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A B S T R A C T

Second-order Stochastic Dominance (SSD) criterion can be used to support portfolio decision making under
risk and uncertainty. In this paper, we develop novel robust SSD criteria to capture the strength of dominance
and portfolio optimization models utilizing these criteria to identify portfolios whose in-sample SSD dominance
over a given benchmark is likely to hold also out-of-sample. The developed models can incorporate incomplete
probability information by allowing a set of feasible state probabilities. We also show that these portfolio
optimization models can be formulated as linear programming problems. We report results from applying these
SSD-based portfolio optimization models with different sets of state probabilities in an empirical application,
with a focus on evaluating the out-of-sample portfolio performance of the optimized portfolios.
1. Introduction

Stochastic Dominance (SD) is a popular decision rule to support
decision making under risk and uncertainty (Hadar & Russell, 1969;
Hanoch & Levy, 1969; Rothschild & Stiglitz, 1970), which does not
require explicit specification of the decision maker’s (DM’s) risk pref-
erences (see, Levy, 2016, for an overview). Within the SD framework,
Second-order Stochastic Dominance (SSD) criterion is particularly suit-
able for financial decision making where investors are normally as-
sumed to be (rationally) risk-averse (Hanoch & Levy, 1969). In particu-
lar, portfolio A dominates B by SSD, if the expected utility of portfolio
A is greater than or equal to that of portfolio B for all monotonically
increasing concave or linear utility functions. Consequently, all risk-
averse or -neutral DMs would prefer portfolio A over B. In addition,
portfolio A is said to be SSD-efficient, if there exists no any other
marketed portfolio that dominates portfolio A by SSD.

The theoretical appeal of the SSD criterion has attracted grow-
ing research attention and efforts in developing SSD-based portfolio
optimization approaches. In practice, identifying SSD-efficient portfo-
lios corresponds to solving a Linear Programming (LP) problem (see,
e.g., Bruni et al., 2017; Consigli et al., 2020; Dentcheva & Ruszczyński,
2003, 2006; Henriksen et al., 2019; Kallio & Hardoroudi, 2018; Kopa
et al., 2018; Kopa & Post, 2015; Kuosmanen, 2004; Liesiö et al., 2020;
Longarela, 2016; Post, 2003; Roman et al., 2006; Vitali & Moriggia,
2021). Specifically, the SSD-based models by Post (2003) and Kuos-
manen (2004) enable to (i) test if a given portfolio is SSD-efficiently
diversified in view of all possible portfolios in a particular asset span;
(ii) if not, construct a dominating portfolio that is SSD-efficient. The
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dual formulation of Kopa and Post (2015) maximizes the weighted sum
of differences in cumulative portfolio returns and thus, the dominating
portfolio obtained achieves SSD efficiency.

Recently, another SSD research strand grows in popularity: As-
sessing the out-of-sample SSD-related performance of in-sample SSD-
efficient portfolios in empirical applications of SSD-based portfolio
optimization (see, e.g., Hodder et al., 2015; Liesiö et al., 2020; Post
et al., 2018; Roman et al., 2013). In particular, this research strand
has been led by some distinct interest in evaluating and analyzing
how likely such optimized portfolios obtained by SSD-based models
would still dominate a particular benchmark out-of-sample. Hodder
et al. (2015) document empirical findings that in-sample SSD-efficient
portfolios do not necessarily dominate the benchmark portfolio in out-
of-sample evaluation. In order to best preserve dominance by SSD
out-of-sample, Liesiö et al. (2020) develop SSD approaches that utilize
incomplete probability information to account for several types of
parameter uncertainties in estimating state probabilities. Specifically,
their approach, like most traditional methods, builds on expected port-
folio return maximization, but identifies robust benchmark dominating
portfolios with respect to a set of feasible probability vectors, rather
than a single vector of state probabilities. In addition, Post et al. (2018)
propose another SSD approach that maximizes expected portfolio re-
turn and utilizes the Empirical Likelihood approach to elicit the implied
state probabilities subject to a set of well-specified moment conditions,
capturing stylized facts about empirical finance data.

Although the existing literature has mainly focused on determining
the appropriate (set of) state probabilities as an approach to improve
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out-of-sample portfolio performance, less attention has been devoted
to designing robust SSD criteria to identify in-sample SSD-efficient
portfolios that are also likely to dominate the benchmark out-of-sample.
Specifically, if there are several portfolios dominating the benchmark
in-sample, the most widely used approach is to select the one that yields
the highest expected portfolio return. However, when the aim is for the
dominance to hold also out-of-sample, it might be more appropriate
to select a portfolio whose dominance over the benchmark is in some
sense the strongest. Ideally, such novel dominance criteria could be
utilized together with incomplete probability information to analyze
the joint impacts of the specification of state probabilities along with
the SSD criteria have on out-of-sample portfolio performance.

In this paper, we develop new robust approaches for SSD-based
portfolio optimization that seek to identify portfolios whose in-sample
dominance over the benchmark portfolio holds also out-of-sample. In
particular, this development considers both (i) admitting incomplete
probability information, and (ii) the design of novel robust SSD criteria
that capture the strength of dominance over the benchmark. In terms
of probability information, the SSD approaches developed here can use
and combine existing estimation methods based on incomplete prob-
ability information (Liesiö et al., 2020) and the Empirical Likelihood
approach (Post et al., 2018). Standard SSD approaches typically rest
on, for instance, maximizing expected portfolio return and assume that
the underlying information regarding state probabilities is complete.
However, we take a different approach instead by maximizing the
minimum distances between the integrated cumulative density func-
tions of portfolio returns and allow incomplete information on state
probabilities. We also develop computationally tractable LP models
based on such distance measures for identifying robust dominating
portfolios whose dominance over a given benchmark is the strongest
given a set of feasible state probabilities.

This paper also analyzes and evaluates the out-of-sample perfor-
mance of the developed SSD-based portfolio optimization models under
complete and incomplete probability information. To examine and
compare different SSD models, we implement an investment applica-
tion using empirical data on the returns of industry portfolios and
common risk factors. This application setup design follows prior empiri-
cal tests deployed in Arvanitis et al. (2021), Hodder et al. (2015), Liesiö
et al. (2020), Post et al. (2018) and Roman et al. (2013). Specifically,
for each SSD model, we deploy a rolling 12-month estimation win-
dow of daily returns for portfolio formation in-sample and rebalance
after a 1-month holding period. Then, the obtained optimal portfolio
is evaluated on several portfolio performance metrics out-of-sample.
Results from this empirical application show that (i) using different
SSD models exhibits explicit out-of-sample trade-offs between returns
and dominance relations in the sense of SSD; and (ii) under complete
probability information, using empirical likelihood (EL) state probabil-
ities in a return maximizing SSD model generally outperforms equal
state probabilities. However, we document no consistent performance
pattern out-of-sample between using equal and EL state probabilities in
the other SSD models, especially when incomplete information on state
probabilities is accounted for.

There are also several other relevant streams of research in the lit-
erature that cannot be ignored. For instance, Kouaissah (2023) recently
develops a robust portfolio optimization approach with weak SSD con-
straints allowing different distributional assumptions. Specifically, this
approach formulates a robust optimization that explicitly specifies a
constraint for handling asset returns following heavy-tailed probability
distributions in the optimization problem itself. Thus, the resulting
reward-risk performance measures obtained by the optimized portfolios
are improved and less sensitive to estimation errors in out-of-sample
evaluations. Sehgal and Mehra (2020) establish a robust portfolio
optimization model with SSD constraints to accommodate uncertainties
arising from input asset returns. In particular, these uncertain inputs
2

are allowed to vary in symmetric and bounded intervals so that the W
optimized portfolios obtained would yield better out-of-sample portfo-
lio performance. More broadly, the analysis, evaluation, and prediction
of portfolio performance have always been of key interest to academics
and practitioners in the realm of financial analysis research (see, among
others, Canepa et al., 2020; Chavez-Bedoya & Rosales, 2021; Cipollini
et al., 2021; Guerard et al., 2015; Han & Li, 2022, 2023; Hoang et al.,
2015; Kassimatis, 2021; Kazak & Pohlmeier, 2019; Khashanah et al.,
2022; Kim & Kang, 2021; Migliavacca et al., 2023; Pho et al., 2021;
Post et al., 2019; Roccazzella et al., 2022; Xia et al., 2015). Moreover,
stochastic dominance and portfolio optimization (see, Salo et al., 2023,
for a recent review) research have a long tradition of supporting
decision making under incomplete or imprecise information on risk
preferences and probability information (see, among others, Dentcheva
& Römisch, 2013; Dentcheva & Ruszczyński, 2010; Dupačová & Kopa,
2012, 2014; Egozcue & Wong, 2010; Keppe & Weber, 1989; La Torre &
Mendivil, 2018, 2022; Liesiö et al., 2023; Montes et al., 2014a, 2014b;
Wong, 2007).

The rest of the paper is structured as follows. Section 2 intro-
duces the notations and standard definitions related to SSD. Section 3
presents novel robust dominance criteria in the sense of SSD and
develops new SSD-based portfolio optimization models. Section 4 ad-
dresses the estimation of complete and incomplete state probabilities
for the state-space of SSD-based models. Section 5 applies empirically
the developed SSD models to industry portfolio optimization under
complete and incomplete probability information and analyzes their
resulting out-of-sample portfolio performance. Section 6 concludes.

2. Preliminaries

We model the returns of 𝑁 distinct base assets as real-valued
random variables 𝑋1,… , 𝑋𝑁 on the set of 𝑇 mutually exclusive and
collectively exhaustive states 𝑆 = {𝑠1,… , 𝑠𝑇 }. The return of asset 𝑖 in
state 𝑡 is given by 𝑥𝑖,𝑡 = 𝑋𝑖(𝑠𝑡) ∈ R𝑁×𝑇 . A portfolio of these assets is
established with a vector of asset weights 𝜆 ∈ R𝑁 capturing the share
of capital invested into each asset with no short position allowed 𝜆 ≥ 0.

herefore, the set of all possible asset weights can be expressed as

=

{

𝜆 ∈ R𝑁
+

|

|

|

|

|

𝑁
∑

𝑖=1
𝜆𝑖 = 1

}

. (1)

The return of a portfolio with weights 𝜆 is represented by random
variable 𝑋 =

∑𝑁
𝑖=1 𝜆𝑖𝑋𝑖 whose state-specific returns are denoted by

𝑥𝑡 = 𝑋(𝑠𝑡) =
∑𝑁

𝑖=1 𝜆𝑖𝑥𝑖,𝑡. The set of all possible portfolios is expressed as
eturn mixtures of the base assets

=

{ 𝑁
∑

𝑖=1
𝜆𝑖𝑋𝑖

|

|

|

|

|

𝜆 ∈ 𝛬

}

. (2)

Let 𝑌 be any benchmark portfolio whose state-specific returns are
epresented by 𝑦𝑡 = 𝑌 (𝑠𝑡). The state probabilities define a probability

vector 𝑝 = (𝑝1,… , 𝑝𝑇 ) in the 𝑇 -dimensional simplex

𝑃 0 =

{

𝑝 ∈ [0, 1]𝑇
|

|

|

|

|

𝑇
∑

𝑡=1
𝑝𝑡 = 1

}

. (3)

We denote the expectation and cumulative density function (CDF) of
some portfolio return 𝑋 by E𝑝[𝑋] =

∑𝑇
𝑡=1 𝑝𝑡𝑥𝑡 and

𝑋 (𝜃; 𝑝) = P
({

𝑠𝑡 ∈ 𝑆
|

|

|

|

𝑋(𝑠𝑡) ≤ 𝜃
})

=
∑

𝑡
𝑥𝑡≤𝜃

𝑝𝑡, (4)

espectively.
Second-order Stochastic Dominance (SSD) compares the integrals of

andom variables’ cumulative density function (CDF)s. With a finite
tate-space, these integrals can be evaluated as finite sums and as a
esult, the integrated CDF of portfolio return 𝑋 is,

2
𝑋 (𝜃; 𝑝) = ∫

𝜃

−∞
𝐹𝑋 (𝜏; 𝑝) 𝑑𝜏 =

∑

𝑡
𝑥𝑡≤𝜃

𝑝𝑡(𝜃 − 𝑥𝑡) =
𝑇
∑

𝑡=1
𝑝𝑡 max

{

𝜃 − 𝑥𝑡, 0
}

. (5)
ith this notation, SSD can be formalized by the following definition.
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Definition 1. Portfolio 𝑋 weakly dominates portfolio 𝑌 by Second-
order Stochastic Dominance, denoted by 𝑋 ⪰ 𝑌 , if and only if

𝐹 2
𝑋 (𝜃; 𝑝) ≤ 𝐹 2

𝑌 (𝜃; 𝑝) ∀ 𝜃 ∈ R, (6)

here 𝐹 2
(⋅) evaluates the integrals of the CDF of some portfolio return.

The dominance relation ⪰ is explicitly linked to the Expected Utility
heory (EUT) framework: Portfolio 𝑋 dominates some benchmark port-
olio 𝑌 by SSD if and only if any risk-averse or -neutral expected utility
aximizing decision maker prefers portfolio 𝑋 to portfolio 𝑌 (Hanoch
Levy, 1969). This is since the expected utility of portfolio 𝑋 is always

igher than or equal to that of 𝑌 , i.e.,

⪰ 𝑌 ⇔ E𝑝[𝑢(𝑋)] ≥ E𝑝[𝑢(𝑌 )] ∀ 𝑢 ∈ 𝑈∗, (7)

where set 𝑈∗ consists of all non-decreasing utility functions that are
concave.

SSD-based portfolio optimization models typically consider only
omplete probability information and generally assume that there exists
ome pre-specified probability distribution of asset returns character-
zed by a single state probability vector 𝑝∗. In a recent work, this
ssumption is relaxed by accounting also for incomplete state proba-
ility information (Liesiö et al., 2020). Specifically, such incomplete
nformation on state probabilities can be modeled using set-valued state
robabilities and this procedure is technically realized by formulating
set of feasible probabilities1 𝑃 such that 𝑃 ⊆ 𝑃 0, around a single state
robability vector 𝑝∗ (e.g., centroid of set 𝑃 ).

Liesiö et al. (2020) extend the definition of SSD (Definition 1) to
et-valued state probabilities by requiring that the dominance relation
olds for all probability vectors in this set. This leads to the dominance
elation formalized in the following definition, which we refer to as
obust SSD.2

efinition 2. Portfolio 𝑋 weakly dominates portfolio 𝑌 by Second-
rder Stochastic Dominance with respect to the set of feasible proba-
ilities 𝑃 ⊆ 𝑃 0, denoted by 𝑋 ⪰𝑃 𝑌 , if and only if
2
𝑋 (𝜃; 𝑝) ≤ 𝐹 2

𝑌 (𝜃; 𝑝) ∀ 𝜃 ∈ R, 𝑝 ∈ 𝑃 . (8)

This robust dominance relation ⪰𝑃 also has an EUT-based inter-
retation: If portfolio 𝑋 dominates some benchmark portfolio 𝑌 by
SD, then a risk-averse or -neutral expected utility maximizing decision
aker would prefer portfolio 𝑋 over 𝑌 for all of the state probability

ectors in set 𝑃 (Liesiö et al., 2020). Consequently, the resulting
xpected utility interpretation of robust SSD can be formally stated as

⪰𝑃 𝑌 ⇔ E𝑝[𝑢(𝑋)] ≥ E𝑝[𝑢(𝑌 )] ∀ 𝑢 ∈ 𝑈∗, 𝑝 ∈ 𝑃 . (9)

. Portfolio optimization based on robust second-order stochastic
ominance

In this section, we introduce novel robust dominance criteria and
evelop new portfolio optimization approaches for identifying robust
ominating portfolio 𝑋 whose in-sample strength of dominance over
ome pre-specified benchmark portfolio 𝑌 is the strongest. Specifically,
e develop computationally tractable SSD-based portfolio optimization
odels based on distance measures between the integrated CDFs of
ortfolios 𝑋 and 𝑌 , with incomplete probability information captured
y some set of feasible probabilities 𝑃 . Without loss of generality,
e assume, throughout this section, that the states are indexed in an
scending order of state-specific returns of the benchmark portfolio 𝑌
uch that 𝑦1 ≤ 𝑦2 ≤ ⋯ ≤ 𝑦𝑇−1 ≤ 𝑦𝑇 .

1 Sets of feasible probabilities are also interchangeably known as credal sets
n Levi (1980).

2 A classic definition of robust SSD is presented in Dentcheva and
uszczyński (2010).
3

3.1. Establishing robust second-order stochastic dominance criteria

Perhaps the most obvious approach to utilize robust dominance
criteria in portfolio optimization is to require that the optimized port-
folio 𝑋 dominates some pre-specified benchmark portfolio 𝑌 for all
easible probability vectors in set 𝑃 . As there can be several portfolios
ominating the benchmark, the selection among these portfolios can
e based on maximizing the expected portfolio return under some pre-
pecified state probabilities 𝑝∗ in set 𝑃 . As established by Liesiö et al.

(2020), this portfolio optimization problem can be formulated as

max
𝑋∈

E𝑝∗ [𝑋] 𝑠.𝑡. 𝑋 ⪰𝑃 𝑌 . (10)

If set 𝑃 consists only of a single vector of state probabilities 𝑃 = {𝑝∗},
then model (10) reduces to a standard SSD problem with complete
probability information (see, e.g., Kopa & Post, 2015; Kuosmanen,
2004; Post et al., 2018).

However, if the aim is to identify a portfolio whose dominance over
the benchmark is robust in the sense that it would hold also out-of-
sample, it might not be advisable to select the portfolio with the highest
expected return. Thus, we propose selecting the portfolio whose domi-
nance over the benchmark is the strongest. One approach to capture the
strength of dominance is to measure the maximal allowed increase in
the return of benchmark portfolio such that the established dominance
relation would still hold. Formally, this corresponds to finding the
maximal value 𝜑 ∈ R+ such that 𝑋 dominates 𝑌 +𝜑. This measure can
be readily extended to account for incomplete probability information
by considering the maximal value of 𝜑 across all feasible probability
vectors in set 𝑃 . Thus, identifying a portfolio whose dominance over
the benchmark is the strongest corresponds to solving the optimization
problem

max
𝜑≥0, 𝑋∈

𝜑 𝑠.𝑡. 𝑋 ⪰𝑃 𝑌 + 𝜑. (11)

Intuitively, 𝜑 can be seen as a risk-free rate added to portfolio 𝑌 . Alter-
natively, 𝜑 can also be interpreted to measure the minimal horizontal
distance between the integrated CDFs of portfolios 𝑋 and 𝑌 .

This interpretation suggests an alternative approach in which the
strength of dominance is measured as the minimal vertical distance
between the integrated CDFs of portfolios 𝑋 and 𝑌 . For robust SSD to
hold between portfolios 𝑋 and 𝑌 such that 𝑋 ⪰𝑃 𝑌 , it is required that
the integrated CDF of portfolio 𝑋 remains below or equal to that of
portfolio 𝑌 for all feasible probability vectors in set 𝑃 . This condition
implies that 𝑦1 = min(𝑌 ) ≤ min(𝑋) and therefore 𝐹 2

𝑌 (𝑦1; 𝑝) = 𝐹 2
𝑋 (𝑦1; 𝑝) =

0 for all 𝑝 ∈ 𝑃 . To avoid this situation, in which the minimal vertical
distance is always zero, we trim the left tail of return distribution of
the benchmark portfolio 𝑌 and evaluate the vertical distance between
𝐹 2
𝑋 and 𝐹 2

𝑌 only for return levels exceeding the second smallest state-
specific return of the benchmark 𝑦2. In particular, this vertical distance
is formally defined as

𝛥(𝑋, 𝑌 ) = min
𝜃≥𝑦2 , 𝑝∈𝑃

𝐹 2
𝑌 (𝜃; 𝑝) − 𝐹 2

𝑋 (𝜃; 𝑝). (12)

Hence, a robust benchmark dominating portfolio that maximizes this
minimal vertical distance is formally obtained as an optimal solution
to the optimization problem

max
𝑋∈

𝛥(𝑋, 𝑌 ) 𝑠.𝑡. 𝑋 ⪰𝑃 𝑌 . (13)

For a single state probability vector 𝑝, Fig. 1 illustrates the ro-
bust SSD criteria introduced above. Clearly, portfolio 𝑋 stochastically
dominates portfolio 𝑌 by SSD, as the integrated CDF of 𝑋 remains
below or equal to that of 𝑌 for all return levels 𝜃. The blue stars and
red dots represent the state-specific returns of dominating portfolio 𝑋
and those of benchmark 𝑌 , respectively. Essentially, 𝜑 measures the
minimal horizontal distance between 𝐹 2

𝑌 and 𝐹 2
𝑋 , whereas 𝛥 quantifies

2 2
the minimal vertical distance between 𝐹𝑌 and 𝐹𝑋 .
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3.2. Optimization models for identifying robust dominating portfolios

Notably, optimization problem (10) can be formulated as an LP
problem if set 𝑃 has a finite number of extreme points (cf. state
probability vectors). This is since it suffices to ensure that portfolio
𝑋 dominates the benchmark portfolio 𝑌 by SSD at these extreme
probability vectors, which can be implemented using well-known LP
techniques (see, e.g., Dentcheva & Ruszczyński, 2003; Rockafellar &
Uryasev, 2000). Technically, this implementation requires introducing
an auxiliary decision variable 𝑧 ∈ R𝑇×𝑇

+ and, ultimately, optimization
roblem (10) can be formulated using the LP setup from Liesiö et al.
2020) (hereinafter referred to as ‘SSD–LXK’ model)

max
𝜆∈𝛬, 𝑧∈R𝑇×𝑇

+

𝑇
∑

𝑡=1
𝑝∗𝑡

𝑁
∑

𝑖=1
𝜆𝑖𝑥𝑖,𝑡 (14)

𝑠.𝑡.
𝑁
∑

𝑖=1
𝜆𝑖𝑥𝑖,𝑠 + 𝑧𝑡,𝑠 ≥ 𝑦𝑡 ∀ 𝑡, 𝑠 ∈ {1,… , 𝑇 } (15)

𝑇
∑

𝑠=1
𝑝𝑠𝑧𝑡,𝑠 ≤ 𝐹 2

𝑌 (𝑦𝑡; 𝑝) ∀ 𝑡 ∈ {1,… , 𝑇 },

∀ 𝑝 ∈ ext(conv(𝑃 )), (16)

where ext(conv(𝑃 )) denotes the set of extreme points of the convex hull
of set 𝑃 .

In order to develop LP formulations for optimization problems (11)
and (13), we establish the following auxiliary lemma that will be used
in establishing the subsequent theorems. Essentially, the lemma states
that the minimal vertical distance between the integrated CDFs of two
portfolio returns is always found at a return level equal to one of the
state-specific returns of the dominated portfolio.

Lemma 1. Let 𝑉 and 𝑊 be random variables on the discrete state-space
= {𝑠1,… , 𝑠𝑇 } such that 𝑣𝑡 = 𝑉 (𝑠𝑡) and 𝑤𝑡 = 𝑊 (𝑠𝑡). If 𝐹 2

𝑉 (𝑣𝑡; 𝑝) ≥
𝐹 2
𝑊 (𝑣𝑡; 𝑝) for all 𝑡 ∈ {1,… , 𝑇 } and 𝑝 ∈ ext(conv(𝑃 )), then 𝐹 2

𝑉 (𝜃; 𝑝) ≥
𝐹 2
𝑊 (𝜃; 𝑝) for all 𝜃 ∈ R and 𝑝 ∈ ext(conv(𝑃 )).

roof. See Appendix A.

This lemma can be utilized to obtain an LP formulation for optimiza-
ion problem (11) with a similar structure as LP problem (14)–(16).
4

his result is formally stated by the following theorem. P
heorem 1. Portfolio 𝑋∗ =
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖 and 𝜑 ∈ R+ form an optimal
solution to optimization problem (11) if and only if there exists 𝑧 ∈ R𝑇×𝑇

+
such that (𝜆, 𝑧, 𝜑) is an optimal solution to the LP problem

max
𝜆∈𝛬, 𝑧∈R𝑇×𝑇+

𝜑∈R+

𝜑 (17)

𝑠.𝑡.
𝑁
∑

𝑖=1
𝜆𝑖𝑥𝑖,𝑠 + 𝑧𝑡,𝑠 ≥ 𝑦𝑡 + 𝜑 ∀ 𝑡, 𝑠 ∈ {1,… , 𝑇 } (18)

𝑇
∑

𝑠=1
𝑝𝑠𝑧𝑡,𝑠 ≤ 𝐹 2

𝑌 (𝑦𝑡; 𝑝) ∀ 𝑡 ∈ {1,… , 𝑇 }, ∀ 𝑝 ∈ ext(conv(𝑃 )). (19)

roof. See Appendix A.

LP problem (17)–(19), which is hereinafter referred to as ‘SSD–𝜑’
odel, identifies a robust dominating portfolio 𝑋 over the benchmark
ortfolio 𝑌 by SSD, for a given set of feasible probabilities 𝑃 . Es-
entially, ‘SSD–𝜑’ model has 𝑁 + 𝑇 × 𝑇 + 1 decision variables and
× 𝑇 + 𝑇 × 𝑄 + 1 linear constraints, where 𝑄 denotes the number of

xtreme state probability vectors of the convex hull of set 𝑃 .
The LP formulation for optimization problem (13) is formally estab-

ished by the following theorem.

heorem 2. Portfolio 𝑋∗ =
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖 is an optimal solution to optimiza-
ion problem (13) if and only if there exist 𝑧 ∈ R𝑇×𝑇

+ and 𝛿 ∈ R+ such that
𝜆, 𝑧, 𝛿) is an optimal solution to the LP problem

max
𝜆∈𝛬, 𝑧∈R𝑇×𝑇+

𝛿∈R+

𝛿 (20)

𝑠.𝑡.
𝑁
∑

𝑖=1
𝜆𝑖𝑥𝑖,𝑠 + 𝑧𝑡,𝑠 ≥ 𝑦𝑡 ∀ 𝑡, 𝑠 ∈ {1,… , 𝑇 } (21)

𝑇
∑

𝑠=1
𝑝𝑠𝑧1,𝑠 ≤ 𝐹 2

𝑌 (𝑦1; 𝑝) ∀ 𝑝 ∈ ext(conv(𝑃 )) (22)

𝑇
∑

𝑠=1
𝑝𝑠𝑧𝑡,𝑠 + 𝛿 ≤ 𝐹 2

𝑌 (𝑦𝑡; 𝑝) ∀ 𝑡 ∈ {2,… , 𝑇 },

∀ 𝑝 ∈ ext(conv(𝑃 )). (23)
roof. See Appendix A.



International Review of Financial Analysis 95 (2024) 103368P. Xu

I

w
o
t

E

Theorem 2 formulates an LP problem for identifying a robust bench-
mark dominating portfolio 𝑋 in the sense of SSD with respect to some
set of feasible probabilities 𝑃 . LP problem (20)–(23) is referred to as
‘SSD–𝛥’ model. From a computational perspective, it seems that SSD–𝛥
would have the same level of model complexity in comparison to SSD–
𝜑 in terms of, for instance, the number of decision variables as well as
that of the constraints. Nevertheless, empirical results document quite
different solution times from applications of these two SSD models, the
details of which are subsequently reported in Section 5.3.

4. Estimating complete and incomplete probability information

In addition to the utilization of robust SSD criteria, another ap-
proach to improve out-of-sample portfolio performance is to specify
appropriate (set of) state probabilities. In this section, we introduce
different methods to estimate state probabilities covering complete and
incomplete information. In particular, we first consider the estimation
of complete probability information using the traditional Empirical
Distribution Function (EDF) approach and also a more recent Empir-
ical Likelihood (EL) approach (Post et al., 2018). Then, we explore
the estimation further by allowing incomplete information on such
point-estimate state probabilities. Specifically, we utilize the notion of
set-valued state probabilities (Liesiö et al., 2020) to capture parameter
uncertainties in the estimation, in which multiple probability vectors
form a confidence region around a single vector of state probabilities 𝑝∗.
Moreover, we contribute to the literature by introducing a novel hybrid
approach for state probability estimation that technically combines the
approaches of Liesiö et al. (2020) and Post et al. (2018).

4.1. Complete probability information

Traditionally, the state-space of SSD-based portfolio optimization
models is generated using a sample of 𝑇 most recent realized asset
returns with equal state probabilities 𝑝𝑡 = 1

𝑇 , 𝑡 ∈ {1,… , 𝑇 } assigned
to each state vector of returns, representing equally probable scenarios
of future asset returns (see, e.g., Kopa & Post, 2015; Kuosmanen,
2004). This ‘plug-in’ procedure equivalently corresponds to consistently
estimating the true CDFs of the joint asset return distribution using the
Empirical Distribution Function (EDF) approach (see, e.g., Post et al.,
2018; also, Liesiö et al., 2020). The EDF is in essence a consistent es-
timator for state probabilities given that certain statistical assumptions
are fulfilled.

However, for most empirical applications of SSD-based portfolio
optimization, the sample size 𝑇 of asset returns in the state-space is
unfortunately not ‘large’ enough in the statistical sense. Thus, favorable
asymptotic properties generally fail to guarantee that the estimated
CDFs converge in probability to the true CDFs of the joint return
distribution. As a consequence, using the EDF estimator to estimate
the state probabilities can be vulnerable to estimation errors, as it
fails to account for dynamic patterns in empirical finance data. To
improve estimation accuracy, Post et al. (2018) propose the Empirical
Likelihood (EL) approach to elicit the state probabilities based on a
system of pre-specified moment conditions, e.g., capturing empirical
stylized facts about returns of various asset classes.

The Blockwise Empirical Likelihood (BEL) approach by Kitamura
(1997) can be used to take dynamic patterns into account. Specifically,
a sample of 𝑇 asset returns in the state-space is divided into multiple
data blocks with overlapping observations. Let 𝐵 be the number of
return observations in each block and, as a result, the total number
of overlapping data blocks is 𝑇 ∗ = 𝑇 − 𝐵 + 1. For instance, consider a
sample of time series data with 6 asset return observations 𝑥1,… , 𝑥6,
where 𝑥𝑡 = (𝑥1,𝑡,… , 𝑥𝑁,𝑡)′ and the block size 𝐵 = 3. Hence, by the
BEL approach, altogether 6 − 3 + 1 = 4 data blocks can be formed:
Observations 𝑥1, 𝑥2, 𝑥3 are framed into the first block; observations
𝑥2, 𝑥3, 𝑥4 enter the second one; observations 𝑥3, 𝑥4, 𝑥5 fit into the third
one. Ultimately, the last (fourth) block contains observations 𝑥4, 𝑥5, 𝑥6.
5

n general, the index of the 𝑗th element of the 𝑘th block is formally
given by (𝑘 − 1) + 𝑗, and any return observation 𝑥𝑡 is therefore present
throughout all data blocks indexed from 𝑡− = max(1, 𝑡 − 𝐵 + 1) till
𝑡+ = min(𝑡, 𝑇 ∗). Each block is assigned a block-level probability 𝑏𝑘
and the state-level EL probabilities can then be obtained from these
block-level probabilities through

𝑝𝐸𝐿
𝑡 = 1

𝐵

𝑡+
∑

𝑘=𝑡−
𝑏𝑘 ∀ 𝑡 ∈ {1,… , 𝑇 }. (24)

The BEL approach estimates these block-level probabilities such that
the expected values they imply for the chosen common risk factors
(e.g., market premium, size, value, momentum) belong to some pre-
specified intervals. In particular, let there be 𝐹 common risk factors
denoted by random variables 𝛷1,… , 𝛷𝐹 on the state-space. Moreover,
denote the return of common risk factor 𝛷𝑓 in state 𝑡 by 𝜙𝑓,𝑡 = 𝛷𝑓 (𝑠𝑡) ∈
R𝐹×𝑇 . Constraints on these common risk factors can then be formalized
as

𝐿𝑓 ≤ E𝑝𝐸𝐿 [𝛷𝑓 ] ≤ 𝑈𝑓 , 𝑓 ∈ {1,… , 𝐹 }, (25)

where 𝐿𝑓 and 𝑈𝑓 denote the lower and upper bounds, respectively,
specified for their realized distributions at certain percentile levels.
Evaluating the expectation of a particular factor return 𝛷𝑓 under state
probabilities 𝑝𝐸𝐿 gives

E𝑝𝐸𝐿 [𝛷𝑓 ] =
𝑇
∑

𝑡=1
𝑝𝐸𝐿
𝑡 𝜙𝑓,𝑡 =

𝑇
∑

𝑡=1

⎛

⎜

⎜

⎝

1
𝐵

𝑡+
∑

𝑘=𝑡−
𝑏𝑘
⎞

⎟

⎟

⎠

𝜙𝑓,𝑡 =
1
𝐵

𝑇
∑

𝑡=1

𝑡+
∑

𝑘=𝑡−
𝑏𝑘𝜙𝑓,𝑡, (26)

here 𝑡− = max(1, 𝑡 − 𝐵 + 1) and 𝑡+ = min(𝑡, 𝑇 ∗). Now, changing the
rder of summation and utilizing the fact that the 𝑘th block consists of
he states with indices from 𝑘 to (𝑘 − 1) + 𝐵 yield

𝑝𝐸𝐿 [𝛷𝑓 ] =
1
𝐵

𝑇 ∗
∑

𝑘=1

(𝑘−1)+𝐵
∑

𝑡=𝑘
𝑏𝑘𝜙𝑓,𝑡 =

𝑇 ∗
∑

𝑘=1
𝑏𝑘

𝐵
∑

𝑗=1

1
𝐵
𝜙𝑓,(𝑘−1)+𝑗 . (27)

Among those block-level probabilities (𝑏1,… , 𝑏𝑇 ∗ ) satisfying constraints
(25) on expected factor returns, the BEL approach finds the ones that
minimize the Kullback–Leibler distance from equal block probabilities
( 1
𝑇 ∗ ,… , 1

𝑇 ∗ ) by solving the optimization problem

min
𝑏∈R𝑇 ∗

+

− 1
𝑇 ∗

𝑇 ∗
∑

𝑘=1
ln(𝑏𝑘) − ln(𝑇 ∗) (28)

𝐿𝑓 ≤
𝑇 ∗
∑

𝑘=1
𝑏𝑘

𝐵
∑

𝑗=1

1
𝐵
𝜙[𝑓,(𝑘−1)+𝑗] ≤ 𝑈𝑓 ∀ 𝑓 ∈ {1,… , 𝐹 } (29)

𝑇 ∗
∑

𝑘=1
𝑏𝑘 = 1, (30)

where constraint (29) is obtained by substituting (27) into (25).

4.2. Incomplete probability information

In addition to specifying point-estimate state probabilities, another
approach to estimate the state probabilities is to allow incomplete
probability information in the estimation. In practice, in most empirical
applications of SSD-based portfolio optimization, precise or complete
information regarding the state probabilities can be difficult to acquire
or justify (see, Liesiö & Salo, 2012; Moskowitz et al., 1993; Vilkkumaa
et al., 2018). Liesiö et al. (2020) avoid the exact specification of
point-estimate state probabilities by accepting multiple parameter un-
certainties in modeling state probabilities, known as probability ranking,
confidence region around equal state probabilities, and varying sample size.
For instance, the use of set-valued state probabilities enables to build
up a confidence region around a vector of equal state probabilities
�̄� = ( 1𝑇 ,… , 1

𝑇 ) (see, Liesiö et al., 2020). Formally, this type of set-valued
state probabilities can be formulated as

𝑃𝐸𝑆
𝛼 =

{

𝑝 ∈ 𝑃 0 |

|

|

𝑝𝑡 ≥
𝛼 , ∀ 𝑡 ∈ {1,… , 𝑇 }

}

, (31)

|

𝑇
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where parameter 𝛼 ∈ [0, 1] controls the minimum probability across all
states. Thus, decreasing the value of parameter 𝛼 increases the size of
set 𝑃𝐸𝑆

𝛼 : The smallest set 𝑃𝐸𝑆
1 consists of a single vector of equal state

robabilities, i.e., 𝑃𝐸𝑆
1 = {�̄�}, while the largest set 𝑃𝐸𝑆

0 coincides with
he 𝑇 -dimensional simplex.

Instead of setting the lower bounds proportional to equal state prob-
bilities, we construct another set-valued state probabilities, in which
hese lower bounds on state probabilities are relaxed in a decrement of
. In particular, with �̄� = ( 1𝑇 ,… , 1

𝑇 ) being again the center point, this
type of set can be formally expressed as

𝑃𝐸𝑆
𝛽 =

{

𝑝 ∈ 𝑃 0 |

|

|

|

𝑝𝑡 ≥ max
{

𝑝𝑡 − 𝛽, 0
}

, ∀ 𝑡 ∈ {1,… , 𝑇 }
}

, (32)

here parameter 𝛽 is a positive real number. However, for any 𝑝𝑡 < 𝛽,
his results in a situation that the lower bound falls negative. As a result,
he max operator is introduced to ensure non-negative lower bounds
n the state probabilities. Moreover, increasing the value of 𝛽 leads
o a size increase of set 𝑃𝐸𝑆 . Hence, set 𝑃𝐸𝑆

0 is the smallest in size
orresponding to equal state probabilities, a.k.a., 𝑃𝐸𝑆

0 = {�̄�}.
We suggest also a novel hybrid approach utilizing incomplete speci-

ication of the state probabilities that combines the approaches by Post
t al. (2018) and Liesiö et al. (2020). The EL approach in Post et al.
2018) solves optimization problem (28)–(30) and selects the one
ector of block probabilities 𝑏∗ = (𝑏1,… , 𝑏𝑇 ∗ ) that minimizes the diver-
ence from equal block probabilities ( 1

𝑇 ∗ ,… , 1
𝑇 ∗ ) w.r.t. the Kullback–

Leibler distance, subject to a system of linear constraints enforced by
moment conditions of common risk factors (cf. constraints (25)). With
𝑏∗, we are able to compute EL-estimate state probabilities 𝑝𝐸𝐿 using
Eq. (24), then constructing a confidence region around this center point
𝑝𝐸𝐿 with the approach from Liesiö et al. (2020) gives a set-valued state
probabilities

𝑃𝐸𝐿
𝛼 =

{

𝑝 ∈ 𝑃 0 |

|

|

|

𝑝𝑡 ≥ 𝛼𝑝𝐸𝐿
𝑡 , ∀ 𝑡 ∈ {1,… , 𝑇 }

}

, (33)

here parameter 𝛼 ∈ [0, 1] determines the lower bound on each state
robability. Similar to set (31), the smallest set 𝑃𝐸𝐿

𝛼 with only one
ector of EL-estimate state probabilities 𝑝𝐸𝐿 can be obtained with 𝛼 = 1,
.e., 𝑃𝐸𝐿

1 = {𝑝𝐸𝐿}. Subsequently, a decrease in 𝛼 value leads to a size
ncrease of set 𝑃𝐸𝐿

𝛼 until the 𝑇 -dimensional simplex is attained once
gain at 𝛼 = 0 with the largest set 𝑃𝐸𝐿

0 . Furthermore, we establish
nother set-valued state probabilities based on this EL-estimate state
robabilities 𝑝𝐸𝐿, around which the extreme state probability vectors
re symmetric. Formally, replacing the center point �̄� in set (32) with
𝐸𝐿 yields

̃𝐸𝐿
𝛽 =

{

𝑝 ∈ 𝑃 0 |

|

|

|

𝑝𝑡 ≥ max
{

𝑝𝐸𝐿
𝑡 − 𝛽, 0

}

, ∀ 𝑡 ∈ {1,… , 𝑇 }
}

. (34)

. Empirical analysis: Industrial portfolio optimization

In this section, we apply the developed SSD-based portfolio op-
imization approaches to empirical data sets. In particular, we run
mpirical tests using LP models SSD–LXK (cf. (14)–(16)), SSD–𝜑 (cf.
17)–(19)), and SSD–𝛥 (cf. (20)–(23)) and evaluate their resulting out-
f-sample portfolio performance. We also analyze whether admitting
ncomplete probability information by establishing a set of feasible
robabilities around point-estimate such as equal and empirical like-
ihood (EL) state probabilities improves the portfolio performance of
hese SSD methods out-of-sample. Moreover, we compare if the use of
L state probabilities in these SSD approaches results in better out-of-
ample performance than equal state probabilities. Finally, we conduct
ensitivity analysis examining how the block size affects these SSD
odels when utilizing EL-based probability sets.
6

.1. Data

The empirical data set is comprised of daily returns of three types of
ssets. First, the base assets 𝑋1,… , 𝑋49 are represented by the Fama–
rench 49 value-weighted industry portfolios. Second, the benchmark
arket portfolio 𝑌 is an all-share proxy index of the value-weighted

average return of all CRSP (The Center for Research in Security Prices)
stocks listed on the NYSE, AMEX, or NASDAQ Exchanges. Third, we
deploy four common risk factors, namely, market premium (RMRF, 𝛷1),
size (SMB, 𝛷2), value (HML, 𝛷3), and momentum (MOM, 𝛷4) (Carhart,
1997; Fama & French, 1993). In particular, RMRF captures the excess
market return over the risk-free rate. SMB is the market capitalization
factor measured as excess returns of small cap stocks over large cap
stocks. HML is the factor related to value, i.e., excess returns of high
book-to-market (value) stocks to low book-to-market (growth) stocks.
MOM stands for the momentum factor and tracks the tendency for asset
returns to continue moving along a rising (winners) or falling (losers)
path. MOM is also referred to as up-minus-down factor (UMD). Tables 1
and 2 present the descriptive statistics of 49 industry portfolios, the
benchmark market portfolio, and the common risk factors. The data
sample records all daily return observations over a time period from
January 3rd 1927 through December 29th 2017 and thus, includes
23 990 trading days spanning across 91 years.

5.2. Investment strategy, empirical test specification

We use a plain vanilla buy-hold investment strategy allowing no
short sales based on a rolling estimation window with a 12-month
formation period and portfolio rebalancing occurring after a 1-month
holding period. This experimental setup has been applied widely in the
existing literature (see, among others, Arvanitis et al., 2021; Hodder
et al., 2015; Liesiö et al., 2020; Post et al., 2018; Post & Kopa, 2017) and
is also motivated by empirical finance studies on optimal investment
strategies (Moskowitz & Grinblatt, 1999). Moreover, Liesiö et al. (2020)
report that the likelihood of obtaining full SSD over the benchmark
market portfolio declines with longer holding periods.

Specifically, executing this investment strategy on our data sample
gives in total 1080 overlapping portfolio formation periods, moving
forward by 1-month period at a time. In particular, for each formation
period, we use the daily base asset returns in each 12-month formation
period as the state-space to solve SSD–LXK model (cf. (14)–(16)), SSD–
𝜑 model (cf. (17)–(19)), as well as SSD–𝛥 model (cf. (20)–(23)). The
optimal portfolios are then obtained by these SSD models in-sample
for each period by using different types of probability information.

We test particularly two types of set-valued state probabilities 𝑃
by employing equal and empirical likelihood (EL) state probabilities.
For probability sets based on equal state probabilities, we test sets
𝑃 = 𝑃𝐸𝑆

𝛼 and 𝑃 = 𝑃𝐸𝑆
𝛽 , for 𝛼 ∈ {1.00, 0.96, 0.92, 0.90} and 𝛽 ∈

0, 1 × 10−4, 2 × 10−4, 3 × 10−4}, and evaluate the expectation in
14) with equal state probabilities, i.e., 𝑝∗ = �̄�. For probability sets
stablished by using EL state probabilities, another two sets 𝑃 = 𝑃𝐸𝐿

𝛼
nd 𝑃 = 𝑃𝐸𝐿

𝛽 are also tested on the above listed parameters 𝛼 and 𝛽,
nd the expectation evaluation of (14) is therefore based on EL state
robabilities, i.e., 𝑝∗ = 𝑝𝐸𝐿.

In order to obtain EL-estimate state probabilities 𝑝𝐸𝐿 through Eq.
24), the EL approach (Post et al., 2018) applies to obtain block-
evel probabilities 𝑏∗ = (𝑏1,… , 𝑏𝑇 ∗ ) by solving optimization problem

(28)–(30). However, this optimization problem requires a number of
model inputs. For instance, (i) block size 𝐵 needs to be specified
beforehand, and the total number of overlapping data blocks 𝑇 ∗ is,
as a result, determined, (ii) 𝐹 common risk factor returns, and (iii)
the specification of lower and upper bounds, 𝐿 and 𝑈 , on the moment
conditions of these risk factors (cf. constraint (29)). In particular, with
other things being equal, we select one of the best-performing test cases
from Post et al. (2018) (see, Table 4) as the inputs for optimization
problem (28)–(30). Specifically, we choose to deploy 4 factors (𝐹 =
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Table 1
Descriptive statistics of 49 industry portfolios and benchmark market portfolio.

SIC Statistics SIC Statistics

Mean Std. Skew. Kurt. Min Max Mean Std. Skew. Kurt. Min Max

Agric 0.043 1.50 0.61 18.64 −15.27 23.69 Guns 0.056 1.38 −0.05 11.09 −19.48 14.92
Food 0.044 0.92 −0.06 24.46 −16.04 15.54 Gold 0.047 2.27 0.42 10.01 −23.38 25.56
Soda 0.055 1.38 −0.28 14.29 −19.22 11.68 Mines 0.045 1.53 0.21 16.89 −17.91 19.85
Beer 0.054 1.45 0.01 23.04 −24.06 19.91 Coal 0.046 2.12 0.33 15.39 −19.34 27.31
Smoke 0.052 1.19 0.16 16.20 −13.99 16.22 Oil 0.046 1.28 0.08 16.82 −19.50 19.27
Toys 0.046 2.14 0.58 29.69 −26.75 39.74 Util 0.038 1.09 0.29 26.46 −15.26 17.92
Fun 0.053 1.80 0.18 15.65 −24.11 20.81 Telcm 0.039 1.03 0.20 20.95 −16.69 15.98
Books 0.041 1.55 0.84 28.29 −19.34 33.40 PerSv 0.045 2.01 0.32 28.45 −30.99 30.61
Hshld 0.041 1.16 −0.15 34.96 −21.46 25.87 BusSv 0.050 1.97 5.32 246.36 −37.41 61.56
Clths 0.039 1.14 −0.15 25.94 −18.51 20.49 Hardw 0.054 1.53 −0.02 18.87 −23.52 21.65
Hlth 0.043 1.52 −0.19 12.91 −15.45 17.39 Softw 0.044 2.36 0.65 14.01 −20.76 24.19
MedEq 0.053 1.59 13.06 1076.71 −53.62 111.82 Chips 0.052 1.75 0.16 26.42 −30.57 37.90
Drugs 0.049 1.14 −0.24 20.16 −18.70 16.70 LabEq 0.050 1.42 −0.05 12.24 −18.78 15.93
Chems 0.047 1.27 −0.15 18.88 −18.91 16.86 Paper 0.075 3.27 8.62 309.60 −45.65 150.00
Rubbr 0.054 1.67 0.58 28.25 −19.79 26.32 Boxes 0.049 1.25 −0.18 14.20 −21.43 12.59
Txtls 0.041 1.31 0.10 18.88 −18.40 19.50 Trans 0.040 1.35 0.12 15.27 −17.56 18.49
BldMt 0.043 1.25 0.05 21.11 −17.96 22.97 Whlsl 0.040 1.61 3.13 189.22 −44.44 66.92
Cnstr 0.049 2.00 0.68 18.62 −23.81 29.35 Rtail 0.045 1.13 0.00 17.00 −18.01 17.81
Steel 0.040 1.67 0.58 28.95 −24.04 30.39 Meals 0.048 1.34 −0.03 13.00 −15.48 19.40
FabPr 0.034 1.49 −0.13 8.96 −15.45 11.44 Banks 0.052 1.47 0.31 25.73 −20.43 23.05
Mach 0.046 1.37 0.30 22.55 −18.06 26.16 Insur 0.045 1.37 0.35 22.01 −17.15 18.93
ElcEq 0.053 1.56 0.20 16.73 −19.70 24.44 RlEst 0.037 2.14 1.10 24.76 −21.23 36.78
Autos 0.047 1.57 0.35 17.92 −19.72 27.88 Fin 0.048 1.57 0.05 28.22 −28.65 23.28
Aero 0.063 1.77 0.49 22.41 −19.29 32.00 Other 0.032 1.48 −0.05 15.25 −20.26 16.84
Ships 0.043 1.51 0.09 10.71 −13.20 16.62 Bench 0.042 1.07 −0.12 19.73 −17.41 15.76
f
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Table 2
Descriptive statistics of 4 common risk factors.

Risk factors Statistics

Mean Std. Skew. Kurt. Min Max

RMRF 0.029 1.07 −0.11 19.75 −17.44 15.76
SMB 0.005 0.59 −0.77 25.85 −11.62 8.21
HML 0.016 0.59 0.74 19.00 −5.98 8.43
MOM 0.027 0.75 −1.61 30.33 −18.33 7.01

4, Carhart, 1997, 4-factor model), instead of 3 (𝐹 = 3, Fama & French,
1993, 3-factor model), in our test setup because addition of the MOM
factor yields indeed informative out-of-sample results. In addition, for
each formation period, we use the daily factor returns in the identical
12-month formation period (mentioned above) to compute 𝐿𝑓 and 𝑈𝑓 ,
which correspond to 10th and 90th percentiles of each risk factor’s
historical distribution, respectively, for 𝑓 ∈ {1,… , 4}. Moreover, in
order to evaluate the impact of varying block size 𝐵, these empirical
tests are carried out using a set of different block sizes 𝐵 ∈ {2, 3, 5, 10}.

In the end, for each optimal portfolio obtained from SSD–LXK,
SSD–𝜑, and SSD–𝛥 models, we evaluate its resulting out-of-sample
erformance on several metrics using daily returns from the subsequent
-month holding period. Hence, a total of 1080 holding periods are
valuated out-of-sample for each test case of 𝑃 .

5.3. Computation

LP models SSD–LXK, SSD–𝜑, and SSD–𝛥 are implemented in MAT-
LAB and solved with Gurobi 9.1.1. on Aalto University’s high per-
formance computing cluster Triton with an Intel Xeon Processor @
2.50 GHz and 16 GB of RAM per executor node. In addition, optimiza-
tion problem (28)–(30) is solved by the nonlinear fmincon solver from
the MATLAB optimization toolbox on a standard laptop with an Intel
Core i7 Processor @ 2.60 GHz and 32 GB of RAM.

Solving SSD–LXK model takes some 3 to 420 s. The solution time
of SSD–𝜑 model varies between 14 and 671 s, while solving SSD–𝛥
model requires 6 to 237 s. In fact, solving SSD–𝜑 model is more time
consuming. Naturally, for larger probability sets, it takes more time on
7

t

average to solve the underlying LP problem but there is no significant
difference observed in the solution time between using probability
sets based on equal and EL state probabilities. Moreover, solving op-
timization problem (28)–(30) to obtain EL probability estimates takes
approximately 10 s.

5.4. Results

Tables 3 and 4 report the out-of-sample performance of in-sample
optimized portfolios from LP models SSD–LXK, SSD–𝜑, and SSD–𝛥 with
different probability information. In particular, Table 3 presents the re-
sults obtained by using two distinct set-valued state probabilities based
on equal state probabilities 𝑃𝐸𝑆

𝛼 (see, Eq. (31)) and 𝑃𝐸𝑆
𝛽 (see, Eq. (32)),

or 𝛼 ∈ {1.00, 0.96, 0.92, 0.90} and 𝛽 ∈ {0, 1 × 10−4, 2 × 10−4, 3 × 10−4}.
able 4 shows the corresponding outcomes from the use of probability
ets 𝑃𝐸𝐿

𝛼 (see, Eq. (33)) and 𝑃𝐸𝐿
𝛽 (see, Eq. (34)), both of which are

stablished with empirical likelihood (EL) state probabilities obtained
ith the block size 𝐵 = 2. Some preliminary empirical tests showed that

t becomes impossible to identify a portfolio dominating the benchmark
n-sample, when 𝛼 falls below the value of 0.9 in sets 𝑃𝐸𝑆

𝛼 and 𝑃𝐸𝐿
𝛼 or

hen 𝛽 increases beyond the value of 0.0003 for sets 𝑃𝐸𝑆
𝛽 and 𝑃𝐸𝐿

𝛽 .
In general, using SSD–LXK model yields always the highest spreads

n comparison to SSD–𝜑 and SSD–𝛥 models. The use of SSD–𝜑 model
ives the second best spreads following SSD–LXK, whereas the least
preads are earned by SSD–𝛥 model, for all probability sets based on
oth equal and EL state probabilities. With a size increase in sets 𝑃𝐸𝑆

𝛼
nd 𝑃𝐸𝐿

𝛼 , for 𝛼 ∈ {1.00, 0.96, 0.92, 0.90}, as well as in 𝑃𝐸𝑆
𝛽 and 𝑃𝐸𝐿

𝛽 ,
or 𝛽 ∈ {0, 1 × 10−4, 2 × 10−4, 3 × 10−4}, applying SSD–LXK and
SD–𝜑 models exhibits diminishing returns in mean spreads. However,
llowing incomplete information on state probabilities with SSD–𝛥
odel always outperforms complete probability information specified

y a single vector of either equal (i.e., 𝑃𝐸𝑆
1 = 𝑃𝐸𝑆

0 ) or EL state proba-
ilities (i.e., 𝑃𝐸𝐿

1 = 𝑃𝐸𝐿
0 ). Moreover, under such complete probability

nformation, using SSD–𝛥 model offers the lowest active risk (i.e., the
tandard deviation of spreads), as well as the lowest downside risk in
erms of Conditional Value-at-Risk (CVaR5%). Although increasing the
ize of sets 𝑃𝐸𝑆

𝛼 and 𝑃𝐸𝐿
𝛼 , for 𝛼 ∈ {1.00, 0.96, 0.92, 0.90}, as well as

hat of sets 𝑃𝐸𝑆 and 𝑃𝐸𝐿, for 𝛽 ∈ {0, 1 × 10−4, 2 × 10−4, 3 × 10−4}
𝛽 𝛽
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Table 3
Out-of-sample portfolio performance with probability sets based on equal state probabilities. The first four columns show the mean, standard deviation, skewness, and CVaR5% of
annualized excess returns (spreads) to the benchmark portfolio. The next three columns under risk-adjusted metrics present annualized Sharpe, Sortino, and Information (Info.)
ratios. The second last two columns under asset diversification report portfolio turnover and average number of industries (out of 49) included in the optimal portfolios. The last
two columns present two dominance measures, almost-SSD (ASSD) and full SSDs over the benchmark.

Set 𝑃 Model Spread over benchmark Risk–adjusted metrics Asset diversification Dominance

Mean Std. Skew CVaR5% Sharpe Sortino Info. Turnover Industries ASSD SSDs
% % ness % ratio ratio ratio # in 49 𝜀 %

𝑃 𝐸𝑆
1 SSD–LXK 5.934 15.33 0.90 −17.75 0.599 0.965 0.387 0.758 5.145 0.2836 14.54

= SSD–𝜑 5.529 13.05 0.75 −17.34 0.624 1.029 0.424 0.681 6.768 0.1822 24.35
𝑃 𝐸𝑆
0 SSD–𝛥 1.400 9.47 0.18 −16.31 0.550 0.243 0.148 0.451 39.184 0.0259 45.65

SSD–LXK 5.387 11.62 1.00 −12.92 0.636 1.284 0.464 0.726 7.469 0.1733 25.28
𝑃 𝐸𝑆
0.96 SSD–𝜑 4.117 7.83 1.08 −8.01 0.604 1.717 0.526 0.667 12.837 0.1300 28.43

SSD–𝛥 2.440 8.46 0.47 −11.93 0.597 0.575 0.288 0.531 36.893 0.0442 43.06

SSD–LXK 4.487 8.79 1.10 −7.68 0.621 1.702 0.511 0.687 11.576 0.1187 29.81
𝑃 𝐸𝑆
0.92 SSD–𝜑 2.706 5.04 1.05 −4.58 0.550 1.715 0.536 0.545 19.872 0.1146 29.44

SSD–𝛥 2.629 6.40 0.88 −8.03 0.580 1.020 0.411 0.526 35.411 0.0382 44.44

SSD–LXK 3.896 7.04 1.01 −6.38 0.602 1.887 0.553 0.640 14.398 0.1129 31.14
𝑃 𝐸𝑆
0.90 SSD–𝜑 2.077 3.89 1.07 −3.59 0.510 1.783 0.534 0.479 23.389 0.1042 30.12

SSD–𝛥 2.520 5.36 1.08 −5.89 0.548 1.360 0.470 0.492 34.955 0.0390 43.56

SSD–LXK 5.657 12.23 0.88 −14.38 0.632 1.251 0.463 0.737 6.631 0.2006 23.15
𝑃 𝐸𝑆
1×10−4 SSD–𝜑 4.489 9.90 1.29 −10.51 0.592 1.372 0.454 0.702 10.580 0.1414 26.94

SSD–𝛥 2.219 8.95 0.28 −13.61 0.595 0.462 0.248 0.510 37.483 0.0352 44.91

SSD–LXK 4.806 10.91 1.16 −11.80 0.638 1.216 0.441 0.718 8.581 0.1535 26.67
𝑃 𝐸𝑆
2×10−4 SSD–𝜑 3.545 6.64 0.92 −7.08 0.590 1.611 0.534 0.634 15.104 0.1262 30.00

SSD–𝛥 2.581 7.73 0.65 −10.39 0.589 0.725 0.334 0.538 36.052 0.0431 42.87

SSD–LXK 4.464 8.81 1.15 −7.94 0.624 1.640 0.507 0.678 11.606 0.1202 28.70
𝑃 𝐸𝑆
3×10−4 SSD–𝜑 2.673 5.08 1.13 −5.05 0.552 1.636 0.526 0.547 19.812 0.1141 28.98

SSD–𝛥 2.626 6.45 0.90 −8.37 0.576 0.995 0.407 0.524 35.573 0.0372 44.63
Table 4
Out-of-sample portfolio performance with probability sets based on empirical likelihood (EL) state probabilities, obtained by block size 𝐵 = 2. The first four columns show the
mean, standard deviation, skewness, and CVaR5% of annualized excess returns (spreads) to the benchmark portfolio. The next three columns under risk-adjusted metrics present
annualized Sharpe, Sortino, and Information (Info.) ratios. The second last two columns under asset diversification report portfolio turnover and average number of industries (out
of 49) included in the optimal portfolios. The last two columns present two dominance measures, almost-SSD (ASSD) and full SSDs over the benchmark.

Set 𝑃 Model Spread over benchmark Risk–adjusted metrics Asset diversification Dominance

Mean Std. Skew CVaR5% Sharpe Sortino Info. Turnover Industries ASSD SSDs
% % ness % ratio ratio ratio # in 49 𝜀 %

𝑃 𝐸𝐿
1 SSD–LXK 6.067 15.12 1.05 −16.80 0.596 1.060 0.401 0.747 5.117 0.2771 14.35

= SSD–𝜑 5.569 13.28 1.04 −16.60 0.613 1.069 0.419 0.677 6.739 0.1783 24.26
𝑃 𝐸𝐿
0 SSD–𝛥 1.241 9.59 0.23 −16.33 0.543 0.212 0.129 0.415 40.033 0.0278 45.09

SSD–LXK 5.390 11.81 0.97 −13.12 0.628 1.237 0.456 0.718 7.465 0.1748 24.54
𝑃 𝐸𝐿
0.96 SSD–𝜑 4.039 7.85 1.09 −8.07 0.601 1.618 0.514 0.667 12.841 0.1334 28.06

SSD–𝛥 2.429 8.41 0.43 −12.18 0.598 0.572 0.289 0.528 36.907 0.0438 42.96

SSD–LXK 4.479 8.80 1.17 −7.76 0.621 1.716 0.509 0.684 11.596 0.1199 30.00
𝑃 𝐸𝐿
0.92 SSD–𝜑 2.693 4.93 1.01 −4.53 0.550 1.732 0.546 0.544 19.894 0.1082 29.72

SSD–𝛥 2.678 6.34 0.90 −7.76 0.583 1.070 0.422 0.524 35.513 0.0380 44.72

SSD–LXK 3.966 6.95 0.95 −6.02 0.615 1.953 0.570 0.639 14.390 0.1155 31.02
𝑃 𝐸𝐿
0.90 SSD–𝜑 2.129 3.79 1.10 −3.28 0.525 1.971 0.563 0.476 23.381 0.1011 30.28

SSD–𝛥 2.539 5.27 1.01 −5.68 0.562 1.372 0.482 0.490 34.930 0.0376 43.43

SSD–LXK 5.773 12.41 1.00 −13.98 0.631 1.300 0.465 0.726 6.639 0.2045 23.06
𝑃 𝐸𝐿
1×10−4 SSD–𝜑 4.380 9.94 1.22 −10.74 0.588 1.276 0.441 0.698 10.569 0.1430 27.31

SSD–𝛥 2.290 8.99 0.27 −13.73 0.599 0.476 0.255 0.506 37.685 0.0351 45.19

SSD–LXK 4.769 11.01 1.11 −12.27 0.633 1.177 0.433 0.715 8.564 0.1520 27.59
𝑃 𝐸𝐿
2×10−4 SSD–𝜑 3.529 6.60 0.95 −7.28 0.587 1.608 0.535 0.628 15.124 0.1216 30.28

SSD–𝛥 2.549 7.74 0.61 −10.48 0.586 0.705 0.329 0.533 36.119 0.0413 43.43

SSD–LXK 4.404 8.87 1.18 −8.41 0.620 1.571 0.497 0.677 11.580 0.1273 28.89
𝑃 𝐸𝐿
3×10−4 SSD–𝜑 2.707 4.95 1.05 −4.95 0.552 1.714 0.547 0.545 19.725 0.1122 29.81

SSD–𝛥 2.645 6.36 0.91 −8.03 0.578 1.038 0.416 0.521 35.548 0.0384 44.07
(

generally bring both active and downside risks persistently lower for all
SSD models, SSD–𝜑 excels in particular with respect to risk control in
contrast to SSD–LXK and SSD–𝛥 models, especially in mitigating large
negative returns in the downside as evaluated by CVaR5%.

On risk-adjusted return measures, using SSD–LXK and SSD–𝜑 mod-
els results in better performance in terms of Sortino and Information
ratios compared to SSD–𝛥 model, for all probability sets constructed
with equal and EL state probabilities. Moreover, using SSD–LXK model
8

outperforms SSD–𝜑 and SSD–𝛥 models on Sharpe ratios, when a large r
probability set as such is used (see, Table B.8 for test of significance3 in
Appendix B). More specifically, a higher Sharpe (Sortino) ratio implies
that each unit of risk (in the downside) earns a larger spread, while
a better Information ratio indicates that a higher spread is earned for
each unit of active risk. In general, increasing the size of sets 𝑃𝐸𝑆

𝛼 , 𝑃𝐸𝐿
𝛼 ,

3 In this setting, the bootstrap algorithm developed by Ledoit and Wolf
2008) allows for testing the statistical significance of Sharpe and Information
atios only.
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𝑃𝐸𝑆
𝛽 , and 𝑃𝐸𝐿

𝛽 , for all 𝛼 and 𝛽 values, leads to improved Sortino and
Information ratios for SSD–𝛥 model but declined Sharpe ratios for SSD–
𝜑 model. For almost all SSD models, an increasing pattern in Sortino
and Information ratios can be observed from applying a larger EL-
based probability set 𝑃𝐸𝐿

𝛼 or 𝑃𝐸𝐿
𝛽 . However, one exception is noted

or SSD–LXK model with probability set 𝑃𝐸𝐿
2×10−4

.
Generally, the use of SSD–𝛥 model reports the lowest portfolio

urnovers for all probability sets utilizing equal and EL state probabili-
ies throughout all 𝛼 and 𝛽 values, except for the two largest sets 𝑃𝐸𝑆

0.90
nd 𝑃𝐸𝐿

0.90; however, it also requires the largest diversification across the
nderlying asset span (49 industries) in comparison with SSD–LXK and
SD–𝜑 models. When the size of a particular probability set increases,
pplying SSD–LXK and SSD–𝜑 models typically leads to lower portfolio
urnovers, but increases the average number of industries in the optimal
enchmark dominating portfolios. Conversely, a diminishing pattern in
he average number of industries is observed from using SSD–𝛥 model
ith respect to a set size increase.

Moreover, utilizing SSD–𝛥 model achieves the strongest out-of-
ample second-order stochastic dominance performance measured on
wo metrics, i.e., almost SSD (see, Tzeng et al., 2013; also Tsetlin
t al., 2015) and full SSDs over the benchmark portfolio, respectively.
pplying SSD–𝜑 model provides the second best average 𝜀 values of
lmost SSD and likelihood of obtaining full SSDs out-of-sample, as
ompared with the modest performer SSD–LXK. On one hand, for SSD–
XK and SSD–𝜑 models, in general, increasing the size of all probability
ets established by equal and EL state probabilities, for all 𝛼 and 𝛽
alues, results in a greater likelihood of obtaining full dominance over
he benchmark by SSD, with one exception found though with sets
̃𝐸𝑆
3×10−4

and 𝑃𝐸𝐿
3×10−4

. On the other hand, however, the greatest likelihood
f full SSDs is obtained by SSD–𝛥 model with the smallest probability
et 𝑃𝐸𝑆

1 = 𝑃𝐸𝑆
0 . Interestingly, using SSD–𝛥 model exhibits no consistent

ominance pattern based on the almost SSD or full SSDs metrics with
egard to a size increase of the probability set.

In the top panel, Fig. 2 illustrates some of the resulting out-of-
ample portfolio performance obtained by applying these SSD ap-
roaches with sets 𝑃𝐸𝑆

𝛼 and 𝑃𝐸𝑆
𝛽 (see, Table 3), while that obtained

ith sets 𝑃𝐸𝐿
𝛼 and 𝑃𝐸𝐿

𝛽 (see, Table 4) is shown in the panel on the
ottom. Specifically, in each subplot, we use blue stars, red circles, and
lack crosses to denote the out-of-sample mean returns of spread and
ull dominance by SSD obtained by using SSD–LXK, SSD–𝜑, and SSD–𝛥
odels, respectively. Moreover, the blue, red, and black arrows point to

ndicate a size increase of the underlying probability set for SSD–LXK,
SD–𝜑, and SSD–𝛥 models, respectively.

Finally, we observe a clear trade-off between out-of-sample portfolio
eturns and dominance over the benchmark for all SSD models with
ll probability sets. Hence, this result suggests that it is impossible to
ystematically improve on out-of-sample SSDs without making trade-
ffs among different levels of out-of-sample returns. In addition, we
otice that the red arrows are remarkably steeper than the blue ones.
his finding implies that the out-of-sample spreads earned by utilizing
SD–𝜑 model decline at a faster rate than SSD–LXK model due to
mproved out-of-sample SSDs.

.5. Sensitivity of results to block size

In order to utilize probability sets with empirical likelihood (EL)
tate probabilities, block size 𝐵 needs to be specified as a parameter in
ts estimation procedure. To evaluate the impact of varying block sizes
n out-of-sample portfolio performance, we replicate the empirical tests
n Section 5.2 carried out with the block size 𝐵 = 2 by using another
hree block sizes 𝐵 ∈ {3, 5, 10}. Specifically, these tests are carried
ut by solving first optimization problem (28)–(30) to obtain the EL
tate probabilities 𝑝𝐸𝐿 for each block size 𝐵, then constructing different
robability sets 𝑃 based on these EL-estimate state probabilities. In
hat follows, we identify robust dominating portfolios by SSD by

olving LP models SSD–LXK, SSD–𝜑, and SSD–𝛥 with these established
9

n

robability sets 𝑃𝐸𝐿
𝛼 and 𝑃𝐸𝐿

𝛽 , for 𝛼 ∈ {1.00, 0.96, 0.92, 0.90} and
∈ {0, 1 × 10−4, 2 × 10−4, 3 × 10−4}. The results obtained for each

lock size 𝐵 are presented in Tables 5–7.
In general, when block size 𝐵 increases, for 𝐵 ∈ {3, 5, 10}, using

SD–LXK model earns still the highest spreads, followed by SSD–𝜑
nd SSD–𝛥 models with sets 𝑃𝐸𝐿

𝛼 and 𝑃𝐸𝐿
𝛽 across all 𝛼 and 𝛽 values.

ith the smallest probability set 𝑃𝐸𝐿
1 = 𝑃𝐸𝐿

0 , the use of SSD–𝛥 model
emains to give the lowest active and downside risks, as well as the best
ikelihood of obtaining full SSDs. For all 𝛼 and 𝛽 values with sets 𝑃𝐸𝐿

𝛼
nd 𝑃𝐸𝐿

𝛽 , applying SSD–LXK and SSD–𝜑 models keeps outperforming
SD–𝛥 model on risk-adjusted metrics such as Sortino and Information
atios, whereas the best Sharpe ratios are still earned by SSD–LXK
odel with large EL-based probability sets (see, Table B.8 for test of

ignificance in Appendix B). The outperformance on dominance related
etrics such as almost SSD and full SSDs comes from utilizing SSD–
model. Moreover, increasing the size of an EL-based probability set

mproves on risk-adjusted metrics consistently, for instance, Sortino and
nformation ratios for almost all SSD models, as well as on dominance
etrics, e.g., almost SSD for all SSD–LXK and SSD–𝜑 models. Notably,

his finding suggests that the out-of-sample portfolio performance of
ll SSD models is robust to variations in block size 𝐵 for EL-based
robability sets.

Additionally, admitting incomplete information on equal and empir-
cal likelihood (EL) state probabilities for all models SSD–LXK, SSD–𝜑,
nd SSD–𝛥 reflects no consistent portfolio performance pattern out-
f-sample. However, under complete probability information, using
et 𝑃𝐸𝐿

1 = 𝑃𝐸𝐿
0 outperforms set 𝑃𝐸𝑆

1 = 𝑃𝐸𝑆
0 for SSD–LXK model.

pecifically, using EL state probabilities can earn a larger spread up
o 6.569% over the benchmark portfolio in contrast to 5.934% with
qual state probabilities. Consequently, this brings us to conclude that
L state probabilities can be used to better support portfolio return
aximization models based on SSD, when complete information on

tate probabilities is available.

. Conclusions and discussion

In this paper, we have developed portfolio optimization approaches
ased on novel robust dominance criteria. In particular, these robust
riteria are designed to maximize the minimum distances between
airs of integrated CDFs of portfolio returns. Therefore, portfolio op-
imization models utilizing these new criteria can identify portfolios
hose in-sample dominance over the benchmark is the strongest. We
lso suggested a novel hybrid method to admit incomplete probability
nformation by combining the existing approaches of Post et al. (2018)
nd Liesiö et al. (2020). Specifically, this hybrid method first estimates
single vector of state probabilities using the Empirical Likelihood

EL) approach (Post et al., 2018). Then, it builds up a confidence
egion of feasible probability vectors around this point-estimate state
robabilities.

The developed SSD optimization approaches were tested through
n empirical application by evaluating out-of-sample performance of
ptimized industrial portfolios. In particular, we compared the out-of-
ample performance of these in-sample optimized portfolios obtained
ith several different probability sets based on deploying equal and EL

tate probabilities.
Our results from the empirical application document an explicit

rade-off pattern between returns and stochastic dominance relations
ut-of-sample. For SSD-based portfolio optimization models, in general,
tilizing robust dominance measures based on distances between the
ntegrated CDFs of portfolios returns accomplishes higher likelihood
f obtaining out-of-sample dominance over the benchmark portfolio in
he sense of SSD. However, such optimal portfolios also earn modestly
ower returns out-of-sample. On the other hand, SSD approaches that
dentify return maximizing portfolios in-sample naturally obtain the
est out-of-sample returns, however, at the cost of losing future domi-

ance over the benchmark. Moreover, admitting incomplete probability
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Fig. 2. Illustration of out-of-sample mean returns of spread and obtained shares of full dominance by SSD from the use of different SSD models with different probability sets
based on equal and empirical likelihood state probabilities. Arrows point to indicate a larger size of probability sets.
Table 5
Out-of-sample portfolio performance with probability sets based on empirical likelihood (EL) state probabilities, obtained by block size 𝐵 = 3. The first four columns show the
mean, standard deviation, skewness, and CVaR5% of annualized excess returns (spreads) to the benchmark portfolio. The next three columns under risk-adjusted metrics present
annualized Sharpe, Sortino, and Information (Info.) ratios. The second last two columns under asset diversification report portfolio turnover and average number of industries (out
of 49) included in the optimal portfolios. The last two columns present two dominance measures, almost-SSD (ASSD) and full SSDs over the benchmark.

Set 𝑃 Model Spread over benchmark Risk–adjusted metrics Asset diversification Dominance

Mean Std. Skew CVaR5% Sharpe Sortino Info. Turnover Industries ASSD SSDs
% % ness % ratio ratio ratio # in 49 𝜀 %

𝑃 𝐸𝐿
1 SSD–LXK 6.262 15.38 1.08 −17.50 0.600 1.072 0.407 0.743 5.103 0.2742 14.91

= SSD–𝜑 5.401 13.06 0.83 −17.03 0.613 1.002 0.414 0.675 6.760 0.1788 24.17
𝑃 𝐸𝐿
0 SSD–𝛥 1.387 9.60 0.18 −16.73 0.546 0.237 0.144 0.452 39.119 0.0271 45.65

SSD–LXK 5.430 12.07 1.04 −13.54 0.628 1.228 0.450 0.714 7.462 0.1730 24.63
𝑃 𝐸𝐿
0.96 SSD–𝜑 4.031 7.94 1.10 −8.13 0.599 1.592 0.508 0.661 12.844 0.1330 27.69

SSD–𝛥 2.472 8.50 0.45 −12.30 0.600 0.580 0.291 0.523 36.928 0.0453 43.24

SSD–LXK 4.466 8.75 1.11 −7.73 0.620 1.718 0.510 0.681 11.565 0.1216 30.56
𝑃 𝐸𝐿
0.92 SSD–𝜑 2.669 4.93 1.08 −4.44 0.547 1.730 0.541 0.543 19.894 0.1120 30.09

SSD–𝛥 2.655 6.33 0.86 −7.58 0.580 1.064 0.420 0.520 35.471 0.0385 44.81

SSD–LXK 3.889 6.92 0.94 −6.30 0.612 1.854 0.562 0.637 14.387 0.1149 30.93
𝑃 𝐸𝐿
0.90 SSD–𝜑 2.140 3.77 1.05 −3.38 0.525 1.936 0.568 0.475 23.401 0.1069 30.74

SSD–𝛥 2.573 5.25 1.02 −5.70 0.563 1.406 0.490 0.487 34.891 0.0377 44.07

SSD–LXK 5.699 12.62 0.95 −14.92 0.626 1.217 0.452 0.720 6.647 0.2038 23.24
𝑃 𝐸𝐿
1×10−4 SSD–𝜑 4.418 9.99 1.30 −10.57 0.589 1.308 0.442 0.695 10.580 0.1490 26.57

SSD–𝛥 2.261 9.02 0.31 −13.91 0.596 0.471 0.251 0.504 37.643 0.0356 44.72

SSD–LXK 4.882 11.15 1.16 −12.22 0.635 1.214 0.438 0.707 8.570 0.1562 28.06
𝑃 𝐸𝐿
2×10−4 SSD–𝜑 3.602 6.62 0.94 −7.30 0.588 1.664 0.544 0.625 15.090 0.1220 31.20

SSD–𝛥 2.583 7.81 0.66 −10.52 0.589 0.718 0.331 0.533 36.068 0.0431 42.78

SSD–LXK 4.454 8.85 1.13 −8.14 0.625 1.627 0.503 0.674 11.526 0.1298 29.26
𝑃 𝐸𝐿
3×10−4 SSD–𝜑 2.680 4.92 1.12 −4.80 0.551 1.711 0.545 0.545 19.738 0.1093 30.19

SSD–𝛥 2.668 6.34 0.87 −8.01 0.577 1.046 0.421 0.520 35.490 0.0380 43.52
10
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Table 6
Out-of-sample portfolio performance with probability sets based on empirical likelihood (EL) state probabilities, obtained by block size 𝐵 = 5. The first four columns show the
mean, standard deviation, skewness, and CVaR5% of annualized excess returns (spreads) to the benchmark portfolio. The next three columns under risk-adjusted metrics present
annualized Sharpe, Sortino, and Information (Info.) ratios. The second last two columns under asset diversification report portfolio turnover and average number of industries (out
of 49) included in the optimal portfolios. The last two columns present two dominance measures, almost-SSD (ASSD) and full SSDs over the benchmark.

Set 𝑃 Model Spread over benchmark Risk–adjusted metrics Asset diversification Dominance

Mean Std. Skew CVaR5% Sharpe Sortino Info. Turnover Industries ASSD SSDs
% % ness % ratio ratio ratio # in 49 𝜀 %

𝑃 𝐸𝐿
1 SSD–LXK 6.201 15.62 1.27 −16.75 0.589 1.085 0.397 0.736 5.072 0.2840 14.54

= SSD–𝜑 5.515 13.02 0.88 −16.90 0.615 1.053 0.423 0.663 6.744 0.1766 23.98
𝑃 𝐸𝐿
0 SSD–𝛥 1.408 9.49 0.22 −16.26 0.544 0.246 0.148 0.426 40.107 0.0280 44.35

SSD–LXK 5.519 12.37 1.01 −14.30 0.629 1.198 0.446 0.704 7.470 0.1778 24.81
𝑃 𝐸𝐿
0.96 SSD–𝜑 4.056 8.00 1.15 −8.09 0.596 1.611 0.507 0.655 12.822 0.1325 27.96

SSD–𝛥 2.513 8.60 0.46 −12.19 0.601 0.586 0.292 0.516 36.808 0.0437 43.06

SSD–LXK 4.425 8.82 1.10 −7.66 0.615 1.663 0.502 0.673 11.563 0.1234 29.63
𝑃 𝐸𝐿
0.92 SSD–𝜑 2.662 4.91 1.06 −4.43 0.546 1.725 0.542 0.539 19.894 0.1101 31.20

SSD–𝛥 2.682 6.32 0.85 −7.48 0.581 1.079 0.424 0.516 35.325 0.0394 44.17

SSD–LXK 3.754 6.93 0.93 −6.53 0.606 1.723 0.542 0.630 14.354 0.1131 30.46
𝑃 𝐸𝐿
0.90 SSD–𝜑 2.095 3.73 1.05 −3.38 0.522 1.875 0.561 0.473 23.388 0.1092 31.20

SSD–𝛥 2.552 5.21 0.99 −5.68 0.563 1.396 0.490 0.484 34.875 0.0365 43.80

SSD–LXK 5.805 12.79 1.05 −14.63 0.629 1.267 0.454 0.715 6.630 0.2022 23.15
𝑃 𝐸𝐿
1×10−4 SSD–𝜑 4.330 10.08 1.32 −10.60 0.587 1.247 0.430 0.689 10.546 0.1464 26.30

SSD–𝛥 2.305 9.04 0.34 −13.90 0.599 0.484 0.255 0.497 37.696 0.0369 43.89

SSD–LXK 4.905 11.29 1.10 −12.48 0.633 1.183 0.435 0.700 8.571 0.1656 26.48
𝑃 𝐸𝐿
2×10−4 SSD–𝜑 3.582 6.59 0.91 −7.28 0.589 1.653 0.543 0.622 15.041 0.1236 30.46

SSD–𝛥 2.520 7.81 0.67 −10.67 0.586 0.699 0.323 0.529 36.122 0.0404 43.43

SSD–LXK 4.390 8.87 1.10 −8.12 0.618 1.583 0.495 0.668 11.536 0.1344 29.26
𝑃 𝐸𝐿
3×10−4 SSD–𝜑 2.624 4.85 1.12 −4.77 0.549 1.682 0.541 0.539 19.728 0.1074 30.00

SSD–𝛥 2.676 6.35 0.86 −7.73 0.577 1.053 0.421 0.514 35.544 0.0390 44.63
Table 7
Out-of-sample portfolio performance with probability sets based on empirical likelihood (EL) state probabilities, obtained by block size 𝐵 = 10. The first four columns show the
mean, standard deviation, skewness, and CVaR5% of annualized excess returns (spreads) to the benchmark portfolio. The next three columns under risk-adjusted metrics present
annualized Sharpe, Sortino, and Information (Info.) ratios. The second last two columns under asset diversification report portfolio turnover and average number of industries (out
of 49) included in the optimal portfolios. The last two columns present two dominance measures, almost-SSD (ASSD) and full SSDs over the benchmark.

Set 𝑃 Model Spread over benchmark Risk–adjusted metrics Asset diversification Dominance

Mean Std. Skew CVaR5% Sharpe Sortino Info. Turnover Industries ASSD SSDs
% % ness % ratio ratio ratio # in 49 𝜀 %

𝑃 𝐸𝐿
1 SSD–LXK 6.569 15.81 1.40 −16.07 0.592 1.219 0.415 0.721 5.073 0.2829 15.28

= SSD–𝜑 5.641 13.24 1.00 −16.98 0.613 1.115 0.426 0.650 6.719 0.1774 24.26
𝑃 𝐸𝐿
0 SSD–𝛥 1.320 9.58 0.19 −16.53 0.550 0.226 0.138 0.421 39.760 0.0342 44.72

SSD–LXK 5.326 12.32 1.06 −14.33 0.622 1.157 0.432 0.694 7.476 0.1799 23.52
𝑃 𝐸𝐿
0.96 SSD–𝜑 3.992 7.78 1.15 −7.57 0.596 1.671 0.513 0.648 12.824 0.1386 28.24

SSD–𝛥 2.568 8.49 0.52 −12.12 0.604 0.622 0.302 0.506 37.081 0.0426 42.78

SSD–LXK 4.211 8.94 1.13 −8.28 0.607 1.506 0.471 0.656 11.506 0.1268 29.63
𝑃 𝐸𝐿
0.92 SSD–𝜑 2.629 4.74 0.91 −4.55 0.544 1.713 0.554 0.530 19.879 0.1051 30.83

SSD–𝛥 2.630 6.23 0.77 −7.63 0.576 1.059 0.422 0.504 35.370 0.0397 44.26

SSD–LXK 3.652 6.85 0.91 −6.74 0.596 1.656 0.533 0.618 14.358 0.1171 30.83
𝑃 𝐸𝐿
0.90 SSD–𝜑 1.994 3.62 0.88 −3.51 0.519 1.749 0.551 0.462 23.370 0.1060 31.11

SSD–𝛥 2.499 5.19 0.92 −5.91 0.558 1.350 0.482 0.476 34.967 0.0399 42.78

SSD–LXK 5.765 13.19 1.19 −14.35 0.618 1.236 0.437 0.700 6.665 0.2075 22.96
𝑃 𝐸𝐿
1×10−4 SSD–𝜑 4.524 10.05 1.36 −10.73 0.591 1.362 0.450 0.674 10.586 0.1525 26.11

SSD–𝛥 2.385 9.03 0.34 −13.88 0.602 0.507 0.264 0.483 37.769 0.0382 44.44

SSD–LXK 4.762 11.21 1.21 −11.41 0.618 1.214 0.425 0.689 8.591 0.1672 25.65
𝑃 𝐸𝐿
2×10−4 SSD–𝜑 3.337 6.53 0.85 −7.11 0.578 1.494 0.511 0.618 15.083 0.1227 29.72

SSD–𝛥 2.539 7.75 0.63 −10.75 0.589 0.711 0.328 0.516 36.239 0.0423 43.52

SSD–LXK 4.106 8.78 1.09 −8.44 0.607 1.443 0.468 0.654 11.485 0.1294 29.17
𝑃 𝐸𝐿
3×10−4 SSD–𝜑 2.586 4.76 1.00 −4.82 0.547 1.642 0.543 0.535 19.684 0.1107 30.28

SSD–𝛥 2.642 6.24 0.83 −7.55 0.574 1.072 0.423 0.505 35.368 0.0409 44.07
information and applying set-valued state probabilities in some SSD
models lead to improved performance in achieving full SSDs out-
of-sample; however, this finding does not necessarily hold true for
all models. In addition, our results indicate that SSD-based portfolio
optimization models can benefit from the use of EL state probabilities,
which take into account empirical stylized facts about returns of various
asset classes.
11
The developed approaches for identifying robust dominating portfo-
lios are also of practical significance in view of real-world applications.
They can be readily applied to support financial decision making
under uncertainty. Specifically, using these models can be beneficial
in decision situations where portfolio managers wish to construct ro-
bust portfolios that are not sensitive to uncertain, volatile variations
in future asset returns, but where well-established preference and/or
probability information is unavailable or difficult to obtain. In general,
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these methods can be effective risk management tools under market
turmoil for fund managers facing an uncertain market outlook.
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Appendix A. Proofs of Lemma and Theorems

Proof of Lemma 1. Consider function 𝑔(𝜃) = 𝐹 2
𝑉 (𝜃; 𝑝) − 𝐹 2

𝑊 (𝜃; 𝑝)
or an arbitrary 𝑝 ∈ ext(conv(𝑃 )). This is a piece-wise linear function
uch that 𝑔(−∞) = 0 and 𝑔(∞) = 𝐶, where 𝐶 is some positive
onstant. Then, 𝑔(𝜃) attains its minimum at some 𝜃 ∈ arg min𝜃 𝑔(𝜃) =
𝑣1,… , 𝑣𝑇 , 𝑤1,… , 𝑤𝑇 }. Suppose that min𝜃 𝑔(𝜃) = 𝑔(𝑤𝑡) for some 𝑤𝑡 such

that 𝑤𝑡 ≠ 𝑣𝑠, for any 𝑠 ∈ {1,… , 𝑇 } and consider a small neighborhood
of returns around 𝑤𝑡 such that [𝑤𝑡−𝜀, 𝑤𝑡+𝜀] ∩ {𝑣1,… , 𝑣𝑇 } = ∅. Then,
evaluate the derivative of 𝑔(𝜃) at 𝑤𝑡 − 𝜀 and 𝑤𝑡 + 𝜀, respectively, which
yields
𝜕𝑔(𝑤𝑡 − 𝜀)

𝜕𝜃
= 𝐹𝑉 (𝑤𝑡 − 𝜀; 𝑝) − 𝐹𝑊 (𝑤𝑡 − 𝜀; 𝑝), (A.1)

𝜕𝑔(𝑤𝑡 + 𝜀)
𝜕𝜃

= 𝐹𝑉 (𝑤𝑡 + 𝜀; 𝑝) − 𝐹𝑊 (𝑤𝑡 + 𝜀; 𝑝). (A.2)

Since 𝐹𝑉 (𝑤𝑡 − 𝜀; 𝑝) = 𝐹𝑉 (𝑤𝑡 + 𝜀; 𝑝) and 𝐹𝑊 (𝜃; 𝑝) is increasing in 𝜃, we
obtain 𝜕𝑔(𝑤𝑡−𝜀)

𝜕𝜃 ≥ 𝜕𝑔(𝑤𝑡+𝜀)
𝜕𝜃 , and therefore 𝑔(𝜃) is concave on the interval

[𝑤𝑡 − 𝜀, 𝑤𝑡 + 𝜀] and hence 𝑔(𝜃) cannot obtain its minimum at 𝑤𝑡. Thus,
the minimum of 𝑔(𝜃) is obtained at some 𝜃 = 𝑣𝑡. Hence, we have

min
𝜃

(

𝐹 2
𝑉 (𝜃; 𝑝) − 𝐹 2

𝑊 (𝜃; 𝑝)
)

= min
𝜃

𝑔(𝜃) = min
𝑡

𝑔(𝑣𝑡)

= min
𝑡

(

𝐹 2
𝑉 (𝑣𝑡; 𝑝) − 𝐹 2

𝑊 (𝑣𝑡; 𝑝)
)

. (A.3)

Now, assume that 𝐹 2
𝑉 (𝑣𝑡; 𝑝) ≥ 𝐹 2

𝑊 (𝑣𝑡; 𝑝) for all 𝑡 ∈ {1,… , 𝑇 } and
𝑝 ∈ ext(conv(𝑃 )). Then, Eq. (A.3) implies that 𝐹 2

𝑉 (𝜃; 𝑝) ≥ 𝐹 2
𝑊 (𝜃; 𝑝) for

all 𝜃 ∈ R and 𝑝 ∈ ext(conv(𝑃 )). □

Proof of Theorem 1. (i) Take any feasible solution 𝑋 =
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖
and 𝜑 such that (𝑋, 𝜑) is a feasible solution to optimization problem
(11), i.e., 𝑋 ⪰𝑃 𝑌 + 𝜑. Constructing 𝑧 such that 𝑧𝑡,𝑠 = max

{

𝑦𝑡 +
𝜑 −

∑𝑁
𝑖=1 𝜆𝑖𝑥𝑖,𝑠, 0

}

for each 𝑡, 𝑠 ∈ {1,… , 𝑇 }, results in 𝑧 ∈ R𝑇×𝑇
+

that satisfies constraint (18). To show that 𝑧 satisfies also constraint
(19), we evaluate the LHS of (19) for an arbitrary 𝑡 ∈ {1,… , 𝑇 }
and 𝑝 ∈ ext(conv(𝑃 )), which gives ∑𝑇

𝑠=1 𝑝𝑠𝑧𝑡,𝑠 =
∑𝑇

𝑠=1 𝑝𝑠 max
{

𝑦𝑡 + 𝜑 −
∑𝑁

𝑖=1 𝜆𝑖𝑥𝑖,𝑠, 0
}

=
∑𝑇

𝑠=1 𝑝𝑠 max
{

𝑦𝑡 + 𝜑 − 𝑥𝑠, 0
} (5)

= 𝐹 2
𝑋 (𝑦𝑡 + 𝜑; 𝑝). Since

(𝑋, 𝜑) is a feasible solution to optimization problem (11), 𝑋 ⪰ 𝑌 + 𝜑
12

𝑃

holds and Theorem 1 of Liesiö et al. (2020) implies that 𝐹 2
𝑋 (𝑦𝑡 +𝜑; 𝑝) ≤

𝐹 2
𝑌+𝜑(𝑦𝑡 + 𝜑; 𝑝) for all 𝑡 ∈ {1,… , 𝑇 } and 𝑝 ∈ ext(conv(𝑃 )). By Eq. (5),

evaluating the RHS of this inequality gives

𝐹 2
𝑌+𝜑(𝑦𝑡 + 𝜑; 𝑝) = ∫

𝑦𝑡+𝜑

−∞
𝐹𝑌+𝜑(𝜏; 𝑝) 𝑑𝜏 =

∑

𝑠
𝑦𝑠+𝜑≤𝑦𝑡+𝜑

𝑝𝑠

[

𝑦𝑡 + 𝜑 − (𝑦𝑠 + 𝜑)
]

=
∑

𝑠
𝑦𝑠≤𝑦𝑡

𝑝𝑠(𝑦𝑡 − 𝑦𝑠)

=
𝑇
∑

𝑡=1
𝑝𝑠 max

{

𝑦𝑡 − 𝑦𝑠, 0
}

= 𝐹 2
𝑌 (𝑦𝑡; 𝑝), (A.4)

which is the RHS of constraint (19). Hence, (𝜆, 𝑧, 𝜑) is a feasible solution
to LP problem (17)–(19).

(ii) Take any feasible solution (𝜆, 𝑧, 𝜑) to LP problem (17)–(19).
Constraint (18) then implies that 𝑧𝑡,𝑠 ≥ max

{

𝑦𝑡 + 𝜑 −
∑𝑁

𝑖=1 𝜆𝑖𝑥𝑖,𝑠, 0
}

holds. Thus, evaluating constraint (19) for an arbitrary 𝑡 ∈ {1,… , 𝑇 }
and 𝑝 ∈ ext(conv(𝑃 )) yields

𝐹 2
𝑌 (𝑦𝑡; 𝑝)

⏟⏞⏟⏞⏟
(A.4)
= 𝐹 2

𝑌+𝜑(𝑦𝑡+𝜑;𝑝)

≥
𝑇
∑

𝑠=1
𝑝𝑠𝑧𝑡,𝑠 ≥

𝑇
∑

𝑠=1
𝑝𝑠 max

{

𝑦𝑡 + 𝜑 −
𝑁
∑

𝑖=1
𝜆𝑖𝑥𝑖,𝑠, 0

}

=
𝑇
∑

𝑠=1
𝑝𝑠 max

{

𝑦𝑡 + 𝜑 − 𝑥𝑠, 0
} (5)

= 𝐹 2
𝑋 (𝑦𝑡 + 𝜑; 𝑝),

where 𝑋 =
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖. Thus, we have 𝐹 2
𝑌+𝜑(𝑦𝑡 + 𝜑; 𝑝) ≥ 𝐹 2

𝑋 (𝑦𝑡 + 𝜑; 𝑝)
for all 𝑡 ∈ {1,… , 𝑇 } and 𝑝 ∈ ext(conv(𝑃 )), which by Lemma 1 implies
that 𝐹 2

𝑌+𝜑(𝜃; 𝑝) ≥ 𝐹 2
𝑋 (𝜃; 𝑝) holds for all 𝜃 ∈ R and 𝑝 ∈ ext(conv(𝑃 )). Then,

Theorem 1 of Liesiö et al. (2020) implies that 𝑋 ⪰𝑃 𝑌 +𝜑 holds. Hence,
(𝑋, 𝜑) is a feasible solution to optimization problem (11).

Now, let
(
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖, 𝜑
)

be an optimal solution to (11). Then, by
(i), there exists a feasible solution (𝜆, 𝑧, 𝜑) to LP problem (17)–(19).
Suppose that this solution is not optimal to (17)–(19), in which case
then there exists another feasible solution (𝜆′, 𝑧′, 𝜑′) with a higher
objective function value, i.e., 𝜑′ > 𝜑. Then, by (ii),

(
∑𝑁

𝑖=1 𝜆
′
𝑖𝑋𝑖, 𝜑′)

is also a feasible solution to (11), which contradicts the assumption
that

(
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖, 𝜑
)

is the optimal solution to (11). Hence, (𝜆, 𝑧, 𝜑) is an
optimal solution to (17)–(19).

In turn, let (𝜆, 𝑧, 𝜑) be an optimal solution to LP problem (17)–
(19). Then, by (ii),

(
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖, 𝜑
)

is a feasible solution to optimization
problem (11). Assume that

(
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖, 𝜑
)

is not optimal to (11). Then,
there must exist another feasible solution

(
∑𝑁

𝑖=1 𝜆
′
𝑖𝑋𝑖, 𝜑′) yielding a

higher objective function value 𝜑′ > 𝜑. Then, by (i), there exists 𝑧′

such that (𝜆′, 𝑧′, 𝜑′) is also feasible to (17)–(19), which contradicts the
assumption that (𝜆, 𝑧, 𝜑) is the optimal solution to (17)–(19). Therefore,
(
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖, 𝜑
)

is an optimal solution to (11). □

Proof of Theorem 2. (i) Take any feasible solution 𝑋 =
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖 to
optimization problem (13), i.e., 𝑋 ⪰𝑃 𝑌 . Then 𝛥(𝑋, 𝑌 )

(12)
= min𝜃≥𝑦2 , 𝑝∈𝑃

𝐹 2
𝑌 (𝜃; 𝑝) − 𝐹 2

𝑋 (𝜃; 𝑝) ≥ 0, where the inequality follows from the fact that
𝑋 ⪰𝑃 𝑌 implies 𝐹 2

𝑌 (𝜃; 𝑝) − 𝐹 2
𝑋 (𝜃; 𝑝) ≥ 0 for all 𝜃 ∈ R and 𝑝 ∈ 𝑃 by

Definition 2. Then, setting 𝛿 = 𝛥(𝑋, 𝑌 ) and 𝑧𝑡,𝑠 = max
{

𝑦𝑡−
∑𝑁

𝑖=1 𝜆𝑖𝑥𝑖,𝑠, 0
}

for each 𝑡, 𝑠 ∈ {1,… , 𝑇 } gives (𝑧, 𝛿) ∈ R𝑇×𝑇
+ × R that clearly satisfies

constraint (21) and 𝛿 ≥ 0. To show that 𝑧 satisfies first constraint
(22), we evaluate its LHS for an arbitrary 𝑝 ∈ ext(conv(𝑃 )), which
yields ∑𝑇

𝑠=1 𝑝𝑠𝑧1,𝑠 =
∑𝑇

𝑠=1 𝑝𝑠 max
{

𝑦1 −
∑𝑁

𝑖=1 𝜆𝑖𝑥𝑖,𝑠, 0
}

=
∑𝑇

𝑠=1 𝑝𝑠 max
{

𝑦1 −

𝑥𝑠, 0
} (5)

= 𝐹 2
𝑋 (𝑦1; 𝑝). Since 𝑋 =

∑𝑁
𝑖=1 𝜆𝑖𝑋𝑖 is a feasible solution to

optimization problem (13), 𝑋 ⪰𝑃 𝑌 holds, then it must hold also 𝑦1 =
min(𝑌 ) ≤ min(𝑋). This condition gives 𝐹 2

𝑌 (𝑦1; 𝑝) = 𝐹 2
𝑋 (𝑦1; 𝑝) = 0, which

then satisfies constraint (22). To show that (𝑧, 𝛿) satisfies constraint
(23), we evaluate the LHS of (23) for an arbitrary 𝑡 ∈ {2,… , 𝑇 }
and 𝑝 ∈ ext(conv(𝑃 )), which gives ∑𝑇

𝑠=1 𝑝𝑠𝑧𝑡,𝑠 + 𝛿 =
∑𝑇

𝑠=1 𝑝𝑠 max
{

𝑦𝑡 −
∑𝑁

𝑖=1 𝜆𝑖𝑥𝑖,𝑠, 0
}

+ 𝛿 =
∑𝑇

𝑠=1 𝑝𝑠 max
{

𝑦𝑡 − 𝑥𝑠, 0
}

+ 𝛿
(5)
= 𝐹 2

𝑋 (𝑦𝑡; 𝑝) + 𝛿.
Substituting 𝛿 = 𝛥(𝑋, 𝑌 ) gives

2 2 2
𝐹𝑋 (𝑦𝑡; 𝑝) + 𝛿 = 𝐹𝑋 (𝑦𝑡; 𝑝) + 𝛥(𝑋, 𝑌 ) = 𝐹𝑋 (𝑦𝑡; 𝑝)
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Table B.8
Statistical significance of Sharpe and Information ratios in Tables 3–7.

Prob. Equal state (ES) Empirical likelihood (EL) state
�̄� 𝑝𝐸𝐿

𝐵 = 2 𝐵 = 3 𝐵 = 5 𝐵 = 10

Set 𝑃 Model Sharpe Info. Sharpe Info. Sharpe Info. Sharpe Info. Sharpe Info.
ratio ratio ratio ratio ratio ratio ratio ratio ratio ratio

𝑃 (⋅)
1 SSD–LXK 0.599 0.387∗∗ 0.596 0.401∗∗∗ 0.600 0.407∗∗∗ 0.589 0.397∗∗∗ 0.592 0.415∗∗∗

= SSD–𝜑 0.624 0.424∗∗∗ 0.613 0.419∗∗∗ 0.613 0.414∗∗∗ 0.615 0.423∗∗∗ 0.613 0.426∗∗∗

𝑃 (⋅)
0 SSD–𝛥 0.550 0.148 0.543 0.129 0.546 0.144 0.544 0.148 0.550 0.138

SSD–LXK 0.636 0.464∗∗∗ 0.628 0.456∗∗ 0.628 0.450∗∗ 0.629 0.446∗∗ 0.622 0.432∗∗

𝑃 (⋅)
0.96 SSD–𝜑 0.604 0.526∗∗∗ 0.601 0.514∗∗∗ 0.599 0.508∗∗∗ 0.596 0.507∗∗∗ 0.596 0.513∗∗∗

SSD–𝛥 0.597 0.288 0.598 0.289 0.600 0.291 0.601 0.292 0.604 0.302

SSD–LXK 0.621⋆ 0.511∗∗ 0.621⋆ 0.509∗ 0.620⋆ 0.510∗∗ 0.615⋆ 0.502∗ 0.607 0.471
𝑃 (⋅)
0.92 SSD–𝜑 0.550 0.536∗∗∗ 0.550 0.546∗∗∗ 0.547 0.541∗∗ 0.546 0.542∗∗ 0.544 0.554∗∗∗

SSD–𝛥 0.580 0.411 0.583 0.422 0.580 0.420 0.581 0.424 0.576 0.422

SSD–LXK 0.602⋆⋆⋆ 0.553∗∗ 0.615⋆⋆⋆ 0.570∗∗ 0.612⋆⋆⋆ 0.562∗∗ 0.606⋆⋆⋆ 0.542∗ 0.596⋆⋆⋆ 0.533
𝑃 (⋅)
0.90 SSD–𝜑 0.510 0.534∗ 0.525 0.563∗∗ 0.525 0.568∗ 0.522 0.561∗ 0.519 0.551∗

SSD–𝛥 0.548 0.470 0.562 0.482 0.563 0.490 0.563 0.490 0.558 0.482

SSD–LXK 0.632 0.463∗∗∗ 0.631 0.465∗∗∗ 0.626 0.452∗∗∗ 0.629 0.454∗∗ 0.618 0.437∗∗

𝑃 (⋅)
1×10−4 SSD–𝜑 0.592 0.454∗∗ 0.588 0.441∗∗ 0.589 0.442∗∗ 0.587 0.430∗∗ 0.591 0.450∗∗

SSD–𝛥 0.595 0.248 0.599 0.255 0.596 0.251 0.599 0.255 0.602 0.264

SSD–LXK 0.638⋆ 0.441∗∗ 0.633 0.433∗ 0.635⋆ 0.438∗∗ 0.633 0.435∗∗ 0.618 0.425∗

𝑃 (⋅)
2×10−4 SSD–𝜑 0.590 0.534∗∗∗ 0.587 0.535∗∗∗ 0.588 0.544∗∗∗ 0.589 0.543∗∗∗ 0.578 0.511∗∗∗

SSD–𝛥 0.589 0.334 0.586 0.329 0.589 0.331 0.586 0.323 0.589 0.328

SSD–LXK 0.624⋆⋆ 0.507∗ 0.620⋆ 0.497∗ 0.625⋆⋆ 0.503∗ 0.618⋆ 0.495∗ 0.607 0.468
𝑃 (⋅)
3×10−4 SSD–𝜑 0.552 0.526∗∗∗ 0.552 0.547∗∗∗ 0.551 0.545∗∗ 0.549 0.541∗∗ 0.547 0.543∗∗

SSD–𝛥 0.576 0.407 0.578 0.416 0.577 0.421 0.577 0.421 0.574 0.423

⋆⋆⋆,⋆⋆,⋆ indicate that the Sharpe ratio reported from the corresponding SSD–LXK model with set 𝑃 (or 𝑃 ) is statistically greater than the resulting Sharpe ratios earned by SSD–𝜑
and SSD–𝛥 models at the 1%, 5%, and 10% significance levels, respectively.
∗∗∗,∗∗,∗ indicate that the Information ratio reported from the corresponding SSD–LXK or SSD–𝜑 model with set 𝑃 (or 𝑃 ) is statistically greater than the resulting Information ratio
earned by SSD–𝛥 model at the 1%, 5%, and 10% significance levels, respectively.
+ min
𝜃≥𝑦2 , 𝑝′∈𝑃

(

𝐹 2
𝑌 (𝜃; 𝑝

′) − 𝐹 2
𝑋 (𝜃; 𝑝

′)
)

≤ 𝐹 2
𝑋 (𝑦𝑡; 𝑝) + 𝐹 2

𝑌 (𝑦𝑡; 𝑝) − 𝐹 2
𝑋 (𝑦𝑡; 𝑝)

= 𝐹 2
𝑌 (𝑦𝑡; 𝑝),

which is the RHS of constraint (23). Hence, (𝜆, 𝑧, 𝛿), where 𝛿 =
𝛥
(
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖, 𝑌
)

, is a feasible solution to LP problem (20)–(23).
(ii) Take any feasible solution (𝜆, 𝑧, 𝛿) to LP problem (20)–(23).

Constraint (21) implies then 𝑧𝑡,𝑠 ≥ max
{

𝑦𝑡 −
∑𝑁

𝑖=1 𝜆𝑖𝑥𝑖,𝑠, 0
}

holds. Then,
for an arbitrary 𝑝 ∈ ext(conv(𝑃 )), evaluate constraint (22), which yields
then

𝐹 2
𝑌 (𝑦1; 𝑝) ≥

𝑇
∑

𝑠=1
𝑝𝑠𝑧1,𝑠 ≥

𝑇
∑

𝑠=1
𝑝𝑠 max

{

𝑦1 −
𝑁
∑

𝑖=1
𝜆𝑖𝑥𝑖,𝑠, 0

}

=
𝑇
∑

𝑠=1
𝑝𝑠 max

{

𝑦1 − 𝑥𝑠, 0
} (5)

= 𝐹 2
𝑋 (𝑦1; 𝑝),

where 𝑋 =
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖. Then, evaluating constraint (23) for an arbitrary
𝑡 ∈ {2,… , 𝑇 } and 𝑝 ∈ ext(conv(𝑃 )) gives

𝐹 2
𝑌 (𝑦𝑡; 𝑝) ≥

𝑇
∑

𝑠=1
𝑝𝑠𝑧𝑡,𝑠 + 𝛿 ≥

𝑇
∑

𝑠=1
𝑝𝑠 max

{

𝑦𝑡 −
𝑁
∑

𝑖=1
𝜆𝑖𝑥𝑖,𝑠, 0

}

+ 𝛿

=
𝑇
∑

𝑠=1
𝑝𝑠 max

{

𝑦𝑡 − 𝑥𝑠, 0
}

+ 𝛿
(5)
= 𝐹 2

𝑋 (𝑦𝑡; 𝑝) + 𝛿, (A.5)

where 𝑋 =
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖. Hence, we obtain 𝐹 2
𝑌 (𝑦𝑡; 𝑝) ≥ 𝐹 2

𝑋 (𝑦𝑡; 𝑝) for all
𝑡 ∈ {1,… , 𝑇 } and 𝑝 ∈ ext(conv(𝑃 )). Lemma 1 implies then 𝐹 2

𝑌 (𝜃; 𝑝) ≥
𝐹 2
𝑋 (𝜃; 𝑝) holds for all 𝜃 ∈ R and 𝑝 ∈ ext(conv(𝑃 )), which by Theorem 1

of Liesiö et al. (2020) implies 𝑋 ⪰𝑃 𝑌 holds. Moreover, the objective
function value 𝛥(𝑋, 𝑌 ) (cf. (12)) satisfies

𝛥(𝑋, 𝑌 ) = min
𝜃≥𝑦2
𝑝∈𝑃

(

𝐹 2
𝑌 (𝜃; 𝑝) − 𝐹 2

𝑋 (𝜃; 𝑝)
)

= min
𝑝∈ext(conv(𝑃 ))

min
𝜃≥𝑦2

(

𝐹 2
𝑌 (𝜃; 𝑝) − 𝐹 2

𝑋 (𝜃; 𝑝)
)

, (A.6)
13
since 𝐹 2
𝑌 (𝜃; 𝑝) − 𝐹 2

𝑋 (𝜃; 𝑝) is linear in 𝑝 (see, Eq. (5)) and therefore the
minimum is attained at some 𝑝 ∈ ext(conv(𝑃 )). Furthermore, for any
𝑝 ∈ ext(conv(𝑃 )), 𝐹 2

𝑌 (𝜃; 𝑝) − 𝐹 2
𝑋 (𝜃; 𝑝) is a piece-wise linear function in 𝜃

with non-linearities at points 𝜃 ∈ {𝑥1,… , 𝑥𝑇 , 𝑦2,… , 𝑦𝑇 }. Thus, by using
similar arguments as in the proof of Lemma 1, it can be shown that

min
𝜃≥𝑦2

(

𝐹 2
𝑌 (𝜃; 𝑝) − 𝐹 2

𝑋 (𝜃; 𝑝)
)

= min
𝑡

𝑡≥2

(

𝐹 2
𝑌 (𝑦𝑡; 𝑝) − 𝐹 2

𝑋 (𝑦𝑡; 𝑝)
)

≥ 𝛿, (A.7)

where the last inequality follows from (A.5). Together, (A.6) and (A.7)
imply that 𝛥(𝑋, 𝑌 ) ≥ 𝛿. Thus, 𝑋 =

∑𝑁
𝑖=1 𝜆𝑖𝑋𝑖 is a feasible solution to

optimization problem (13) such that 𝛥(𝑋, 𝑌 ) ≥ 𝛿.
Now, let ∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖 be an optimal solution to (13). Then, by (i),
there exists a feasible solution (𝜆, 𝑧, 𝛿) to LP problem (20)–(23) such
that 𝛿 = 𝛥

(
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖, 𝑌
)

. Assume now (𝜆, 𝑧, 𝛿) is not optimal to (20)–
(23), then there must exist another feasible solution (𝜆′, 𝑧′, 𝛿′) giving a
better objective function value, i.e., 𝛿′ > 𝛿. Then, by (ii), ∑𝑁

𝑖=1 𝜆
′
𝑖𝑋𝑖

is also a feasible solution to (13) with 𝛥
(
∑𝑁

𝑖=1 𝜆
′
𝑖𝑋𝑖, 𝑌

)

≥ 𝛿′ > 𝛿 =
𝛥
(
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖, 𝑌
)

, which contradicts the assumption that ∑𝑁
𝑖=1 𝜆𝑖𝑋𝑖 is

the optimal solution to (13). Hence, (𝜆, 𝑧, 𝛿) is an optimal solution to
(20)–(23).

In turn, let (𝜆, 𝑧, 𝛿) be an optimal solution to LP problem (20)–(23).
Then, by (ii), ∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖 is a feasible solution to optimization problem
(13) and 𝛥

(
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖, 𝑌
)

≥ 𝛿. Suppose that ∑𝑁
𝑖=1 𝜆𝑖𝑋𝑖 is not optimal

to (13). Then, there exists another feasible solution ∑𝑁
𝑖=1 𝜆

′
𝑖𝑋𝑖 with a

better objective function value, i.e., 𝛥
(
∑𝑁

𝑖=1 𝜆
′
𝑖𝑋𝑖, 𝑌

)

> 𝛥
(
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖, 𝑌
)

.
Then, by (i), there exist 𝑧′ and 𝛿′ such that (𝜆′, 𝑧′, 𝛿′) is also feasible to
(20)–(23) and 𝛿′ = 𝛥

(
∑𝑁

𝑖=1 𝜆
′
𝑖𝑋𝑖, 𝑌

)

> 𝛥
(
∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖, 𝑌
)

≥ 𝛿, which con-
tradicts the assumption that (𝜆, 𝑧, 𝛿) is the optimal solution to (20)–(23).
Therefore, ∑𝑁

𝑖=1 𝜆𝑖𝑋𝑖 is an optimal solution to (13). □

Appendix B. Additional table of Section 5
See Table B.8.
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