that in I , J must

have approximation ratio strictly larger than I , a contradiction.

Lemma 5.3.6. In district dw, the λ/4 leftmost agents are positioned at ℓ and the

λ/4 rightmost agents are positioned at o.

Proof. Assume otherwise and note that all these agents are not in Sdw and, hence,

do not affect w. By repeatedly applying Lemma 5.3.1 and moving each agent i

with xi < ℓ to ℓ and each agent i with xi > r at o, we reach an instance with

strictly larger approximation ratio; a contradiction.

We are finally ready to prove the main result of this section.

Theorem 5.3.7. For Average, the approximation ratio ofWeighted-Median-of-

TruncatedAvg is at most 2.
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Proof. By Lemmas 5.3.3, 5.3.4 and 5.3.6, we have that the 2λ agents in the worst-

case instance I are distributed on the line as follows: λ/4 agents are positioned

at ℓ, 5λ/4 agents are positioned at o (λ agents from do and λ/4 agents from dw),

and λ/2 agents are positioned in [ℓ, r]. We partition the λ/2 agents in Sdw into

two sets: L = {i ∈ Sdw : xi ≤ w} and R = {i ∈ Sdw : xi > w}. Since r ≤ o

(due to Lemma 5.3.5) and w =
∑

i∈L∪R xi (by definition), the optimal cost is

cost(o|I) = 1

2λ

(
λ

4
(o− ℓ) +

∑
i∈L

(o− xi) +
∑
i∈R

(o− xi)

)

=
1

2λ

(
λ

4
(o− ℓ) +

λ

2
(o− w)

)
=

1

2λ

(
λ

4
(w − ℓ) +

3λ

4
(o− w)

)
. (5.2)

Similarly, the cost of the mechanism is

cost(w|I) = 1

2λ

(
λ

4
(w − ℓ) +

∑
i∈L

(w − xi) +
∑
i∈R

(xi − w) +
5λ

4
(o− w)

)
.

(5.3)

By the definition of w,
∑

i∈L (w − xi) =
∑

i∈R (xi − w). Also, again by def-

inition, |L| ≥ 1. If R = ∅, it must be the case that ℓ = w = r, and the

approximation ratio is at most 5/3 as Equations (5.2) and (5.3) are simplified to

cost(o|I) = 3(o − w)/8 and cost(w|I) = 5(o − w)/8, respectively. Hence, in

the rest of the proof we will assume that |R| ≥ 1.

Since xi ≤ o for each agent i ∈ R and |L|+ |R| = λ/2, we have

∑
i∈L

(w − xi) =
∑
i∈R

(xi − w) ≤ |R|(o− w)⇔ o− w ≥
∑

i∈L (w − xi)

λ/2− |L|
.
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Similarly, as xi ≥ ℓ for each agent i ∈ L, we obtain

∑
i∈L

(w − xi) ≤ |L|(w − ℓ)⇔ w − ℓ ≥
∑

i∈L (w − xi)

|L|
.

Let o − w =
∑

i∈L(w−xi)
λ
2−|L|

+ ξ1 and w − ℓ =
∑

i∈L (w−xi)

|L| + ξ2, where ξ1, ξ2 ≥ 0.

Therefore, Equations (5.2) and (5.3) can be rewritten as

cost(o|I) = 1

2λ

(
λ

4

(∑
i∈L (w − xi)

|L|
+ ξ2

)
+

3λ

4

(∑
i∈L(w − xi)
λ
2 − |L|

+ ξ1

))

cost(w|I) = 1

2λ

(
λ

4

(∑
i∈L (w − xi)

|L|
+ ξ2

)
+

5λ

4

(∑
i∈L(w − xi)
λ
2 − |L|

+ ξ1

))

+
1

2λ

(
2
∑
i∈L

(w − xi)

)
.

It is not hard to see that, unless the approximation ratio is at most 5/3 and the

claim holds trivially, the ratio is maximized when ξ1 = ξ2 = 0. We can then

obtain the following upper bound on the approximation ratio.

cost(w|I)
cost(o|I)

≤
λ

4|L| +
5λ

2λ−4|L| + 2

λ
4|L| +

3λ
2λ−4|L|

≤ 2,

where the last inequality follows since λ
4|L|+

5λ
2λ−4|L|+2 ≤ 2

(
λ

4|L| +
3λ

2λ−4|L|

)
⇔

(λ− 4|L|)2 ≥ 0. This concludes the proof.

5.4 Max cost

We now consider the Max cost objective, for which we show a tight bound of 2

for both unrestricted and strategyproof mechanisms. For the upper bound, we

consider the Arbitrary mechanism, which chooses the representative of each

district to be the position of any agent therein, and then chooses any represen-
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tative as the final winner. See Mechanism 11 for a specific implementation of

this mechanism using the position of the leftmost agent from each district as the

district representative, and then the leftmost representative as the final winner.

Clearly, Arbitrary is equivalent to some p-Statistic-of-q-Statistic mechanism

depending on the choices within and over districts; for example, the particular

implementation of Arbitrary as Mechanism 11 is equivalent to 1-Statistic-of-1-

Statistic.

Mechanism 11: Arbitrary (Leftmost-of-Leftmost)
for each district d do

yd := mini∈Nd
{xi};

return w := mind{yd};

Theorem 5.4.1. For Max, the approximation ratio of Arbitrary is at most 2.

Proof. Given any instance, let ℓ and r denote the positions of the leftmost and the

rightmost agent, respectively. Clearly, the optimal location is o = r−ℓ
2 , and thus

cost(o) = r−ℓ
2 . On the other hand, the Arbitrary mechanism will necessarily

return the location of some agent as the winner w, and hence cost(w) ≤ r − ℓ;

the claim follows.

We also show a matching lower bound for all mechanisms, thus completing

the picture.

Theorem 5.4.2. For Max, the approximation ratio of any mechanism (unrestricted

or strategyproof) is at least 2.

Proof. Consider any mechanism and the following instance I with two districts.

The agents in the first district are all positioned at −1, while the agents in the

second district are all positioned at 1. Due to unanimity (Lemma 5.1.1), the repre-

sentatives of the two districts must be−1 and 1, respectively. Hence, the winner
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is either−1 or 1. However, cost(−1|I) = cost(1|I) = 2, whereas cost(0|I) = 1,

leading to a approximation ratio of 2.

5.5 Average-of-Max

Here, we focus on the Average-of-Max objective; recall that this objective is the

average sum over each district of the maximum agent cost therein. For unre-

stricted mechanisms, we show that it is possible to compute the optimal location

(and thus achieve a approximation ratio of 1), whereas, for strategyproof mech-

anisms, we show a tight approximation ratio bound of 1 +
√
2.

5.5.1 Unrestricted mechanisms

We will show that the Median-of-Midpoints mechanism optimizes the

Average-of-Max objective. This mechanism chooses the representative of each

district to be the midpoint of the interval defined by the positions of the agents

therein, and then chooses the median representative (breaking ties in favor of

the leftmost median in case there are two) as the final winner. See Mechanism 12

for a detailed description.

Mechanism 12:Median-of-Midpoints
for each district d do

yd :=
1
2 ·
(
maxi∈Nd

xi +mini∈Nd
xi

)
;

return w := Mediand∈D{yd} ;

Theorem 5.5.1. For Average-of-Max, the approximation ratio of Median-of-

Midpoints is 1.

Proof. For any district d, let ℓd and rd be the (positions of the) leftmost and right-
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most agents therein, respectively. The Average-of-Max cost of an arbitrary loca-

tion z is

1

k

∑
d∈D

max
i∈Nd

δ(xi, z) =
1

k

∑
d∈D

max{δ(ℓd, z), δ(rd, z)}

=
1

k

∑
d∈D

δ

(
ℓd + rd

2
, z

)
+

1

k

∑
d∈D

rd − ℓd
2

.

Since the second term is a constant in terms of z, the above expression is min-

imized when the first term is minimized, which is done when z is chosen to

minimize the average distance from the midpoints of the intervals defined by

the agents in each district. Consequently, it suffices to choose the median dis-

trict midpoint as the winner. This is precisely the definition of Median-of-

Midpoints.

5.5.2 Strategyproof mechanisms

For strategyproof mechanisms, we will show a tight bound of 1 +
√
2. For the

upper bound, we consider the
(
1− 1/

√
2
)
k-Leftmost-of-Rightmost mech-

anism, which chooses the representative of each district to be the position of

the rightmost agent therein, and then chooses the ⌈
(
1− 1/

√
2
)
k⌉-th leftmost

representative as the final winner. See Mechanism 13 for a detailed description.

Clearly, the mechanism is an implementation of p-Statistic-of-q-Statistic with

p = ⌈
(
1− 1/

√
2
)
k⌉ and qd = nd, and is thus strategyproof. So, it suffices to

show that it achieves a approximation ratio of at most 1 +
√
2.

Theorem 5.5.2. For the Average-of-Max cost, the approximation ratio of(
1− 1/

√
2
)
k-Leftmost-of-Rightmost is at most 1 +

√
2.

Proof. Let w be the location chosen by the mechanism when given some in-
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Mechanism 13:
(
1− 1/

√
2
)
k-Leftmost-of-Rightmost

for each district d ∈ D do
yd := rightmost agent;

return w := ⌈
(
1− 1/

√
2
)
k⌉-th leftmost representative;

stance as input, and o an optimal location. For each district d, let id be the most

distant agent from w, and i∗d the most distant agent from o. So, cost(w|I) =

1
k

∑
d∈D δ(id, w), and cost(o|I) = 1

k

∑
d∈D δ(i∗d, o) ≥ 1

k

∑
d∈D δ(j, o) for any

agent j ∈ Nd. We consider the following two cases depending on the relative

positions of w and o.

Case 1: o < w.

Let S = {d ∈ D : yd ≥ w} be the set of district representatives to the right

of w. By the definition of w, we have that |S| = k + 1 − ⌈
(
1− 1/

√
2
)
k⌉ =

1 + ⌊k/
√
2⌋ ≥ k√

2
. Since o < w ≤ yd for every d ∈ S and yd ∈ Nd, we have

that

cost(o) ≥ 1

k

∑
d∈S

δ(yd, o)

≥ 1

k
· |S| · δ(w, o)

≥ 1√
2
· δ(w, o)⇔ δ(w, o) ≤

√
2 · cost(o).

By the triangle inequality and since id ∈ Nd, we have

cost(w) =
1

k

∑
d∈D

δ(id, w)

≤ 1

k

∑
d∈D

δ(id, o) +
1

k

∑
d∈D

δ(w, o)
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≤ cost(o) + δ(w, o)

≤ (1 +
√
2) · cost(o).

Case 2: w < o.

We partition the districts into a set L that includes ⌈(1 − 1√
2
)k⌉ districts from

the one with the leftmost representative until the one with the ⌈(1 − 1√
2
)k⌉-

th leftmost representative (that is, w), and a set R that includes the remaining

districts. By definition, we have that |R|/|L| = (k − ⌈(1 − 1√
2
)k⌉)/(⌈(1 −

1√
2
)k⌉) ≤ 1+

√
2. For every district d, let ℓd and rd be the leftmost and rightmost

agents in d, respectively. We make the following observations:

• For every d ∈ L, since yd is the rightmost agent of d and yd ≤ w < o, it

must be the case that id = i∗d = ℓd. Due to the positions of ℓd, w and o, we

have that δ(ℓd, o) = δ(ℓd, w) + δ(w, o).

• For every d ∈ R, by the triangle inequality, we have that δ(id, w) ≤

δ(id, o)+δ(w, o). Since δ(id, o) ≤ δ(i∗d, o) by the definition of i∗d, we further

have that δ(id, w) ≤ δ(i∗d, o) + δ(w, o).

Hence,

cost(w) =
1

k

∑
d∈D

δ(id, w) =
1

k

∑
d∈L

δ(ℓd, w) +
1

k

∑
d∈R

δ(id, w)

≤ 1

k

∑
d∈L

(
δ(ℓd, w) + δ(w, o)

)
− |L|

k
· δ(w, o) + 1

k

∑
d∈R

(
δ(i∗d, o) + δ(w, o)

)
= cost(o) +

|R| − |L|
k

· δ(w, o).



5.5. AVERAGE-OF-MAX 115

Since yd ≤ w < o for every d ∈ L and yd ∈ Nd, we have that

cost(o) ≥ 1

k

∑
d∈L

δ(yd, o) ≥
|L|
k
· δ(w, o)⇔ δ(w, o) ≤ k

|L|
· cost(o).

Therefore, we obtain

cost(w) ≤ cost(o) +
|R| − |L|
|L|

· cost(o) =
|R|
|L|
· cost(o) ≤ (1 +

√
2) · cost(o),

as desired.

We also show a matching lower bound on the approximation ratio of all strat-

egyproof mechanisms.

Theorem 5.5.3. For Average-of-Max, the approximation ratio of any strategyproof

mechanism is at least 1 +
√
2− ε, for any ε > 0.

Proof. Assume towards a contradiction that there exists some ε > 0 and a strat-

egyproof mechanism with approximation ratio strictly smaller than 1+
√
2− ε.

Without loss of generality, we assume that when there are two symmetric dis-

tricts with different representatives, we choose the leftmost as the final winner.

We will prove the statement by showing some properties about the behavior of

strategyproof mechanisms in particular instances.

Property (P1): We claim that there is a district with two agents such that the

mechanism chooses some agent position as the district representative. Consider

a district d with one agent positioned at x and one agent positioned at y > x. If

the mechanism chooses the representative to be x or y, then we are done. Oth-

erwise, suppose that the representative is chosen to be some z ̸∈ {x, y}. Due to

strategyproofness, z must also be the representative of the district d′ where any



5.5. AVERAGE-OF-MAX 116

of the two agents has been moved to z; otherwise, in the single-district instance

consisting of d′, the agent that is moved would have incentive to report that she

is positioned as in d to change the outcome to z.

Property (P2): By Property (P1) there exists a district with two agents such

that the mechanism chooses the district representative to be the position of one

of the agents; without loss of generality we assume that the agents are positioned

at 0 and 1. We claim that the representative of this district must be 1 as otherwise

the approximation ratio would be at least 3. Indeed, suppose otherwise that the

representative is 0, and consider the following instance I1 with two districts:

• In the first district, there is an agent at 0 and an agent at 1. By the above

discussion, the representative is 0.

• In the second district, there are two agents at 1/2. Due to unanimity, the

representative is 1/2 (otherwise the approximation ratio would be infinite

due to Lemma 5.1.1).

Since there are only two districts and two different representatives, the overall

winner is 0. But,

cost(0|I1) =
1

2

(
(1− 0) + (1/2− 0)

)
= 3/4

and

cost(1/2|I1) =
1

2

(
(1− 1/2) + (1/2− 1/2)

)
= 1/4,

leading to a approximation ratio of 3.

Property (P3): Let α < β be two (large) integers such that β/α = 1+
√
2−δ,

for some arbitrarily small δ > 0. We claim that in instances with α+ β districts
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such that 1/2 is the representative of α districts and 1 is the representative of

β districts, the overall winner must be 1 as otherwise the approximation ratio

would be β/α = 1 +
√
2 − δ. Indeed, suppose that the winner is 1/2 in such a

case, and consider the following instance I2 with α + β districts:

• In α districts, there are two agents at 1/2.

• In β districts, there are two agents at 1.

Due to unanimity (Lemma 5.1.1), the representatives are 1/2 and 1, respectively,

and the overall winner is 1/2 by assumption. Then, cost(1/2|I2) = 1
2 · β/2 and

cost(1|I2) = 1
2 · α/2. So, the approximation ratio is at least β/α = 1 +

√
2− δ.

Reaching a contradiction: Now, we consider the following instance I3 with

α + β districts:

• In α districts, there are two agents at 1/2. Due to unanimity the representa-

tive of all these districts is 1/2.

• In β districts, there is one agent at 0 and one agent at 1. By property (P2),

the representative of all these districts is 1.

Since 1/2 is the representative of α districts and 1 is the representative of β

districts, by property (P3), the overall winner is 1. We have that

cost(1|I3) =
1

2

(
α

2
+ β

)

and

cost(1/2|I3) =
1

2
· β
2
.

That is, the approximation ratio is at least 2 + α
β > 2 + 1

1+
√
2
= 1 +

√
2; a

contradiction.
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5.6 Max-of-Average

We now turn our attention to the last objective, Max-of-Average, which is the

maximum over each district of the average total individual cost therein. We show

a tight bound of 2 for unrestricted mechanisms and a tight bound of 1 +
√
2 for

strategyproof mechanisms.

5.6.1 Unrestricted mechanisms

Since the lower bound of 2 for the Max cost objective holds even when there is

a single agent in each district, it extends to the case of Max-of-Average as well.

For the upper bound, we consider the Arbitrary-of-Avg mechanism, which

chooses the representative of each district to be the average of the positions of

the agents in the district, and then chooses an arbitrary representative (e.g., the

leftmost) as the final winner. See Mechanism 14 for a detailed description.

Mechanism 14: Arbitrary-of-Avg
for each district d ∈ D do

yd :=
∑

i∈Nd
xi

nd
;

return w := mind∈D yd ;

Theorem 5.6.1. For Max-of-Average, the approximation ratio of Arbitrary-of-

Avg is at most 2.

Proof. Let w be the location chosen by the mechanism when given some in-

stance as input, and o an optimal location; without loss of generality, we as-

sume that w < o. Denote by d∗ a district that defines the cost of w, that is,

d∗ ∈ argmaxd∈D
1
nd

∑
i∈Nd

δ(xi, w). Also, denote by dw a district that has rep-
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resentative w, that is,

w =
1

ndw

∑
i∈Ndw

xi ⇔
1

ndw

∑
i∈Ndw

(w − xi) = 0.

By the triangle inequality, we have that

cost(w) =
1

nd∗

∑
i∈Nd∗

δ(xi, w)

≤ 1

nd∗

∑
i∈Nd∗

δ(xi, o) +
1

nd∗

∑
i∈Nd∗

δ(w, o)

≤ cost(o) + δ(w, o).

By the definition of dw, we have that

δ(w, o) = o− w

= o− w +
1

ndw

∑
i∈Ndw

(w − xi)

=
1

ndw

∑
i∈Ndw

(o− xi)

≤ 1

ndw

∑
i∈Ndw

δ(xi, o)

≤ cost(o),

where the inequality follows since δ(xi, o) = o−xi when xi ≤ o and δ(xi, o) =

xi − o ≥ o − xi when xi ≥ o. Therefore, we obtain that cost(w) ≤ 2 · cost(o),

as desired.
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5.6.2 Strategyproof mechanisms

We now turn out attention to strategyproof mechanisms and show a tight bound

of 1+
√
2. For the upper bound, we consider the Rightmost-of-

(
1− 1/

√
2
)
nd-

Leftmost mechanism, which chooses the representative of each district d to be

the position of the ⌈
(
1− 1/

√
2
)
nd⌉-th leftmost agent therein, and then chooses

the rightmost representative as the final winner. See Mechanism 15 for a detailed

description. This mechanism is an implementation of p-Statistic-of-qd-Statistic

with p = k and qd = ⌈
(
1− 1/

√
2
)
nd⌉, and is thus strategyproof. So, it suffices

to show that it achieves a approximation ratio of at most 1 +
√
2.

Mechanism 15: Rightmost-of-
(
1− 1/

√
2
)
nd-Leftmost

for each district d ∈ D do
yd := ⌈

(
1− 1/

√
2
)
nd⌉-th leftmost agent;

return w := rightmost representative;

Theorem 5.6.2. For the Max-of-Average cost, the approximation ratio of

Rightmost-of-
(
1− 1/

√
2
)
nd-Leftmost is at most 1 +

√
2.

Proof. Let w be the location chosen be the mechanism when given some instance

as input, and o an optimal location. Denote by d∗ a district that gives the max

average sum for w, and by dw a district with representative w. Also, for any

district d, we denote by costd(x) = 1
nd

∑
i∈Nd

δ(i, x) the average total distance

of the agents in d from location x, and let od be the location that minimizes this

distance (that is, od is the median agent of d). Clearly, by definition, we have that

cost(w) = costd∗(w), and costd(o) ≤ cost(o) for every district d. We consider

the following two cases:
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Case 1: o < w.

By the definition of d∗ and the triangle inequality, we have

cost(w) =
1

nd∗

∑
i∈Nd∗

δ(i, w)

≤ 1

nd∗

∑
i∈Nd∗

δ(i, o) +
1

nd∗

∑
i∈Nd∗

δ(o, w)

≤ cost(o) + δ(o, w).

Let S = {i ∈ Ndw : xi ≥ w} be the set of agents that are positioned at the right

of (or exactly at) w in dw. Since o < w, δ(i, o) ≥ δ(w, o) for every i ∈ S. Also,

by the definition of w, |S| = ndw + 1− ⌈
(
1− 1/

√
2
)
ndw⌉ = 1+ ⌊ 1√

2
· ndw⌋ ≥

1√
2
· ndw . Hence,

costdw(o) =
1

ndw

∑
i∈Ndw

δ(i, o) ≥ 1

ndw

· |S| · δ(w, o) ≥ 1√
2
· δ(w, o)

⇔ δ(w, o) ≤
√
2 · costdw(o) ≤

√
2 · cost(o).

By combining everything together, we obtain a bound of 1 +
√
2.

Case 2: w < o.

We consider the following two subcases:

• od∗ ≤ w < o. By the monotonicity of the (average) social cost2 for the agents

in district d∗, we have that costd∗(od∗) ≤ costd∗(w) ≤ costd∗(o), and thus

cost(w) ≤ cost(o).

• w < od∗ . Since w is the rightmost representative, it must be the case that

yd∗ ≤ w < od∗ . So, again by the monotonicity of the (average) social cost
2It is a well-known fact that the social cost objective is monotone in the locations. In particular, for any set of agents S, if y1 ∈

argminx
∑

i∈S δ(i, x), then
∑

i∈S δ(i, y1) ≤
∑

i∈S δ(i, y2) ≤
∑

i∈S δ(i, y3) for any y1 ≤ y2 ≤ y3 or y3 ≤ y2 ≤ y1.
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within the district d∗, we have that costd∗(od∗) ≤ costd∗(w) ≤ costd∗(yd∗).

We will argue that costd∗(yd∗) ≤ (1 +
√
2) · costd∗(od∗).

Let L be the set that includes ⌈(1− 1√
2
)nd∗⌉ agents of d∗ from the leftmost to

the ⌈(1− 1√
2
)nd∗⌉-th leftmost agent (that is, yd∗), and the set R that includes

the remaining agents. By definition, we have that |R|/|L| = (nd∗ − ⌈(1 −
1√
2
)nd∗⌉)/⌈(1− 1√

2
)nd∗⌉ ≤ 1 +

√
2. Now, observe that

– For every agent i ∈ L, i ≤ yd∗ , and thus δ(i, od∗) = δ(i, yd∗)+δ(yd∗, od∗).

– For every agent i ∈ R, i ≥ yd∗ , and thus δ(i, yd∗) ≤ δ(i, od∗) +

δ(yd∗, od∗).

Hence,

costd∗(yd∗) =
1

nd∗

∑
i∈Nd∗

δ(i, yd∗)

=
1

nd∗

∑
i∈L

δ(i, yd∗) +
1

nd∗

∑
i∈R

δ(i, yd∗)

≤ 1

nd∗

∑
i∈L

δ(i, yd∗) +
1

nd∗

∑
i∈R

(
δ(i, od∗) + δ(yd∗, od∗)

)
=

1

nd∗

∑
i∈L

(
δ(i, yd∗) + δ(yd∗, od∗)

)
+

1

nd∗

∑
i∈R

δ(i, od∗)

+
|R| − |L|

nd∗
· δ(yd∗, od∗)

= costd∗(od∗) +
|R| − |L|

nd∗
· δ(yd∗, od∗).

Since yd∗ < od∗ , we also have that costd∗(o) ≥ 1
nd∗
· |L| · δ(yd∗, od∗), and thus

costd∗(yd∗) ≤ costd∗(od∗) +
|R| − |L|
|L|

· costd∗(od∗)

=
|R|
|L|
· costd∗(od∗)
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≤ (1 +
√
2) · costd∗(od∗).

From this, we finally get that

costd∗(w) ≤ (1 +
√
2) · costd∗(od∗) ≤ (1 +

√
2) · costd∗(o),

and thus cost(w) ≤ (1 +
√
2)cost(o).

Finally, we show a matching lower bound for any strategyproof mechanism.

Theorem 5.6.3. For Max-of-Average, the approximation ratio of any strategyproof

mechanism is at least 1 +
√
2− ε, for any ε > 0.

Proof. Suppose towards a contradiction that there is a strategyproof mechanism

with approximation ratio strictly smaller than 1 +
√
2 − ε, for any ε > 0. We

will reach a contradiction by showing several properties that any strategyproof

mechanism must satisfy when given particular instances with symmetric dis-

tricts consisting of λ = (2+
√
2)x agents, where x is an arbitrarily large integer.

Property (P1): Consider a district with (1 +
√
2)x agents at 0 and x agents

at 1.3 We claim that the mechanism must choose 0 as the representative of this

district as otherwise the approximation ratio would be at least 1 +
√
2. Indeed,

suppose that the representative is some y ̸= 0. By moving one of the agents at

1 to y, we obtain a new district whose representative must still be y; otherwise,

in the instance that consists only of this new district, the agent at y would have

incentive to misreport her position as 1, thus leading to the representative (and

the final winner) to change to y. By induction, we obtain that y must be the

representative of the district with (1+
√
2)x agents at 0 and x agents at y. In the

3To be precise, since the number of agents must be an integer, we would need to have ⌈(1+
√
2)x⌉ agents at 0. We simplify our notation

by dropping the ceilings, but it should be clear that this does not affect our arguments.
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instance I that consists of only the latter district, the winner is y with cost(y|I) =
1
λ · (1 +

√
2)x · |y|, whereas cost(0|I) = 1

λ · x · |y|, leading to a approximation

ratio of at least 1 +
√
2.

Property (P2): Consider a district with x agents at 1 and (1+
√
2)x agents at 2.

We claim that the mechanism must choose 2 as the representative of this district

as otherwise the approximation ratio would be at least 1 +
√
2. This follows by

arguments similar to those for property (P1).

Reaching a contradiction: Consider the following instance J with two dis-

tricts:

• In the first district, there are (1 +
√
2)x agents at 0 and x agents at 1.

• In the second district, there are x agents at 1 and (1 +
√
2)x agents at 2.

By properties (P1) and (P2), the representatives of the two districts must be 0 and

2, respectively, and thus one of these two locations is chosen as the final winner.

However, cost(0|J) = cost(2|J) = 1
λ ·
(
2(1 +

√
2)x+ x

)
, while cost(1|J) =

1
λ · (1 +

√
2)x, leading to a approximation ratio of 2 + 1

1+
√
2
= 1 +

√
2.



Chapter 6

Conclusion and Directions for Future

Work

This thesis examined the intersection of artificial intelligence and economics

through the lens of mechanism design in facility location problems. By exploring

sophisticated theoretical models across three distinctive chapters, this work not

only contributes to advancing the current understanding of approximate mech-

anism design without monetary incentives but also sets the stage for resolving

complex, real-world issues in strategic multi-agent environments.

In Chapter 3, we achieve a small constant bound for the social cost, signifi-

cantly improving upon the previously established linear bound. It is important

to note, however, that a considerable gap remains between the established lower

bound of 4
3 and the upper bound of 17

4 . This discrepancy calls for further ex-

ploration, particularly in terms of randomized mechanisms and the maximum

cost objective, given the existing disparity between the lower bound of 4
3 and the

upper bound of 3
2 , as identified by Serafino and Ventre [2016].

In Chapter 4, we studied a truthful two-facility location problem with candi-

125



126

date locations and showed tight bounds on the best possible approximation ratio

of deterministic strategyproof mechanisms in terms of the social cost and the

max cost.

In Chapter 5, we considered two classes of mechanisms: Unrestricted mecha-

nisms which assume that the agents directly provide their true positions as in-

put, and strategyproof mechanisms which deal with strategic agents and aim to

incentivize them to truthfully report their positions. For both classes, we show

tight bounds on the best possible approximation in terms of several minimization

social objectives, including the well-known average social cost (average total dis-

tance of agents from the chosen point) and max cost (maximum distance among

all agents from the chosen point), as well as other fairness-inspired objectives

that are tailor-made for the distributed setting, in particular, the max-of-average

and the average-of-max.

While our research has yielded valuable insights, it is essential to acknowl-

edge the numerous open questions and future research directions that remain

to be explored. To guide forthcoming inquiries, we pose the following pivotal

questions:

Randomized Mechanisms: Investigating the role of randomized mechanisms

in achieving improved approximation guarantees presents a promising research

direction. Randomized strategies may offer solutions where deterministic ap-

proaches are limited, especially in scenarios involving higher complexity and

greater agent diversity. Exploring these possibilities could lead to more robust

models capable of handling unpredictability and variability in agent behaviors

and preferences.

New Information Assumptions: Altering the dynamics of public and private
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information within the models studied, particularly those in Chapter 3 and 4,

could have significant impacts. This exploration might facilitate the develop-

ment of more versatile and adaptable strategies in mechanism design, catering

to diverse and evolving environmental constraints. It would be worthwhile to

examine how different information assumptions affect the strategic interactions

and outcomes within these models.

New Social Objectives: Defining and implementing additional meaningful so-

cial objectives within the frameworks discussed in Chapter 5 could provide

deeper insights into fairness and efficiency, especially in distributed and decen-

tralized systems. This effort could help in designing mechanisms that not only

optimize cost but also enhance societal welfare in a more balanced manner.

Complex Topological Extensions: Extending these models to more complex

topological structures such as trees or regular graphs poses theoretical and prac-

tical challenges. Addressing these challenges could significantly impact network

design and infrastructure development, providing insights into more efficient and

equitable facility placement across diverse geographical and social landscapes.

Real-World Implementations and Applications: Bridging the gap between theo-

retical models and practical implementations, especially in fields such as urban

planning and public goods allocation, remains crucial. Focused studies on trans-

forming theoretical models into actionable strategies could directly benefit soci-

ety by improving the allocation of public resources and enhancing the quality of

urban and rural infrastructures.

Generally, the future research directions proposed here are designed to lever-

age the solid theoretical foundation established by this work, aiming to inspire

innovative solutions that can be adapted to various real-world contexts. Contin-
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ued exploration of these questions is expected to yield substantial contributions

to the fields of economics, computer science, and beyond, potentially leading to

significant societal impacts.
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Hervé Moulin. On strategy-proofness and single peakedness. Public Choice, 35

(4):437–455, 1980.

Ahuva Mu’Alem and Noam Nisan. Truthful approximation mechanisms for re-

stricted combinatorial auctions. Games and Economic Behavior, 64(2):612–631,

2008.

Noam Nisan and Amir Ronen. Algorithmic mechanism design. In Proceedings of

the thirty-first annual ACM symposium on Theory of computing, pages 129–140,

1999.

Ariel D. Procaccia and Moshe Tennenholtz. Approximate mechanism design

without money. ACM Transactions on Economics and Computation, 1(4):18:1–

18:26, 2013.

Tao Qin, Wei Chen, and Tie-Yan Liu. Sponsored search auctions: Recent advances

and future directions. ACM Transactions on Intelligent Systems and Technology

(TIST), 5(4):1–34, 2015.

Aida Rahmattalabi, Shahin Jabbari, Himabindu Lakkaraju, Phebe Vayanos, Max

Izenberg, Ryan Brown, Eric Rice, and Milind Tambe. Fair influence maximiza-

tion: A welfare optimization approach. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 35, pages 11630–11638, 2021.



136

Ben Roberts, Dinan Gunawardena, Ian A Kash, and Peter Key. Ranking and

tradeoffs in sponsored search auctions. ACM Transactions on Economics and

Computation (TEAC), 4(3):1–21, 2016.

Tim Roughgarden. Algorithmic game theory. Communications of the ACM, 53

(7):78–86, 2010.

Tuomas Sandholm. Algorithm for optimal winner determination in combinato-

rial auctions. Artificial intelligence, 135(1-2):1–54, 2002.

James Schummer and Rakesh V Vohra. Mechanism design without money. Al-

gorithmic game theory, 10:243–299, 2007.

Paolo Serafino and Carmine Ventre. Heterogeneous facility location without

money. Theoretical Computer Science, 636:27–46, 2016.

Xin Sui and Craig Boutilier. Approximately strategy-proof mechanisms for (con-

strained) facility location. In Proceedings of the 2015 International Conference

on Autonomous Agents and Multiagent Systems (AAMAS), pages 605–613, 2015.

Pingzhong Tang, Dingli Yu, and Shengyu Zhao. Characterization of group-

strategyproof mechanisms for facility location in strictly convex space. In EC,

pages 133–157, 2020a.

Zhongzheng Tang, Chenhao Wang, Mengqi Zhang, and Yingchao Zhao. Mecha-

nism design for facility location games with candidate locations. In Proceedings

of the 14th International Conference on Combinatorial Optimization and Appli-

cations (COCOA), pages 440–452, 2020b.

William Vickrey. On the prevention of gerrymandering. Political Science Quar-

terly, 76(1):105–110, 1961.



137

Toby Walsh. Strategy proof mechanisms for facility location at limited locations.

In Proceedings of the 8th Pacific Rim International Conference on Artificial Intel-

ligence (PRICAI), pages 113–124, 2021.

David P Williamson and David B Shmoys. Thedesign of approximation algorithms.

Cambridge university press, 2011.

Xinping Xu, Bo Li, Minming Li, and Lingjie Duan. Two-facility location games

with minimum distance requirement. Journal of Artificial Intelligence Research,

70:719–756, 2021.

Deshi Ye, Lili Mei, and Yong Zhang. Strategy-proof mechanism for obnoxious

facility location on a line. In COCOON, pages 45–56, 2015.

Qi Zhao, Wenjing Liu, Qingqin Nong, and Qizhi Fang. Constrained heteroge-

neous facility location games with max-variant cost. Journal on Combinatorial

Optimization, 45(3):90, 2023.

Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. Budget constrained

bidding in keyword auctions and online knapsack problems. In Proceedings of

the 17th international conference on world wide web, pages 1243–1244, 2008.

Shaokun Zou and Minming Li. Facility location games with dual preference.

In Proceedings of the 2015 International Conference on Autonomous Agents and

Multiagent Systems (AAMAS), pages 615–623, 2015.


	Abstract
	Acknowledgements
	Introduction
	Algorithmic Mechanism Design
	Facility Location Problems and Games
	Two-facility Location Games
	Multiple facilities
	Obnoxious Facility Location
	Heterogeneous Facility Location
	Facility Location with Candidate Locations
	Distributed Facility Location

	Structure of the Thesis
	List of Publications

	Preliminaries
	On Discrete Truthful Heterogeneous Two-Facility Location
	Definitions and notation
	Overview of Contribution
	Social cost: A general constant upper bound
	Social cost: A tight bound for instances with three agents
	Maximum cost
	Improving the upper bound
	A tight lower bound


	Heterogeneous Two-Facility Location with Candidate Locations
	Definitions and notation
	Overview of contribution
	Social cost
	Doubleton instances
	Singleton instances
	General instances

	Max cost
	Doubleton instances
	Singleton instances
	General instances

	Allowing same facility locations
	Social cost
	Max cost


	Settling the Approximation Ratio of Distributed Facility Location
	Definitions and notation
	Social objectives and strategyproofness
	Useful observations

	Overview of Contribution
	Average social cost
	Unrestricted mechanisms

	Max cost
	Average-of-Max
	Unrestricted mechanisms
	Strategyproof mechanisms

	Max-of-Average 
	Unrestricted mechanisms
	Strategyproof mechanisms


	Conclusion and Directions for Future Work
	References

