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Machine Learning (ML) models have the potential to support decision-making in healthcare by grasping complex patterns within
data. However, decisions in this domain are sensitive and require active involvement of domain specialists with deep knowledge of
the data. In order to address this task, clinicians need to understand how predictions are generated so they can provide feedback
for model refinement. There is usually a gap in the communication between data scientists and domain specialists that needs to
be addressed. Specifically, many ML studies are only concerned with presenting average accuracies over an entire dataset, losing
valuable insights that can be obtained at a more fine-grained patient-level analysis of classification performance. In this paper, we
present a case study aimed at explaining the factors that contribute to specific predictions for individual patients. Our approach takes
a data-centric perspective, focusing on the structure of the data and its correlation with ML model performance. We utilize the concept
of Instance Hardness, which measures the level of difficulty an instance poses in being correctly classified. By selecting the hardest and
easiest to classify instances, we analyze and contrast the distributions of specific input features and extract meta-features to describe
each instance. Furthermore, we individually examine certain instances, offering valuable insights into why they offer challenges for
classification, enabling a better understanding of both the successes and failures of the ML models. This opens up the possibility for

discussions between data scientists and domain specialists, supporting collaborative decision-making.
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1 INTRODUCTION

Machine learning (ML) models can efficiently extract patterns from data and make accurate predictions for future
observations. In many cases, these models have shown superior performance compared to traditional strategies like
logistic regression [5, 9, 20]. However, despite their advantages, the adoption of ML models in healthcare presents
challenges due to the potential risk of erroneous predictions. One key challenge lies in the interpretability of these models,

as their decision-making processes can be complex. This lack of interpretability can hinder trust in the predictions
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of ML models, thereby limiting their utilization in healthcare settings [23]. To address this issue, an interdisciplinary
approach is necessary, involving both machine learning experts and healthcare professionals [2]. By combining their
expertise, such collaborative efforts can help develop ML systems that are not only accurate but also interpretable and
trustworthy.

In order to enhance the effectiveness of ML models, it is crucial to actively involve domain specialists who possess
rich expert knowledge of the data. By integrating human expertise into the modeling and decision-making processes,
ML models can be developed to be more accurate, robust, and reliable [7]. This collaboration between domain specialists
and ML experts has the potential to yield significant advantages. However, there is a lack of results reporting the
outcomes of such interactions in the healthcare domain. To achieve this task, it is important for clinicians to comprehend
how predictions are made so that they can provide valuable feedback for model refinement. A study exploring the issue
of model explainability from the perspective of clinicians, revealing their concerns, is presented in [23]. Clinicians
expressed a desire to understand why model predictions may deviate from clinical protocols and which factors contribute
to specific predictions for individual patients. This understanding is crucial for establishing trust in ML models and
facilitating effective collaboration between clinicians and data scientists.

In this work, we present a case study addressing the discussed issues. Our approach focuses on the data itself, utilizing
a data-centric perspective to understand its structure and correlate it with the performance of the models. To identify
instances that are currently misclassified, we adopt the concept of Instance Hardness (IH) as defined by Smith et al. [19].
IH represents the likelihood of an instance being misclassified. By employing a pool of different algorithms, we can
calculate the IH value for each instance, where instances with high levels of IH can be considered hard, while those
with low levels are easy. Additionally, we extract a set of hardness measures known as meta-features for each instance.
These meta-features provide further insights into the characteristics of the instances and aid in understanding their
classification difficulty [1].

The analysis of instance hardness, with or without the assistance of meta-features, has already been employed to
investigate the reasons behind misclassifications and to evaluate the reliability of a model’s predictions. For instance,
Paiva and colleagues [14] introduced frameworks that project instances onto a bi-dimensional space based on their
hardness level and meta-feature values. Another approach proposed by Seedat et al. [16] utilizes predictive confidence and
examines instances’ behavior during the training process to identify hard and ambiguous instances. They demonstrate
that removing hard instances can lead to improved model performance. In the healthcare domain specifically, Houston
et al. [8] employed meta-feature values to show that model failures were attributable to biases in the dataset rather than
a lack of sensible assumptions by the models. Additionally, Chatzimparmpas et al. [3] provided a visual comparison of
hard instances, enabling users to inspect instances for potential oversampling issues.

Building upon these advancements, our study delves deeper into the analysis of hard instances, aiming to extract valu-
able insights from them. In healthcare scenarios, removing hard instances, although it may improve model performance,
can be risky. Therefore, a more appropriate approach to address models’ performance is to rely on the knowledge and
expertise of domain specialists to decide if they should be removed, corrected, or kept inside the dataset. By identifying
and analyzing hard instances and contrasting them with the easy ones, our study aims to provide a better explanation
for the decisions made by the models, facilitating fruitful discussions between data scientists and clinicians.

To conduct our analysis, we utilize a COVID-related dataset obtained from a Brazilian public repository!. This

dataset was specifically curated, with data domain specialists, to predict the progression of patients towards aggravated

Uhttps://repositoriodatasharingfapesp.uspdigital.usp.br/
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conditions using routinely collected tests from the first day of hospitalization. Predicting such outcomes is particularly
challenging due to imbalanced data, missing values, and the fact that the data was not originally collected for research
purposes (i.e., it is observational data). Through assembling this dataset, we sought to explore the potential of leveraging
routinely collected data to build predictive models. In previous work [25], we presented the performance of ML models
on this dataset, achieving an AUC of 0.75. We compared this performance to related studies and concluded that the
inclusion of additional features would be necessary to effectively distinguish between the classes.

Here, we deeper explore data distribution to understand models’ performance. Three meta-features were inspected
through visualizations, showing trends between feature values, meta-features, and IH levels. Furthermore, we show
how the meta-features can provide a better understanding of the performance of the models from the data perspective
and how this information can be interpreted at the instance (i.e., patient) level, thus facilitating discussions between

data scientists and domain specialists.

2 METHODS

This work offers a dataset analysis based on data distribution and meta-feature values indicating possible reasons for
misclassifications. Starting from the concept of Instance Hardness, we select the most difficult instances of the dataset
and oppose them with those instances that are easily classified. Our methodology encompasses: (i) the assembling and
preparation of the dataset; (ii) the definition of IH and how we measure it; (iii) the analysis of instances through feature

values; and (iv) the definition and measures of meta-feature values.

2.1 Data

To develop our analyses, we employed a publicly available dataset assembled to classify hospitalized patients with
COVID from a large private hospital in Brazil into severe and non-severe cases. Patients were considered severe when
they had an extended hospitalization (14 days or more) or died within 14 days of hospitalization. This dataset was
extracted from a large repository containing 2,891,301 results from blood tests from 14,673 patients between March
2020 and May 2021. To assemble our dataset from the original data available, all decisions were broadly discussed
with the support of an infectious disease specialist. We refer to our previous work for a deeper discussion about these
criteria [25].

The inclusion criteria for this study were:

o Patients with a positive result for COVID test within the first four days from admission.

o Blood tests taken within the first four days of hospitalization. Where more than one test was taken within this
window, the results from the first test were used. Most patients (92.9%) had the blood test done in the first day.

e Patients older than 16 years.

e Patients with blood count records.

After applying the criteria above, we included results from blood tests only when they were available for at least
50% of patients in each class. In the present analysis, we also added some exclusion criteria. Since we are interested
in analyzing the hardness level of instances, we removed those that would present a different pattern. This included
patients who had been previously hospitalized within the last six months; patients who underwent surgery during their
hospitalization; and patients who were re-hospitalized after recovering from COVID-19.

The resulting dataset consisted of n = 1076 instances, with 5.59% of missing values. Rather than filling in the missing
values, which could potentially introduce bias and alter the distribution and distances between instances, we made the
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decision to remove instances with missing values. This choice was motivated by the fact that some of the meta-features
we intended to explore relied on distance calculations. We identified two features with a substantial number of missing
values when compared to the other features (46.7 and 35%). Based on previous work, we knew that they were deemed
less critical for predicting severity [24]. Therefore, we removed these two features from the dataset. Following this step,
any instance with a missing value was subsequently dropped. As a result, the final dataset size was reduced to n = 885
instances, ensuring a more complete and reliable dataset for our analysis.

At this stage, we encountered a class imbalance ratio of 1:0.4 in the dataset. It is well-known that class imbalance can
significantly impact the performance of machine learning models. This dataset is no exception, as there is a noticeable
difference in model performance when using class balancing techniques compared to not employing them. Particularly,
the imbalanced dataset exhibits considerably lower performance in terms of sensitivity, with values hovering around
40% across all tested datasets. On the other hand, when a random sub-sampling technique is applied to achieve a
balanced representation of both classes, sensitivity values improve to over 60% for almost all tested datasets. Since our
main objective is not to train a model for making predictions but rather to analyze the hard instances, particularly in
the minority class, we randomly sampled instances from the non-severe class in order to balance the dataset. As a result,
the final dataset size was reduced to n = 526. We provide a comprehensive comparison of model performances between
the balanced and imbalanced datasets in the Appendix (see A).

Table 1 summarizes the dataset adopted in this study. The feature values in the dataset represent the results of blood

tests conducted within the first four days of hospitalization and the sex and age of the patients.

Table 1. Summary of the analysed dataset including the number of patients, percentage of female patients, age statistics, and blood
tests.

Severe Non-severe
Number of instances 263 263
Female ratio 0.33 0.34
Age (mean =+ stdev)  68.47 + 12.71 58.14 + 15.50
Blood tests sodium, potassium, urea, C-reactive protein,

D-dimer, GOT, GPT, creatinine, blood count

2.2 Assessing Instance Hardness

In any given dataset, certain observations can offer more challenges for classification than others due to various
factors [19]. For example, an observation located near the decision boundary, where instances from different classes
overlap, tends to be more difficult to classify compared to an instance situated in a dense region far away from the
decision boundary, surrounded by instances from the same class. The concept of instance hardness, introduced by
Smith and colleagues [19], quantifies the level of challenge associated with classifying a particular instance within a
dataset. This measure is determined by evaluating the performance of different ML algorithms when classifying the
specific instance under consideration.

Each machine learning technique adopts a specific strategy to identify and learn patterns within the data, which
introduces a bias towards certain types of learning tasks while potentially being less effective for others. As a result, if
an instance consistently receives incorrect classifications from multiple ML techniques with different biases, it can be
considered difficult to classify or "hard".

Manuscript submitted to ACM
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Understanding the performance of machine learning models from data-to patient-level 5

In order to define IH, consider D as a dataset containing n pairs of observations (x;,y;). Each x; € X is an instance
described by m input features and belongs to the class specified by y; € Y, the instance label. In addition, leth: X — Y
denote a classification hypothesis, that is, an ML predictive model generated from D. The hardness level of the instance

x; with respect to h can be expressed as:

IHp(xi,y1) = 1= p(yilxi, b), (1)

In practice, h is determined by a learning algorithm [ trained on a dataset D using specific hyperparameters f [19].
To obtain a more robust measure of instance hardness, the authors consider a set of representative learning algorithms
denoted as L. This set consists of machine learning algorithms with different biases. By evaluating the performance of
the instance under consideration across multiple algorithms in £, a comprehensive measure of instance hardness can

be derived. The IH measure can then be expressed as:

| L]
Tk u) = 1= T > plunbea (0. ) @
i=1

This equation expresses the notion that if an instance consistently gets misclassified by a diverse pool of learning
algorithms, denoted as £, it can be considered hard to classify. Conversely, easy instances are expected to be correctly
classified by any learning algorithm.

Based on this definition, the loss value of each instance was assessed to measure the level of hardness. We adopt
in this step a five-fold cross-validation strategy. This step was necessary because, to measure the performance of a
predictive model, testing data is required, which should be distinct from the training dataset. Cross-validation allows
the generation of different train and test data partitions from the same dataset. Initially, the dataset is divided into
approximately equal-sized folds, with k = 5 folds being created. During each iteration, k — 1 folds are used for training
a predictive model, while the remaining fold is reserved for testing, simulating the introduction of new data to the
model. This process is repeated k times, with each fold being utilized as the test set just once.

It is worth noting that each model has hyperparameters that need to be chosen. In many cases, a common practice
is to employ techniques for hyperparameter optimization to achieve the best model performance. However, such
techniques can be time-consuming. Given the focus of this paper, which is to understand how the data structure impacts
model performance, no hyperparameter optimization was conducted, and default values were used instead.

For each class, we identified the instances that were the hardest and easiest to classify, which we will refer to as
"hard" and "easy" instances from this point onward. To determine these instances, we utilized the tenth and ninetieth

percentiles of the IH values, resulting in four groups, each containing 26 instances.

2.3 Feature values analysis

We focused our analysis on four specific features: three blood tests that are known to be influenced by the presence of
COVID-19 and age, which is a known risk factor for the severity of this disease. These tests have demonstrated patterns
in their values among patients who develop an aggravated condition, as reported in the medical literature [6, 18, 21].
Additionally, our previous research using a similar dataset from the same data source has indicated that these particular
features are among the most important for predicting the development of an aggravated condition [24].

Table 2 provides the names of these blood tests, along with their reference range values observed in healthy individuals.

It also outlines how the values of these blood tests are typically affected by the presence of COVID-19 (i.e., whether
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they increase or decrease) as reported in studies such as [4, 13]. Moving forward, these reference values will serve as

the standard when referring to high or low blood test values in our analysis.

Table 2. Blood tests analysed and reference values in a healthy patient.

Feature names Reference values ~ How the values are affected by the COVID-19
Lymphocytes (%) 20-40 % Decrease
C-Reactive protein (CRP) lower than 1 mg/dL Increase
Urea 13-43 mg/dL Increase

We conducted our analysis of feature values by examining their distribution within the hardest instances and
contrasting them with the patterns observed in the easiest instances and observing differences or trends between these

two groups.

2.4 Meta-features

Smith et al. [19] and Arruda and colleagues [1] have defined a set of measures aimed at offering pausible explanations
for instances hard to classify. These measures, known as Hardness Measures (HM), offer valuable insights into the
challenges faced by classification algorithms when dealing with specific instances. While the inner workings of machine
learning models can be complex and non-intuitive, HM can be visually represented and easily interpreted.

In this study, we calculated the HM values based on the implementation described by Paiva et al. [14], where higher
values of HM indicate instances that are more challenging to classify. These measures are computed using all instances
in the dataset and have a polynomial computational cost relative to the number of features and observations. From a set
of 13 meta-features, we selected three that most correlated with the IH.

Next, we describe these three meta-features. The remaining meta-features and their correlation values with the IH

measure are briefly discussed in the Appendix (see B.2).

24.1 Class likelihood (CL(xi)). The Class likelihood (CL) measure represents the likelihood of an instance x; belonging
to its assigned class. It can be calculated by multiplying the conditional probability P(xi|y;), which represents the
probability of x; belonging to class y;, by the prior probability of the class P(y;). In our case, the prior probability of
each class is set as %, being C the number of classes. To calculate the conditional probability, we assume that each
feature is independent of the others and multiply the individual conditional probabilities. The CL measure follows a
naive Bayes classifier approach, assuming equal importance for all features when estimating the occurrence of an event.

The probability of feature values is estimated independently in each dimension. The overall data distribution is then
estimated by assuming conditional independence, where the estimation is obtained by multiplying the probabilities of
each feature. Instances that have a higher likelihood of belonging to their assigned classes will have lower CL values.
These instances can be considered easier to classify compared to those with higher CL values. In the Appendix, we

provide a visual representation of the class likelihood measure in a synthetic two-dimensional problem (see B.4).

2.4.2  k-Disagreeing Neighbors (kDN (xj) ). The kDN measure represents the fraction of neighbors of x; (i.e., observations
that are closer to x;j in the input space) that do not belong to the same class as x;. The number of neighbors was set
to k = 10. Instances with high values of kDN are more challenging to classify due to their proximity to members of
other classes. To find the neighborhood of an instance, the distance between data points was calculated using the
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Understanding the performance of machine learning models from data-to patient-level 7

range-normalized Manhattan distance, where the distance between two points is the sum of the absolute differences of
their Cartesian coordinates.
In the Appendix, we provide a graphical representation of the kDN metric on a small dataset, along with a visual

depiction of the Manhattan distance (see B.4).

2.4.3 Disjunct Class Percentage (DCP(x;)). This measure involves constructing a Decision Tree (DT) using all instances
in the dataset D. A DT is a tree-like structure where each internal node represents a test on an attribute, each branch
represents the outcome of the test, and each leaf node holds a class label. The feature and threshold values are chosen
to generate nodes with the lowest impurity, measured using the Gini Index. The tree is then post-pruned using the cost
complexity parameter to remove splits that do not significantly reduce impurity.

The disjunct refers to the leaf node where x; is classified. Within this node, the ratio between the number of instances
that do not belong to the same class as x; and the total number of instances in the disjunct is calculated. Easier instances
tend to have few examples of other classes within their disjunct. Figure 8(c) illustrates the DCP measure, where easier
instances generally exhibit a low presence of examples from other classes in their corresponding disjunct.

Each of these HM encompasses different perspectives of the data. Feature kDN is a measure of similarity, mapping
whether the instance is located far or close to other instances of their own class, and with all features receiving the
same weight. Feature CL also gives the same weight to each feature, although taking into account how those values are
correlated with the ground truth class. On the other hand, DCP selects features and thresholds that are more important

in order to differentiate classes.

3 RESULTS

In this study, we conducted a data-centric analysis of ML model performance focusing on the concept of instance
hardness. We utilized IH values to select easy and hard instances, and compared feature and meta-feature values of
those instances. The IH levels were calculated as the likelihood of an instance being misclassified. The performance
of the models was accessed through 5-fold cross-validation using a pool of seven algorithms with different biases.
The distributions of IH values are similar across both classes, and both have instances that are hard to classify. The
severe class presents a histogram slightly shifted to the right with higher levels of IH. The histograms are shown in the
Appendix (see Section B.1). For each class we selected ten percent of the easiest and hardest instances. The mean IH
for the hard instances selected is 0.662 and 0.242 for the easy ones. Table 4 presents the mean and standard deviation

values of IH, according to class, in each group.

3.1 Feature distributions

Figure 1 presents the distributions of the lymphocytes (LYM%), age, CRP, and urea values for both easy and hard
instances in the severe and non-severe classes. In general, easy instances follow the expected pattern of the disease
(please refer to Table 2). Examining the distributions of easy instances, we can observe distinct patterns for each class.
Severe patients tend to be older with lower lymphocyte values, while non-severe patients are generally younger with
lower CRP and urea values. However, the distribution of hard instances highlights the pattern expected for the opposite
class. Especially for age and lymphocytes, hard and non-severe patients present the distribution expected for severe
and easy instances. Whilst for CRP and Urea the hard and severe shows a similar distribution to the opposite class.
Besides that, while easy instances have a clearly distinct pattern between the two classes, hard instances have large
intervals of overlap.

Manuscript submitted to ACM
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0 90 180 0 25 50
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Fig. 1. Distribution of Age, Lymphocytes (%), Urea and CRP, separately for hard and easy instances and severe and non-severe cases.

The original database contains the results of all blood tests collected during patients’ stay in the hospital. As
lymphocytes and CRP are tests routinely measured through hospitalization, we followed how those values evolve in
our four groups. Figure 2 presents the mean and standard deviations for each of them.

By analyzing Figure 2, we can observe a general pattern that helps to explain the behavior of patients who are
difficult to classify. Despite the large standard deviations, we can describe each group based on the evolution of their

test results:

e FEasy-severe patients: These patients are hospitalized with low values of LYM% and high values of CRP, which is
expected for severe cases. Due to their critical initial condition, the recovery process takes more than 14 days.

e Hard-severe patients: These patients are admitted with normal values of LYM% and high (but not critically
high) values of CRP. Their condition worsens in the following days, explaining their unexpectedly prolonged
hospitalization.

e Easy-non-severe patients: These patients are hospitalized with high values of LYM% and low values of CRP.
They are discharged before completing 14 days of hospitalization, indicating a relatively smooth recovery
process.

e Hard-non-severe patients: These patients are admitted with normal values of LYM%, although they present
high values of CRP. However, their condition quickly improves in the next few days, leading to their release in

less than 14 days.
Manuscript submitted to ACM
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Fig. 2. Evolution of Lymphocytes (%) and CRP values during hospital stay for each class. The dark line is the mean and the standard
deviation is represented by the shaded area. The shaded area is coloured according to the original class, red corresponds to severe
patients while green indicates non-severe patients. The easy non-severe patients are discharged before the 14-day limit, justifying the
shortened number of days.

It is possible to gain some insights into the conditions of each group of patients and why some instances do not
exhibit the expected behavior based on their hospitalization status. Generally, the viral load peak of the disease is
reached within 5-6 days of symptom onset [22]. Patients categorized as severe and easy were probably hospitalized
during this period when the body’s immune response was fully activated. On the other hand, severe and hard patients
reached their peak a few days after hospitalization. In this case, considering the number of days since the first symptoms
can potentially enhance the performance of the predictive model, although it is not possible to retrieve this information
inside the data source.

Regarding lymphocyte values, our groups align with patterns reported in medical literature. Tan et al. [21] analyzed
blood test values in COVID patients classified into three conditions: death cases, patients with moderate outcomes, and
those with severe outcomes. The results revealed that LYM% is a reliable marker for classifying patients among these
outcomes. In death cases, the percentage of lymphocytes was consistently lower than 5% after two weeks of the disease
course. In severe patients, lymphocytes initially decreased and then reached 10% before discharge, while in moderate
patients, LYM% fluctuated around normal values and was over 20% upon discharge.

The description of death cases corresponds to the easy-severe patients who, upon hospitalization, already exhibited
critical levels of blood test values. In fact, 10 instances within this group correspond to patients who died, while none of
the other groups contains death cases. The severe, but not fatal, cases correspond to our severe-hard patients, displaying
a decrease in LYM% values after hospitalization. The moderate cases align with our hard and non-severe patients,
showing some variability in LYM% but ultimately reaching normal values within 14 days of hospitalization. The easy
and non-severe patients represent mild cases, typically released shortly after clinical intervention [21].

Regarding CRP values, we can observe distinct curve shapes between the easy-severe patients and hard-non-severe
patients. Both groups initially exhibit high CRP values upon admission, but while one group’s values decrease linearly,
the other’s decrease exponentially. A similar trend is noticed between hard-severe patients and easy-non-severe patients,
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although their CRP values increase, the curves display different inclinations and peaks. These results support the findings
of Sharifpour et al. [17], who suggest that the rate of increase in CRP levels during the first week of hospitalization
serves as an indicator of disease progression. The authors report that this rate of increase in CRP level is more predictive
than the maximum CRP value. Besides that, we evidence the importance of the rate of decrease, while high CRP levels
are characteristic of the severe class, they can also be high in the non-severe class but with a quick decrease.

Although the objective of the trained models was to predict severity at the moment of hospitalization, these findings
suggest that considering the CRP value of the second day of hospitalization can potentially improve their performance.
This possibility will be investigated in future works.

Finally we consider relevant to describe the sex distribution inside our groups, since studies report sex disparity in
severe outcomes of COVID-19 [10]. Usually, studies conclude that men are more likely to evolve to aggravated disease
conditions. In our dataset, males and females are equally distributed between the two classes. Among our groups, in
both classes, the distribution of sex among easy instances is the same (m = 14 | f =12). Conversely, in the hard groups,
female patients have a greater presence (m = 8 | f = 18 and m = 9 | f = 17). It appears that accurately classifying women
poses a greater challenge in both classes. Research indicates a sex-based difference in immunological responses to
COVID-19 [12]. Female patients exhibit a more robust immunological response, potentially contributing to the difficulty
in predicting their outcomes. This heightened cellular response may be a gender-specific reaction rather than a clear
indication of greater infection-related impairment. Mukherjee and Pahan [12] also highlight societal expectations that
sometimes discourage men from actively seeking medical assistance or consulting physicians. Consequently, men often
delay seeking treatment, potentially making it easier to accurately classify them as their body’s response has already

progressed further.

3.2 Meta-features distribution

Now we move to a second part of our analysis, in order to explain how ML models made their decisions. Since
models had access only to test results of the first day, they took patients’ initial condition to make a prediction.
Each model has a different approach to identify data patterns, this approach usually involves complex mathematical
formulation. Our proposal is to analyze data distribution, inside our four groups, through meta-features values. These
meta-features, already established in the literature, are more intuitive and together can offer a broad comprehension of
data characteristics that are influencing models’ results.

From a set of 13 original meta-features [14] we only look at the three that, in this dataset, presented the greatest
correlation with the IH. Each of these hardness measures provides a different perspective on the data, offering insights
into why certain instances may be difficult to classify. Figure 3 presents the distribution of these three meta-features

according to class and level of hardness.

3.2.1 Class Likelihood: In our analysis, we observed that easy instances generally exhibit low CL values, as depicted in
the top portion of Figure 3. This is in line with our expectations, as easy instances are more confidently classified by the
model. However, hard instances, particularly those in the non-severe class, exhibit a wide range of CL values. This
indicates that some hard instances have a moderate probability of belonging to their assigned class. However, most
part of those instances that present low values of CL and are still hard to classify show high values of DCP. This is
an example of how the meta-features can show different reasons why instances are hard to classify. The correlation

between CL and instance hardness is 0.685.
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Fig. 3. Distribution of meta-features: CL, kDN and DCP in the four groups of selected instances.

3.2.2  k-disagreeing neighbors: Analyzing feature kDN values in the middle of Figure 3, we can see that few instances
(in both classes) have zero disagreeing neighbours. This is an evidence of overlapping between classes, since even the
easiest instances have neighbours of the opposite class. However, while hard instances overlap the opposite class in
central values, easy instances overlap in a peripheral interval. Figure 9 in the supplementary material shows how the
overlapping interval changes between easy and hard instances. The correlation between kDN and instance hardness is
0.638.

3.2.3 Disjunct class percentage: This meta-feature has the strongest correlation with IH (0.710). In the bottom image
of Figure 3 is possible to see that easy instances are classified with few members of the opposite class in the same
node. On the other hand, hard instances are classified inside a node with instances mainly belonging to the other class.
Figure 4a presents the decision tree built in order to extract DCP values. Two features were used to split instances and
the tree has three leaf nodes. In Figure 4(b) we show the distributions of our four groups inside the tree. Easy instances
are mainly placed together, in leaf nodes corresponding to their own class. Conversely, hard instances are frequently
missclassified, and placed in a disjunct with more instances of the opposite class than of their own class.

Now we move to the last step of our analysis, where we use insights from both feature distributions and meta-features

values to analyse individual instances that have been classified as hard.
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(a) Features and thresholds chosen to split nodes. (b) Hard and easy distributions inside the DT.

Fig. 4. Decision tree generated to calculated feature DCP measures.

3.3 Patient level

Within our hard groups, three instances are surrounded by instances of the opposite class, a phenomenon that intrigues
us. To understand why these instances belong to the opposite class of all their neighbors, we singled out them for
closer analysis. These particular instances exhibit the maximum value of the meta-feature kDN. We have labeled them
as Outlier 1, Outlier 2, and Outlier 3. Figure 5 presents a comprehensive summary of all the information, including
features and meta-features, for each of these instances, and subsequently, we delve into the analysis of each instance

individually.

e Outlier 1: This instance belongs to a 49-year-old severe male patient. The instance has a high value of DCP,
since it is incorrectly classified at the first level of the decision tree, with a large mixture of classes, as shown at
the bottom of Figure 5. Additionally, the instance exhibits low values of CRP and Urea, which are associated
with the non-severe class. This discrepancy between the feature values and the assigned class is reflected in the
high value of CL. At the time of hospitalization, the patient’s initial condition did not indicate an aggravated
condition. However, the level of CRP rose quickly in the next couple of days, at the same time the level of
lymphocytes decreases, leading to a prolonged hospitalization until recovery. The patient was released after 17
days of hospitalization.

o Qutlier 2: This outlier corresponds to a 63-year-old male patient that belongs to the severe class. The classification
of this instance is accurate at the second level of the decision tree, resulting in intermediate values of DCP.
However, the instance exhibits low values of Urea and CRP, which are typically associated with non-severe
instances. This discrepancy contributes to the high value of CL. It is worth noting that there is no available
information or records in the database for this patient for the last two days of hospitalization, despite registering
a total stay of 15 days. Given this context, we can speculate that the patient may have been released on the 13th

day, potentially leading to a change in the class label from severe to non-severe.
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Fig. 5. The top two rows illustrate the progression of C-reactive protein (CRP) and lymphocyte percentage (LYM %) throughout the
patients’ hospitalization. The third row presents the levels of urea and the age of patients at the time of hospitalization. In the fourth
row, meta-feature values are presented. Finally, the last row represents the DT generated to calculate DCP values and shows in which
leaf node the instance was placed. It is noteworthy that all three instances exhibit kDN = 1.

o Outlier 3: This outlier belongs to the non-severe class and is a 53-year-old male patient. The classification at
the first level of the decision tree is correct, with mainly instances of the same class. However, the instance
exhibits a pattern of feature values that are typically associated with the severe class. Specifically, the patient
has intermediate values of Lymphocytes, while CRP and Urea are high. This discrepancy between the feature
values and the assigned class contributes to the high value of CL. The patient’s condition improves in the

following days, leading to a release after 11 days of hospitalization.

4 DISCUSSION

In this paper, we analyzed a Brazilian COVID-19 dataset that was assembled to predict a serious condition, defined as
“death or hospitalization equal to or longer than 14 days”. Our aim was to demonstrate how analyzing hard instances
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can shed light on issues within a dataset. We adopted the concept of instance hardness as the likelihood of an instance
being misclassified by a set of different ML algorithms. By selecting the hardest and easiest instances, we inspected the
distributions of certain features and extracted a set of meta-features to describe each instance. We closely analyzed
three meta-features that were highly correlated with IH and compared their values between easy and hard instances in
both classes. Furthermore, we individually examined certain instances based on their features and meta-feature values.

In studies with a selected population, the influence of the disease on the patient’s health condition can be more
rigorously analysed. Our work, on the other hand, are based on an anonymized source of observational data, where
confounding factors may be present. Adopting this source of data we can rely on a greater number of instances, usually
larger than is possible to do in retrospective and follow-up studies. Routinely collected data can be a great source of
information to feed ML models in order to improve health systems. However, since data was not collected for the
purpose of a study, the interaction with the data expert is even more important in designing problems and deploying
models.

Our analyses offered some interesting explanations for why certain instances were challenging to classify, enabling a
better understanding of both the successes and failures of the models by considering the distributions of feature and
meta-feature values. This opens up the possibility for discussions between data scientists and domain specialists. The
question of how to address hard instances is domain-specific, and it is important to provide the specialist with helpful
support to determine if these instances are so atypical that they should be removed from the dataset or whether they
can be subject to correction.

Our research is centered on numerical data; however, the same analysis principles can be applied to different data
types. Although the library used for measuring Instance Hardness and meta-feature values is designed exclusively for
numerical data, it is possible to convert data in other formats to numerical representations. This strategy has previously
been employed with image data [11], using a pre-trained neural network as a numerical feature extractor, and can
similarly be applied to analyze text data. It is important to note that this technique may result in lower interpretability,
as numerical features may not directly correspond to real-world characteristics. In terms of data types, our study focused
on medical data. We believe that the medical field is an excellent context for such investigations, given the significance
of visualization procedures in high-stakes areas [15]. Nevertheless, the analysis framework can be extended to support
human-AlI development in various other domains.

Naturally, there are limitations to our approach, and we would like to highlight two main ones. First, we examined
only a few features and meta-features from small groups of instances, which undoubtedly do not encompass all data
issues. Although the choice of discussing only three instances may be seen as limited, we intended to exemplify how
the knowledge we obtained can be applied to individual instances, particularly when a discussion with the domain
expert is needed. With our contribution, we offer valuable insights and data perspectives that serve as a starting point
for establishing a dialogue between the data science team building the ML models and the domain experts who will use
these models in the future. While the information we have acquired may not be complete, it is still interesting and
useful.

Secondly, a limitation relates to the applicability of this approach to new instances. Since our analysis here was based
on the ground truth labels, as IH and meta-feature values rely on this information, it would not be possible to conduct a
similar analysis for new instances encountered by the models. However, our intention here is to take a step back and
facilitate the understanding of the models’ decision-making and their deployment. In the future, an adapted version of

meta-features that is not reliant on true labels can be proposed to investigate model decisions for unlabeled instances.
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789

790

701 A ALGORITHMS ADOPTED AND THEIR PERFORMANCE

702 To assess Instance Hardness levels we adopted seven ML techniques, with different approaches to classify data. Next,

2o Table 3 presents models performance when adopting, or not, a subsampling approach. The values reported are the

705 mean among a 5-fold cross-validation loop.

Table 3. Mean performance and standard deviation of ML models across the 5-fold cross-validation loop. SVM refers to Support
Vector Machines that were adopted with Linear and RBF kernels. MLP refers to Multilayer Perceptron.

797
798

799

200 Imbalanced After subsampling

c01 Algorithm AUC Sensitivity Specificity AUC Sensitivity Specificity
502 Linear SVM 0.716 £ 0.026  0.190 = 0.033  0.960 £ 0.020 0.724 + 0.020 0.670 = 0.055 0.643 £ 0.069
303 RBF SVM 0.712 £ 0.025 0.243 £ 0.065 0.960 £ 0.020 0.742 + 0.021 0.685 + 0.075 0.658 + 0.082
504 Random Forest 0.762 £ 0.013  0.349 = 0.083 0.908 £ 0.024 0.734 £ 0.010 0.628 = 0.076  0.658 £ 0.090
505 Gradient Boosting  0.734 + 0.021  0.357 + 0.083 0.889 +0.016  0.721 £ 0.038  0.635 £ 0.065 0.647 + 0.073
306 Logistic regression  0.734 + 0.024 0.296 + 0.064 0.903 + 0.035 0.731 + 0.018 0.654 + 0.057 0.670 + 0.070
507 Bagging 0.712 £ 0.025 0.308 = 0.059 0.879 £0.022 0.664 + 0.034 0.476 = 0.089 0.742 £ 0.075
308 MLP 0.703 £ 0.048 0.399 £ 0.058 0.860 £ 0.035 0.724 + 0.014 0.643 = 0.089 0.654 + 0.074
w00 mean 0.725 0.306 0.909 0.719 0.627 0.667

810
811

g1z B INSTANCE HARDNESS AND META-FEATURES

813
314 B.1 Instance Hardness values

o The Instance Hardness level was assessed for all instances in the dataset. Figure 6 presents the distribution of IH values
816

o1 according to the original class.

818 Table 4 presents the mean and standard deviation values of TH inside the four groups of selected instances.
819

820 Table 4. IH mean and stdv for each group.

821

822 Severe Non-Severe

823 Instance Hardness Hard Easy Hard Easy

824 Mean 0.665 0.242 0.658 0.241

825 stdev 0.044 0.023 0.032 0.028

826
827
828 B.2 Complete description of meta-features employed

829

330 In total 13 meta-features were measured. In the main article we explained three of them. Next we give a brief explanation

831 of the other ones.
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Fig. 6. Distribution of Instance Hardness for severe and non-severe patients. Regions of overlap of severe and non-severe values are in
dark green.

Tree Depth TD(x;): also builds a DT using D and calculates the ratio between the depth of the leaf node where
x; is classified and the maximum tree depth. Easier instances will tend to present low values of TD because they are
classified early in the DT. There are two versions of this measure, using pruned (TDp(x;)) and unpruned (TDy (x;))
decision trees.

Class Likelihood Difference CLD(x;): measures the difference between the likelihood that x; belongs to its class
and the maximum likelihood it has to belong to any of the other classes. The likelihood is calculated in the same way
as described in CL. The complement of this measure is taken as an output. When the difference of likelihoods is low,
there is doubt on the label of the instance and the CLD value is higher, which is more difficult to classify (specifically
between the two classes involved in the likelihood difference computation).

Fraction of features in overlapping areas F1(x;): calculates the percentage of features of x; with values in the
overlapping region of the classes. The overlapping region is the interval within which we can find feature values from
more than one class. A low percentage means that the instances are easily distinguished from the instances of the other
classes according to the input features’ values.

Fraction of nearby instances of different classes N1(x;): fits a Minimum Spanning Tree (MST) with the dataset
observations. An MST is an acyclic graph with weighted edges and all vertices connected. The vertices are always
connected to result in the lower sum of edges weights. The weights here are given by the pairwise distances between
different instances. The N1(x;) returns the number of instances from a different class that are connected to x; in
the MST, normalized by the total number of instances connected to x; in the MST. Easier instances will have more
connections with observations of the same class in the MST, resulting in lower N1 values.

Ratio of the intra-class and extra-class distances N2(x;): takes the ratio between the distance of the nearest
neighbor of the same class of x;, and the nearest enemy, which is the nearest neighbor from a different class. Next, the
complement is taken. The idea is that instances closer to their nearest enemies than to their nearest neighbor from the

same class are more difficult to classify.
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Local Set Cardinality LSC(x;): the local set of an instance x; is composed of the instances in D that are closer to x;
than its nearest enemy (ne - nearest neighbor from another class), normalized by the total number of instances that
belong to the class y;. Easier instances will tend to present a large local set cardinally, which means that the nearest
enemy is distant and the instance is surrounded by many others sharing its class. The complement of this measure is
taken as an output.

Local Set Radius LSR(x;): takes the radius of the local set of x;, normalized by the distance between x; and the
farthest instance of the same class as x;. The complement of this measure is taken as an output. LSR presents low values
when x; has a distant nearest enemy and all the instances belonging to the same class of x; are closer to it.

Usefulness U(x;): refers to the number of instances having x; in their local sets. This value is normalized by the
number of instances from the same class of x;, except from it. The idea is that an easy instance possesses many examples
from its class in their neighborhood, being more useful. The complement of this measure is taken as an output.

Harmfulness H(x;): is the fraction of instances having x; as their nearest enemy. If x; is easy to classify, it will be

far from instances from another class and consequently it will not be the nearest enemy of many instances.

B.3 Correlation between Instance Hardness and meta-features values

In order to choose a small set of meta-features to explore we performed a correlation between the level of instance

hardness and the meta-feature values. Table 5 presents these results.

Table 5. Frequency of Special Characters

Meta-feature Correlation with Intance Hardness
Disjunct class percentage 0.710
Class likelihood 0.685
Class likelihood difference 0.685
k-Disagreeing neighbours 0.638
Local set cardinality 0.441
Harmfulness 0.419
Ratio of the intra-class and extra-class distances 0.402
Usefulness 0.391
Fraction of nearby instances of different classes 0.357
Local set radius 0.258
Tree depth 0.174
Fraction of features in overlapping areas 0.043

B.4 Graphical representation of meta-features adopted

For the three meta-features explored we offer a graphical representation of the measures, aiming to facilitate their

understanding by data experts.

B.5 Overlap between classes for easy and hard instances

Figure 9 shows how the overlap between classes is different for easy and hard instances. Although in both cases there
are feature overlapping, in hard instances it occurs in central regions of the distribution. Conversely, easy instances

overlap in peripheral intervals.
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Fig. 7. Visual representation of feature CL.
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Fig. 8. Visual representation of feature kDN, Manhattan distance and feature DCP.
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Fig. 9. Overlap between classes in easy and hard instances for features Age and lymphocytes (%).
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