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ABSTRACT

Inspired by the agility of mantis shrimp, this paper presents the development of a novel bionic mantis shrimp robot with multiple 
pleopods coupled motion for underwater target recognition and tracking. Firstly, the novel bionic robot is constructed based on the 
inspiration from biological mantis shrimp. Secondly, a Kalman filter-based algorithm, namely MobileNet-YOLO (KMY), is created to 
collect datasets and train neural networks. Thirdly, a moving target following system is developed for the bionic mantis shrimp 
robot, in which a dual PID controller is used to track underwater moving targets. The real robot testing results show that the 
proposed control system can enable our bionic robot to follow a specific moving target in a narrow pool (2m × 1m × 1m), and the 
minimum turning radius can be up to 0.55m when the angle between the robot’s initial motion and the motion of target is 90°.
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1. Introduction

The development of underwater target recognition and following 
technology has become increasingly important with the growth of 
human demand for deep-sea resources and the exploration of the 
marine environment (Kiuru et al. 2014; Teng and Zhao 2020). 
This technology can help people better understand marine ecosys-
tems, conduct marine scientific research, and play an important 
role in underwater rescue, seabed resource exploration and biologi-
cal sampling, etc. (Teng and Zhao 2020; Chen et al. 2023a, 2023b). 
The current research on underwater target recognition and follow-
ing faces many challenges.

First, the underwater environment is complex and change-
able and contains various water currents, suspended objects 
and other disturbing factors that affect the robot’s sensing ability  
and motion control (Patrón and Petillot 2008; Jung et al.  2018). 
Secondly, the diverse characteristics of underwater targets 
require robots to have strong target recognition capabilities 
(Azimi-Sadjadi et al. 2000). As marine organisms come in a 
wide variety of species and forms, robots need to be able to 
accurately identify different species of marine organisms and 
differentiate their behaviours and characteristics (Mackenzie 
2002; Porte et al. 2006; Williams and Fakiris 2014). Thirdly, 
the appearance of underwater  targets  may  be affected by water 
currents, light, and other factors, further increasing the difficulty 
of identification (Weitbrecht et al. 2002; Jian et  al.  2021). 
Fourthly, the robot needs to have high response velocity and 
accurate motion control capabilities to follow the fast motion 
of underwater targets (Chen et al. 2023c). Moreover, the robot 
also needs to consider water resistance and tides so that a stable 
following effect can be achieved (Yuh and West 2001; Zhao and  
Yuh 2005; Chen et al. 2022).

To overcome these challenges, researchers have used a variety of 
methods and techniques (Chen et al. 2024a). Shi et al. (2022) used a

binocular vision system to enable real-time underwater localis-
ation and calculation of 3D coordinates for target tracking. Wei
et al. (2018) proposed a dynamic target-tracking method for
autonomous underwater vehicles based on the model predictive
control (MPC) algorithm. Real-time identification and localis-
ation of dynamic targets were achieved by processing the
sonar images of underwater vehicles (Wei et al. 2018). Sattar
and Dudek (2006) investigated the application of visual target
tracking in the autonomous turning of an underwater robot,
demonstrating the effect of suspended particles on tracking.
Prasad et al. (2015) proposed a visual servo system for a spheri-
cal underwater robot capable of tracking and following a target
underwater.

However, as the underwater targets have diverse features, the
stable and fast underwater target recognition and following remain
a great challenge (Wang et al. 2019; Honghui et al. 2022; Yuan et al.
2022). Mantis shrimps in nature can swim quickly through the
water and achieve precision strikes on their prey, providing inspi-
ration for our research (Steinhardt et al. 2021; Patek et al. 2004;
Chen et al. 2023b). The contributions of this paper can be summar-
ised below.

. Based on the motion mechanism of biological mantis shrimp, we
designed a bionic mantis shrimp robot to adapt to the detection
of underwater narrow environments. The body of the robot is
composed of five pleopod bases and a flexible spine, which can
realise flexible underwater motion.

. Based on underwater vision and embedded hardware, we have
developed a robot vision detection and tracking system that
can be used to track underwater moving objects, enabling auton-
omous underwater target recognition and tracking, effectively
expanding the environmental perception capabilities of the bio-
nic mantis shrimp robot.

http://crossmark.crossref.org/dialog/?doi=10.1080/17445302.2024.2356941&domain=pdf&date_stamp=2024-05-25
http://orcid.org/0000-0003-3926-9149
http://www.tandfonline.com


. A double PID algorithm was proposed for underwater motion
and target following, which was verified by a simulation model
and a real experiment environment.

The structure of this paper is organised as follows. Section 2 
describes the design of the bionic mantis shrimp robot. Section 3 
proposes the underwater image target recognition and tracking 
algorithm. Section 4 establishes the underwater target following 
the simulation system. Section 5 is simulation and experimental 
verification. Finally, a brief discussion and summary is given in Sec-
tion 6.

2. Design of bionic mantis shrimp robot

The mantis shrimp is a carnivorous marine crustacean character-
ised by powerful forelimbs that can deliver devastating blows to 
prey targets (Chen et al. 2024b). In addition, the mantis shrimp is 
also one of the fastest swimmers in the water. The flexible and 
soft swimming pleopods are the main source of power. The move-
ment of pleopods and body bending can be adjusted to achieve 
rapid swimming and dextrous turning with excellent motion 
coordination (Burrows and Hoyle 1972).

As shown in Figure 1(a), the mantis shrimp mainly consists of 
four parts such as head, body, pleopods and telson. Here, the struc-
ture and motion of biological mantis shrimp are used as the basis 
for the design of a bionic mantis shrimp robot. The structure of 
the robot is shown in Figure 1(b), which is mainly divided into 
three parts: head, body, and telson. The head of the robot consists 
of a waterproof box, in which the control hardware system is 
installed. Figure 1(c) shows the bionic pleopod and flexible spine 
of the bionic mantis shrimp robot. The first joint of the bionic pleo-
pod is an active joint, and the second and third joints are passive 
joints, which interact with the water flow to realise unfolding and 
folding. The bionic pleopod adopts a modular design, with simple 
structure, efficient movement, and easy maintenance. In order to 
realise the flexible motion of the mantis shrimp robot, the flexible

spine is designed, and the bending angle of the body is controlled 
by rope driving. The flexible body adopts rigid-flexible coupling 
design to reduce the impact of water flow, and the movement is 
more stable, flexible and the turning response is faster.

Figure 2 shows the motion control hardware and vision hard-
ware in the waterproof box, both of which communicate through 
the serial port. Our bionic robot deploys a camera to obtain real-
time environmental information and adjust the robot motion. 
The camera model is a monocular camera OV2640 with a viewing 
angle of 120°. The visual development board is MaixBit, and the 
core processor is k210. Its neural processing image acceleration 
chip KPU (Kendryte Process Unit) can realise the hardware accel-
eration of four basic operations: convolution, batch normalisation, 
activation and pooling. Motion control board for ESP32 can achieve 
dual thread work. Table 1 shows the core parameters of the servo 
motor used by the robot. When the three joints of the pleopod 
are unfolding, the torque required for the maximum load work of 
a single pleopod is calculated to be 0.15 kg cm, which is much 
less than the torque of the selected servo 1.9 kg cm. When the 
body bending Angle is 35°, the maximum torque required for turn-
ing is calculated to be 6.2 kg cm, which is less than 11.3 kg cm of the 
servo. The motion of the servo motor is controlled by the PWM sig-
nal issued by the servo control board PCA9680. The motion control 
of the robot is all computationally controlled by embedded 
hardware.

3. Robotic target sensing algorithm for underwater 
moving objects

Robot target sensing algorithm for underwater moving objects 
includes robot target recognition and tracking. We propose a Kal-
man filter-based MobileNet-YOLO (KMY) target recognition and 
tracking algorithm, which is mainly divided into two parts: target 
recognition and target tracking. The target recognition algorithm 
is based on MobileNet-YOLO, which can recognise the desired 
underwater target and output its position in the image and the

Figure 1. Bionic mantis shrimp robot system. (a) Biological mantis shrimp, (b) bionic mantis shrimp robot and (c) bionic pleopod and flexible spine.



size of the detection frame. The target tracking algorithm is based
on the Kalman filter method, which establishes a stable tracking
model for the desired tracking target.

Figure 3 shows the flowchart for a single algorithm work cycle of
the underwater target recognition and tracking algorithm. After the
algorithm successfully detects a desired tracking target, the result is
output to the Kalman filter tracker as a new state observation. Then,

Figure 2. Robot control hardware.

Table 1. Servo motor parameters.

Servo motor type KM0950MD HS-5646
Weight 18 g 61 g
Dimensions 26 × 14 × 22.6 mm 41.8 × 21 × 40 mm
Dead band 2 µs default 2 µs default
Speed (6.0 V) 0.12 s/60° 0.2 s/60°
Rated torque 1.90 kg cm 11.30 kg cm
Angle of motion 0–90° 0–180°

Figure 3. Flowchart of KMY algorithm in a single work cycle.



the state estimation covariance and Kalman gain matrix are 
modified in real time. The target state is corrected, and the optimal 
estimation result of the desired tracking target is obtained. If the 
target detection algorithm fails, different operations are performed 
according to whether the current tracker is available or not. When 
there is no available tracker, the program enters into a silent state 
waiting for the successful detection result of the next target detec-
tion algorithm. If there is an available tracker, the algorithm con-
tinues to estimate the target state at the next moment according 
to the state equation of the current tracker and outputs it as the 
tracking result.

3.1. MobileNet-YOLO-based underwater target recognition 
algorithm

3.1.1. Structure of robotic underwater target recognition 
algorithm based on MobileNet-YOLO
In this study, MobileNet-YOLOv2 was chosen as a target detec-
tion method for underwater images. It was the feature extraction 
backbone network of YOLOv2 and replaced the original Dar-
kNet-19 with MobileNet, thus forming a target detection algor-
ithm with fewer parameters and faster speed (Redmon and 
Farhadi 2017; Li et al. 2020; Shafi et al. 2022). This algorithm 
can run in low-computing power, low-power embedded devices 
to show excellent detection performance. The network model of 
YOLOv2 (Figure 4(a)) was used, and the image targets were 
extracted by the feature extraction backbone network (Back-
bone) DarkNet-19 after the image input. Finally, the detection

target classification and bounding box information were 
extracted by the convolutional layer. Figure 4(b) shows the net-
work structure of the backbone network DarkNet-19, which 
includes 19 convolutional layers and 5 Maxpooling layers. The  
application of this backbone network can reduce the amount 
of computation and parameters in the process of feature extrac-
tion (Al-Haija et al. 2021).

As shown in Figure 5(a), the comparison between the standard 
convolutional operation (left) and the depth-separable convolu-
tional operation (right) is conducted. The core innovation of Mobi-
leNet is that a depth-separable convolutional operation is proposed, 
which can reduce the amount of computation with the same num-

ber of weights and parameters, and significantly increase the speed 
of network operation (Li et al. 2018). The network structure of 
MobileNet is shown in Figure 5(b), which has a total of 28 layers. 
Its input is a 224 × 224 × 3 image, and the output is the result of 
the feature classification.

3.1.2. Algorithmic datasets
To test the system’s tracking ability for dynamic targets in the sub-
sequent study, three remotely controllable small underwater robots 
are selected as the preparatory tracking targets and the dataset is 
established. They were manually photographed and collected and 
converted to the required image size for YOLOv2, and the target 
information was labelled using Labelimg, and the software labelling 
interface is shown in Figure 6(a). The three small underwater robots 
are labelled as submarine, pink fish and striped fish (U-boat, Pink

Figure 4. YOLOv2 algorithm framework. (a) YOLOv2 network model. (b) Darknet-19 feature extraction network.



Figure 5. Depth-separable convolution and MobileNet network structure. (a) Depth-separable convolution operation. (b) MobileNet network structure.

Figure 6. Production process of the dataset.



Fish, and Striped Fish) according to their colours and features,
respectively.

The file information generated by the labelling is shown in
Figure 6(b), whose main information includes the image file
name, the image size and the bounding box data of the labelled tar-
get. Figure 6(c) shows the definition of the image coordinate system
and the parameters of the bounding box. As shown in the blue
coordinate system in Figure 6(c), the image coordinate system
takes the upper left corner of the image as the origin, to the right
is the coordinate system x-axis, and down is the coordinate system
y-axis.

The dataset has a total of 1964 images of the three tracking
targets. All the images in the dataset are divided into a training
set, a validation set, and a test set according to the ratio of
8:1:1. The labelling results of the three targets in the training
set are shown in Figure 6. The labelled targets are submarine
and striped fish in Figure 7(a), pink fish in Figure 7(b), and sub-
marine in Figure 7(c).

3.1.3. Algorithm training and deployment
The MobileNet-YOLOv2 target detection algorithm was trained
after the training dataset was produced. For the configuration of
the training task, the number of scheduled training sessions was
8200. The loss function variation with mean average precision
(mAP) for the training process is shown in Figure 8(a). After
4100 training iterations, the network model has basically con-
verged, and the loss function drops to about 0.2 and then no longer
decreases significantly, indicating that the network model has been
trained at this time. mAP is an evaluation index used to reflect
whether the detection results are correct or not, and its data is basi-
cally stable at more than 90%, indicating that at this time, the net-
work model shows excellent detection performance in the test set.

To enable the bionic mantis shrimp robot to complete target
detection without external device communication, the trained net-
work model needs to go through format conversion and parameter
model downloading before it can run successfully in the Maixbit
development board. Figure 8(b) shows the flowchart of the

Figure 7. Target images with their labelling results. (a) Submarine and striped fish. (b) Pink fish. (c) Submarine.

Figure 8. Training process and model deployment. (a) Data changes during training. (b) Edge deployment process for neural network algorithms.



xk = A · xk−1 + B · uk + wk−1 (1)

zk = H · xk + vk (2)

In Equation (1), xk is the state matrix of the system at the
moment k, A is the state transfer matrix, B is the control input
matrix, xk−1 is the state matrix of the system at the moment
k− 1, and wk−1 is the process noise of the system at the moment
k− 1.

In Equation (2), zk is the state observation equation of the sys-
tem at the time k, H is the state observation matrix, and vk is the
measurement noise of the system at the time k.

To estimate the state of the system, three state evaluation par-
ameters are defined: the state truth value xk, the state prediction
value x̃−k (a prior state estimate), and the state optimal estimate
x̃k (a posteriori state estimate).

Based on Equations (1) and (2), the state prediction equation is:

x̃−k = A · x̃k−1 + B · uk (3)

The state update equation is:

x̃k = x̃k−1 + K · (zk −H · x̃−k ) (4)

In the formula, K = P−k H
T(HP−k H

T + R)−1 represents the Kal-
man gain in the range of K = P−k H

T(HP−
k H

T + R)−1. The value
of Kalman gain represents the weight of the prediction error and
measurement error of the system model in the process of optimal
state estimation.

Under the optimal estimation condition, the Kalman gain
matrix K = P−k H

T(HP−
k H

T + R)−1 is:

K = P−k H
T(HP−k H

T + R)−1 (5)

where P−
k represents the covariance between the true value of the

state and the predicted value of the state, and Pk represents the
covariance between the true value and the optimal estimate,

Figure 9. Results of model inspection.

algorithm deployment. After completing the model training under 
the Tensorflow framework on the PC, the model is verified, com-
piled, and transformed using the NNcase open-source tool to 
obtain the Kmodel format for the Maixbit development board. 
Figure 9 shows the actual detection results after the model training 
is completed. More specifically, Figure 9(a)–(c) shows the successful 
detection, and Figure 9(d)–(f) shows the missed detection, failed 
detections due to occlusion, and the water surface reflection, 
respectively. Because the camera used is a monocular camera, the 
target is at the junction of the water surface, so there will be the situ-
ation of the target and its reflection, resulting in the misjudgment of 
the recognition algorithm.

3.2. Kalman filter-based underwater target tracking algorithm
The MobileNet-YOLO-based target detection algorithm can obtain 
the detection coordinates and target size of the tracked target in the 
current image. However, its detection results will have numerical 
jumps and loss as the detection results do not have the correlation 
between the previous and subsequent frames and the problem of 
leakage detection will inevitably occur, which will lead to tracking 
failure. Kalman filtering can provide an effective recursive solution 
based on the least squares method and solve the general problem of 
controlled state change of a system described by linear difference 
equations (Chui and Chen 2017; Grewal et al. 2020). It obtains the 
model of the state change of a signal in the presence of a noisy 
signal to realise the estimation of the past and future values of the 
target signal (Grewal and Andrews 2014).

For a discrete linear dynamic system, it can be modeled as fol-
lows.



which is expressed as follows.

Pk = (I − KH) · P−k (6)

Combining Equations (5) and (6) yields the prediction covari-
ance matrix P−k+1 = APkAT + Q as:

P−k+1 = APkA
T + Q (7)

Based on the above formula, the Kalman filter will complete the
state prediction and state update of the model in real time and opti-
mise the value of the Kalman gain in a rolling manner to correct the
state prediction value and reduce its deviation from the true value
of the state. The observation matrix of the Kalman filter
is:⍰H = [xyhw]T . The result of the target detection algorithm
can get the centre coordinates of the tracking target: x, y, and the
width h and height w of the detection frame. For realising the
dynamic tracking of the target and predicting the target’s motion,
the target’s speed dx and dy in the image coordinate system should
be considered. The following state equation can be established for
the tracking target:

state = x y h w dx dy
[ ]T

(8)

where the computational expressions for dx and dy are:

dy = (yt − yt−1)
△t

dx = (xt − xt−1)
△t

⎧⎪⎨
⎪⎩ (9)

where △t is the work cycle interval of the algorithm.
Figure 10 shows the results of the algorithm’s tracking validation

for targets in water. The validation process was carried out in a
pool, where a total of two detection targets appeared, with the yel-
low submarine as the desired tracking target for this validation. The
algorithm is run on the bionic mantis shrimp robot and the camera

returns images with pixel size of 224 × 224. Three colour bounding
box markers exist in the figure, where the green bounding box rep-
resents the target detection result, the white bounding box rep-
resents the optimal estimation bounding box of the previous
moment, and the red bounding box represents the latest tracking
result of the desired tracking target. The blue line represents the
centre motion trajectory of the tracking result.

More specifically, Figure 10(a) shows that the algorithm cor-
rectly selects the desired tracking target based on the results of
the target detection algorithm. Figure 10(b) shows that the tracker
continues to track the desired tracking target without misdetec-
tion when the new target appears. Figure 10(c,d) shows the
tracker continues to track it and records the tracking target’s
motion tracking data when the desired tracking target is in

Figure 10. Validation results of the KMY algorithm.

Figure 11. Coordinate system and error definition.



following target, the distance errors in the horizontal and longitudi-
nal direction will exist. Figure 11 shows the definition of the body
motion state, the desired tracking target motion state, and the hori-
zontal and longitudinal error.

Here, we propose a dual PID underwater target following con-
trol system for bionic mantis shrimp robot based on the principle
of PID controller implementation. The block diagram of the system
is shown in Figure 12. The mathematical expression of the PID con-
troller is as follows:

u(t) = Kp · e(t)+ Ki

∫t
0
e(t)dt + Kd

de(t)
dt

(10)

where Kp, Ki and Kd represent the proportional, differential, and
integral gains of the PID, respectively.

Its working principle is that: the robot detects the desired track-
ing target and then tracks it. According to the real-time tracking

Figure 12. Block diagram of an underwater target following system.

motion. In Figure 10(e), the reflection of the submarine appears 
due to the occurrence of water surface reflection and the detec-
tion algorithm results in misdetection. But the tracker continues 
its operation based on the detection results of the previous 
moment to maintain the tracking state of the target without influ-
ences by the misdetection results. Figure 10(f) shows that the tar-
get detection results are restored to be correct, and the tracking 
algorithm continues to output the tracking results of the desired 
tracking target.

4. Design of a PID-based underwater target following
system

When the bionic mantis shrimp robot moves in the water, it is only 
capable of accomplishing forward acceleration, deceleration, and 
turning motions. Depending on the motion state of the desired

Figure 13. Simulation model of underwater target following system.



and the oscillation frequency control signals of the pleopod and the
outputs are the position of the robot in the world coordinate system
as well as the heading angle.

The simulation tests are mainly divided into two parts. The
first one is the longitudinal following simulation with an initial
horizontal error of 0, and the second one is the horizontal and
longitudinal direction coupled following simulation. In the longi-
tudinal following simulation, the desired following error in the
longitudinal direction is 0.2 m. The longitudinal coordinates of
the model and the following target are the same and the following
target is moving at a given constant velocity. Its turning control
signal was set to 0 rad and the initial motion velocity, the initial
body bending angle, and the initial heading angle of the model
were all set to 0. The simulation time was set to 36s and the inter-
val in the 2D following view was 6s. Figure 13 shows the simu-
lation results.

Figure 14. Longitudinal following simulation results.

results and a prior information, the horizontal and longitudinal 
error information between the desired tracking target and the 
body is estimated and outputted to the corresponding PID control-
ler. Then, the PID controller calculates according to the configured 
PID gain coefficients and the error information and outputs control 
signals for the bionic mantis shrimp robot. Thus, it realises the 
robot’s turning and acceleration/deceleration accurate motions in 
the water.

5. Simulation and experiments

5.1. Simulation of underwater target following system

Figure 13 shows the simulation model of the underwater target fol-
lowing control system applicable to the bionic mantis shrimp robot 
built in Matlab/Simulink. The control inputs of the motion model 
of the bionic mantis shrimp robot are the bending angle of the body



14(b) shows the horizontal and longitudinal error data. The hori-
zontal error was always 0 and the longitudinal error decreased
rapidly after the start of the motion. The maximum overshoot
error occurred at about −0.15 m and then slowly converged to
0 m. The given desired following error was 0.2 m and the minimum
distance between the robot and the target was about 0.05 m. Thus,
no collision occurred, and the following task was successfully
realised.

In the horizontal and longitudinal direction coupled following
simulation, the desired following error in the longitudinal direc-
tion was 0.2 m and the horizontal and vertical coordinates of the
robot body and the following target were different. The following
target moved at a given constant velocity and the turning control
signal was set to be a sinusoidal signal with an amplitude of π/6, a
frequency of 1 rad/s, and a centre of oscillation value of π/7. The
initial velocity, the initial body bending angle, and the initial
heading angle of the body model were all set to 0. The simulation

Figure 15. Horizontal and longitudinal direction coupled following simulation.

Figure 14(a) corresponds to the first set of simulations, where 
the initial coordinates of the robot body were (0.5, 0.5), the initial 
coordinates of the desired tracking target were (1.4, 0.5), and the 
motion velocity was 0.075 m/s. The left side of Figure 14(a) 
shows the two-dimensional following view, and the right side 
shows the horizontal and longitudinal error data. The horizontal 
error was always 0 and the longitudinal error decreased rapidly 
after the start of the motion. The maximum overshot error was 
about −0.12 m and then slowly tended to 0 m. The given desired 
following error was 0.2 m and the minimum distance between the 
robot and the target was about 0.08 m. Thus, no collision occurred, 
and the following task was successfully realised.

Figure 14(b) corresponds to the second set of simulations, where 
the initial coordinates of the robot body were (0.5, 3), the initial 
coordinates of the desired following target were (1.4, 3), and the 
motion velocity was 0.1 m/s. The left side of Figure 14(b) shows 
the two-dimensional following view, and the right side of Figure



The first set of simulations is shown in Figure 15(a), where the
initial coordinates of the robot body are (0.5, 0.5), the initial coor-
dinates of the desired following target are (1.5, 0.8), and the motion

Figure 16. Experimental platform.

time was set to 60s and the plotting interval of the two-dimen-
sional following view was 10s. The simulation results are shown 
in Figure 15.

Figure 17. Robot straight following experiment: (a) Time series graph of robot motion, (b) motion trajectory of robot and tracking target and (c) distance of robot and 
tracking target.



velocity is 0.075 m/s. The left side of Figure 15(a) shows the 2D fol-
lowing view and the right side of Figure 15(a) shows the horizontal
and longitudinal error data. The horizontal error was continuously
adjusted from the initial value of 0.3 m to 0 m. The maximum over-
shot error was about −0.18 m and then towards 0 m. The given
desired following error was 0.2 m and the minimum distance
between the robot and the target was about 0.01 m. The following
process can be successfully realised.

The second set of simulations is shown in Figure 15(b). The
initial coordinates of the robot body were (1, 5), the initial coordi-
nates of the desired following target were (2, 4.5), and the motion
velocity was 0.115 m/s. The left side of Figure 15(b) shows the 2D
following view and the right side of Figure 15(b) shows the data
of the horizontal and longitudinal errors. The horizontal error
quickly converged to 0 from the initial value of −0.5 m and only
minor oscillation occurred. The longitudinal error started from
0.6 m and the maximum error was about 0.9 m and then slowly

converged to 0 m. No collision occurred between the robot and 
the target during the process. The following process can be success-
fully realised.

The simulation results show that the robot does not collide with 
the target being followed, the following error is within an acceptable 
range, and the following task is successfully achieved. It verifies that 
the underwater target following system based on dual PID can out-
put corresponding body control signals according to the lateral and 
longitudinal errors between the body and the desired target being 
followed, controlling the mantis shrimp robot to achieve under-
water target following control.

5.2. Bionic mantis shrimp target following experiment

Figure 16(a) shows the robot experiment platform, and the pool size 
is 2 m × 1 m × 1 m. A camera is installed at the top of the pool to 
record the robot motion. The distance between the robot and the

Figure 18. Turning following experiment: (a) time series graph of robot motion, (b) motion trajectory of robot and tracking target and (c) distance of robot and tracking 
target.



target as well as the motion trend can be obtained by annotating the 
recorded motion sequence diagram. Figure 15(b) shows our robot 
and the target striped fish (11 cm × 6 cm × 5 cm), and the motion 
velocity is about 0.15 m/s.

The following experiments of the bionic mantis shrimp robot 
were categorised into straight following and turning following. 
The target object striped fish was moved by manual remote control. 
Figure 17 shows the process that the robot follows the striped fish in 
a straight line, starting from the stationary state. Figure 17(a) shows 
the time series graph of the robot following movement in a straight 
line in 5 s. Figure 17(b) shows the trajectories of the robot and the 
striped fish. The Y movement of the striped fish deviated 0.09 m 
and the forward distance along the X-axis was 0.36 m within 5 
s. The Y deviation of the robot was 0.07 m and the forward distance 
along the X-axis was 0.49 m. Both basically keep a motion direction. 
Figure 17(c) shows the variation of the distance between the striped 
fish and the robot where the robot keeps approaching the striped 
fish from 0.2 to 0.13 m.

Figure 18 shows the bionic mantis shrimp robot turning to fol-
low the striped fish. The striped fish remained in the camera’s field 
of view throughout the following. The robot and the striped fish 
started from the stationary state with the initial motion direction 
90°. Figure 18(a) shows the time series graph of the robot turning 
to follow the striped fish. The robot adjusted the bending angle of 
the body many times to adjust the motion direction and the smal-
lest turning radius was 0.55 m. Figure 18(b) shows the motion tra-
jectory of the robot and the striped fish. The forward distance of the 
striped fish along the X-axis in the turning following motion was 
0.51 m, and the forward distance of the robot along the X-axis 
was 0.93 m. Figure 18(c) presents the distance change between 
the striped fish and the robot from 0.55 to 0.13 m. The distance 
changed 0.42 m and the following motion was realised. The farther 
away the distance was, the faster the robot’s motion was and the clo-
ser it got, the slower its motion velocity was.

Table 2 summarises the key parameters of the experiment. The 
average velocity of the bionic mantis shrimp robot in dynamic lin-
ear following is 0.19 m/s, and the average moving velocity of the 
target is 0.15 m/s. In the dynamic turning following experiment, 
the average velocity of the robot is 0.1 m/s, the average moving vel-
ocity of the target is 0.09 m/s, and the minimum turning radius is 
0.55 m. Combined with the motion time series diagram of the 
robot, it can be seen that the swimming velocity of the robot 
slows down as the distance from the target decreases, and the 
robot can adjust its own motion in real time according to the 
motion state of the target.

6. Conclusions and future work

In this study, a novel bionic mantis shrimp robot was designed and 
constructed based on the structure and movement mode of the bio-
logical mantis shrimp. For the task of underwater target following, 
the KMY target tracking algorithm was proposed and verified

through experiments, which demonstrated good tracking perform-
ance and can continuously track the mis-detected target. In
addition, a PID-based target following system was developed for
the bionic mantis shrimp robot. The effectiveness of the longitudi-
nal following strategy, as well as the horizontal and longitudinal
direction coupled following strategy, were verified by simulations.
Finally, the straight and turning following movement to the striped
fish was completed through experiments. The experimental results
show that with the target recognition and proposed following con-
trol system, the bionic mantis shrimp robot can quickly recognise
and follow a specific underwater target.

In future research, we will upgrade hardware, including cameras,
visual development boards to enhance the target recognition per-
formance of robots in complex underwater environments such as
low light and water flow disturbances. Additionally, we will opti-
mise the robot’s motion controller to improve its disturbance resist-
ance and motion performance, providing assistance for marine

scientific research, underwater exploration, and resource
development.
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Table 2. Experimental results.

Type of
experiment

Maximum
velocity of
the target

The angle
of motion
with the
target

Average
following
velocity

Average
velocity of
target
motion

Minimum
turning
radius

Dynamic
straight
following

0.15 m/s 0° 0.19 m/s 0.15 m/s /

Dynamic
turn
following

0.15 m/s 90° 0.1 m/s 0.09 m/s 0.55 m
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