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Abstract

The current state-of-the-art methods for showing inapproximability in PPAD arise from
the ε-Generalized-Circuit (ε-GCircuit) problem. Rubinstein (2018) showed that there exists
a small unknown constant ε for which ε-GCircuit is PPAD-hard, and subsequent work has
shown hardness results for other problems in PPAD by using ε-GCircuit as an intermediate
problem.

We introduce Pure-Circuit, a new intermediate problem for PPAD, which can be
thought of as ε-GCircuit pushed to the limit as ε → 1, and we show that the problem
is PPAD-complete. We then prove that ε-GCircuit is PPAD-hard for all ε < 1/10 by a
reduction from Pure-Circuit, and thus strengthen all prior work that has used GCircuit
as an intermediate problem from the existential-constant regime to the large-constant regime.

We show that stronger inapproximability results can be derived by reducing directly
from Pure-Circuit. In particular, we prove tight inapproximability results for computing
approximate Nash equilibria and approximate well-supported Nash equilibria in graphical
games, for finding approximate well-supported Nash equilibria in polymatrix games, and for
finding approximate equilibria in threshold games.

This paper combines the results of two prior conference papers: Pure-Circuit: Strong Inapproximability for
PPAD published in FOCS 2022 [DFHM22b], and Tight Inapproximability for Graphical Games published in AAAI
2023 [DFHM23].
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1 Introduction

The complexity class PPAD has played a central role in determining the computational
complexity of many problems arising in game theory and economics [Pap94]. The cele-
brated results of Daskalakis, Goldberg, and Papadimitriou [DGP09] and Chen, Deng, and
Teng [CDT09] established that finding a Nash equilibrium in a strategic form game is PPAD-
complete, and subsequent to this breakthrough many other PPAD-completeness results have been
shown [CSVY08, CDDT09, VY11, DQS12, Das13, KPR+13, CDO15, CPY17, SSB17, Meh18,
Rub18, DFS20, CKK21a, CKK21b, PP21, GH21, FRGH+23, DSZ21, CCPY22].

These celebrated results not only showed that it is PPAD-hard to find an exact equilibrium,
but also that finding approximate solutions is PPAD-hard. The result of Daskalakis, Goldberg,
and Papadimitriou [DGP09] showed that finding an ε-Nash equilibrium is PPAD-complete when
ε is exponentially small, while the result of Chen, Deng, and Teng [CDT09] improved this to
show hardness for polynomially small ε. This lower bound is strong enough to rule out the
existence of an FPTAS for the problem.

The main open question following these results was whether equilibrium computation problems
in PPAD were hard for constant ε, which would also rule out the existence of a PTAS. Here one
must be careful, because some problems do in fact admit approximation schemes. For example,
in the case of two-player strategic-form games, a quasipolynomial-time approximation scheme
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is known [LMM03], meaning that the problem cannot be hard for a constant ε unless every
problem in PPAD can be solved in quasipolynomial time. But for other types of game such
results are not known. This includes polymatrix games, which are n-player games with succinct
representation [Jan68].

In another breakthrough result, Rubinstein [Rub18] developed techniques for showing constant
inapproximability within PPAD, by proving that there exists a constant ε such that finding an
ε-well-supported Nash equilibrium in a polymatrix game is PPAD-complete. This lower bound is
obtained by first showing constant inapproximability for the ε-Generalized-Circuit (ε-GCircuit)
problem introduced by Chen, Deng, and Teng [CDT09], and then utilizing the known reduction
from GCircuit to polymatrix games [DGP09].

Rubinstein’s lower bound has since been used to show constant inapproximability for other
problems. Rubinstein himself showed constant inapproximability for finding Bayesian Nash equi-
libria, relative approximate Nash equilibria, and approximate Nash equilibria in non-monotone
markets [Rub18]. Subsequent work has shown constant inapproximability for finding clear-
ing payments in financial networks with credit default swaps [SSB17], finding equilibria in
first-price auctions with subjective priors [FRGH+23], finding throttling equilibria in auction
markets [CKK21b], finding equilibria in public goods games on directed networks [PP21], and
finding consensus-halving solutions in fair division [FRFGZ18, GHI+22].

Rubinstein’s lower bound is an existential-constant result, meaning that it shows that there
exists some constant ε below which the problem becomes PPAD-hard. The fact that such a
constant exists is important, since it rules out a PTAS. On the other hand, Rubinstein does
not give any concrete lower bound on the value of the constant (understandably so, since this
was not the purpose of his work). One could of course deduce such a lower bound by a careful
examination of his reduction, but it is clear that this would yield an extremely small constant.
Due to this, all of the other results that have utilized Rubinstein’s lower bound are likewise
existential-constant results, which rule out PTASs but do not give any concrete lower bounds.

Ultimately, this means that existing work does not rule out an efficient algorithm that finds,
say, a 0.001-approximate solution for any of these problems, which would likely be more than
enough for most practical needs. For example, in a game where utilities are normalized to lie
between 0 and 1, it is likely that a player would be more than happy to know that her strategy is
an optimal best-response, up to an additive loss of at most 0.001 in her utility value. Moreover,
the existing work gives us no clue as to where the threshold for hardness may actually lie. To
address these questions one would need to prove a large-constant inapproximability result, giving
hardness for a known substantial constant.

Rubinstein’s lower bound is the ultimate source of all of the recent existential-constant
lower bounds, so if one seeks a large-constant lower bound, then Rubinstein’s result is the
bottleneck. Attempting to directly strengthen or optimize Rubinstein’s result does not seem like
a promising direction. His proof, while ingenious, is very involved, and does not lend itself to
easy optimization. Furthermore, it consists of many moving parts, so that even if one was able
to optimize each module, the resulting constant would still be very small.

Our contribution. In this paper we introduce the techniques needed to show large-constant
inapproximability results for problems in PPAD. Our key technical innovation is the introduction
of a new intermediate problem, called Pure-Circuit, which we show to be PPAD-complete.

Then, by reducing onwards from Pure-Circuit, we show large-constant inapproximability
results for a variety of problems in PPAD, some of which can be shown to be tight. In this sense,
Pure-Circuit now takes on the role that ε-GCircuit has taken in the past, as an important
intermediate problem from which all other results of this type are derived.

The Pure-Circuit problem itself can be thought of as a version of ε-GCircuit that is
taken to its limits, and also dramatically simplified. In fact, the problem has only two gates
(or, in a different formulation, three gates), which should be compared to ε-GCircuit, which
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has nine distinct gates. Perhaps more importantly, the gates in Pure-Circuit have very weak
constraints on their outputs: the gates can be thought of as taking inputs in [0, 1], and producing
outputs in [0, 1], but the gates themselves essentially only care about the values 0 and 1, with
all other values being considered to be “bad” or “garbage” values (which we will later simply
denote by “⊥”, instead of using values in (0, 1)). This should be compared to ε-GCircuit gates,
where, for example, one must output a value in [0, 1] that is within ε of the sum of two inputs.

Combined, these properties make Pure-Circuit a very attractive problem to reduce from
when showing a hardness result, since one only has to implement two (or three) gates, and the
constraints that one must simulate are very loose, making them easy to implement. We formally
introduce Pure-Circuit, and compare it to ε-GCircuit, in Section 2.

Our main result is to show that the Pure-Circuit problem is PPAD-complete. It is worth
noting that there is no ε in this result, and in fact the Pure-Circuit problem does not even
take a parameter ε in its definition. This is because, in some sense, the Pure-Circuit problem
can be viewed as a variant of ε-GCircuit in which we have taken the limit ε → 1. We give
further justification of this idea in Section 2, but at a high level, this means that there is no loss
of ε in our main hardness result, with the only losses coming when one reduces onwards from
Pure-Circuit. The proof of our main result is presented in Section 3, but we present a brief
exposition of the main ideas in Section 1.1.

Finally, in Section 4 we present a number of new large-constant hardness results for problems
in PPAD, all of which are shown via reductions from Pure-Circuit. We begin by showing
that ε-GCircuit is PPAD-hard for all ε < 1/10, giving a direct strengthening of Rubinstein’s
lower bound. This also implies large-constant inapproximability results for all of the problems
that currently have existential-constant lower bounds proved via GCircuit. However, to
determine the constant, one would need to determine the amount of ε that is lost in each of the
onward reductions, and these reductions often did not optimize this, since they were proving
existential-constant lower bounds.

We argue that the way forward now is providing direct reductions from Pure-Circuit in
order to get the best possible hardness results. As evidence of this, we present the first tight
inapproximability results for additive approximate equilibria. We show the following results.

• It is PPAD-hard to compute an ε-well-supported Nash equilibrium in a two-action polyma-
trix game for all ε < 1/3.

• It is PPAD-hard to compute an ε-well-supported Nash equilibrium in a two-action graphical
game for all ε < 1.

• It is PPAD-hard to compute an ε-Nash equilibrium in a two-action graphical game for all
ε < 1/2.

• It is PPAD-hard to compute an ε-approximate equilibrium in a threshold game for all
ε < 1/6.

Each of these results completely characterizes the computational complexity of the respective
problem: in each case we provide a polynomial-time algorithm that can find an ε-approximate
solution of the problem for the values of ε not covered by the hardness result.

Furthermore, each of the hardness results are shown via a direct, and usually relatively
straightforward, reduction from Pure-Circuit. We view this as evidence that Pure-Circuit
is the “correct” intermediate problem for showing hardness results within PPAD: once one has
shown that it is PPAD-hard to solve Pure-Circuit, it is then relatively easy to obtain tight
lower bounds for a variety of approximation problems within PPAD, and we expect further such
results to be shown via Pure-Circuit in the future.

We summarize the hardness results obtained through a direct reduction from Pure-Circuit
in the table below.
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Problem Hardness Threshold

GCircuit 1/10
PolymatrixWSNE 1/3
PolymatrixNE 0.088
GraphicalWSNE 1
GraphicalNE 1/2
ThresholdGameNE 1/6

We note that PolymatrixWSNE and ThresholdGameNE have themselves both been used
as intermediate problems for showing other constant inapproximability results in PPAD [Rub18,
PP21, CKK21b, CCPY22], and thus our lower bounds potentially strengthen those results too.
We provide an example in Appendix B, where we show that computing a relative ε-WSNE in
a bimatrix game with non-negative payoffs is PPAD-complete for any ε ≤ 1/57, by using an
improved version of a reduction from PolymatrixWSNE due to Rubinstein [Rub18].

Open Questions. Below we identify two immediate research questions that arise from our
work, which deserve further research.

• What is the intractability threshold for ε-NE in graphical games with more than two
actions? We show that 1/2 is the threshold for two-action games, and we conjecture
that 1/2 is the correct answer for the multi-action case as well. Hence, we view the main
open problem as finding a polynomial-time algorithm that can compute a 1/2-NE in any
graphical game. We note that such an algorithm is already known for the special case of
polymatrix games [DFSS17].

• What is the intractability threshold for ε-NE and ε-WSNE in polymatrix games? For
ε-NE our understanding is far from complete, even in the two-action case, since there is a
substantial gap between the 0.088 lower bound and the 1/3 upper bound. For ε-WSNE,
although the problem is completely resolved for the two-action case, the gap in multi-action
polymatrix games is still large, and it seems that improving either the lower bound of 1/3,
or the trivial upper bound of 1, would require significantly new ideas.

1.1 Proof Overview for Our Main Result

We begin this proof overview by defining a very weak version of Pure-Circuit. An instance
of the problem consists of a Boolean circuit using the standard gates NOT, AND, and OR, but
with the following tweak: the circuit is allowed to have cycles. A solution to the problem is an
assignment of values to each node of the circuit, so that all gates are satisfied. If we are only
allowed to assign values in {0, 1} to the nodes, then it is easy to see that the problem is not a
total search problem, i.e., some instances do not have a solution. For example, there is no way
to assign consistent values to a cycle of three consecutive NOT gates.

In order to ensure that the problem is total (and can thus be used to prove PPAD-hardness
results), we make the value space continuous by extending it to [0, 1]. We extend the definition
of the logical gates NOT, AND, and OR to non-Boolean inputs in the most permissive way: if
at least one input to the gate is not a pure bit (i.e., not in {0, 1}), then the gate is allowed to
output any value in [0, 1]. The attentive reader might observe that this problem is now trivial to
solve: just assign arbitrary values in (0, 1) to all the gates.

It is thus clear that the definition of the problem needs to be extended, by adding extra
gates or by strengthening existing gates, so that the problem becomes PPAD-hard. However, in
order to discover the least amount of additional structure needed to make the problem hard, it
is instructive to proceed with this definition for now, and attempt to prove hardness.

In order to prove the PPAD-hardness of the problem, we cannot follow Rubinstein’s approach,
which goes through the construction of a continuous Brouwer function, because Pure-Circuit
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only offers very weak gates. Instead, we proceed via a direct reduction from the StrongSperner
problem, a discrete problem that is a computational version of Sperner’s Lemma. The problem
was shown to be PPAD-hard by Daskalakis, Skoulakis, and Zampetakis [DSZ21] (who called it
the HighD-BiSperner problem), and is the “PPAD-analogue” of the StrongTucker problem
which was recently used to prove PPA-hardness results [DFHM22a]. This approach completely
bypasses the continuous aspect of all such existing hardness reductions and enables us to work
with the very weak gates that Pure-Circuit offers.

At a high level, our hardness construction works as follows: the Pure-Circuit instance
implements the evaluation of the StrongSperner labeling on some input point x (represented
in unary by multiple nodes) and then uses a feedback mechanism to ensure that the circuit is
only satisfied if x is a solution to the StrongSperner instance. The full reduction is presented
in Section 3, but we mention here the two main obstacles when trying to implement this idea,
and how to overcome them.

1. The input point x might not be represented by a valid bitstring. Indeed, since
the gates take values in [0, 1] (and values in (0, 1) essentially do not carry any information),
there is no guarantee that the input x will be represented by bits {0, 1}. But then the
implementation of the StrongSperner labeling (which is given as a Boolean circuit) will
also fail. To resolve this issue, we introduce a new gate, the PURIFY gate, which, on any
input, outputs two values, with the guarantee that at least one of them is a “pure” bit, i.e.,
0 or 1. If the input is already a pure bit, then both outputs are guaranteed to be copies of
the input. Using a binary tree of PURIFY gates, we can now create many copies of x, such
that most of them consist only of pure bits, and then use the logical gates to compute the
StrongSperner labeling correctly on these good copies.

2. How to implement the feedback mechanism? Given the outputs of the
StrongSperner labeling at all the copies of x, we now need to provide some kind
of feedback to x, so that x is forced to change if it is not a solution of StrongSperner. It
turns out that this step can be performed if we have access to sorting : given a list of values
in [0, 1], sort them from smallest to largest. Unfortunately, this is impossible to achieve
with the gates at our disposal, namely standard logical gates and the PURIFY gate. We
circumvent this obstacle by observing that: (i) it is sufficient to be able to perform some
kind of “weak sorting” (essentially, we only care about pure bits being sorted correctly),
and (ii) this weak sorting can be achieved if we make our logical gates robust. For example,
the robust version of the AND gate outputs 0, whenever at least one of its inputs is 0,
irrespective of whether the other input is a pure bit or not.

With these two extensions in hand—namely, the PURIFY gate and the robustness of the logical
gates— it is now possible to prove PPAD-hardness of the problem. A very natural question to
ask is: Is it really necessary to add both extensions for the problem to be hard? In Appendix A.1
we show that any attempt to weaken the gate-constraints makes the problem polynomial-time
solvable. In particular, the introduction of the PURIFY gate is not enough by itself to make the
problem PPAD-hard; the robustness of the logical gates is also needed.

The robustness of, say, the AND gate seems like a very natural constraint to impose. It is
consistent with the meaning of the logical AND operation, but we also observe in our applications
that this “robustness” seems to always be automatically satisfied by the gadgets that we construct
to simulate the AND gate in our reductions from Pure-Circuit. On the other hand, the PURIFY
gate, which might look a bit unnatural or artificial at first, actually corresponds to the simplest
possible version of a bit decoder, a crucial tool in all prior works. As mentioned above, we
show in Appendix A.1 that these are the minimal gate-constraints that are needed for the
problem to be PPAD-hard. In that sense, we argue that Pure-Circuit captures the essence of
PPAD-hardness: it consists of the minimal set of ingredients that are needed for a problem to be
PPAD-hard.
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The attentive reader might have noticed that our gates do not distinguish between different
values in (0, 1). For this reason, it will be more convenient to use a single symbol to denote such
values in the definition of Pure-Circuit (Section 2) and in the rest of this paper. As explained
in more detail in Section 2, the symbol “⊥” will be used to denote these “garbage” values. In
other words, the nodes of the circuit will take values in {0, 1,⊥} instead of [0, 1].

2 The Pure-Circuit Problem

In this section we define our new problem Pure-Circuit and state our main result, namely
its PPAD-completeness. Before defining Pure-Circuit, we begin by explaining the intuition
behind its definition, and how it relates to the Generalized-Circuit (GCircuit) problem.

The Generalized-Circuit problem. In the Generalized-Circuit (GCircuit) problem (for-
mally defined in Section 4.1) we are given a circuit and the goal is to assign a value to each node
of the circuit so that each gate is computed correctly. Importantly, the circuit is a generalized
circuit, meaning that cycles are allowed. If cycles were not allowed, then it would be easy to
find values satisfying all gates: just pick arbitrary values for the input gates, and then evaluate
the circuit on those inputs.

Every node of GCircuit must be assigned a value in [0, 1], and the gates are arithmetic
gates, such as addition, subtraction, multiplication by a constant (with output truncated to lie in
[0, 1]), and suitably defined logical gates. Reducing from GCircuit is very useful for obtaining
hardness of approximation results, because the problem remains PPAD-hard, even when we allow
some error at every gate. In the ε-GCircuit problem, the goal is to assign a value in [0, 1] to
each node of the circuit, so that each gate is computed correctly, up to an additive error of ±ε.

The problem was first defined by Chen et al. [CDT09], who proved that it is PPAD-hard
for inverse polynomial ε, and who used it to prove PPAD-hardness of finding Nash equilibria
in bimatrix games. Prior to that, Daskalakis et al. [DGP09] had implicitly proved that it is
PPAD-hard for inverse exponential ε. Rubinstein’s [Rub18] breakthrough result proved that
there exists some constant ε > 0 such that ε-GCircuit remains PPAD-hard.

Taking the limit ε → 1. In order to get strong inapproximability results, it seems necessary
to prove hardness of ε-GCircuit for large, explicit, values of ε. Ideally, we would like to obtain
hardness for the largest possible ε. While it is unclear what that value is for GCircuit, in
theory, as long as ε < 1 the output of a gate still carries some information. Namely a gate whose
actual output should be 0 cannot take the value 1.

This observation leads us to define a problem to essentially capture the setting ε → 1. In
that case, a node carries information only if its value is 0 or 1. Otherwise, its value is irrelevant.
As a result, the natural operations to consider in this setting are simple Boolean operations, such
as NOT, AND, OR, NAND, and NOR. We only require these gates to output the correct result
when their input is relevant, i.e., 0 or 1. For example, the NOT gate should output 1 on input 0,
and output 0 on input 1, but there is no constraint on its output when the input lies in (0, 1).

Since values in (0, 1) do not carry any information, and are as such interchangeable (e.g., a
value 1/2 can be replaced by 1/3 without impacting any of the gates), we will instead use the
symbol “⊥” to denote any and all values in (0, 1). In other words, instead of assigning a value
in [0, 1] to each gate, we will assign a value in {0, 1,⊥}, where ⊥ is interpreted as a “garbage”
value, i.e., not corresponding to a pure bit value 0 or 1. With this new notation, the updated
description of the NOT gate would be that it must output 1 on input 0, it must output 0 on
input 1, and it can output anything (namely, 0, 1, or ⊥) on input ⊥.

Unfortunately, if we only allow these logical gates, then the problem is trivial to solve:
assigning the “garbage” value ⊥ (or any value in (0, 1) if we use the old notation) to every node
will satisfy all gates. Thus, we need a gate that makes this impossible.
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The PURIFY gate. To achieve this, we introduce the PURIFY gate: a gate with one input
and two outputs, which, intuitively, “purifies” its input. When fed with an actual pure bit, the
PURIFY gate outputs two copies of the input bit. However, when the input is not a pure bit,
the gate still ensures that at least one of its two outputs is a pure bit. In more detail:

• If the input is 0, then both outputs are 0.

• If the input is 1, then both outputs are 1.

• If the input is ⊥, then at least one of the outputs is a pure bit, i.e., 0 or 1.

Note that the gate is quite “under-defined”. For example, we do not specify which pure bit the
gate should output when the input is ⊥, nor do we specify the output on which this bit appears.
This is actually an advantage, because it makes it easier to reduce from the problem, since the
less constrained the gates are, the easier it is to simulate them in the target application problem.

Robustness of the logical gates. The introduction of the PURIFY gate makes the problem
non-trivial: if a PURIFY gate appears in the circuit, then assigning the “garbage” value ⊥ to all
nodes is no longer a solution. However, it turns out that one more modification is needed to
make the problem PPAD-hard: we have to make the logical gates robust. For the AND gate, this
means the following: if one of its two inputs is 0, then the output is 0, no matter what the other
input is (even if it is not a pure bit, i.e., if it is ⊥). Similarly, for the OR gate we require that
the output be 1 when at least one of the two inputs is 1. Robustness is defined analogously for
NAND and NOR.

We show that introducing the PURIFY gate and making the logical gates robust is enough to
make the problem PPAD-complete. Next, we define the problem formally and state our main
result.

Formal definition. In the definition below, we use the PURIFY and NOR gates, because these
two gates are enough for the problem to already be PPAD-complete. However, the problem
remains hard for various other combinations of gates and restrictions on the interactions between
nodes, as we detail in Corollaries 2.2 and 2.3. In Appendix A.1 we discuss the definition in
more detail, and explain why any attempt at relaxing the definition (in particular, removing the
robustness) makes the problem polynomial-time solvable.

Definition 1 (Pure-Circuit). An instance of Pure-Circuit is given by a vertex set V = [n]
and a set G of gate-constraints (or just gates). Each gate g ∈ G is of the form g = (T, u, v, w)
where u, v, w ∈ V are distinct nodes and T ∈ {NOR,PURIFY} is the type of the gate, with the
following interpretation.

• If T = NOR, then u and v are the inputs of the gate, and w is its output.

• If T = PURIFY, then u is the input of the gate, and v and w are its outputs.

We require that each node is the output of exactly one gate.
A solution to instance (V,G) is an assignment x : V → {0, 1,⊥} that satisfies all the gates,

i.e., for each gate g = (T, u, v, w) ∈ G we have:

• if T = NOR, then x satisfies (left: mathematically; right: truth table)

x[u] = x[v] = 0 =⇒ x[w] = 1

(x[u] = 1) ∨ (x[v] = 1) =⇒ x[w] = 0

u v w

0 0 1
1 {0, 1,⊥} 0

{0, 1,⊥} 1 0
Else {0, 1,⊥}
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• if T = PURIFY, then x satisfies

{x[v],x[w]} ∩ {0, 1} ≠ ∅
x[u] ∈ {0, 1} =⇒ x[v] = x[w] = x[u]

u v w

0 0 0
1 1 1

⊥ At least one
output in {0, 1}

The following theorem is our main technical result and is proved in Section 3.

Theorem 2.1. The Pure-Circuit problem is PPAD-complete.

The most important part of this statement is of course the PPAD-hardness of Pure-Circuit,
but let us briefly discuss the other part, namely the PPAD-membership. This is obtained as a
byproduct of our results in Section 4, where we reduce Pure-Circuit to various problems that
are known to lie in PPAD. However, there is also a more direct way to prove membership in
PPAD, and in particular to establish the existence of a solution, and we briefly sketch it here.
Indeed, the Pure-Circuit problem can be reduced to the problem of finding a Brouwer fixed
point of a continuous function F , a problem known to lie in PPAD [Pap94, EY10]. Given an
instance of Pure-Circuit with n nodes, the function F : [0, 1]n → [0, 1]n is constructed by
letting x ∈ [0, 1]n represent an assignment of values to the n nodes, and by defining Fi(x) ∈ [0, 1]
as a continuous function that outputs a valid value for the ith node, given that the other nodes
have values according to assignment x (where any value in (0, 1) is interpreted as “⊥”). For every
type of gate, it is not hard to construct a continuous piecewise-linear function Fi that satisfies
the constraints of that type of gate. For PURIFY gates, which have two outputs, we require two
such functions Fi and Fj , which can for example be taken to be Fi(x) = max{0, 2xk − 1} and
Fj(x) = min{1, 2xk}, where node k is the input of the gate.

Remark 1. Note that the definition of our logical gates essentially follows Kleene’s strong logic of
indeterminacy [Kle52], except that undetermined outputs are not required to take value ⊥, but
instead any value in {0, 1,⊥} can be used. This makes it easier to argue about reductions from
Pure-Circuit, since the gadgets implementing the gates have to enforce fewer constraints. As
a result of this connection to Kleene’s logic, these gates can in particular be used to implement
hazard-free circuits [IKL+19].

2.1 Alternative Gates and Further Restrictions

In this section, we present various versions of the problem that remain PPAD-complete, in
particular versions that use alternative gates and have additional restrictions.

More gates. We define the following additional gates.

• If T = COPY in g = (T, u, v), then x satisfies

x[u] = 0 =⇒ x[v] = 0

x[u] = 1 =⇒ x[v] = 1

u v

0 0
1 1
⊥ {0, 1,⊥}

• If T = NOT in g = (T, u, v), then x satisfies

x[u] = 0 =⇒ x[v] = 1

x[u] = 1 =⇒ x[v] = 0

u v

0 1
1 0
⊥ {0, 1,⊥}
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• If T = OR in g = (T, u, v, w), then x satisfies

x[u] = x[v] = 0 =⇒ x[w] = 0

(x[u] = 1) ∨ (x[v] = 1) =⇒ x[w] = 1

u v w

0 0 0
1 {0, 1,⊥} 1

{0, 1,⊥} 1 1
Else {0, 1,⊥}

• If T = AND in g = (T, u, v, w), then x satisfies

x[u] = x[v] = 1 =⇒ x[w] = 1

(x[u] = 0) ∨ (x[v] = 0) =⇒ x[w] = 0

u v w

1 1 1
0 {0, 1,⊥} 0

{0, 1,⊥} 0 0
Else {0, 1,⊥}

• If T = NAND in g = (T, u, v, w), then x satisfies

x[u] = x[v] = 1 =⇒ x[w] = 0

(x[u] = 0) ∨ (x[v] = 0) =⇒ x[w] = 1

u v w

1 1 0
0 {0, 1,⊥} 1

{0, 1,⊥} 0 1
Else {0, 1,⊥}

Corollary 2.2. The Pure-Circuit problem is PPAD-complete, for any of the following choices
of gate types:

• PURIFY and at least one of {NOR,NAND};

• PURIFY, NOT, and at least one of {OR,AND}.

Proof. This follows from Theorem 2.1 by observing that a NOR gate can always be simulated
with the given set of gates. Clearly, NOR can be simulated by first using an OR gate and then
a NOT gate. Furthermore, OR can be simulated by NOT and AND by applying De Morgan’s
laws. Finally, AND can easily be obtained from NOT and NAND, and NOT can be obtained
from NAND and PURIFY as follows: first apply a PURIFY gate, and then use its two outputs as
the two inputs to a NAND gate.

More structure. The hardness result is also robust with respect to restrictions applied to the
interaction graph. This graph is constructed on the vertex set V = [n] by adding a directed edge
from node u to node v whenever v is the output of a gate with input u. For example, a NOR
gate with inputs u, v and output w yields the two edges (u,w) and (v, w). On the other hand, a
PURIFY gate with input u and outputs v, w gives the edges (u, v) and (u,w). Since any given
node is the output of at most one gate, it immediately follows that the in-degree of every node
is at most 2. However, the out-degree of a node can a priori be arbitrarily large. It is quite easy
to show that the problem remains PPAD-complete, even if we severely restrict the interaction
graph. The proof of the following corollary can be found in Appendix A.2.

Corollary 2.3. The Pure-Circuit problem remains PPAD-complete, for any choice of gates
{PURIFY,X,Y}, where (X,Y) ∈ {NOT} × {OR,AND,NOR,NAND} or (X,Y) ∈ {COPY} ×
{NOR,NAND} and even if we also simultaneously have all of the following restrictions.

1. Every node is the input of exactly one gate.

2. In the interaction graph, the total degree of every node is at most 3. More specifically, for
every node, the in- and out-degrees, din and dout, satisfy (din, dout) ∈ {(1, 1), (2, 1), (1, 2)}.
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3. The interaction graph is bipartite.

Remark 2. Using Corollary 2.3, it is also possible to show that Pure-Circuit with only two gates
(namely, PURIFY and one of {NOR,NAND}) remains PPAD-complete even if the total degree of
every node is at most 4 in the interaction graph. Indeed, NOT gates can be implemented by first
using a PURIFY gate and then a NOR/NAND gate. The structural properties of Corollary 2.3
ensure that this yields an interaction graph where the total degree is at most 4 for each node. This
can be further reduced to degree 3, if one modifies the definition of Pure-Circuit (Definition 1)
so that the two inputs to a NOR/NAND gate are no longer required to be two distinct nodes u
and v, but can possibly be the same node u = v. However, if the definition is modified in that
way, then one must be careful when reducing from Pure-Circuit to make sure to take into
account the possibility that u = v when constructing the gadget for a NOR/NAND gate.

3 PPAD-completeness of Pure-Circuit

This section proves our main technical result, namely that Pure-Circuit is PPAD-complete
(Theorem 2.1). We note that membership in PPAD follows immediately from the reduction of
the problem to GCircuit in Section 4.1. In order to establish the PPAD-hardness, we present a
polynomial-time reduction from a PPAD-complete problem to Pure-Circuit. The canonical
PPAD-complete problem is the End-of-Line problem, but, as is usually the case, we do not
reduce directly from End-of-Line, but from a problem with topological structure instead, which
we introduce next.

3.1 The StrongSperner Problem

We will reduce from the StrongSperner problem, which is based on a variant of Sperner’s
lemma [Spe28]. This problem is in essence the same as the HighD-BiSperner problem defined
by Daskalakis et al. [DSZ21] and used to prove PPAD-hardness of a problem related to constrained
min-max optimization. Furthermore, the corresponding “strong” variant of Tucker’s lemma
was used by Deligkas et al. [DFHM22a] to provide improved PPA-hardness results for the
consensus-halving problem in fair division.

Definition 2. The StrongSperner problem:

Input: A Boolean circuit computing a labeling λ : [M ]N → {−1,+1}N satisfying the following
boundary conditions for every i ∈ [N ]:

• if xi = 1, then [λ(x)]i = +1;

• if xi = M , then [λ(x)]i = −1.

Output: Points x(1), . . . , x(N) ∈ [M ]N that satisfy ∥x(i)−x(j)∥∞ ≤ 1 for all i, j ∈ [N ], and such
that λ(x(1)), . . . , λ(x(N)) cover all labels, i.e., for all i ∈ [N ] and ℓ ∈ {−1,+1} there exists
j ∈ [N ] with [λ(x(j))]i = ℓ.

Note that the requirement that a solution should consist of exactly N points is without loss
of generality. If we find less than N points that cover all labels, then we can simply re-use
the same points multiple times to obtain a list of N points that cover all labels (there is no
requirement on them being distinct). If we find more than N points that cover all labels, then it
is easy to see that we can extract a subset of N points that still cover all labels in polynomial
time [DFHM22a, Lemma 3.1].

Theorem 3.1 ([DSZ21]). StrongSperner is PPAD-hard, even when M is only polynomially
large (or equivalently, it is given in unary in the input).
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Remark 3. This was proven by Daskalakis et al. [DSZ21] by reducing from the Succinct-
Brouwer problem, which had been proven PPAD-hard by Rubinstein [Rub16]. The PPAD-
hardness can also be proved by a more direct reduction from End-of-Line. Indeed, End-of-Line
can be reduced to StrongSperner with N = 2 and exponentially large M by using the tech-
niques of Chen and Deng [CD09]. Then, a snake embedding technique [CDT09, DFHM22a] can
be used to obtain hardness for the high-dimensional version with small M , in fact, even for
constant M . For our purposes, the hardness for polynomially large M is sufficient.

3.2 Reduction from StrongSperner to Pure-Circuit

Consider an instance λ : [M ]N → {−1,+1}N of StrongSperner, where λ is given as a Boolean
circuit and M is only polynomially large (i.e., given in unary). We will now show how to construct
an instance of Pure-Circuit in polynomial time such that from any correct assignment to the
nodes, we can extract a solution to the StrongSperner instance in polynomial time. We will
make use of the gates PURIFY, AND, OR, NOT, COPY. All these gates can easily be simulated
using the two gates PURIFY and NOR, by the arguments in the proof of Corollary 2.2.

We begin the construction of the Pure-Circuit instance by creating nodes ui,1, . . . , ui,M
for each i ∈ [N ]. We call these nodes the original inputs, and we think of ui,1, . . . , ui,M as being
a unary representation of an element in [M ]. Namely, when all these nodes happen to have a
pure value, i.e., 0 or 1, we can interpret the number of 1’s as representing a number in [M ]. (For
convenience, we use the convention that if all the nodes have value 0, then this corresponds to
1 ∈ [M ].) Note that these unary representations are not unique, since we do not care about
the order of the bits. Of course, all of this only makes sense when all these nodes are indeed
assigned pure bit values. In general, this will not be the case, but this encoding will be useful
in other parts of the construction. The rest of the instance can be divided into four parts: the
purification stage, the circuit stage, the sorting stage, and the selection stage.

We begin with a brief overview of the purpose of each stage and how they interact with each
other. The purification stage uses the PURIFY gate to create multiple “copies” of the original
ui,j nodes, while ensuring that most of the copies have pure bit values (Purification Lemma,
Lemma 3.2). Then, the circuit stage evaluates the circuit λ on these copies of the original inputs.
Since the purification stage ensures that most copies have pure bits, the circuit stage outputs the
correct labels for most copies, and, in particular, most outputs are pure bits (Circuit Lemma,
Lemma 3.3). Next, for each i ∈ [N ], the sorting stage “sorts” the list of all ith output values
computed in the circuit stage (Sorting Lemma, Lemma 3.4). Since most of the ith output values
are pure bits, the sorting stage ensures that all non-pure values are close to each other in the
sorted list. The selection stage then proceeds to select M values from the sorted list, but in
a careful way, namely such that they are all far away from each other. This ensures that at
most one of the M selected values is not a pure bit. The M selected values are then fed back
into the original inputs ui,1, . . . , ui,M . As a result, the original input ui,1, . . . , ui,M contains at
most one non-pure bit, and thus the purification stage ensures that all the (pure) copies of
ui,1, . . . , ui,M correspond to unary numbers that differ by at most 1. This means that these
copies represent points in the StrongSperner domain that are within ℓ∞-distance 1 (Selection
Lemma, Lemma 3.5). Finally, using the boundary conditions of the StrongSperner instance,
we argue that these points must cover all the labels (Solution Lemma, Lemma 3.6).

We now describe each of the stages in more detail. We let K denote the number of copies
that we make. It will be enough to pick K = 3NM2. In what follows, x always denotes an
arbitrary solution to the Pure-Circuit instance we construct.

Step 1: Purification stage. For each (i, j) ∈ [N ]× [M ], we construct a binary tree of PURIFY

gates that is rooted at ui,j and has leaves u
(1)
i,j , . . . , u

(K)
i,j .

We say that k ∈ [K] is a good copy, if x[u
(k)
i,j ] is a pure bit for all (i, j) ∈ [N ] × [M ]. We
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denote the set of all good copies by G, i.e.,

G :=
{
k ∈ [K] : x[u

(k)
i,j ] ∈ {0, 1} ∀(i, j) ∈ [N ]× [M ]

}
.

For a good copy k ∈ G and any i ∈ [N ], we can interpret the bitstring (x[u
(k)
i,j ])j∈[M ] ∈ {0, 1}M

as representing a number in [M ] in unary, which we denote by u
(k)
i ∈ [M ]. In other words,

u
(k)
i corresponds to the number of 1’s in the bit-string (x[u

(k)
i,j ])j∈[M ]. As already mentioned

above, for notational convenience we let the all-zero bit string 0M correspond to 1 as well, i.e., if

x[u
(k)
i,j ] = 0 for all j ∈ [M ], then u

(k)
i = 1. (Alternatively, we could also have used M − 1 bits

instead of M .) Finally, we let u(k) ∈ [M ]N denote the vector (u
(k)
1 , . . . , u

(k)
N ).

Lemma 3.2 (Purification Lemma). The following hold.

1. There are at least K −NM good copies, i.e., |G| ≥ K −NM .

2. If for some (i, j) ∈ [N ]× [M ] the original input x[ui,j ] is a pure bit, then all copies have

that same bit, i.e., x[u
(k)
i,j ] = x[ui,j ] for all k ∈ [K].

Proof. Observe that in a binary tree of PURIFY gates, if some node has some pure value
b ∈ {0, 1}, then all nodes in the subtree rooted at this node also have value b. Applying this
observation at the root of the tree rooted at ui,j , we immediately obtain part 2 of the statement.

For part 1, note that for any (i, j) ∈ [N ]× [M ], in the binary tree of PURIFY gates rooted
at ui,j , all leaves, except at most one, have a pure bit value. This follows from the definition
of the PURIFY gate and the observation about subtrees made in the previous paragraph. As a

result, all values (x[u
(k)
i,j ])(i,j,k)∈[N ]×[M ]×[K] are pure bits, except for at most NM of them. But

this means that there are at least K −NM values of k ∈ [K] such that x[u
(k)
i,j ] ∈ {0, 1} for all

∀(i, j) ∈ [N ]× [M ]. In other words, |G| ≥ K −NM .

Step 2: Circuit stage. We assume, without loss of generality, that λ is given as a Boolean
circuit C : ({0, 1}M )N → {0, 1}N using gates AND, OR, NOT, and, on input z ∈ ({0, 1}M )N :

• For each i ∈ [N ], the ith block of input bits zi ∈ {0, 1}M is interpreted by C as representing

a number zi ∈ [M ] in unary, in the exact same way as u
(k)
i ∈ [M ] is obtained from the

bitstring (x[u
(k)
i,j ])j∈[M ].

• The circuit C outputs λ(z1, . . . , zN ) ∈ {−1,+1}N , where a −1 output is represented by a
0, and a +1 output by a 1. To keep things simple, in the rest of this exposition we will
abuse notation and think of λ as outputting labels in {0, 1}N .

If the circuit is not originally in this form, then it can be brought in this form in polynomial
time.

In the circuit stage, we construct K separate copies of the circuit C, using the AND, OR,

and NOT gates. For each k ∈ [K], the kth copy Ck takes as input the nodes (u
(k)
i,j )(i,j)∈[N ]×[M ]

and we denote its output nodes by v
(k)
1 , . . . , v

(k)
N . Since the gates always have correct output

when the inputs are pure bits, we immediately obtain the following.

Lemma 3.3 (Circuit Lemma). For all good copies k ∈ G, the output of circuit Ck is correct,

i.e., x[v
(k)
i ] = [λ(u(k))]i for all i ∈ [N ].
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Step 3: Sorting stage. In this stage, for each i ∈ [N ], we would like to have a gadget that

takes as input the list of nodes v
(1)
i , . . . , v

(K)
i (namely, the list of ith outputs of the circuits

C1, . . . , CK) and outputs the nodes w
(1)
i , . . . , w

(K)
i , such that these output nodes are a sorted

list of the values of the input nodes (where we think of the values as being ordered 0 < ⊥ < 1).
Unfortunately, this is not possible given the gates we have at our disposal. However, it turns out
that we can do some kind of “weak” sorting by using the robustness of the AND and OR gates
(i.e., the fact that AND on input 0 and s, always outputs 0, no matter what s ∈ {0, 1,⊥} is).

For now assume that we consider values in [0, 1] (instead of {0, 1,⊥}) and that we have access
to a comparator gate that takes two inputs s1 and s2 and outputs t1 and t2, such that t1, t2 is the
sorted list s1, s2. Formally, we can write this as t1 := min{s1, s2} and t2 := max{s1, s2}. Using
comparator gates, it is easy to construct a circuit that takes K inputs and outputs them in sorted
order. Indeed, we can directly implement a sorting network [Knu98], for example. Even a very
naive approach will yield such a circuit of polynomial size, which is all we need. We implement

this circuit with inputs v
(1)
i , . . . , v

(K)
i and outputs w

(1)
i , . . . , w

(K)
i in our Pure-Circuit instance,

by replacing every comparator gate by AND and OR gates. Namely, to implement a comparator
gate with inputs s1, s2 and outputs t1, t2, we use an AND gate with inputs s1, s2 and output t1,
and an OR gate with inputs s1, s2 and output t2. The robustness of the AND and OR gates
allows us to prove that this sorting gadget sorts the pure bit values correctly, in the following
sense.

Lemma 3.4 (Sorting Lemma). Let K0 and K1 denote the number of zeroes and ones that the

ith sorting gadget gets as input, i.e., Kb := |{k ∈ [K] : x[v
(k)
i ] = b}|. Then, the first K0 outputs

of the gadget are zeroes, and the last K1 outputs are ones. Formally, x[w
(k)
i ] = 0 for all k ∈ [K0],

and x[w
(K+1−k)
i ] = 1 for all k ∈ [K1].

Proof. Consider the ideal sorting circuit (that uses comparator gates) with input

f(x[v
(1)
i ]), . . . , f(x[v

(K)
i ]), where f maps 0 to 0, 1 to 1, and ⊥ to 1/2. In other words, we

imagine running the comparator circuit on our list of values, except that the “garbage” value ⊥
is replaced by 1/2. Since the comparator circuit correctly sorts the list, its output satisfies the
desired property: the first K0 outputs are 0, and the last K1 outputs are 1. Thus, in order to
prove the lemma, it suffices to prove the following claim: if a node in the ideal circuit has a pure
bit value b ∈ {0, 1}, then the corresponding node in our Pure-Circuit instance must also have
value b.

We prove the claim by induction. Clearly, all input nodes satisfy the claim. Now consider
some node t1 that is the min-output of a comparator gate with inputs s1 and s2, that both satisfy
the claim. Recall that this gate will be implemented in the Pure-Circuit by an AND gate with
inputs s1, s2 and output t1. If the ideal circuit assigns value 1/2 to t1, then the claim trivially
holds for t1. If the ideal circuit assigns value 1 to t1, then both s1 and s2 must have value 1 in
the ideal circuit. Since the claim holds for s1 and s2, they also have value 1 in Pure-Circuit,
and so the AND gate will ensure that t1 also has value 1, thus satisfying the claim. Finally, if
the ideal circuit assigns value 0 to t1, then it must also have assigned value 0 to at least one of
s1 or s2. But then, by the claim, Pure-Circuit also assigns value 0 to at least one of s1 or s2,
and the robustness of the AND gate ensures that t1 also has value 0. The same argument also
works with max and OR instead.

Note that Lemma 3.4 only guarantees a “weak” type of sorting: some parts of the output list
might not be correctly ordered, and the list of output values might not be a permutation of the
input values (namely, it can happen that there are more 0’s and/or 1’s in the output list than in
the input list). However, this “weak” sorting will be enough for our needs as we will see below.

Step 4: Selection stage. Since the list w
(1)
i , . . . , w

(K)
i , is now “sorted”, we can select M

nodes from it in such a way that at most one node does not have a pure value. Indeed, this can
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be achieved by selecting nodes that are sufficiently far apart from each other. We thus select the

nodes (w
(j·2NM)
i )j∈[M ] and copy their values onto the original input nodes (ui,j)j∈[M ]. Namely,

for each j ∈ [M ] we introduce a COPY gate with input w
(j·2NM)
i and output ui,j . Recall that

K = 3NM2 ≥ M · 2NM , so this is well defined.
This selection procedure ensures that two nice properties hold. First, as mentioned above,

at most one of the selected nodes does not have a pure value. This is due to the fact that we
select nodes that are far apart from each other in the “sorted” list, and all nodes with non-pure
values lie close together in that list. Second, if all good copies agree that the ith output is, say,
1, then all of the selected nodes will have value 1. This is due to the fact that the “sorted” list
will contain very few values that are not 1, and these values will lie at the very beginning of
the list. Since we do not select any nodes from the beginning of the list (the first node that is
selected is at index 2NM), we will thus only select nodes with value 1. A similar argument also
applies to the case where all good copies agree that the ith output is 0. In that case, we use the
fact that we do not select any nodes that lie close to the end of the list. We formalize these
arguments in the proof of the following lemma.

Lemma 3.5 (Selection Lemma). We have:

1. All good copies are close to each other: ∥u(k) − u(k
′)∥∞ ≤ 1 for all k, k′ ∈ G.

2. If all good copies agree that the ith output is b ∈ {0, 1}, i.e., x[v(k)i ] = b for all k ∈ G, then
the original input satisfies x[ui,j ] = b for all j ∈ [M ].

Proof. We begin by proving part 1 of the statement. First of all, note that it suffices to show
that, for all i ∈ [N ], at most one of the original inputs x[ui,1], . . . ,x[ui,M ] is not a pure bit.
Indeed, in that case, by part 2 of the Purification Lemma (Lemma 3.2), it follows that for any

i ∈ [N ] and any k, k′ ∈ G, the bitstrings (x[u
(k)
i,j ])j∈[M ] and (x[u

(k′)
i,j ])j∈[M ] differ in at most one

bit. But this implies that |u(k)i − u
(k′)
i | ≤ 1 for all i ∈ [N ], and thus ∥u(k) − u(k

′)∥∞ ≤ 1.
Now consider any i ∈ [N ]. By part 1 of the Purification Lemma (Lemma 3.2), we have

that the number of good copies |G| ≥ K −NM . By the Circuit Lemma (Lemma 3.3) we know

that the corresponding outputs are pure bits, i.e., x[v
(k)
i ] ∈ {0, 1} for all k ∈ G. Thus, the list

x[v
(1)
i ], . . . ,x[v

(K)
i ] contains at least K −NM pure bits. Using the notation from the Sorting

Lemma (Lemma 3.4), this means that K0+K1 ≥ K−NM . As a result, by applying the Sorting

Lemma, it follows that in the list obtained after sorting, x[w
(1)
i ], . . . ,x[w

(K)
i ], all the non-pure

bits are contained in an interval of length NM . Since the selected nodes (w
(j·2NM)
i )j∈[M ] are

sufficiently far apart (namely 2NM), at most one such node can fall in the “bad” interval. This
means that all selected nodes, except at most one, are pure bits, and since the selected nodes
are copied into the original inputs, this also holds for them.

It remains to prove part 2 of the statement. If for some i ∈ [N ], x[v
(k)
i ] = 0 for all k ∈ G,

then this means that K0 ≥ |G| ≥ K −NM . By the Sorting Lemma (Lemma 3.4), it follows that

x[w
(k)
i ] = 0 for all k ∈ [K −NM ]. In particular, since K −NM = 3NM2 −NM ≥ M · 2NM ,

this means that for all j ∈ [M ], x[w
(j·2NM)
i ] = 0. But these are the nodes we select, and we copy

their value into the original inputs, so the statement follows. The case where x[v
(k)
i ] = 1 for all

k ∈ G is handled analogously.

Correctness. The description of the reduction is now complete. We have constructed a valid
instance of Pure-Circuit in polynomial time. In particular, note that every node is the output
of exactly one gate. To complete the proof, it remains to prove that from any solution of the
Pure-Circuit instance we can extract a solution to StrongSperner in polynomial time. We
do this in the following final lemma.
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Lemma 3.6 (Solution Lemma). The points {u(k) : k ∈ G} ⊆ [M ]N yield a solution to the
StrongSperner instance λ.

Proof. First of all, by part 1 of the Selection Lemma (Lemma 3.5), we know that the points
u(k), k ∈ G, are all within ℓ∞-distance 1. Thus, it suffices to prove that they cover all labels
with respect to λ. Note that we can efficiently extract these points from a solution x, since, for
each k ∈ [K], we can easily decide whether k lies in G or not, and then extract the point u(k).

We prove by contradiction that the points u(k), k ∈ G, must cover all labels. Assume, on the
contrary, that there exists i ∈ [N ] and b ∈ {0, 1} such that [λ(u(k))]i = b for all k ∈ G. Then, by

the Circuit Lemma (Lemma 3.3), all the corresponding circuits must output b, i.e., x[v
(k)
i ] = b

for all k ∈ G. By part 2 of the Selection Lemma (Lemma 3.5), it follows that the original input
satisfies x[ui,j ] = b for all j ∈ [M ]. Finally, by part 2 of the Purification Lemma (Lemma 3.2), it

must be that for all copies k ∈ G, all M bits x[u
(k)
i,1 ], . . . ,x[u

(k)
i,M ] are equal to b. Now, if b = 1,

then this means that u
(k)
i = M , and thus [λ(u(k))]i = 0 ̸= b by the StrongSperner boundary

conditions, which contradicts the original assumption. Similarly, if b = 0, then u
(k)
i = 1, and thus

[λ(u(k))]i = 1 ̸= b by the StrongSperner boundary conditions, which is again a contradiction.
(We recall here that we have renamed the labels {−1,+1} to {0, 1}, respectively, for the purpose
of this proof.)

4 Applications

In this section, we derive strong inapproximability lower bounds for PPAD-complete problems,
by reducing from Pure-Circuit.

4.1 Generalized Circuit

The ε-GCircuit problem was introduced by Chen, Deng, and Teng [CDT09]. In this section,
we show that ε-GCircuit is PPAD-hard for all ε < 1/10.

The ε-GCircuit problem. The problem is defined as follows.

Definition 3 (Generalized Circuit [CDT09]). A generalized circuit is a tuple (V, T ), where V is
a set of nodes, and T is a set of gates. Each gate t ∈ T is a five-tuple (G, u, v, w, c), where G
is a gate type from the set {Gc, G×c, G=, G+, G−, G<, G∨, G∧, G¬}, u, v ∈ V ∪ {nil} are input
variables, w ∈ V is an output variable, and c ∈ [0, 1] ∪ {nil} is a rational constant.

The following requirements must be satisfied for each gate (G, u, v, w, c) ∈ T .

• Gc gates take no input variables and use a constant in [0, 1]. So u = v = nil and c ∈ [0, 1]
whenever G = Gc.

• G×c gates take one input variable and a constant. So u ∈ V , v = nil, and c ∈ [0, 1]
whenever G = G×c.

• G= and G¬ gates take one input variable and do not use a constant. So u ∈ V , v = c = nil,
whenever G ∈ {G=, G¬}.

• All other gates take two input variables and do not use a constant. So u ∈ V , v ∈ V , and
c = nil whenever G /∈ {Gc, G×c, G=, G¬}.

• Every variable in V is the output variable for exactly one gate. More formally, for each
variable w ∈ V , there is exactly one gate t ∈ T such that t = (G, u, v, w, c).

The ε-GCircuit problem is defined as follows. Given a generalized circuit (V, T ), find a
vector x ∈ [0, 1]|V | such that for each gate in T the following constraints are satisfied.
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Gate Constraint

(Gc, nil, nil, w, c) x[w] = c± ε
(G×c, u, nil, w, c) x[w] = x[u] · c± ε
(G=, u, nil, w, nil) x[w] = x[u]± ε
(G+, u, v, w, nil) x[w] = min(x[u] + x[v], 1)± ε
(G−, u, v, w, nil) x[w] = max(x[u]− x[v], 0)± ε

(G<, u, v, w, nil) x[w] =

{
1± ε if x[u] < x[v]− ε

0± ε if x[u] > x[v] + ε

(G∨, u, v, w, nil) x[w] =

{
1± ε if x[u] ≥ 1− ε or x[v] ≥ 1− ε

0± ε if x[u] ≤ ε and x[v] ≤ ε

(G∧, u, v, w, nil) x[w] =

{
1± ε if x[u] ≥ 1− ε and x[v] ≥ 1− ε

0± ε if x[u] ≤ ε or x[v] ≤ ε

(G¬, u, nil, w, nil) x[w] =

{
1± ε if x[u] ≤ ε

0± ε if x[u] ≥ 1− ε

Here the notation a = b± ε is used as a shorthand for a ∈ [b− ε, b+ ε]. We will also make use
of gates of type (G>, u, v, w, nil) which enforce the constraint

x[w] =

{
0± ε if x[u] < x[v]− ε

1± ε if x[u] > x[v] + ε

Gates of type G> can be easily built by using a G¬ gate to negate the output of a G< gate.
In the remainder of this section, we prove the following result.

Theorem 4.1. ε-GCircuit is PPAD-hard for every ε < 1/10.

Proof. We will reduce from the Pure-Circuit problem that uses the gates NOR and PURIFY,
which we showed to be PPAD-hard in Theorem 2.1. We will encode 0 values in the Pure-Circuit
problem as values in the range [0, ε] in GCircuit, while 1 values will be encoded as values in
the range [1− ε, 1]. Then, each gate from Pure-Circuit will be simulated by a combination of
gates in the GCircuit instance.

NOR gates. A NOR gate (NOR, u, v, w) will be simulated by GCircuit gates that compute

x[u] + x[v] < 5/9,

which requires us to use G+, G< and Gc. We claim that this gate works for any ε < 1/9.
The idea is that if both inputs lie in the range [0, ε], and thus both inputs encode zeros in

Pure-Circuit, we will have x[u] + x[v] ≤ 3ε < 3/9, where the extra ε error is introduced by
G+. The Gc gate outputting 5/9 may output a value as small as 4/9 after the error is taken
into account. Thus, the G< gate will compare these two values, and provided that ε < 1/9, the
comparison will succeed, so the gate will output a value greater than or equal to 1− ε, which
corresponds to a 1 in the Pure-Circuit instance, as required.

If, on the other hand, at least one input is in the range [1 − ε, 1], then we will have
x[u] + x[v] ≥ 1− 2ε > 7/9, where again G+ introduces an extra ε error. The Gc gate outputting
5/9 may output a value as large as 6/9 after the error is taken into account. Thus, the G<

will compare these two values and provided that ε < 1/9, the comparison will succeed, so the
gate will output a value less than or equal to ε, which corresponds to a 0 in the Pure-Circuit
instance, which is again as required.
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PURIFY gates. A PURIFY gate (PURIFY, u, v, w) will be simulated by two GCircuit gadgets.
The first will set x[v] equal to x[u] > 3/10, while the second will set x[w] equal to x[u] > 7/10,
where Gc and G> gates are used to implement these operations. We claim that this construction
works for any ε < 1/10.

We begin by considering the first gadget, which sets x[v] equal to x[u] > 3/10. If x[u] ≤
ε < 1/10, then note that the Gc gate outputting 3/10 may output a value as small as 2/10
once errors are taken into account. Thus, since ε < 1/10, the comparison made by the G> gate
will succeed, and so x[v] will be set to a value less than or equal to ε. On the other hand, if
x[u] ≥ 1/2, then note that the Gc gate outputting 3/10 may output a value as large as 4/10
once errors are taken into account. So, the comparison made by the G> gate will again succeed,
and x[v] will be set to a value greater than or equal to 1− ε.

One can repeat the analysis above for the second gadget to conclude that x[w] will be set to
a value less than or equal to ε when x[u] ≤ 1/2, and a value greater than or equal to 1− ε when
x[u] ≥ 1− ε. So we can verify that the conditions of the PURIFY gate are correctly simulated.

• If x[u] ≤ ε, meaning that the input encodes a zero, then x[v] and x[w] will be set to values
that are less than or equal to ε, and so both outputs encode zeros.

• If x[u] ≥ 1− ε, meaning that the input encodes a one, then x[v] and x[w] will be set to
values that are greater than or equal to 1− ε, and so both outputs encode ones.

• No matter what value x[u] takes, at least one output will be set to a value that encodes a
zero or a one. Specifically, if x[u] ≤ 1/2, then the second comparison gate will set x[w] ≤ ε,
while if x[u] ≥ 1/2, then the first comparison gate will set x[v] ≥ 1− ε.

Thus, the construction correctly simulates a PURIFY gate. Note that ε cannot be increased
beyond 1/10 in this construction, since then there would be no guarantee that an encoding of a
zero or a one would be produced when x[u] = 1/2.

The lower bound. Given a Pure-Circuit instance defined over variables V , we produce a
GCircuit instance by replacing each gate in the Pure-Circuit with the constructions given
above. Then, given a solution x to the 1/10-GCircuit instance, we can produce a solution x′

to Pure-Circuit in the following way. For each v ∈ V

• if x[v] ≤ ε, then we set x′[v] = 0,

• if x[v] ≥ 1− ε, then we set x′[v] = 1, and

• if x[v] > ε and x[v] < 1− ε, then we set x′[v] = ⊥.

By the arguments given above, we have that x′ is indeed a solution to Pure-Circuit, and thus
Theorem 4.1 is proved.

4.2 Definitions for Polymatrix and Graphical Games

In Sections 4.3 and 4.4 we give results for polymatrix games and graphical games, respectively.
These two types of game are defined in very similar ways, so in this section we give formal
definitions for both polymatrix and graphical games.

Graphical games. An n-player m-action graphical game is defined by a directed graph
G = (V,E), where |V | = n, each node of G corresponds to a player, and the maximum number
of actions per player is m. We define the in-neighbourhood of node i to be N−(i) := {j ∈
V : (j, i) ∈ E}, and similarly its out-neighbourhood to be N+(i) := {j ∈ V : (i, j) ∈ E}. We
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also define the neighbourhood of i as N(i) := N−(i) ∪ N+(i) ∪ {i}. We include i in its own
neighbourhood for notational convenience.

In a graphical game, each player i participates in a normal form game Gi whose player set is
N(i), but she affects only the payoffs of her out-neighbours. Player i has mi actions, or pure
strategies, and her payoffs are represented by a function Ri : [mi]×

∏
j∈N−(i)[mj ] 7→ [0, 1] which

will be referred to as the payoff tensor of i. If the codomain of Ri is {0, 1} for all i ∈ V , we have
a win-lose graphical game.

Polymatrix games. Polymatrix games are defined by an undirected graph (V,E), where each
vertex represents a player, and we use n = |V | to denote the number of players in the game.
Like graphical games, each player i ∈ V has a fixed number of actions given by mi.

The difference between polymatrix games and graphical games comes in how the payoffs for
each player are defined. In a polymatrix game, for each edge (i, j) ∈ E, there is an mi ×mj

matrix Aij giving the payoffs that player i obtains from their interaction with player j, and
likewise there is an mj ×mi matrix Aji giving payoffs for player j’s interaction with player i.

Payoffs. From now on, our definitions will apply to both graphical and polymatrix games.
A mixed strategy si for player i specifies a probability distribution over player i’s actions.
Thus, the set of mixed strategies for player i corresponds to the (mi − 1)-dimensional simplex
∆mi−1. The support of a mixed strategy si = (si(1), si(2), . . . , si(mi)) ∈ ∆mi−1 is given by
supp(si) = {j ∈ [mi] : si(j) > 0}. In other words, it is the set of pure strategies that are played
with non-zero probability in strategy si.

An action profile a(H) := (ai)i∈H over a player set H is a tuple of actions, one for each
player in H, and so the set of these action profiles is given by A(H) =

∏
i∈H [mi]. Similarly, a

strategy profile s(H) over the same set is a tuple of mixed strategies, and so the set of these
strategy profiles is given by

∏
i∈H ∆mi−1. We define the partial action profile a−i to be the tuple

of all players’ actions except i’s action, and similarly we define the partial strategy profile s−i.
In a graphical game, the expected payoff of i when she plays action k ∈ [mi], and all other

players play according to s−i is

ui(k, s−i) :=
∑

a∈A(N−(i))

Ri(k;a) ·
∏

j∈N−(i)

sj(aj).

Notice that this depends only on the in-neighbours of i. The expected payoff to player i under s
is therefore

ui(s) :=
∑

k∈[mi]

ui(k, s−i) · si(k).

In contrast, in a polymatrix game, for each strategy profile s = (s1, s2, . . . , sn) ∈ Σ, the
payoff to player i is

ui(s) := sTi ·
∑

j : (i,j)∈E

Aij · sj .

In other words, the payoff obtained by player i in a polymatrix game is the sum of the payoffs
obtained from the interaction of i with every neighbouring player j.

All further definitions will apply to both graphical and polymatrix games, with the respective
definitions of ui given above.

Best responses. A pure strategy k is a best response for player i against a partial strategy
profile s−i if it achieves the maximum payoff over all her pure strategies, that is,

ui(k, s−i) = max
ℓ∈[mi]

ui(ℓ, s−i).
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Pure strategy k is an ε-best response if the payoff it yields is within ε of a best response, meaning
that

ui(k, s−i) ≥ max
ℓ∈[mi]

ui(ℓ, s−i)− ε.

Finally, the best response payoff for player i is

bri(s−i) := max
ℓ∈[mi]

ui(ℓ, s−i).

Approximate Nash equilibria. A strategy profile s is a Nash equilibrium if every player
achieves their best response payoff, meaning that bri(s−i) = ui(s) for all players i. The
approximation notions that will be of interest to us for graphical games and polymatrix games
are defined as follows.

Definition 4 (ε-NE). A strategy profile s is an ε-Nash equilibrium (ε-NE) if every player’s
payoff is within ε of their best response payoff. Formally,

∀i ∈ [n], ui(s) ≥ bri(s−i)− ε.

Definition 5 (ε-WSNE). A strategy profile s is an ε-well-supported Nash equilibrium (ε-WSNE)
if every player only plays strategies that are ε-best responses, meaning that for all i we have
that supp(si) contains only ε-best response strategies. Formally,

∀i ∈ [n], ∀k ∈ supp(si), ui(k, s−i) ≥ bri(s−i)− ε.

Payoff normalization in polymatrix games. Note that ε-NE and ε-WSNE are both
additive notions of approximation, and so values of ε cannot normally be compared across games,
since doubling all payoffs in the game would double the value of ε, for example. To deal with
this, it is common to normalize the payoffs of the game so that the maximum possible payoff
is 1 and the minimum possible payoff is 0, which allows us to meaningfully compare values of ε
across games.

We specifically need to normalize payoffs in polymatrix games. Payoff normalization is
not needed for graphical games, because in those games all payoffs came directly from the
payoff tensors, and the tensors always contain values in [0, 1]. In a polymatrix game the overall
payoff to a player is the sum of individual payoffs from different matrices, which necessitates
normalization.

We adopt the normalization scheme for polymatrix games given by Deligkas et al. [DFSS17],
which is a particularly restrictive scheme, but doing so will allow our lower bounds to be compared
to the 1/2 + δ upper bound for finding ε-NEs given in that paper.

For each player i we compute

Ui = max
1≤p≤mi

 ∑
j : (i,j)∈E

max
1≤q≤mj

(Aij)(p,q)


Li = min

1≤p≤mi

 ∑
j : (i,j)∈E

min
1≤q≤mj

(Aij)(p,q)

 .

Then, if d(i) denotes the degree of player i in (V,E), we apply the following transformation to
each payoff z in each payoff matrix Aij

T (z) =
1

Ui − Li
·
(
z − Li

d(i)

)
.

If Ui = Li, then we simply set T (z) = 0. This ensures that each player’s maximum possible
payoff is 1, and their minimum possible payoff is 0.

In our hardness reductions, we will directly build games that are already normalized, meaning
that Ui = 1 and Li = 0 for all players i, so no extra normalization step is required.
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4.3 Polymatrix Games

In this section, we show a number of results for polymatrix games (defined in Section 4.2). We
first provide a simple algorithm that computes a 1/3-well-supported Nash equilibrium (WSNE)
in polynomial time when there are two actions per player (Theorem 4.2). We then show that this
algorithm is in fact optimal, by proving hardness of finding ε-WSNE for all ε < 1/3 (Theorem 4.3).
Next, we also prove hardness of computing ε-Nash equilibria for all ε < 2

√
73 − 17 ≈ 0.088

(Theorem 4.4). Both of these hardness results hold for degree 3 bipartite games with at most
two strategies per player. Finally, we show that the hardness result for ε-WSNE also holds for
win-lose polymatrix games in degree 7 bipartite games with at most two strategies per player
(Theorem 4.6).

4.3.1 A Simple Algorithm for 1/3-WSNE in Two-Action Polymatrix Games

In this section we present a simple polynomial-time algorithm for computing a 1/3-WSNE in
a two-action polymatrix game. We begin with a description of the algorithm. The algorithm
proceeds in two steps:

Step 1: Eliminating players who don’t need to mix. In the first step of the algorithm, we
check if there exists some player i such that one of its two actions is always a 1/3-best response,
no matter what actions the other players pick. More formally, we check if there exists a player i
and an action k ∈ {0, 1} such that ui(k, s−i) ≥ max{ui(0, s−i), ui(1, s−i)} − 1/3 for all strategy
profiles s. If we find such a player i, then we fix their strategy to always play action k, and
we remove them from the game, while also updating the payoffs of the other players to reflect
the fact that player i always plays action k. Note that no matter how we fix the strategies of
the remaining players later in the algorithm, player i is guaranteed to play a 1/3-best response
action in the original game.

After removing player i from the game, and updating the payoffs, we again check if there
exists some player j with a 1/3-best response action, and if so, fix their strategy and remove
them from the game, as above. After at most n iterations, we are left with a game where none
of the remaining players has an action that is always a 1/3-best response.

Step 2: Letting the remaining players mix uniformly. In the second step of the algorithm,
we simply fix the strategies of the remaining players so that they mix uniformly between their
two actions, i.e., they play action 0 with probability 1/2, and action 1 with probability 1/2.

We note that the simple approach used by the algorithm is essentially the same as an
algorithm given by Liu et al. [LLD21] for computation of exact equilibria in very sparse win-lose
polymatrix games. We now prove the following.

Theorem 4.2. The algorithm computes a 1/3-WSNE in polynomial time in two-action polymatrix
games.

Proof. The algorithm clearly runs in polynomial time. To prove its correctness, it suffices to
show that for the remaining players (i.e., those that were not removed during Step 1) both their
actions are 1/3-best-responses, when all the other remaining players mix uniformly.

Consider some player i that was not eliminated in the first step of the algorithm. Define the
function ϕ : Σ−i → R by letting ϕ(s−i) = ui(0, s−i)−ui(1, s−i), where Σ−i := (∆1)n−1 ≡ [0, 1]n−1,
i.e., s−i is a partial strategy profile (without the strategy of i). The crucial observation
is that ϕ is a linear function, by definition of the utility function in a polymatrix game.
Furthermore, by the payoff normalization it holds that ϕ(s−i) ∈ [−1, 1] for all s−i ∈ Σ−i, since
ui(0, s−i), ui(1, s−i) ∈ [0, 1].
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Since player i was not eliminated in the first step of the algorithm, it must be that none of
the two actions 0 and 1 is always a 1/3-best response. In other words, the function ϕ satisfies
maxs−i ϕ(s−i) > 1/3 and mins−i ϕ(s−i) < −1/3. Now, since ϕ is a linear function, the maximum
and minimum are achieved at two opposite corners of the domain Σ−i = (∆1)n−1 ≡ [0, 1]n−1.
Denote these opposite corners ℓ, h ∈ Σ−i, such that ϕ(ℓ) < −1/3 and ϕ(h) > 1/3.

Since ℓ and h are opposite corners of the domain Σ−i, it follows that ℓ/2 + h/2 corresponds
to the partial strategy profile where all players mix uniformly. As a result, it remains to show
that ϕ(ℓ/2 + h/2) ∈ [−1/3, 1/3], which exactly means that both actions 0 and 1 are 1/3-best
responses for player i, when all other players mix uniformly. By linearity of ϕ we can write

ϕ(ℓ/2 + h/2) = ϕ(ℓ)/2 + ϕ(h)/2 ≥ −1/2 + (1/3)/2 = −1/3

since ϕ(ℓ) ≥ −1 and ϕ(h) > 1/3. The inequality ϕ(ℓ/2 + h/2) ≤ 1/3 is similarly obtained by
using ϕ(ℓ) < −1/3 and ϕ(h) ≤ 1. We have thus shown that ϕ(ℓ/2 + h/2) ∈ [−1/3, 1/3] as
desired.

4.3.2 Hardness for ε-WSNE

In this section we prove that computing an ε-WSNE is PPAD-hard for any ε < 1/3, even in
two-action polymatrix games. In particular, this shows that the simple algorithm presented in
the previous section is optimal.

Theorem 4.3. It is PPAD-hard to find an ε-WSNE in a polymatrix game for all ε < 1/3, even
in degree 3 bipartite games with two strategies per player.

Proof. We reduce from the variant of Pure-Circuit that uses NOT, AND, and PURIFY gates,
and we will specifically reduce from the hardness result given in Corollary 2.3, since it will give
us extra properties for the hard polymatrix games.

Given an instance (V,G) of Pure-Circuit, we will build a polymatrix game with vertex set
V , meaning each player in the game will simulate a variable from Pure-Circuit. Each player i
will have exactly two strategies, which we will denote as zero and one. The strategy si of player
i will encode the value of the variable in the following way.

• If si places all probability on zero, then this corresponds to setting variable i to 0.

• If si places all probability on one, then this corresponds to setting variable i to 1.

• If si is a strictly mixed strategy, then this corresponds to setting variable i to ⊥.

The edges of the game will simulate the gates. The definition of Pure-Circuit requires
that each variable v is the output of exactly one gate g. An important property of our reduction
is that the player representing v only receives non-zero payoffs from the inputs to the gate g,
and receives zero payoffs from any other gates that use v as an input. This means that we can
reason about the equilibrium condition of each of the gates independently, without worrying
about where the values computed by those gates are used.

NOT gates. For a gate g = (NOT, u, v), the player v, who represents the output variable, will
play the following bimatrix game against u, who represents the input variable.

@
@@
v

u

zero

one

zero one

0 1

0 0

1 0

0 0
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This depiction of a bimatrix game shows the matrices Avu and Auv, with the payoffs for v being
shown in the bottom-left of each cell, and the payoffs for u being shown in the top-right.

We claim that this gate will work for all ε < 1.

• If u plays zero as a pure strategy, then one gives payoff 1 to v and zero gives payoff 0 to v.
So in any ε-WSNE with ε < 1, only one can be an ε-best response for v, meaning that v
must play one as a pure strategy, as required by the constraints of the NOT gate.

• Using identical reasoning, if u plays one as a pure strategy, then v must play zero as a
pure strategy in any ε-WSNE.

• If u plays a strictly mixed strategy, then the NOT gate places no constraints on the output,
so we need not prove anything about v’s strategy.

AND gates. For a gate g = (AND, u, v, w), the player w, who represents the output variable,
will play the following matrix games against u and v, who represent the input variables.

@
@@
w

u

zero

one

zero one

1
2 0

0 0

0 1
6

0 0

@
@@
w

v

zero

one

zero one

1
2 0

0 0

0 1
6

0 0

We claim that this gate will work for all ε < 1
3 .

• If both u and v play one as a pure strategy, then the payoff to w for playing zero is 0, and
the payoff to w for playing one is 1/6 + 1/6 = 1/3. So, if ε < 1

3 , then in all ε-WSNEs the
only ε-best response for w is one, as required by the constraints of the AND gate.

• If at least one of u and v play zero as a pure strategy, then the payoff to w for playing
zero is at least 1/2, while the payoff to w for playing one is at most 1/6. So, if ε < 1

3 , then
in all ε-WSNEs the only ε-best response for w is zero, as required by the constraints of
the AND gate.

• The AND gate places no other constraints on the variable w, so we can ignore all other
cases, e.g., the case where both u and v play strictly mixed strategies.

PURIFY gates. For a gate g = (PURIFY, u, v, w), the players v and w, who represent the
output variables, play the following games against u, who represents the input variable.

@
@@
v

u

zero

one

zero one

1
3 0

0 0

0 1

0 0

@
@@
w

u

zero

one

zero one

1 0

0 0

0 1
3

0 0

We claim that this gate works for any ε < 1/3. We first consider player v.
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• If u plays zero as a pure strategy, then strategy zero gives payoff 1/3 to v, while strategy
one gives payoff 0, so in any ε-WSNE with ε < 1/3 we have that zero is the only ε-best
response for v.

• If u places at least 1/2 probability on one, then strategy zero gives at most 1/6 payoff to
v, while strategy one gives at least 1/2 payoff to v. So in any ε-WSNE with ε < 1/3 we
have that one is the only ε-best response for v.

Symmetrically, for player w we have the following.

• If u places at most 1/2 probability on one, then strategy zero gives at least 1/2 payoff to
w, while strategy one gives at most 1/6 payoff to w. So in any ε-WSNE with ε < 1/3 we
have that zero is the only ε-best response for w.

• If u plays one as a pure strategy, then strategy one gives payoff 1/3 to w, while strategy
zero gives payoff 0, so in any ε-WSNE with ε < 1/3 we have that one is the only ε-best
response for w.

From these properties, we can verify that the constraints imposed by the PURIFY gate are
enforced correctly.

• If u plays zero as a pure strategy, then both v and w play zero as a pure strategy.

• If u plays one as a pure strategy, then both v and w play one as a pure strategy.

• No matter how u mixes, at least one of v and w plays a pure strategy, with v playing
pure strategy zero whenever u places at most 1/2 probability on one, and w playing pure
strategy one whenever u places at least 1/2 probability on one.

Hardness result. As we have argued above, each of the gate constraints from the Pure-
Circuit instance are enforced correctly in any ε-WSNE of the polymatrix game with ε < 1/3.
Thus, given such an ε-WSNE, we can produce a satisfying assignment to the Pure-Circuit
instance using the mapping that we defined at the start of the reduction. All of the games that
we have presented are already normalized so that each player’s maximum possible payoff is 1,
and minimum possible payoff is 0, so no extra normalization step is necessary.

Since we are reducing from Corollary 2.3, we get some extra properties about the structure
of the polymatrix game. Observe that the interaction graph of the polymatrix game is exactly
the interaction graph of the Pure-Circuit instance, as defined in Section 2. Thus Corollary 2.3
implies that the polymatrix game is degree three and bipartite. Moreover, by construction, each
player has exactly two strategies.

4.3.3 Hardness for ε-NE

We now show that computing an ε-NE in polymatrix games is PPAD-complete for any constant
ε < 2

√
73 − 17 ≈ 0.088 even in degree 3 bipartite games with two strategies per player. It is

worth noting that, given our PPAD-hardness result for ε′-WSNE for all ε′ < 1/3 in polymatrix
games (Theorem 4.3), one can effortlessly get PPAD-hardness for ε-NE for ε smaller than roughly
0.00136 by Lemma 7.4 of [Rub18]. However, by doing a direct reduction from Pure-Circuit
we get an upper bound for ε that is more than 64 times greater.

Theorem 4.4. It is PPAD-hard to find an ε-NE in a polymatrix game for all ε < 2
√
73− 17 ≈

0.088, even in degree 3 bipartite games with two strategies per player.
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In the remainder of this section we prove the theorem. Fix any ε < 2
√
73− 17. While for

ε-WSNE, we used pure strategies to represent 0 and 1 values in Pure-Circuit, for ε-NE we
also have to allow mixed strategies to encode 0s and 1s. Specifically, given a cutoff δ ∈ (0, 1/4)
which will be specified later, we map the strategies of the players to values in Pure-Circuit in
the following way.

• If si places probability in the range [1 − δ, 1] on zero, then this corresponds to setting
variable i to 0.

• If si places probability in the range [1 − δ, 1] on one, then this corresponds to setting
variable i to 1.

• Otherwise, this corresponds to setting variable i to ⊥.

Pick an arbitrary rational δ ∈
(
1−

√
1−8ε
4 , 9−

√
73

4

)
. Note that this interval is non-empty since

ε < 2
√
73− 17. Furthermore, we have δ ∈ (0, 1/4) and δ satisfies ε < δ(1− 2δ) < 2

√
73− 17.

NOT gates. For a gate g = (NOT, u, v), the player v, who represents the output variable, will
play the same bimatrix game against u as that in the ε-WSNE case, namely:

@
@@
v

u

zero

one

zero one

0 1

0 0

1 0

0 0

We claim that this gadget will correctly simulate the NOT gate for the encoding we use in
this reduction. Let u’s strategy be (1− q, q) and v’s strategy be (1− p, p), where q, p ∈ [0, 1], for
playing zero and one, respectively. We need to show that in any ε-NE:

(i) if q ≤ δ then p ≥ 1− δ;

(ii) if q ≥ 1− δ then p ≤ δ.

The expected payoff of v for playing pure strategy zero is Uv(0) = q and for pure strategy one
it is Uv(1) = 1 − q. Her expected payoff when playing mixed strategy (1 − p, p) is Uv(p) =
(1− p) ·Uv(0) + p ·Uv(1) = Uv(0)− p · (Uv(0)−Uv(1)) = Uv(1)− (1− p) · (Uv(1)−Uv(0)). Now,
in any ε-NE, we must have that Uv(p) ≥ Uv(1)− ε and Uv(p) ≥ Uv(0)− ε, which implies that

(1− p) · (Uv(1)− Uv(0)) ≤ ε (1)

and
p · (Uv(0)− Uv(1)) ≤ ε. (2)

In case (i), we have q ≤ δ, and thus Uv(1) − Uv(0) = 1 − 2q ≥ 1 − 2δ. By (1), it follows that
1− p ≤ ε/(1− 2δ). Since ε < δ(1− 2δ), we obtain 1− p ≤ δ, i.e., p ≥ 1− δ, as desired.

In case (ii), q ≥ 1− δ implies that Uv(0)− Uv(1) = 2q − 1 ≥ 1− 2δ. By (2), we must have
p ≤ ε/(1− 2δ) ≤ δ(1− 2δ)/(1− 2δ) = δ, since ε < δ(1− 2δ).
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Sequence of NOT gates. The following is a crucial observation: when constructing a gadget,
we can assume that the input to the gadget is encoded using cutoff δ (and so the gap between
encoding of 0 and 1 is least 1− 2δ) and that the output of the gadget is encoded using cutoff
1/2− δ (and so the gap between encoding of 0 and 1 is least 2δ). The reason for this is that we
can use a sequence of consecutive NOT gates to amplify the gap in the encoding of the output
from 2δ up to 1− 2δ (or, in other words, to decrease the cutoff from 1/2− δ down to δ). The
following lemma formalizes this observation.

Lemma 4.5. There exists a constant k ∈ N (that only depends on ε and δ) such that any
sequence of 2k consecutive NOT gadgets g1, . . . , g2k has the following properties at any ε-NE:

• If player v1, who is the input to gadget g1, satisfies Uv1(0)−Uv1(1) ≥ 2δ, then player v2k+1,
who is the output of gadget g2k, satisfies Uv2k+1

(0) − Uv2k+1
(1) ≥ 1 − 2δ. In particular,

player v2k+1 places probability at least 1− δ on zero.

• If player v1 satisfies Uv1(1)−Uv1(0) ≥ 2δ, then player v2k+1 satisfies Uv2k+1
(1)−Uv2k+1

(0) ≥
1− 2δ. In particular, player v2k+1 places probability at least 1− δ on one.

Proof. Consider any i ∈ [2k] and let vi denote the player who is the input to gadget gi and vi+1

the player who is the output. We will show that in any ε-NE:

1. If Uvi(0)− Uvi(1) ∈ [2δ, 1− 2δ], then Uvi+1(1)− Uvi+1(0) ≥ Uvi(0)− Uvi(1) + C(ε, δ).

2. If Uvi(0)− Uvi(1) ≥ 1− 2δ, then Uvi+1(1)− Uvi+1(0) ≥ 1− 2δ.

3. If Uvi(1)− Uvi(0) ∈ [2δ, 1− 2δ], then Uvi+1(0)− Uvi+1(1) ≥ Uvi(1)− Uvi(0) + C(ε, δ).

4. If Uvi(1)− Uvi(0) ≥ 1− 2δ, then Uvi+1(0)− Uvi+1(1) ≥ 1− 2δ.

Here C(ε, δ) > 0 is a quantity that only depends on ε and δ. Note that the lemma follows from
this, since 2k is even. Indeed, it suffices to pick k ∈ N such that 2k ≥ (1 − 2δ − 2δ)/C(ε, δ).
Furthermore, using (1) and (2), it is easy to see that Uv2k+1

(0)−Uv2k+1
(1) ≥ 1− 2δ implies that

player v2k+1 places probability at least 1− δ on zero, and the analogous statement for the other
case.

Let us begin by proving statement 1. Let γ := Uvi(0)− Uvi(1) ∈ [2δ, 1− 2δ] and let p denote
the probability that player vi plays strategy one. By (2) we obtain that p ≤ ε/γ, and thus
Uvi+1(1)− Uvi+1(0) = (1− p)− p = 1− 2p ≥ 1− 2ε/γ. We can thus write(

Uvi+1(1)− Uvi+1(0)
)
−
(
Uvi(0)− Uvi(1)

)
≥ 1− 2ε

γ
− γ

=
−γ2 + γ − 2ε

γ

=
−γ2 + γ − 2δ(1− 2δ)

γ
+

2(δ(1− 2δ)− ε)

γ

=
(γ − 2δ)(1− 2δ − γ)

γ
+

2(δ(1− 2δ)− ε)

γ

≥ 2(δ(1− 2δ)− ε)

1− 2δ
=: C(ε, δ) > 0

where we used γ ∈ [2δ, 1−2δ] and ε < δ(1−2δ). Statement 3 is proved using the same arguments.
Let us now prove statement 2. Letting γ := Uvi(0) − Uvi(1) ∈ [1 − 2δ, 1], we again obtain

that p ≤ ε/γ, and thus

Uvi+1(1)− Uvi+1(0) = (1− p)− p = 1− 2p ≥ 1− 2ε

γ
≥ 1− 2δ(1− 2δ)

1− 2δ
= 1− 2δ

as desired. The proof of statement 4 is completely analogous.
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AND gates. For a gate g = (AND, u, v, w), the player w, who represents the output variable,
will play the following matrix games against u and v, who represent the input variables.

@
@@
w

u

zero

one

zero one

1
2 0

0 0

0 1+δ
6−2δ

0 0

@
@@
w

v

zero

one

zero one

1
2 0

0 0

0 1+δ
6−2δ

0 0

We claim that this gadget correctly simulates the AND gate (together with a sequence of NOT
gates applied to the output). Let player u play strategy (1 − q1, q1), and let v play strategy
(1− q2, q2), where q1, q2 ∈ [0, 1]. By Lemma 4.5 it suffices to show that

(i) if q1 ≤ δ or q2 ≤ δ, then Uw(0)− Uw(1) ≥ 2δ,

(ii) if q1 ≥ 1− δ and q2 ≥ 1− δ, then Uw(1)− Uw(0) ≥ 2δ.

where Uw(0) and Uw(1) are the expected payoff of player w for strategy zero and one respectively.
Observe that Uw(0) =

1
2(1− q1) +

1
2(1− q2) and Uw(1) =

1+δ
6−2δ q1 +

1+δ
6−2δ q2. Below, we use the

fact that (1− 3δ)/(3− δ) ≥ 2δ, which follows from δ < (9−
√
73)/4.

In case (i), Uw(0)− Uw(1) is minimal when q1 = δ and q2 = 1 (and also when q1 = 1 and
q2 = δ, which is symmetric). Thus, we necessarily have

Uw(0)− Uw(1) ≥
1

2
· (1− δ)− 1 + δ

6− 2δ
· δ − 1 + δ

6− 2δ
=

1− 3δ

3− δ
≥ 2δ.

For case (ii), we have

Uw(1)− Uw(0) ≥
1 + δ

6− 2δ
· (1− δ) +

1 + δ

6− 2δ
· (1− δ)− 1

2
· δ − 1

2
· δ =

1− 3δ

3− δ
≥ 2δ

and thus the gate is correctly simulated.

PURIFY gates. For a gate g = (PURIFY, u, v, w), the players v and w, who represent the
output variables, play the following games against u, who represents the input variable.

@
@@
v

u

zero

one

zero one

1+2δ
3−2δ 0

0 0

0 1

0 0

@
@@
w

u

zero

one

zero one

1 0

0 0

0 1+2δ
3−2δ

0 0

We claim that this gadget correctly simulates the PURIFY gate (together with a sequence
of NOT gates applied to the output). Let player u play strategy (1− q, q) where q ∈ [0, 1]. By
Lemma 4.5 it suffices to show that

(i) if q ≤ δ, then Uv(0)− Uv(1) ≥ 2δ and Uw(0)− Uw(1) ≥ 2δ,

(ii) if q ≥ 1− δ, then Uv(1)− Uv(0) ≥ 2δ and Uw(1)− Uw(0) ≥ 2δ,

(iii) if q ∈ (δ, 1− δ), then |Uv(0)− Uv(1)| ≥ 2δ or |Uw(0)− Uw(1)| ≥ 2δ.
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Observe that Uv(0) =
1+2δ
3−2δ (1− q) and Uv(1) = q, as well as Uw(0) = 1− q and Uw(1) =

1+2δ
3−2δ q.

Below, we use the fact that (1 − 2δ)/(3 − 2δ) ≥ 2δ, which follows from (1 − 2δ)/(3 − 2δ) ≥
(1− 3δ)/(3− δ) ≥ 2δ as argued above.

In case (i), we have q ≤ δ and thus

Uv(0)− Uv(1) ≥
1 + 2δ

3− 2δ
· (1− δ)− δ =

1− 2δ

3− 2δ
≥ 2δ

and also

Uw(0)− Uw(1) ≥ 1− δ − 1 + 2δ

3− 2δ
· δ =

3− 6δ

3− 2δ
≥ 1− 2δ

3− 2δ
≥ 2δ.

In case (ii), we have q ≥ 1− δ and thus

Uv(1)− Uv(0) ≥ 1− δ − 1 + 2δ

3− 2δ
· δ =

3− 6δ

3− 2δ
≥ 1− 2δ

3− 2δ
≥ 2δ

as well as

Uw(1)− Uw(0) ≥
1 + 2δ

3− 2δ
· (1− δ)− δ =

1− 2δ

3− 2δ
≥ 2δ.

For case (iii) we consider two subcases. If q ≥ 1/2, then

Uv(1)− Uv(0) ≥
1

2
− 1 + 2δ

3− 2δ
· 1
2
=

1− 2δ

3− 2δ
≥ 2δ

as above. On the other hand, if q ≤ 1/2, then

Uw(0)− Uw(1) ≥
1

2
− 1 + 2δ

3− 2δ
· 1
2
=

1− 2δ

3− 2δ
≥ 2δ.

Hardness result. According to the case analysis above, all gate constraints from the Pure-
Circuit instance are enforced correctly in any ε-NE of the polymatrix game. Thus, given an
ε-NE solution, we can produce a satisfying assignment to the Pure-Circuit instance using the
mapping that we defined at the start of the reduction.

Furthermore, note that the polymatrix instance that we construct is normalized and that it
is degree 3, bipartite, and has two strategies per player. In particular, note that the addition
of a sequence of NOT gates inside the gadgets for AND gates and PURIFY gates (according to
Lemma 4.5) does not increase the degree and does not destroy the bipartiteness of the graph,
since the sequence has even length.

4.3.4 Hardness for Win-Lose Polymatrix games

A polymatrix game is win-lose if for every player i ∈ [n] it holds that the entries of every
payoff matrix Aij belong to {0, ai}, for some ai ∈ (0, 1]. In other words, player i either “wins”
payoff ai from the interaction with another player, or “loses” and gets payoff 0. Prior work has
shown that computing an ε-WSNE is PPAD-complete for inverse-polynomial ε via a reduction
from GCircuit [LLD21]. In this section we will show that hardness holds for all ε < 1/3, by
modifying our hardness result for ε-WSNE given earlier.

Theorem 4.6. It is PPAD-hard to find an ε-WSNE in a win-lose polymatrix game for all
ε < 1/3, even in degree 7 bipartite games with two strategies per player.

Proof. We begin by explaining how to modify the payoff matrices described in Section 4.3.2.
Observe that the payoff matrix for NOT gates is already win-lose, so we only need to convert
AND gates and PURIFY gates into win-lose payoff matrices. The high level idea for these two
gates is to create a number of intermediate players, who all copy the input player’s strategy,
and whose payoffs to the output player sum to the same payoffs that we used in the ε-WSNE
hardness construction. Figure 1 depicts the interaction graphs for these two gates.
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u1

u2
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v1

v2

v3
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u1

u2

u3

v

w

AND gadget PURIFY gadget

Figure 1: The gadgets used for win-lose polymatrix games.

AND gates. For a gate g = (AND, u, v, w), we will create the AND gadget from Figure 1. The
player w, that represents the output variable, will play against the auxiliary players u1, u2, u3,
and v1, v2, v3 who in turn will “copy” the values, represent the input variables. The payoff
matrices for this gadget will be defined as follows, where X ∈ {u1, v1}, Y ∈ {u2, u3, v2, v3}, and
when Q = v, then P ∈ {v1, v2, v3} and when Q = u, then P ∈ {u1, u2, u3}.

@
@@
w

X

zero

one

zero one

1
6 0

0 0

0 1
6

0 0

@
@@
w

Y

zero

one

zero one

1
6 0

0 0

0 0

0 0

@
@@
P

Q

zero

one

zero one

1 0

0 0

0 1

0 0

We claim that this gate will work for all ε < 1/3. Firstly, it is not hard to observe that for the
game played between P and Q, in every ε-WSNE of the game: if Q plays zero, then P plays
zero; if Q plays one, then P plays one. Hence, we have the following for the gadget.

• If both u and v play one as a pure strategy, then every auxiliary player u1, u2, u3 and
v1, v2, v3 plays one. Hence, the payoff to w for playing zero is 0, and the payoff to w for
playing one is 1/6 + 1/6 = 1/3. So, if ε < 1/3, then in all ε-WSNEs the only ε-best
response for w is one, as required by the constraints of the AND gate.

• If at least one of u and v play zero as a pure strategy, say that u plays zero, then the
auxiliary players u1, u2, u3 will play zero as well. Thus, the payoff to w for playing zero is
at least 1/2, while the payoff to w for playing one is at most 1/6. So, if ε < 1/3, then in
all ε-WSNEs the only ε-best response for w is zero, as required by the constraints of the
AND gate.

• The AND gate places no other constraints on the variable w, so we can ignore all other
cases, e.g., the case where both u and v play strictly mixed strategies.

PURIFY gates. For a gate g = (PURIFY, u, v, w), we will create a PURIFY gadget from
Figure 1. Players v and w, that represent the output variables, will play against the auxiliary
players u1, u2, u3, who in turn will “copy” the values of the input variable that corresponds to
player u. The payoff matrices for this gadget will be defined as follows, where P ∈ {u1, u2, u3},
Q ∈ {v, w}, and X ∈ {u1, u2}.
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@
@
v

X

zero

one

zero one

0 0

0 0

0 1
3

0 0

@
@
w

X

zero

one

zero one

1
3 0

0 0

0 0

0 0

@
@
Q

u3

zero

one

zero one

1
3 0

0 0

0 1
3

0 0

@
@
P

u

zero

one

zero one

1 0

0 0

0 1

0 0

We claim that this gate will work for all ε < 1/3. Similarly to the AND gadget, it is not hard to
observe that for the game played between u and P , in every ε-WSNE of the game: if u plays
zero, then P plays zero; if u plays one, then P plays one.

• If u plays zero as a pure strategy, then auxiliary players u1, u2, u3 play zero as well. Thus,
strategy zero gives payoff 1/3 to both v and 1 to w, while strategy one gives payoff 0
to both v and w, so in any ε-WSNE with ε < 1/3 we have that zero is the only ε-best
response for both v and w.

• If u plays one as a pure strategy, then auxiliary players u1, u2, u3 play one as well. Thus,
strategy one gives payoff 1 to v and and payoff 1/3 to w, while strategy zero gives payoff 0
to both v and w. So, in any ε-WSNE with ε < 1/3 we have that one is the only ε-best
response for v and w.

• Assume now that u mixes between pure strategies zero and one. Then, the auxiliary players
u1, u2, u3 might mix between their pure strategies as well; for i ∈ {1, 2, 3} let pi be the
probability player ui places on pure strategy zero. Then, we have that the following hold.

– The payoff for v is 1
3 · p3 for playing zero, and 1− 1

3 · (p1 + p2 + p3) for playing one.

– The payoff for w is 1
3 · (p1 + p2 + p3) for playing zero, and 1

3 − 1
3 · p3 for playing one.

Now assume that in an ε-WSNE, with ε < 1/3, v mixes between zero and one. Then, it
must hold that the difference of the payoffs between the two pure strategies is bounded by
1/3, i.e., ∣∣∣∣13 · p3 −

(
1− 1

3
· (p1 + p2 + p3)

)∣∣∣∣ < 1

3
.

Hence, we get that

2

3
− 1

3
· p3 <

1

3
· (p1 + p2 + p3).

We claim that in this case w will have to play zero as a pure strategy. Indeed, observe that
the payoff of w from zero is 1

3 · (p1 + p2 + p3) >
2
3 − 1

3 · p3, where the inequality follows
from above. On the other hand, the payoff from one is 1

3 − 1
3 · p3. Hence, the difference

between the payoffs of the two pure strategies is larger than 1/3. Thus, in any ε-WSNE,
with ε < 1/3, if v plays a mixed strategy, then zero is the only ε-best response for w.

For the second case, assume that in an ε-WSNE, with ε < 1/3, w mixes between zero and
one. Then, it must hold that the difference of the payoffs between the two pure strategies
is bounded by 1/3, i.e., ∣∣∣∣13 · (p1 + p2 + p3)−

(
1

3
− 1

3
· p3
)∣∣∣∣ < 1

3
.

Hence, we get that

1

3
· p3 <

2

3
− 1

3
· (p1 + p2 + p3).
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We claim that in this case v will have to play one as a pure strategy. Indeed, observe that
the payoff of v from zero is 1

3 · p3 < 2
3 − 1

3 · (p1 + p2 + p3), where the inequality follows
from above. On the other hand, the payoff from one is 1− 1

3 · (p1 + p2 + p3). Hence, the
difference between the payoffs of the two pure strategies is larger than 1/3. Thus, in any
ε-WSNE, with ε < 1/3, if w plays a mixed strategy, then one is the only ε-best response
for v.

Hardness result. As we have argued above, each of the gate constraints from the Pure-
Circuit instance is enforced correctly in any ε-WSNE of the win-lose polymatrix game with
ε < 1/3. Thus, given such an ε-WSNE, we can produce a satisfying assignment to the Pure-
Circuit instance using the same mapping as we have used before. In addition, all of the games
that we have presented are win-lose games and are already normalized, and in addition every
player has two strategies.

Now, observe that the reduction described above does not immediately yield a bipartite
graph and in addition the maximum degree of the constructed graph is at most nine (this can
happen if the vertex that represents the output of an AND gadget, is the input to a different
AND gadget as well). However, it is not difficult to tweak the construction and get these two
properties too.

Firstly, we perform the following preprocessing step on the Pure-Circuit instance, which
results in having a graph with maximum degree seven in the win-lose game constructed here.
We replace every node v of the Pure-Circuit instance with three nodes v1, v2, v3 where: v3 is
the output of a NOT gate with input v2; v2 in turn is the output of a NOT gate with input v1; v3
is the input of the gate(s) that had as input the vertex v; v1 is the output of the gate that had
as output v. It is not difficult to see that this transformation does not change the solutions of
the original instance. In addition, observe that under this preprocessing step and Corollary 2.3,
the maximum degree of the constructed win-lose game is now seven.

Next, in order to get a bipartite graph we modify the gadget for NOT gates as follows. For
a gate g = (NOT, u, v) we create an auxiliary player u′, where u′ “copies” the strategy of u
and v “negates” the strategy of u′. So, overall v “negates” the strategy of u. To achieve this,
the game played between u′ and v corresponds to the game constructed for the NOT gates for
general polymatrix games and the game between u and u′ corresponds to the rightmost game
constructed for the AND gate for win-lose polymatrix games. Observe now that the final graph
is bipartite: one side contains only the vertices from the preprocessed Pure-Circuit instance
and the other side contains only the auxiliary vertices we have created for the gadgets.

4.4 Graphical Games

In this section we give results for graphical games (defined in Section 4.2) for the two well-studied
notions of approximate equilibrium: ε-NEs and ε-WSNEs.

We start with results for ε-WSNEs, where we first give a straightforward algorithm for

finding a
(
1− 2

2d+1

)
-WSNE in polynomial time in a two-action graphical game with maximum

in-degree d (Theorem 4.7), and we then show that finding an ε-WSNE in two-action graphical
games with maximum in-degree d ≥ 2 is PPAD-complete for any ε < 1− 2

2d+1
(Theorem 4.9).

Combined, these two results give a complete characterisation of the computational complexity
of finding an ε-WSNE in a graphical game with maximum in-degree d.

We then move on to ε-NEs, where we first give a straightforward algorithm that finds a
1/2-NE in a two-action graphical game (Theorem 4.12). For the lower bound, we then show
that it is PPAD-hard to find an ε-NE in a two-action graphical game for any constant ε < 1/2
(Theorem 4.20). Combined, these results give a complete characterisation of the computational
complexity of finding an ε-NE in a two-action graphical game.
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4.4.1 Upper and Lower Bounds for Well-Supported Nash Equilibria

We now show results for ε-WSNEs in graphical games.

An easy upper bound. We present a polynomial time algorithm to compute a
(
1− 2

2d+1

)
-

WSNE in any two-action graphical game with maximum in-degree d ≥ 2. The algorithm relies
on a simple and natural approach that has been used for similar problems by Liu et al. [LLD21].

The algorithm proceeds in two steps. In the first step, it iteratively checks for a player that
has an action that is ε-dominant; an action which, if played with probability 1, will satisfy
the ε-WSNE conditions no matter what strategies the in-neighbours play. Here, we will set
ε = 1− 2

2d+1
, where d is the maximum in-degree of the graph. If such a player with an ε-dominant

action exists, the algorithm fixes the strategy of that player, updates the game accordingly, and
iterates until there is no such player left. In the second step, the algorithm lets all remaining
players mix uniformly, i.e., every player without an ε-dominant action plays each of its two
actions with probability 1/2.

Theorem 4.7. There is a polynomial-time algorithm that finds a
(
1− 2

2d+1

)
-WSNE in a

two-action graphical game with maximum in-degree d.

Proof. It is easy to see that the algorithm described above runs in polynomial time. In particular,
we can check if a player has an ε-dominant action by simply going over all possible action profiles
of its in-neighbours. We will prove it computes an ε-WSNE for ε = 1 − 2

2d+1
. By definition

of ε-dominance, the players whose actions were fixed in the first step satisfy the constraints of
ε-WSNE. Notice that after fixing any such player to play an ε-dominant action, we get a smaller
graphical game. Thus, it suffices to consider the graphical game we obtain after the end of the
first step, and to show that if all (remaining) players mix uniformly, this is an ε-WSNE.

So, consider a player i in the graphical game we obtain after the end of the first step, and
denote its in-degree by k := |N−(i)| ≤ d. Since all in-neighbours of player i are mixing uniformly,
the expected payoff of player i for playing action 0 is

∑
a∈A(N−(i))Ri(0;a)/2

k, and for playing

action 1, it is
∑

a∈A(N−(i))Ri(1;a)/2
k. The constraints of ε-WSNE for player i are satisfied if

both actions are ε-best responses, i.e., if∣∣∣∣∣∣
∑

a∈A(N−(i))

Ri(0;a)/2
k −

∑
a∈A(N−(i))

Ri(1;a)/2
k

∣∣∣∣∣∣ ≤ ε.

This can be rewritten as 1
2k

∣∣∣∑a∈A(N−(i)) fi(a)
∣∣∣ ≤ ε, where, for any action profile a ∈ A(N−(i)),

we let

fi(a) := Ri(0;a)−Ri(1;a).

Note that since all payoffs lie in [0, 1], we always have fi(a) ∈ [−1, 1].
Let M :=

∑
a∈A(N−(i)) fi(a). To prove the correctness of the algorithm, it suffices to prove

that |M | ≤ 2k − 1− ε; since then 1
2k

· |M | ≤ 1− 1+ε
2k

≤ 1− 1+ε
2d

= ε. To see why this is indeed
the case, observe the following. Since player i does not have an ε-dominant action (otherwise, it
would have been removed in the first step), it means that there exist a, a′ ∈ A(N−(i)) such that

fi(a) > ε and fi(a
′) < −ε. (3)

Given that M is the sum of 2k terms, each of them upper bounded by 1, and at least one
of them upper bounded by −ε by (3), it follows that M ≤ 2k − 1 − ε. Similarly, since each
term is also lower bounded by −1, and one of them is lower bounded by ε, we also obtain
that M ≥ −2k − 1 + ε. Thus, |M | ≤ 2k − 1 − ε, as desired, and this completes the proof of
correctness.
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The lower bound. In this section we prove a matching lower bound for Theorem 4.7, which
essentially proves that computing an ε-WSNE in two-action graphical games is PPAD-complete
for every constant ε ∈ (0, 1).

We will prove our result by a reduction from Pure-Circuit. For the remainder of this
section, we fix ε < 1− 2

2d+1
. Given a Pure-Circuit instance, we build a two-action graphical

game, where the two actions will be named zero and one. For any given d ≥ 2, the game will
have in-degree at most d. Each node v of the Pure-Circuit instance will correspond to a player
in the game – the game will have some additional auxiliary players too – whose strategy in any
ε-WSNE will encode a solution to the Pure-Circuit problem as follows. Given a strategy sv
for the player that corresponds to node v, we define the assignment x for Pure-Circuit such
that:

• if sv(zero) = 1, then x[v] = 0;

• if sv(one) = 1, then x[v] = 1;

• otherwise, x[v] = ⊥.

We now give implementations for NOT, AND, and PURIFY gates. We note that, in all
three cases, the payoff received by player v is only affected by the actions chosen by the players
representing the inputs to the (unique) gate g that outputs to v. Thus, we can argue about the
equilibrium condition at v by only considering the players involved in gate g, and we can ignore
all other gates while doing this.

NOT gates. For a gate g = (NOT, u, v) – where recall that u is the input variable and v is the
output variable – we create a gadget involving players u and v, where player v has a unique
incoming edge from u. The payoffs of v are defined as follows.

• If u plays zero, then v gets payoff 0 from playing zero and payoff 1 from playing one.

• If u plays one, then v gets 1 from zero and 0 from one.

We claim that this gadget works correctly.

- If su(zero) = 1, i.e., u encodes 0, observe that for player v action zero yields payoff 0, while
action one yields payoff 1. Hence, by the constraints imposed by ε-WSNE it must hold
that sv(one) = 1, and thus v encodes 1.

- Using identical reasoning, we can prove that if su(one) = 1, then sv(one) = 0 in any
ε-WSNE.

AND gates. For a gate g = (AND, u, v, w) we create the following gadget with players u, v
and w, where u and v are the in-neighbors of w. The payoffs of w are as follows.

• If su(one) = 1 and sv(one) = 1, then w gets payoff 0 from playing zero and payoff 1 from
playing one.

• For any other action profile of u and v, player w gets 1 from zero and 0 from one.

Next we argue that this gadget works correctly.

- If su(one) = 1 and sv(one) = 1, i.e. both u and v encode 1, observe that for player w
action zero yields payoff 0, while action one yields payoff 1. Hence, by the constraints
imposed by ε-WSNE it must hold that sw(one) = 1, and thus w encodes 1.

- If at least one of u or v encodes 0, then for player w action zero yields expected payoff 1
while action one yields expected payoff 0. Hence, by the constraints imposed by ε-WSNE
it must hold that sw(zero) = 1, and thus w encodes 0.
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PURIFY gates. For a gate g = (PURIFY, u, v, w) we create the following gadget with d+ 3
players. We introduce auxiliary players u1, u2, . . . , ud. Each player ui has a unique incoming
edge from u. The idea is that in any ε-WSNE, every player ui “copies” the strategy of player u.

• If u plays zero, then ui gets 1 from zero and 0 from one.

• If u plays one, then ui gets 0 from zero and 1 from one.

Lemma 4.8. At any ε-WSNE the following hold for every i ∈ [d]: if su(zero) = 1, then
sui(zero) = 1; if su(one) = 1, then sui(one) = 1.

Proof. If su(zero) = 1, then for player ui action zero yields payoff 1, while action one yields
payoff 0. Thus, the constraints of ε-WSNE dictate that sui(zero) = 1. If su(one) = 1, then for
player ui action zero yields payoff 0, while action one yields payoff 1. Thus, the constraints of
ε-WSNE dictate that sui(one) = 1.

Next, we describe the payoff tensors of players v and w; each one of them has in-degree d
with edges from all u1, u2, . . . , ud. In what follows, fix λ := 1− 2

2d+1
. The payoffs of player v are

as follows.

• If v plays zero and at least one of u1, . . . , ud plays zero, then the payoff for v is 1.

• If v plays zero and every one of u1, . . . , ud plays one, then the payoff for v is 0.

• If v plays one and at least one of u1, . . . , ud plays zero, then the payoff for v is 0.

• If v plays one and every one of u1, . . . , ud plays one, then the payoff for v is λ.

The payoffs of player w are as follows.

• If w plays zero and every one of u1, . . . , ud plays zero, then the payoff for w is λ.

• If w plays zero and at least one of u1, . . . , ud plays one, then the payoff for w is 0.

• If w plays one and every one of u1, . . . , ud plays zero, then the payoff for w is 0.

• If w plays one and at least one of u1, . . . , ud plays one, then the payoff for w is 1.

We are now ready to prove that this construction correctly simulates a PURIFY gate. We consider
the different cases that arise depending on the value encoded by u.

– su(zero) = 1, i.e., u encodes 0. From Lemma 4.8 we know that sui(zero) = 1 for every
i ∈ [d]. Then, we have the following for players v and w.

- Player v gets payoff 1 from action zero and payoff 0 from action one. Hence, in an
ε-WSNE we get that sv(zero) = 1, and thus v encodes 0.

- Player w gets payoff λ from action zero and payoff 0 from action one. Hence, since
ε < λ, in an ε-WSNE we get that sw(zero) = 1, and thus w encodes 0.

– su(one) = 1, i.e., u encodes 1. From Lemma 4.8 we know that sui(one) = 1 for every
i ∈ [d]. Then, we have the following for players v and w.

- Player v gets payoff 0 from action zero and payoff λ from action one. Hence, since
ε < λ, in an ε-WSNE we get that sv(one) = 1, and thus v encodes 1.

- Player w gets payoff 0 from action zero and payoff 1 from action one. Hence, in an
ε-WSNE we get that sw(one) = 1, and thus w encodes 1.
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– su(one) ∈ (0, 1), i.e., u encodes ⊥. Then each one of the auxiliary players u1, . . . , ud can
play a different strategy. For each i ∈ [d], denote sui(one) = pi, i.e., pi ∈ [0, 1] is the
probability player ui assigns on action one. Let P :=

∏
i∈[d] pi and Q :=

∏
i∈[d](1 − pi).

Then, we have the following two cases.

- P ≤ 2−d. Then we focus on player v: action zero yields expected payoff 1−P ≥ 1−2−d,
while action one yields expected payoff λ · P ≤ λ · 2−d. Then, since ε < λ, we have

λ · 2−d < λ · 2−d + λ− ε

= 1− 2−d − ε,

where the equality on the second line is true because our choice of λ = 1 − 2
2d+1

satisfies the equation λ · 2−d + λ = 1 − 2d. Thus, the expected payoff of zero is
strictly more than the expected payoff of one plus ε. This means that in any ε-WSNE,
sv(one) = 0, or equivalently, sv(zero) = 1, i.e., v encodes 0.

- P > 2−d. Then, it holds that Q < 2−d, because P ·Q =
∏

i∈[d] pi · (1− pi) ≤ (1/4)d.

In this case we focus on player w: action zero yields payoff λ · Q < λ · 2−d, while
action one yields payoff 1 − Q > 1 − 2−d. We can then use the same argument as
the previous case to obtain λ · 2−d < 1− 2−d − ε. Therefore, the expected payoff of
one is strictly more than the expected payoff of zero plus ε. This implies that in any
ε-WSNE, sw(zero) = 0, or equivalently, sw(one) = 1, i.e., w encodes 1.

Hence, either player v encodes 0, or w encodes 1. So when su(one) ∈ (0, 1), we cannot
have that both v and w encode ⊥, as required.

From the above analysis, we have that in any ε-WSNE of the graphical game, with ε < 1− 2
2d+1

,
the players correctly encode a solution to the Pure-Circuit instance.

Theorem 4.9. Computing an ε-WSNE in two-action graphical games with maximum in-degree
d ≥ 2 is PPAD-complete for any ε < 1− 2

2d+1
.

We can see that the constructed game is not win-lose since there is a payoff λ /∈ {0, 1} in the
gadget that simulates PURIFY gates. However, if we set λ = 1, and use verbatim the analysis
from above, we will get PPAD-hardness for ε-WSNE with ε < 1− 1

2d−1 .

Theorem 4.10. Computing an ε-WSNE in two-action win-lose graphical games with maximum
in-degree d ≥ 2 is PPAD-complete for any ε < 1− 1

2d−1 .

Since for every constant ε < 1 we can find a constant d such that Theorem 4.10 holds, we
get the following corollary.

Corollary 4.11. For any constant ε < 1, computing an ε-WSNE in two-action win-lose graphical
games is PPAD-complete.

4.4.2 Upper and Lower Bounds for Approximate Nash Equilibria

We now show results for ε-NEs in graphical games.

A straightforward upper bound. We first show that a 1/2-NE can easily be found in any
two-action graphical game.

Theorem 4.12. There is a polynomial-time algorithm that finds a 1/2-NE in a two-action
graphical game.

34



Proof. Let s be the strategy profile in which all players mix uniformly over their two actions.
Then, for each player i we have

ui(s) ≥ 1/2 · bri(s−i)

= bri(s−i)− 1/2 · bri(s−i)

≥ bri(s−i)− 1/2,

where the final inequality used the fact that bri(s−i) ∈ [0, 1]. Thus, s is a 1/2-NE.

The lower bound. We will show that computing an ε-NE of a graphical game is PPAD-hard
for any constant ε < 1/2 by a reduction from Pure-Circuit.

Fix any ε < 1/2 and let δ ∈ (0, 1/2] be such that 1/2 − δ = ε. Given a Pure-Circuit
instance, we build a two-action graphical game, where the two actions will be named zero and
one. Each node v of the Pure-Circuit instance will be represented by a set of k players in the
game, named v1, v2, . . . , vk, where we fix k to be an odd number satisfying k ≥ ln(3/δ) · 18/δ2.
Since δ is constant, we have that k is also constant.

The strategies of these players will encode a solution to the Pure-Circuit problem in the
following way. Given a strategy profile s, we define the assignment x such that

• If svi(zero) ≥ 1/2 + δ/3 for all i, then x[v] = 0.

• If svi(one) ≥ 1/2 + δ/3 for all i, then x[v] = 1.

• In all other cases, x[v] = ⊥.

We now give implementations for NOT, AND, and PURIFY gates. We note that, in all three
cases, the payoff received by player vi is only affected by the actions chosen by the players
representing the inputs to the (unique) gate g that outputs to v. Thus, we can argue about the
equilibrium condition at vi by only considering the players involved in gate g, and we can ignore
all other gates while doing this.

NOT gates. For a gate g = (NOT, u, v), we use the following construction, which specifies the
games that will be played between the set of players that represent u and the set of players that
represent v.

Each player vi has incoming edges from all players u1, u2, . . . , uk, and vi’s payoff tensor is
set as follows.

• If strictly more than1 k/2 of the players u1 through uk play zero, then vi receives payoff 0
for strategy zero and payoff 1 for strategy one.

• If strictly less than k/2 of the players u1 through uk play zero, then vi receives payoff 1 for
strategy zero and payoff 0 for strategy one.

We now show the correctness of this construction. We start with a technical lemma that we
will use repeatedly throughout the construction.

Lemma 4.13. Suppose that player p has two actions a and b. In any (1/2− δ)-NE, if the payoff
of action a is at most δ/3, and the payoff of action b is at least 1− δ/3, then player p must play
action b with probability at least 1/2 + δ/3.

Proof. Since action b has payoff at least 1− δ/3, we have that the best response payoff to p is
also at least 1− δ/3. Hence, in any strategy profile s that is an (1/2− δ)-NE, we have

up(s) ≥ brp(s)− 1/2 + δ

1Since k is odd, it is not possible for exactly k/2 players to play zero.
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≥ 1− δ/3− 1/2 + δ

= 1/2 + 2δ/3.

Since the payoff of a is bounded by δ/3, and the payoff of b is bounded by 1 (since all payoffs
are in the range [0, 1]), we obtain

up(s) ≤ sp(a) · δ/3 + sp(b) · 1
= (1− sp(b)) · δ/3 + sp(b) · 1
= sp(b)(1− δ/3) + δ/3

≤ sp(b) + δ/3.

Joining the two previous inequalities gives sp(b) + δ/3 ≥ 1/2 + 2δ/3, and therefore sp(b) ≥
1/2 + δ/3.

The following bound will also be used repeatedly in our proofs.

Lemma 4.14. If k ≥ ln(6/δ) ·9/2δ2 and N is a random variable distributed binomially according
to B(k, 1/2 + δ/3), then Pr(N ≤ k/2) ≤ δ/6.

Proof. We can use the standard Hoeffding bound [Hoe94] for the binomial distribution. This
gives

Pr(N ≤ k/2) ≤ exp

(
−2k

(
1/2 + δ/3− k/2

k

)2
)

= exp

(
−2

9
kδ2
)

≤ exp(− ln(6/δ))

= δ/6.

We can now prove that the NOT gadget operates correctly.

Lemma 4.15. In every (1/2− δ)-NE, the following properties hold.

• If the players representing u encode 0, then the players representing v encode 1.

• If the players representing u encode 1, then the players representing v encode 0.

Proof. Let s be a (1/2− δ)-NE. We begin with the first claim. Since the players representing u
encode a 0, we have that suj (zero) ≥ 1/2 + δ/3 for all j ∈ [k].

We start by proving an upper bound on the payoff of action zero for player vi. The payoff of
this action increases as the players uj place less probability on action zero, so we can assume
suj (zero) = 1/2 + δ/3, since this minimizes the payoff of zero to vi.

Under this assumption, let N be the number of players uj that play action zero, and observe
that N ∼ B(k, 1/2 + δ/3). Since k ≥ ln(3/δ) · 18/δ2 ≥ ln(6/δ) · 9/2δ2, from Lemma 4.14 we
have Pr(N ≤ k/2) ≤ δ/6 ≤ δ/3. Hence the payoff of action zero to player vi is at most δ/3, and
therefore the payoff of action one to vi is at least 1− δ/3.

So we can apply Lemma 4.13 to argue that svi(one) ≥ 1/2 + δ/3. Since this holds for all i,
we have that the players representing v encode the value 1 in the Pure-Circuit instance, as
required.

The second case can be proved in an entirely symmetric manner.
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AND gates. For a gate g = (AND, u, v, w) we use the following construction. Each player wi

has in-degree 2k and has incoming edges from all of the players u1, u2, . . . , uk, and all of the
players v1, v2, . . . , vk. The payoff tensor of wi is as follows.

• If strictly more than k/2 of the players u1 through uk play one, and strictly more than
k/2 of the players v1 through vk play one, then wi receives payoff 0 from action zero and
payoff 1 from action one.

• If this is not the case, then wi receives payoff 1 from action zero and payoff 0 from action
one.

The correctness of this construction is shown in the following pair of lemmas.

Lemma 4.16. In every (1/2− δ)-NE of the game, if the players representing u encode value
1, and the players representing v encode value 1, then the players representing w will encode
value 1.

Proof. Let s be a (1/2− δ)-NE. From the assumptions about u and v, we have that suj (one) ≥
1/2 + δ/3 for all j, and svj (one) ≥ 1/2 + δ/3 for all j ∈ [k].

We start by proving an upper bound on the payoff of zero to wi. Since this payoff decreases
as the players uj and vj place more probability on one, we can assume that suj (one) = 1/2+ δ/3
for all j, and svj (one) = 1/2 + δ/3 for all j, since this maximizes the payoff of zero to wi.

Let N be the number of players uj that play one, and observe that N ∼ B(k, 1/2 + δ/3).
Likewise, the number of players vj that play one are distributed according to the same distribution.
Using Lemma 4.14 and the fact that k ≥ ln(3/δ) ·18/δ2 ≥ ln(6/δ) ·9/2δ2, we get Pr(N ≤ k/2) ≤
δ/6. Then, using the union bound, we can derive an upper bound of δ/3 for the probability
that strictly less than k/2 of the players u1 through uk play one or strictly less than k/2 of the
players v1 through vk play one.

Hence, the payoff of zero to player wi is at most δ/3, and so the payoff of one to player wi is
at least 1− δ/3. We can then apply Lemma 4.13 to argue that wi must play one with probability
at least 1/2 + δ/3. Since this holds for all i, we have that w1, w2, . . . wk correctly encode value
1.

Lemma 4.17. In every (1/2− δ)-NE of the game, if the players representing u encode value 0,
or the players representing v encode value 0, then the players representing w will encode value 0.

Proof. We will provide a proof for the case where the players representing u encode value 0,
since the other case is entirely symmetric.

Let s be an (1/2− δ)-NE. By assumption we have that suj (zero) ≥ 1/2 + δ/3 for all j. We
start by proving an upper bound on the payoff of one to wi. Since the payoff of this strategy
decreases as uj places more probability on zero, we can assume that suj (zero) = 1/2 + δ/3 for
all j, since this minimizes the payoff of one to wi.

Let N be the number of players uj that play one and observe that N ∼ B(k, 1/2 + δ/3). By
Lemma 4.14, given that k ≥ ln(3/δ) · 18/δ2 ≥ ln(6/δ) · 9/2δ2, we get Pr(N ≤ k/2) ≤ δ/3. Hence,
the payoff of one to player wi is at most δ/3, and so the payoff of zero to player wi is at least
1− δ/3. Thus, we can apply Lemma 4.13 to argue that wi must play zero with probability at
least 1/2+δ/3. Since this holds for all i, we have that w1, w2, . . . wk correctly encode value 0.

PURIFY gates. For a gate g = (PURIFY, u, v, w), we use the following construction. Each
player vi will have incoming edges from all players u1, u2, . . . , uk, with their payoff tensor set as
follows.

• If strictly more than (1/2− δ/6) · k of the players u1 through uk play one, then vi receives
payoff 0 from action zero and payoff 1 from action one.
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• If this is not the case, then vi receives payoff 1 from action zero and payoff 0 from action
one.

Each player wi will have incoming edges from all players u1, u2, . . . , uk, with their payoff tensor
set as follows.

• If strictly more than (1/2 + δ/6) · k of the players u1 through uk play one, then wi receives
payoff 0 from action zero and payoff 1 from action one.

• If this is not the case, then wi receives payoff 1 from action zero and payoff 0 from action
one.

The following lemma analyzes the behavior of the players representing v.

Lemma 4.18. Let s be a (1/2− δ)-NE, and let N be a random variable that denotes the number
of players ui playing strategy one under s.

• If E[N ] ≤ (1/2− δ/3) · k, then the players representing v will encode value 0.

• If E[N ] ≥ 1/2 · k, then the players representing v will encode value 1.

Proof. For the first part of the statement, notice that N follows the binomial distribution with
E[N ] ≤ (1/2− δ/3) · k, by applying Hoeffding’s inequality [Hoe94], we get

Pr(N ≥ (1/2− δ/6) · k) ≤ Pr(N − E[N ] ≥ δ/6 · k)

≤ exp

(
−2(k · δ/6)2

k

)
= exp

(
−k · δ2/18

)
≤ δ/3,

where the last inequality holds due to the fact that k ≥ ln(3/δ) · 18/δ2. Therefore, the payoff
of strategy one to vi is at most δ/3, and so the payoff of strategy zero to vi is at least 1− δ/3.
Thus we can apply Lemma 4.13 to argue that svi(zero) ≥ 1/2 + δ/3. Since this holds for all i,
we have that the players representing v encode value 0, as required.

For the second part of the statement, we get

Pr(N < (1/2− δ/6) · k) ≤ Pr(N − E[N ] < −δ/6 · k)

≤ exp

(
−2(k · δ/6)2

k

)
≤ δ/3,

where the argument is the same as in the previous case. Then, also similarly to the previous
case, from Lemma 4.13 we can deduce that for every i, svi(one) ≥ 1/2 + δ/3. Therefore, the
players representing v encode value 1, as required.

The next lemma analyzes the behavior of the players representing w; its proof is omitted since it
is entirely symmetric to the proof of Lemma 4.18.

Lemma 4.19. Let s be a (1/2− δ)-NE, and let N be a random variable that denotes the number
of players ui playing strategy one under s.

• If E[N ] ≤ 1/2 · k, then the players representing w will encode value 0.

• If E[N ] ≥ (1/2 + δ/3) · k, then the players representing w will encode value 1.
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Combining the two previous lemmas, we can see that the construction correctly simulates a
PURIFY gate.

• If the players representing u encode value 0, then E[N ] ≤ 1/2 − δ/3, and so both the
players representing v and those representing w encode value 0.

• If the players representing u encode value 1, then E[N ] ≥ 1/2 + δ/3, and so both the
players representing v and those representing w encode value 1.

• In all other cases we can verify that either the players representing v or the players
representing w encode a 0 or a 1. Specifically, if E[N ] ≤ 1/2·k then the players representing
w encode value 0, while if E[N ] ≥ 1/2 · k, then the players representing v encode value 1.

The hardness result. From the arguments given above, we have that in an (1/2− δ)-NE
of the graphical game, the players correctly encode a solution to the Pure-Circuit instance.
Note also that, since Corollary 2.3 gives hardness for Pure-Circuit even when the total degree
of each node is 3, the graphical game that we have built has total degree at most 3k. Thus, the
game can be built in polynomial time.

Theorem 4.20. It is PPAD-hard to find an ε-NE in a two-action graphical game for any
constant ε < 1/2.

In fact, the payoff entries in all gadgets are 0 or 1. Thus, our PPAD-hardness result holds for
win-lose games too.

Corollary 4.21. For any constant ε < 1/2, it is PPAD-hard to find an ε-NE in a two-action
win-lose graphical game.

4.5 Threshold Games

Threshold games were introduced by Papadimitriou and Peng [PP21] as an intermediate problem
that was used to prove PPAD-hardness for public good games on directed networks. Since then,
threshold games have been used to prove PPAD-hardness for throttling equilibria in auction
markets [CKK21b] and for the famous Hylland-Zeckhauser scheme [CCPY22].

Threshold Game. A threshold game G(V,E) is defined on a directed graph G = (V,E).
Every node v ∈ V represents a player with strategy space x[v] ∈ [0, 1]. For every v ∈ V , we use
Nv := {u ∈ V : (u, v) ∈ E} to denote the set of nodes with outgoing edges towards v. Then, we
say that x := (x[v] : v ∈ V ) ∈ [0, 1]|V | is an ε-approximate equilibrium if every x[v] satisfies

x[v] ∈


[0, ε], if

∑
u∈Nv

x[u] > 1/2 + ε;

[1− ε, 1], if
∑

u∈Nv
x[u] < 1/2− ε;

[0, 1], if
∑

u∈Nv
x[u] ∈ [1/2− ε, 1/2 + ε].

Definition 6 (ε-ThresholdGameNE). Let ε ∈ [0, 1]. An instance of the ε-
ThresholdGameNE problem consists of a threshold game G(V,E). The task is to find
an ε-approximate equilibrium for G(V,E).

Papadimitriou and Peng [PP21] proved that there exists a constant ε′ > 0 such that
ε′-ThresholdGameNE is PPAD-complete, via a reduction from ε-GCircuit, where ε′ <
ε/5. Hence, from our hardness result for GCircuit (Theorem 4.1) we obtain that ε-
ThresholdGameNE is PPAD-complete for some ε upper bounded by 1/50.

Using a direct reduction from Pure-Circuit we can show that the problem is in fact PPAD-
complete for any ε < 1/6. Furthermore, this is tight, since we provide a simple algorithm solving
the problem in polynomial time for ε = 1/6. We first present the algorithm achieving the upper
bound, and then the improved lower bound through a direct reduction from Pure-Circuit.
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4.5.1 Computing a 1/6-Approximate Equilibrium

Theorem 4.22. The 1/6-ThresholdGameNE problem can be solved in polynomial time.

Proof. Let G = (V,E) be the threshold game graph. The algorithm proceeds as follows.

1. For every node v ∈ V with in-degree at least two, i.e., |Nv| ≥ 2, set x[v] := 1/6. Remove all
incoming edges of v from the graph. Note that every node in the graph now has in-degree
at most one.

2. Repeat until there are no more directed cycles: Pick a directed cycle, and for each node v
on the cycle, set x[v] := 1/2. Remove all the edges on the cycle from the graph.

3. Repeat until all nodes have been assigned a value: Since the graph is now acyclic, there
exists a node v ∈ V with unassigned value such that v has in-degree zero, or such that its
incoming neighbour w ∈ Nv has already been assigned a value. If

∑
u∈Nv

x[u] > 1/2+ 1/6,
set x[v] := 1/6. Otherwise, set x[v] := 1.

The algorithm clearly runs in polynomial time. It remains to prove that all nodes satisfy the
ε-approximate equilibrium condition for ε = 1/6. Note that when we assign a value to a node,
all of its original incoming edges are still present in the graph. Furthermore, we only assign a
value to a node once. We proceed by considering the nodes in each step separately.

For nodes which get assigned in Step 3, the 1/6-approximate equilibrium condition is
immediately satisfied because of the way in which we pick the value to assign. For a node
which gets assigned in Step 2, note that it must have in-degree one, and thus its unique
incoming neighbour also lies on the same directed cycle, and also gets assigned value 1/2, which
implies that the equilibrium condition is satisfied. Finally, note that the algorithm only assigns
values ≥ 1/6 to nodes. As a result, for any node v which gets assigned in Step 1, we have∑

u∈Nv
x[u] ≥ |Nv|/6 ≥ 1/3, since |Nv| ≥ 2. In particular, assigning value 1/6 to v satisfies the

1/6-approximate equilibrium condition, because 1/3 ≥ 1/2− 1/6.

4.5.2 Hardness of ε-Approximate Equilibrium for any ε < 1/6

Theorem 4.23. ε-ThresholdGameNE is PPAD-complete for every ε < 1/6, even when the
in- and out-degree of each node is at most two.

Proof. In order to prove that ε-ThresholdGameNE is PPAD-hard for ε < 1/6, we will
reduce from Pure-Circuit that uses the gates NOT, NOR, and PURIFY (we include the
NOT gate because we will later make use of Corollary 2.3 to argue about the degrees of
nodes). We will encode 0 values in the Pure-Circuit problem as values in the range [0, ε] in
ThresholdGameNE, while 1 values will be encoded as values in the range [1− ε, 1]. Then,
each gate of Pure-Circuit will be simulated by the corresponding gadget depicted in Figure 2.

NOT gates. A (NOT, u, v) gate will be simulated by the NOT gadget depicted in Figure 2.
We argue that the gadget works for any ε < 1/4, and thus in particular for any ε < 1/6.

• If x[u] ≤ ε < 1/2 − ε, then according to the definition of threshold games in any ε-
approximate equilibrium it must hold that x[v] ≥ 1− ε. Hence, when the input encodes a
0, the output value will encode a 1.

• If x[u] ≥ 1 − ε > 1/2 + ε, then according to the definition of threshold games in any
ε-approximate equilibrium it must hold that x[v] ≤ ε. Hence, when the input encodes a 1,
the output value will encode a 0.
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Figure 2: The gadgets used for ThresholdGameNE.

NOR gates. A (NOR, u, v, w) gate will be simulated by the NOR gadget depicted in Figure 2.
We claim that the gadget works for any ε < 1/6.

• If both x[u] and x[v] are in [0, ε], then x[u] + x[v] ≤ 2ε < 1/2 − ε. Hence, in any ε-
approximate equilibrium it must hold that x[w] ≥ 1− ε. In other words, when both input
values encode 0s, then the output value of the NOR gadget will encode 1.

• If at least one of x[u] and x[v] is in [1− ε, 1], then x[u] + x[v] ≥ 1− ε > 1/2 + ε. Hence, in
any ε-approximate equilibrium it must hold that x[w] ≤ ε. In other words, when at least
one input value encodes a 1, then the output value of the NOR gadget will encode 0.

PURIFY gates. A (PURIFY, u, v, w) gate will be simulated by the PURIFY gadget depicted in
Figure 2. We argue that the gadget works for any ε < 1/6.

• If x[u] ≤ ε, then, in particular, x[u] < 1/2 − ε, and thus x[a] ≥ 1 − ε. Then, since
x[a] ≥ 1− ε > 1/2 + ε, it follows that x[b] ≤ ε. By applying the same arguments again,
we obtain that x[w] ≤ ε. Furthermore, since x[u] + x[b] ≤ 2ε < 1/2 − ε, it follows that
x[c] ≥ 1− ε, and thus x[v] ≤ ε. In other words, when the input value encodes a 0, then
both output values of the PURIFY gadget will encode 0s.

• If x[u] ≥ 1 − ε, then it is not hard to see that x[b] ≥ 1 − ε, and thus x[w] ≥ 1 − ε. In
addition, since x[u]+x[b] ≥ 2(1−ε) > 1/2+ε, it follows that x[c] ≤ ε, and thus x[v] ≥ 1−ε.
In other words, when the input value encodes a 1, then both output values of the PURIFY
gadget will encode 1s.

• Finally, it remains to prove that no matter what the input u is, at least one of the two
output values v, w of the PURIFY gadget will encode a pure bit value. Assume that w does
not encode a pure bit value, i.e., x[w] ∈ (ε, 1−ε). We will show that in that case it must be
that x[v] /∈ (ε, 1−ε). Since x[w] ∈ (ε, 1−ε), it follows that x[b] ∈ [1/2−ε, 1/2+ε]. Similarly,
since x[b] ∈ [1/2− ε, 1/2 + ε] ⊆ (ε, 1− ε), it also follows that x[u] ∈ [1/2− ε, 1/2 + ε]. As
a result, we obtain that x[u] + x[b] ≥ 2(1/2− ε) > 1/2 + ε, which implies that x[c] ≤ ε,
and thus x[v] ≥ 1− ε, as desired.

The reduction. Given a Pure-Circuit instance over variables V , we produce a Thresh-
oldGameNE instance by replacing each gate with the corresponding gadget depicted in Figure 2.
Then, given a solution x to the ε-ThresholdGameNE instance with ε < 1/6, we can produce
a solution x′ for Pure-Circuit as follows. For every v ∈ V :

• if x[v] ≤ ε, then we set x′[v] = 0;
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• if x[v] ≥ 1− ε, then we set x′[v] = 1;

• else we set x′[v] = ⊥.

The correctness of the reduction follows from the arguments above. Finally, by using Corollary 2.3,
the constructed instances of ThresholdGameNE will all satisfy that the in- and out-degree
of every node is at most two. Indeed, the new “auxiliary” nodes introduced by the PURIFY
gadget all satisfy this, and the contribution of each gadget to the in- and out-degree of “original”
nodes is exactly the same as the contribution of the corresponding Pure-Circuit gates in the
interaction graph.

A Further Details on Pure-Circuit

A.1 On the Definition of Pure-Circuit

In this section, we explore different ways to weaken the definition of Pure-Circuit, and show
how, in each case, the problem is no longer PPAD-hard.

No PURIFY gate. If we allow all gates, except the PURIFY gate (so only NOT, COPY, OR,
AND, NOR, NAND), then the problem becomes polynomial-time solvable. Indeed, it suffices to
assign value ⊥ to all the nodes.

No Negation. If we allow all gates, except the ones that perform some kind of negation (so
only PURIFY, COPY, OR, AND), then the problem becomes polynomial-time solvable. Indeed,
assigning the value 1 to each node (or, alternatively, the value 0 to each node) always yields
a solution. More generally, we can make the following observation: for any set of gates that
can be implemented by monotone functions, the problem lies in the class PLS, and is thus
unlikely to be PPAD-complete. Indeed, as already mentioned in Section 2, we can view any
Pure-Circuit instance with n nodes as a function F : [0, 1]n → [0, 1]n, where each gate is
replaced by a continuous function that is consistent with the gate-constraint. Then any fixed
point of F yields a solution to the Pure-Circuit instance. If each of the gates can be replaced
by a continuous monotone function, then the problem of finding a fixed point of F is an instance
of Tarski’s fixed point theorem, which is known to lie in PLS [EPRY20].

No robustness. If we allow all gates (PURIFY, NOT, COPY, OR, AND, NOR, NAND), but
we drop the robustness requirement from the logical gates OR, AND, NOR, NAND, then the
problem can be solved in polynomial time.

Construct the interaction graph G of the Pure-Circuit instance, as defined in Section 2.1.
In the first stage of the algorithm, as long as there exists a directed cycle in graph G, we do the
following:

1. Pick an arbitrary directed simple cycle of G.

2. For each node u on the simple cycle C, assign value ⊥ to it, i.e., x[u] := ⊥.

3. Remove all nodes on the simple cycle C from the graph G, including all their incident
edges.

At the end of this procedure, G no longer contains any cycles. In the second stage of the
algorithm we then repeat the following, until G is empty:

1. Pick any source u of G (which must exist, since G contains no cycles).
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2. Let g be the (unique) gate that has u as output. Since u does not have incoming edges in
G, all inputs of g have already been assigned a value. If u is the only output of g, then
assign a value to u that satisfies the gate, and remove u and its edges from G. If the gate
g also has another output v, then g is a PURIFY gate, and there are two cases:

• If v has not been assigned a value yet, then assign values to both u and v such that
the gate is satisfied. Remove u and v and their edges from G.

• If v has already been assigned a value, then this happened in the first stage of the
algorithm, and both v and the input to g were assigned value ⊥ (if v lies on a simple
cycle C, then so does the input of gate g, because v has a single incoming edge in the
original interaction graph). In that case, we assign value 0 or 1 to u and g is satisfied.
Remove u and its edges from G (v was already removed in the first stage).

Since a node is removed from G only when it is assigned a value, all nodes have been assigned
a value at the end of the algorithm. We argue that all gates are satisfied. Clearly, any gate that
has an output node that is still present in G after the end of the first stage will be satisfied
(by construction of the second stage). Thus, it remains to consider any gate g such that all its
output nodes are removed in the first stage. There are three cases:

• g is a NOT or COPY gate: if the output lies on a simple cycle C, then so does the input.
Both are thus assigned value ⊥ and the gate is satisfied.

• g is a (non-robust) OR, AND, NOR, or NAND gate: if the output lies on a simple cycle C,
then so does at least one of its inputs. Thus, at least one input is also assigned value ⊥,
and the gate is satisfied. Note that we crucially used the non-robustness of the gate here.

• g is a PURIFY gate: if an output v of g lies on a simple cycle C, then the input u of g also
lies on C, and so both are removed at the same time from G. However, the other output
w of g cannot lie on that same simple cycle C, and after u is removed, w does not have an
incoming edge anymore and will thus not be removed in the first stage. Thus, g cannot be
a PURIFY gate.

Adding Constant Gates. It is a natural idea to try to add constant gates in an attempt to
make the problem hard for a set of gates for which the problem is not PPAD-hard. By constant
gates, we mean a 0-gate which has one output and no input, and which enforces that the value
of its output node always be 0, and a 1-gate defined analogously. No matter which subset of
gates S ⊆ {PURIFY,NOT,COPY,OR,AND,NOR,NAND} we use, adding the constant gates 0
and 1 does not change the complexity of the problem. Indeed, it is easy to see that the constants
can be “propagated” through the circuit. If a constant is an input to a PURIFY, NOT, or COPY
gate, then we can replace the output(s) of that gate by constants that satisfy the gate-constraint.
If a constant is an input to an X gate, where X ∈ {OR,AND,NOR,NAND}, then there are two
cases: either we can replace the output by a constant, or we can replace the gate by an X gate
with the same input twice (namely, the other input). In order to create a copy of the other input,
we can either use the COPY gate, or the NOT gate, or the PURIFY gate. If none of these three
gates lies in S, then Pure-Circuit with gates S ∪ {0, 1} is polynomial-time solvable, since it
is polynomial-time solvable with gates S ∪ {NOT, 0, 1} (by the propagation argument, and the
lack of PURIFY gate).

A.2 More Structure: Proof of Corollary 2.3

Let X and Y be as required by the statement of Corollary 2.3. By Corollary 2.2 it immediately
follows that Pure-Circuit with gates {PURIFY,X,Y} is PPAD-complete. Now consider an
instance of Pure-Circuit with gates {PURIFY,X,Y}. We will explain how to turn it into an
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instance that satisfies the three conditions of Corollary 2.3. We proceed in three steps, where
each step adds more structure to the instance, without destroying any of the structure introduced
in a previous step.

Step 1. First of all, for every node u that is used as an input to k gates g1, . . . , gk, we
construct a binary tree consisting of PURIFY gates that is rooted at u and has leaves u1, . . . , uk.
Then, we modify each gate gi so that it uses ui as input instead of u. As a result, the instance
now satisfies that every node is the input of at most one gate. Note that for any solution x, if
x[u] ∈ {0, 1}, then x[ui] = x[u] for all i. On the other hand, if x[u] = ⊥, then the x[ui] could
have different values. Despite this, we argue that this is a valid reduction, namely that restricting
x to the original nodes yields a solution to the original instance. To see this, it suffices to notice
that, no matter what the type T of gate gi is, if u satisfies the condition on the left of the “ =⇒ ”
sign in the definition of T , then the condition is still satisfied if we replace u by ui.

Step 2. After the first step, the instance now satisfies that every node is the input of at
most one gate, in particular (din, dout) ∈ {1, 2} × {0, 1, 2}. In the next step, we will further
enforce that (din, dout) ̸= (2, 2) and make the interaction graph bipartite. To do this, we
replace every node u by a small gadget that consists of nodes ua, ub, and some other auxiliary
nodes. If u was the output of some gate g, then g now has output ua instead. Similarly, if
u was the input of some gate g′, then g′ has input ub instead. The gadget will ensure that
x[ua] ∈ {0, 1} =⇒ x[ub] = x[ua]. Thus, by the same argument as in the previous paragraph,
restricting x to {ua : u ∈ V } yields a solution to the original instance. In the case X = COPY,
the gadget is simply implemented by using a COPY gate with input ua and output ub, i.e., a
COPY(ua, ub) gate. Applying this transformation to every node u achieves two things: (i) the
interaction graph only contains nodes with (din, dout) ∈ ({1, 2} × {0, 1, 2}) \ {(2, 2)}, (ii) the
interaction graph is bipartite (A = {ua : u ∈ V }, B = {ub : u ∈ V }). In the case X = NOT, the
gadget uses auxiliary (new) nodes v, w,w′ and consists of the gates NOT(ua, v), PURIFY(v, w,w

′),
and NOT(w, ub). It is easy to check that this gadget satisfies the same properties as before, in
particular (i) and (ii). For (ii), note that we add nodes w,w′ to set A and node v to set B to
make the graph bipartite.

Step 3. It remains to enforce that every node is the input of exactly one gate. Currently,
this only holds with “at most” instead of “exactly”. We begin by introducing a new node v∗.
Note that v∗ is not used as an input of any gate, and it is also the only node that is not used as
an output by any gate. Let Vsink be the set of all nodes that are not used as an input by any
gate. In particular, v∗ ∈ Vsink. Using a binary tree of Y-gates which takes the nodes in Vsink as
inputs, we can ensure that the root usink of the binary tree is the only node that is not used as
input by any gate. By using additional X-gates at the leaves (when needed) we can ensure that
the graph remains bipartite. Note that v∗ is still the only node that is not used as an output
of any gate. We finish the construction by adding an X-gate with input usink and output v∗.
If that makes the graph non-bipartite, then we can instead introduce a new node v and gates
X(usink, v) and X(v, v∗) instead. The instance now satisfies all three conditions of the statement.

B Bimatrix Games

In this section we show lower bounds for finding relative approximate well-supported equilibria
in bimatrix games. Unlike the additive approximations we have studied so far, in a relative
approximate equilibrium ε is not measuring the difference between the current strategy’s payoff
and a deviation’s payoff, but instead, the ratio of that difference over the deviation’s payoff.

Daskalakis [Das13] proved that computing a relative ε-WSNE in bimatrix games with
payoffs in [−1, 1] is PPAD-complete for any constant ε ∈ [0, 1). This left open the question
of inapproximability of bimatrix games with non-negative payoffs2. It is known that for

2Relative ε-WSNE (as well as relative ε-NE) are scale invariant. Therefore, multiplying all payoffs by a positive
constant does not affect the equilibria for a given ε.
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bimatrix games with payoffs in [0, 1] there is a polynomial time algorithm for finding a relative
1/2-WSNE [FNS07]. The best hardness result for games with payoffs in [0, 1] was given by
Rubinstein [Rub18], who showed that there exists a constant ε such that relative ε-WSNE is
PPAD-hard.

Here we show that the problem is hard for any ε ≤ 1/57. A bimatrix game is a special case
of a polymatrix game (see Section 4.3) where we only have two players connected by an edge.
Hence, we use the same notation as that of the aforementioned section. Before presenting this
section’s main result, let us define the equilibrium notion that will be studied in this section.

Definition 7 (relative ε-WSNE). The strategy profile s is a relative ε-well-supported Nash
equilibrium (relative ε-WSNE) if for every player, each action in the support of her strategy is
at least as good as any other action up to a fraction ε of the latter action’s absolute expected
utility. In particular, for non-negative utilities we have

∀i ∈ [n], ∀k ∈ supp(si), ui(k, s−i) ≥ (1− ε) · bri(s−i).

Theorem B.1. Computing a relative ε-WSNE in a bimatrix game with non-negative payoffs is
PPAD-complete for any ε ≤ 1/57.

The remainder of this section is devoted to the proof of this theorem.

Hardness. We will reduce from the PPAD-complete problem of computing an (additive)
ε′-WSNE in a polymatrix game with 2n players (nodes) and two actions per player for ε′ < 1/3
(as shown in Theorem 4.3) to the problem of computing a relative ε-WSNE in a 2n × 2n
bimatrix game for ε = ε′/β, where β = 18.9. Our reduction closely follows that of Rubinstein’s
[Rub18], but instead of reducing from (additive) ε′-NE in polymatrix games, we reduce from
their ε′-WSNE counterpart for which we obtained hardness for significantly higher ε′.

The construction of the bimatrix game is identical to that of the aforementioned paper, but
we optimize the involved parameters so that we get the highest ε possible. In particular, since
again we reduce from a bipartite polymatrix game (see Theorem 4.3) we consider the two sides
of the graph, namely the R-side and the C-side. Without loss of generality, we consider that
each side of the graph has n nodes, since we can add “dummy” nodes to the smallest of the two
sides. We then consider two super-players, namely the row player R and the column player C
for the two sets of nodes. Each super-player “represents” her nodes in the new bimatrix game,
meaning that her action set consists of the union of the individual nodes’ action sets. We embed
the polymatrix game into the bimatrix game, and multiply all the corresponding payoffs with a
positive constant λ < 1 (to be defined later) so that all payoffs are normalized in [0, λ]. Then, to
this game we add an “imitation game” as follows. To the payoff matrix of the row player we
add a “block identity matrix” 1b(2×2) which is a 2n× 2n matrix with its diagonal 2× 2 blocks
having 1’s and the rest 0’s. To the payoff matrix of the column player we add a modified “block
identity matrix” which is like 1b(2×2) but with its entries shifted by two columns to the right
(modulo 2n).

For simplicity, given a strategy of a player in the bimatrix game, we refer to the total
probability mass of the two actions corresponding to the polymatrix node i ∈ [n] as the mass of
node i and we denote it as x(i), y(i) for the row and column player, respectively. The actions 0,
1 of node i and their probability masses are denoted by (i : a), and x(i : a), y(i : a), respectively,
for a ∈ {0, 1}. For ease of presentation in what follows, we will refer to the players of the
polymatrix game as “nodes” and reserve the word “players” for the bimatrix game’s participants.
We denote by NR(i) the neighbourhood of node i that belongs to the R-side of the polymatrix
game (and respectively NC(i) for a node i on the C-side).

First, we present modified versions of the respective results of [Rub18] tailored to the needs
of our reduction. Since their proofs are almost identical to those of the aforementioned paper,
we have preserved most of their notation.
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Lemma B.2 (Modified Lemma 9.3 of [Rub18]). In every (x, y) relative ε-WSNE, for λ < 1−ε
2 ,

x(i), y(i) ∈
[
1−ε−2λ

n , (1−ε−2λ)−1

n

]
.

Proof. Let tR = maxi x(i) and i∗R = argmaxi x(i), and let us call UR((i : a), y) the (expected)
payoff that the row player gets from playing action (i : a), a ∈ {0, 1} (respectively, UC(x, (i : a))
for the column player). We will show that, for any j ∈ [n], if x(j) < (1 − ε − 2λ)tR then
y(j + 1) = 0. For any action (j + 1 : a) that the column player picks, her payoff is at
most UC(x, (j + 1 : a)) ≤ x(j) + 2 · λ · tR. That is due to the imitation game that gives
her payoff at most x(j) and the payoffs induced due to her neighbours k ∈ N(j + 1) in the
polymatrix game that give her positive payoff3, combined with the fact that x(k) ≤ tR. Therefore,
UC(x, (j + 1 : a)) < (1− ε)tR, but the column player can guarantee a payoff of at least tR by
playing action (i∗R + 1 : a) for any a ∈ {0, 1}. This would contradict the ε-WSNE condition,
therefore y(j + 1) = 0. Similarly, for any j ∈ [n], if y(j) < (1− ε− 2λ)tC then x(j) = 0, where
tC = maxi y(i).

Now we claim that for every i ∈ [n], x(i), y(i) > 0. For the sake of contradiction assume
that x(i) = 0 without loss of generality. Then, since λ < (1 − ε)/2 and tR ≥ 1/n > 0, we get
x(i) < (1− ε− 2λ)tR, and therefore y(i+1) = 0. With a similar argument for y(i+1) we deduce
from the previous paragraph that x(i+ 1) = 0, and this inductively yields that for all i ∈ [n],
x(i) = y(i) = 0, a contradiction. Therefore, for all i ∈ [n], x(i), y(i) > 0. This, combined with
the above paragraph yields that for all i ∈ [n], x(i) ≥ (1− ε− 2λ)tR ≥ (1− ε− 2λ)/n.

The upper bound is deduced by the fact that if tR > (1− ε− 2λ)−1/n. Since there exists
a node i with x(i) ≤ 1/n (otherwise

∑
j∈[n] x(j) > 1), we have that x(i) < (1 − ε − 2λ)tR,

which cannot happen as shown in the first paragraph of the proof. Therefore, for any i ∈ [n],
x(i) ≤ tR ≤ (1− ε− 2λ)−1/n. A similar argument holds for tC which yields the upper bound
for y(i).

Corollary B.3 (Modified Corollary 9.4 of [Rub18]). In every (x, y) relative ε-WSNE, for
λ < 1−ε

2 , the expected utilities of both players for playing any action against the strategy of the

other player are in
[
1−ε−2λ

n , (1+2λ)(1−ε−2λ)−1

n

]
.

Proof. The lower bound comes from the lower bound of the above lemma and the fact that the
row player from any action (i : a), a ∈ {0, 1} against y, gets at least the payoff of the imitation
game, multiplied by y(i : a) + y(i : 1 − a) = y(i). The upper bound comes from the upper
bound of the above lemma and the fact that the row player from any action (i : a), a ∈ {0, 1}
against y gets from each entry ((i : a), j), j ∈ [n] of the matrix at most payoff 1 · y(i) from the
imitation game, and additional payoff of at most λ · y(i) from each of two neighbouring nodes in
the polymatrix game (note again that only two out of maximum three neighbours can give her
positive payoff). A symmetric argument holds for the column player’s bounds.

Fix β = 18.9. Now we will show that, given an ε′ < 1/3, for any (x, y) which is a relative
ε′/β-WSNE in the constructed bimatrix game, the marginal distributions of the actions (i : a),
a ∈ {0, 1} for each node i ∈ [n] constitute an (additive) ε′-WSNE of the original polymatrix
game. In particular, we will prove that the strategy profile where each node i in the polymatrix
game belonging to the R-side of the bipartite graph plays (x(i : 0)/x(i), x(i : 1)/x(i)), and
similarly each node j of the C side of the bipartite graph plays (y(j : 0)/y(j), y(j : 1)/y(j)) is
an ε′-WSNE.

For the sake of contradiction, assume that the marginal distributions of the node strategies
are not such an ε′-WSNE. Then, given the marginals induced by (x, y) there is a node i on
the left side of the bipartite graph (without loss of generality) for whom playing action (i : a)

3From the PPAD-hard ε-WSNE instances we construct for polymatrix games in Section 4.3.2, observe that at
most two neighbours (out of three) give positive payoff to the node. Namely, only its parents can give it positive
payoff while its children always give it 0 payoff.
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for some a ∈ {0, 1} against y gives her additive ε′ more expected utility than what the action
(i : 1− a) gives. This discrepancy, translated in the bimatrix game (where we have multiplied
all payoffs of the polymatrix game by λ) means that the difference in payoff would be at least
ε′ · λ · 1−ε−2λ

n due to Corollary B.3, where ε = ε′/β. Then, again by Corollary B.3 which bounds
her maximum utility from playing any action (i : a) against the mixed strategy y, we conclude
that her relative increase in expected payoff is at least

uR((i : 1− a), y) + ε′ · λ · 1−ε−2λ
n

uR((i : 1− a), y)
≥ 1 +

ε′ · λ · 1−ε−2λ
n

(1+2λ)(1−ε−2λ)−1

n

(by Corollary B.3)

= 1 + ε′ · λ

1 + 2λ
· (1− ε− 2λ)2

= 1 + β · ε · λ

1 + 2λ
· (1− ε− 2λ)2 (since ε = ε′/β).

We now find the value for λ that maximizes the above expression, namely, λ = −3+
√
17−8ε
8 . For

this value of λ and for every ε = ε′/β ≤ 1/57 we have that

1 + β · ε · λ

1 + 2λ
· (1− ε− 2λ)2 >

1

1− ε

Note that the optimum value of λ is potentially irrational, and therefore, not suitable as input to
the algorithm of our reduction. Nevertheless, the proof goes through for λ = 0.1383. The above
strict inequality shows that the action that the node deviated to gives the bimatrix player more
than relative 1/(1− ε) expected utility, and therefore by definition our initial profile (x, y) is not
a relative ε-WSNE (for ε = ε′/β), a contradiction. This completes the proof of Theorem B.1.

Remark 4. In fact, Theorem B.1 holds for any ε < 1
3β∗ , where β∗ is the optimum value from the

above proof. This β∗ is in (18.86, 18.87), but we have picked 18.9 for ease of presentation.
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