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We study the problem of computing approximate market equilibria in Fisher markets with separable piecewise-

linear concave (SPLC) utility functions. In this setting, the problem was only known to be PPAD-complete

for inverse-polynomial approximations. We strengthen this result by showing PPAD-hardness for constant

approximations. This means that the problem does not admit a polynomial time approximation scheme (PTAS)

unless PPAD = P. In fact, we prove that computing any approximation better than 1/11 is PPAD-complete. As

a direct byproduct of our main result, we get the same inapproximability bound for Arrow-Debreu exchange

markets with SPLC utility functions.
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1 Introduction

Fisher markets [Brainard and Scarf, 2005] are one of the foundational models that have shaped

modern economics. In a Fisher market, every buyer has a fixed budget that they spend on their

most favorable bundle of goods according to their utility function. The appealing fact for this type

of markets is that when the utilities of the buyers satisfy some “standard sufficient conditions”, then
a market equilibrium is guaranteed to exist. In a market equilibrium, the prices and the allocation of

the goods to the buyers are such that: (a) every buyer is allocated goods that maximize their utility,

and (b) the market clears, i.e., the supply of each good is exactly equal to the demand of that good.

When the utility functions of the buyers are linear, a market equilibrium can always be computed

in polynomial time [Devanur et al., 2008, Orlin, 2010, Végh, 2012]. However, the problem becomes

intractable as soon as one considers a very slight generalization of linear utilities: additive separable
piecewise linear concave (SPLC) utilities. A buyer with an SPLC utility function has a piecewise

linear concave utility for each good, and their utility for a bundle of goods is simply the sum of

their utilities for each of the individual goods.

Computing a market equilibrium in Fisher markets with SPLC utilities was shown to be a PPAD-

complete problem [Chen and Teng, 2009, Vazirani and Yannakakis, 2011], which means that the

problem is unlikely to admit a polynomial-time algorithm unless PPAD = P. This motivates the

study of approximate equilibria in which the condition that the market clears is replaced with an

approximate clearing constraint. In an 𝜀-approximate market equilibrium, we first normalize the

market so that there is exactly one unit of each good, and then we seek a price vector such that

every good 𝜀-clears, meaning that the discrepancy between between the supply and the demand

for any good is at most 𝜀.

Vazirani and Yannakakis [2011] actually showed that it is PPAD-complete to find an 𝜀-approximate

market equilibrium when 𝜀 is inversely polynomial in the size of the market, i.e., the number of

buyers and the number of goods. This ruled out fully polynomial-time approximation schemes
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(FPTAS) for the problem unless PPAD = P. However, the existence of a polynomial-time approxi-

mation scheme (PTAS) was not ruled out by this result, and a PTAS may well be good enough to

clear a market for most practical purposes.

Our contribution. This paper provides the first PPAD-completeness for 𝜀-approximate market

equilibria in Fisher markets for a constant 𝜀. Hence, a PTAS for Fisher markets cannot exist unless

PPAD = P.

Theorem 1.1. It is PPAD-complete to compute an 𝜀-approximate market equilibrium in Fisher
markets with SPLC utilities for any constant 𝜀 < 1/11.

We note that our hardness threshold, 1/11, is relatively large. If we recall that all goods are

normalized to have one unit available, then this result states that it is PPAD-complete to find any

approximate market equilibrium in which all of the goods clear to within 9% of their total supply.

So this essentially rules out the existence of polynomial-time algorithms that can clear a market in

practice.

Technical Overview. We prove our result via a reduction from the Pure-Circuit problem that

was recently introduced by Deligkas et al. [2022]. In this problem we are given a circuit with NOT,

NAND, and PURIFY gates, and we are required to find a satisfying assignment using the values

{0, 1,⊥}. The NOT gate behaves as usual on the values in {0, 1}, and has no constraints when the

input is ⊥. The NAND gate is required to output 0 if both inputs are 1, and is required to output 1

if at least one input is 0, and otherwise has no constraints. The PURIFY gate has one input and two

outputs. If the input is in {0, 1}, then that value should be copied to both outputs, while if the input

is ⊥, then at least one output should be in {0, 1}.
The use of the Pure-Circuit problem as a starting point for our reduction enables us to give

a construction that is arguably considerably simpler than previous hardness results for Fisher

markets. Prior work has used constructions in which one first sets up a price-regulating market,

which essentially gives a set of goods that are able to encode values within a certain range, and

then adds extra buyers to simulate a PPAD-hard problem, e.g., finding a Nash equilibrium of a

bimatrix game.

In contrast, the market that we construct essentially directly implements the gates of the Pure-

Circuit instance. For each variable in the Pure-Circuit we introduce a good, and the price of this

good encodes the value of the variable. Specifically we define a low price 𝐿 and a high price 𝐻 with

𝐿 < 𝐻 , and then a price below 𝐿 encodes a 0, a price above 𝐻 encodes a 1, while a price between

the two encodes ⊥.
Then we show that the NOT and NAND gates can be implemented by relatively simple gadgets

that each contain two buyers. The PURIFY gate is implemented using two chains of NOT gates,

where we carefully tweak the parameters of each of the NOT gates to ensure that the constraints

of the PURIFY gate are implemented.

Arrow-Debreu exchange markets. Finally, we also show that our hardness result for Fisher

markets implies a new hardness result for Arrow-Debreu exchange markets with SPLC utilities.

Specifically, we use a well-known reduction from Fisher markets to exchange markets that preserves

hardness for 𝜀-equilibria, and we use this to show that computing an 𝜀-equilibrium in an exchange

market is also PPAD-hard for all 𝜀 < 1/11.

While hardness for Arrow-Debreu exchange markets was already known for constant 𝜀 [Rubin-

stein, 2018], prior work had only shown this for some extremely small unknown constant, and so

that work did not rule out the existence of a polynomial-time algorithm that could clear a market

in practice. Our hardness result effectively rules this out unless PPAD=P.
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1.1 Related work

The problem of computing market equilibria, for both exact and approximate equilibria, has received

significant attention over the years. For Fisher markets, Vazirani and Yannakakis [2011] and Chen

and Teng [2009] have established PPAD-hardness for SPLC utilities albeit for a sub-constant 𝜀. On

the other hand, polynomial-time algorithms were derived for the cases where the utility functions

of the buyers are linear [Devanur et al., 2008, Orlin, 2010, Végh, 2012], homogeneous [Eisenberg,

1961], or weak gross substitutes [Codenotti et al., 2005].

Furthermore, when the number of goods is constant Kakade et al. [2004] gave a PTAS while Deva-

nur and Kannan [2008] gave a polynomial-time algorithm for exact equilibria. In fact, the algorithm

of [Devanur and Kannan, 2008] also works when the number of buyers is constant in the SPLC utility

setting. For non-separable PLC utilities Garg et al. [2022] derived a fixed parameter approximation

scheme that has the number of buyers as a parameter.

Matching markets is another important subclass of general Fisher markets. Alaei et al. [2017]

designed a polynomial-time algorithm for markets with a constant number of goods or buyers,

while Vazirani and Yannakakis [2020] derived a polynomial algorithm when the buyers have

dichotomous utilities. For one-sided matching markets, the most famous problem is the Hylland-

Zeckhauser market, for which the existence of an equilibrium was initially established in [Hylland

and Zeckhauser, 1979] and was recently simplified by Braverman [2021]. Even more recently, Chen

et al. [2022] have established PPAD-completeness for the problem.

There has also been interest in Fisher markets with additional constraints. Birnbaum et al. [2010],

Devanur [2004], and Vazirani [2010] considered the case where the utilities of the buyers depend

on prices of goods through spending constraints. Jalota et al. [2023] considered additional linear

constraints that include matching markets, and they gave a tâtonnement process which was found

to converge to a market equilibrium in experiments.

The Arrow-Debreu exchange market model [Arrow and Debreu, 1954] is another foundational

class of markets. In this setting, the goods are brought to the market by the buyers, who then

spend the revenue they get from selling their initial endowments. PPAD-hardness for Arrow-

Debreu market equilibria has been established for several different settings [Chen et al., 2009, 2017,

Codenotti et al., 2006, Garg et al., 2023] and in fact Rubinstein [2018] showed that it is PPAD-hard

to compute an 𝜀-equilibrium in Arrow-Debreu markets for a small unknown constant 𝜀. On the

positive side, there are several polynomial-time algorithms for linear utilities [Duan et al., 2016,

Duan and Mehlhorn, 2015, Garg and Végh, 2019, Jain, 2007, Ye, 2008], or for buyers with weak gross

substitutes utilities [Bei et al., 2019, Codenotti et al., 2005, Garg et al., 2023]. The various types

of market models have also been studied for the setting where the items are chores that provide

disutility to the agents [Boodaghians et al., 2022, Brânzei and Sandomirskiy, 2024, Chaudhury et al.,

2022a,b].

The Pure-Circuit problem was recently introduced in [Deligkas et al., 2022], where it was

used to prove strong, improved, PPAD-hardness results for a variety of problems related mainly to

approximate Nash equilibria. Since then it was further used in [Deligkas et al., 2023] to prove tight

PPAD-hardness for approximate Nash equilibria in graphical games, and in [Ioannidis et al., 2023]

to prove improved stronger PPAD-hardness in the problem of clearing financial networks. To the

best of knowledge, this is the first time that Pure-Circuit has been used to prove hardness for

market equilibria.

2 Preliminaries

2.1 Fisher Markets

Fisher markets. A Fisher market is given by a tuple (𝐺, 𝐵, (𝑒𝑖 )𝑖∈𝐵, (𝑢𝑖 )𝑖∈𝐵), where:
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• 𝐺 is a set of (divisible) goods. Without loss of generality, we assume that there is one unit

of each good available.
1

• 𝐵 is a set of buyers.

• For every 𝑖 ∈ 𝐵, 𝑒𝑖 > 0 is the budget of buyer 𝑖 .

• For every 𝑖 ∈ 𝐵, 𝑢𝑖 : R
|𝐺 |
≥0

→ R≥0 is the utility function of buyer 𝑖 . For any allocation

𝑥𝑖 ∈ R |𝐺 |
≥0

of goods to buyer 𝑖 (where 𝑥𝑖, 𝑗 ≥ 0 denotes the amount of good 𝑗 allocated

to buyer 𝑖), 𝑢𝑖 (𝑥𝑖 ) denotes the utility derived by the buyer. We assume that the utility

functions are separable piecewise-linear concave (SPLC), meaning that𝑢𝑖 (𝑥𝑖 ) can be written

as

∑
𝑗∈𝐺 𝑢𝑖, 𝑗 (𝑥𝑖, 𝑗 ), where each 𝑢𝑖, 𝑗 : R≥0 → R≥0 satisfies

(1) 𝑢𝑖, 𝑗 (0) = 0,

(2) 𝑢𝑖, 𝑗 is continuous and piecewise-linear,

(3) 𝑢𝑖, 𝑗 is concave but non-decreasing.

Optimal bundles. Given a price vector 𝑝 ∈ R |𝐺 |
≥0

, where 𝑝 𝑗 denotes the price of good 𝑗 , the

set of optimal bundles for buyer 𝑖 , denoted OPT𝑖 (𝑝) ⊆ R |𝐺 |
≥0

, is the set of optimal solutions of the

following optimization problem:

max 𝑢𝑖 (𝑥𝑖 )

s.t.

∑︁
𝑗∈𝐺

𝑝 𝑗𝑥𝑖, 𝑗 ≤ 𝑒𝑖

𝑥𝑖, 𝑗 ≥ 0 ∀𝑗 ∈ 𝐺.

(1)

Note that it is possible that OPT𝑖 (𝑝) = ∅, if some good has price 0, and the agent is never satiated

with this good.

Competitive equilibrium. For any 𝜀 ≥ 0, an 𝜀-approximate market equilibrium is a price

vector 𝑝 and an allocation vector 𝑥 = (𝑥𝑖 )𝑖∈𝐵 satisfying the following conditions:

(1) For each buyer 𝑖 , 𝑥𝑖 is an optimal bundle at prices 𝑝 , i.e., 𝑥𝑖 ∈ OPT𝑖 (𝑝).
(2) For each good 𝑗 , the market clears approximately up to 𝜀 units of good, i.e.,�����∑︁

𝑖∈𝐵
𝑥𝑖, 𝑗 − 1

����� ≤ 𝜀.

When 𝜀 = 0, this corresponds to an exact market equilibrium.

Existence of equilibria. The following condition is sufficient to guarantee the existence of a

market equilibrium [Maxfield, 1997, Vazirani and Yannakakis, 2011]:

Sufficient Condition: For every buyer 𝑖 ∈ 𝐵, there exists a good 𝑗 ∈ 𝐺 such that 𝑢𝑖, 𝑗 is a strictly

increasing function (i.e., buyer 𝑖 is never satiated with good 𝑗 ).

Computational problem. Let 𝜀 ≥ 0. The computational problem of computing an 𝜀-approximate

market equilibrium is defined as follows:

Input: A Fisher market (𝐺, 𝐵, (𝑒𝑖 )𝑖∈𝐵, (𝑢𝑖 )𝑖∈𝐵) with SPLC utilities satisfying the sufficient con-

dition for the existence of equilibria. For each 𝑖 ∈ 𝐵 and 𝑗 ∈ 𝐺 , 𝑢𝑖, 𝑗 is explicitly described

in the input, i.e., for each linear affine piece we are given the positions and values at its

endpoints.

Output: An 𝜀-approximate market equilibrium (𝑝, 𝑥).

1
This can be achieved by a simple normalization, and it simplifies the expression for the clearing constraint below.
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𝑢 𝑣

0 1

1 0

⊥ {0, 1,⊥}

NOT gate

𝑢 𝑣 𝑤

1 1 0

0 {0, 1,⊥} 1

{0, 1,⊥} 0 1

Else {0, 1,⊥}

NAND gate

𝑢 𝑣 𝑤

0 0 0

1 1 1

⊥ At least one

output in {0, 1}

PURIFY gate

Fig. 1. The truth tables of the three gates of Pure-Circuit.

Given (𝑝, 𝑥), the equilibrium conditions can be verified in polynomial time, because, for SPLC

utilities, the optimization problem (1) defining OPT𝑖 (𝑝) can be solved in polynomial time using

a simple greedy approach;
2
see, e.g., [Garg et al., 2015]. Together with the existence of solutions

guaranteed by the sufficient condition, this puts the problem in the complexity class TFNP of total

NP search problems. Prior work [Vazirani and Yannakakis, 2011] has shown that the problem lies

in the subclass PPAD of TFNP, even for 𝜀 = 0. In particular, exact rational solutions are guaranteed

to exist. The problem is known to be PPAD-complete for 𝜀 = 0, and also when 𝜀 is part of the

input and inverse-polynomial with respect to the description of the market [Chen and Teng, 2009,

Vazirani and Yannakakis, 2011]. No hardness result is known for any constant 𝜀 > 0.

2.2 The Pure-Circuit Problem

The Pure-Circuit problem. We will show our hardness result by reducing from the Pure-

Circuit problem, which is known to be PPAD-complete [Deligkas et al., 2022]. An instance of

the Pure-Circuit problem is given by a node set 𝑉 = [𝑛] and a set 𝐶 of gate-constraints (or just

gates). Each gate 𝑔 ∈ 𝐶 is of the form 𝑔 = (𝑇,𝑢, 𝑣,𝑤) where 𝑢, 𝑣,𝑤 ∈ 𝑉 are distinct nodes, and

𝑇 ∈ {NOT,NAND, PURIFY} is the type of the gate, with the following interpretation.

• If 𝑇 = NOT, then 𝑢 is the input of the gate, and 𝑣 is its output. (𝑤 is unused)

• If 𝑇 = NAND, then 𝑢 and 𝑣 are the inputs of the gate, and𝑤 is its output.

• If 𝑇 = PURIFY, then 𝑢 is the input of the gate, and 𝑣 and𝑤 are its outputs.

We require that each node is the output of exactly one gate.

A solution to instance (𝑉 ,𝐶) is an assignment x : 𝑉 → {0, 1,⊥} that satisfies all the gates (see
Fig. 1), i.e., for each gate 𝑔 = (𝑇,𝑢, 𝑣,𝑤) ∈ 𝐶 we have the following.

• If 𝑇 = NOT in 𝑔 = (𝑇,𝑢, 𝑣), then x satisfies

x[𝑢] = 0 =⇒ x[𝑣] = 1

x[𝑢] = 1 =⇒ x[𝑣] = 0.

• If 𝑇 = NAND in 𝑔 = (𝑇,𝑢, 𝑣,𝑤), then x satisfies

x[𝑢] = x[𝑣] = 1 =⇒ x[𝑤] = 0

(x[𝑢] = 0) ∨ (x[𝑣] = 0) =⇒ x[𝑤] = 1

• If 𝑇 = PURIFY, then x satisfies

{x[𝑣], x[𝑤]} ∩ {0, 1} ≠ ∅
x[𝑢] ∈ {0, 1} =⇒ x[𝑣] = x[𝑤] = x[𝑢] .

2
In fact, given only prices 𝑝 , it is possible to check in polynomial time whether there exists an allocation 𝑥 such that

(𝑝, 𝑥 ) is an 𝜀-approximate market equilibrium [Vazirani and Yannakakis, 2011]. So we could have equivalently defined the

computational problem to only seek equilibrium prices 𝑝 .
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The structure of a Pure-Circuit instance is captured by its interaction graph. This graph is

constructed on the vertex set 𝑉 = [𝑛] by adding a directed edge from node 𝑢 to node 𝑣 whenever 𝑣

is the output of a gate with input 𝑢. The total degree of a node is the sum of its in- and out-degrees.

Theorem 2.1 ([Deligkas et al., 2022]). Pure-Circuit is PPAD-complete, even when every node
of the interaction graph has in- and out-degree at most 2 and total degree at most 3.

3 Construction of the Market

Given an instance (𝑉 ,𝐶) of the Pure-Circuit problem, we will construct, in polynomial time, a

Fisher market that simulates that instance. In this section, we describe how the Fisher market will

be constructed.

The reference good. To implement our construction, we need a specific good that, in every

equilibrium, has a price that is close to 1. We call this good the reference good, and denote it as ref.

To ensure that the price of the reference good is close to 1, we use a reference buyer called 𝑏ref
who has a budget of 𝑒𝑏ref = 1, and the following utility function.

𝑢𝑏ref, 𝑗 (𝑥) =
{
𝑥 if 𝑗 = ref,

0 otherwise.

In other words, the reference buyer desires only the reference good, and will therefore spend all of

their money on it.

We will ensure that the total amount of demand on ref from all other buyers in the construction

will be significantly smaller than 1. This will ensure that in any approximate equilibrium, the price

of ref will be close to 1.

Variable encodings. For each variable in the Pure-Circuit instance, we introduce a good that

will encode that variable. The value assigned to each variable will be determined by the price of

the corresponding good.

Let 𝑠, 𝑎 ∈ R be two positive constants that will be fixed later. Given a price vector 𝑝 , we define a

high price 𝐻 = 𝑠 · 𝑝ref , and a low price 𝐿 = 𝑠 · 𝐻/𝑎 = 𝑠2 · 𝑝ref/𝑎. The idea is that we will fix 𝑠 < 1,

while 𝑎 will be chosen to be very large. Thus, the high price is a specified fraction of the reference

price, while the low price is very close to zero.

Given a price vector 𝑝 for the Fisher market, we extract an assignment to the variables of the

Pure-Circuit instance in the following way.

• If 𝑝𝑣 ≥ 𝐻 then 𝑣 = 1.

• If 𝑝𝑣 ≤ 𝐿 then 𝑣 = 0.

• Otherwise 𝑣 = ⊥.
Note that the values of 𝐻 and 𝐿 depend on the price of the reference good. Although we know

that the price of the reference good will be close to 1, it will not be exactly 1, and thus 𝐻 and 𝐿

will vary according to the particular price that is chosen for the reference good. We will use 𝐻low

and 𝐻high to denote a lower and upper bound for 𝐻 , and we will give exact values for these bounds

later. We likewise use 𝐿low and 𝐿high to give bounds for 𝐿.

Auxiliary buyers. The construction will use many auxiliary buyers, whose purpose is to buy a

pre-specified amount of a particular good. Given a good 𝑗 ∈ 𝐺 and an amount 𝑟 ∈ [0, 1] we define
the buyer 𝑏 = aux( 𝑗, 𝑟 ) in the following way.

• The buyer’s budget is 𝑒𝑏 = 𝑟 · 𝐻high.
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• The buyer’s utility for good 𝑗 is defined to be

𝑢𝑏,𝑗 (𝑥) =
{

2 · 𝑠 · 𝑥 if 𝑥 ≤ 𝑟 ,

2 · 𝑠 · 𝑟 otherwise.

• The buyer’s utility for ref is 𝑢𝑏,ref (𝑥) = 𝑥 .

• The buyer’s utility for all other goods is zero.

We will ensure that the price of good 𝑗 is no larger than 𝐻high, which means that the auxiliary

buyer always has enough money to buy 𝑟 units of good 𝑗 . The utilities have been chosen to ensure

that, if the good’s price is no larger than 𝐻high, the auxiliary buyer always strictly prefers to buy

𝑟 units of good 𝑗 before buying the reference good. Moreover, once 𝑟 units of good 𝑗 have been

bought by the auxiliary buyer, their marginal utility for good 𝑗 becomes 0, whereas they always

have positive marginal utility towards the reference good. Thus, as we will later show formally, in

any approximate equilibrium the auxiliary buyer will buy exactly 𝑟 units of good 𝑗 , and spend the

rest of their money on the reference good.

The interface between variables. As mentioned previously, for each variable in the Pure-

Circuit instance, there is a corresponding good whose price encodes the value of that variable. To

simulate the gates of the Pure-Circuit instance, we will use buyers that buy a certain proportion

of the variable-encoding goods.

To ensure that there is a consistent interface between the gates, we introduce a parameter

𝑡 ∈ (0, 0.5) with the intention that, if a gate 𝑔 uses variable 𝑣 as an input variable, then the buyers

that implement 𝑔 will buy 𝑡 units of the good that represents 𝑣 .

From Theorem 2.1 we have that the Pure-Circuit instance has out-degree at most two, so for

each variable-encoding good, we expect at most 2𝑡 units of the good to be bought by the gates

that take this variable as an input. Note however that some goods may not be used as an input

to exactly two gates. To address this, for each variable-encoding good 𝑗 that is used as an input

to only one gate, we introduce a buyer aux( 𝑗, 𝑡), who will buy 𝑡 units of that good to top-up the

amount that is bought. In the case where 𝑗 is used as an input to no other gate, we introduce two

such buyers instead.

In a perfect world, this would ensure that exactly 2𝑡 units of each variable-encoding good are

bought by the gates for which that good is an input. Unfortunately, as we will later show formally,

the gates may actually buy slightly less than 𝑡 units each, and this will be dealt with in our proofs.

NOT gates. We begin by building a NOT gate. The NOT gate is particularly important because

we will also use it to implement the PURIFY gate. For this reason, we implement a parameterized

gadget NOT(in, out, 𝑟 ), where in is the input good to the NOT gate, out is the output good, and

𝑟 ∈ [0, 1] is a constant. When the gadget is used to implement a NOT gate in the Pure-Circuit

instance, we will set 𝑟 = 𝑟NOT, where 𝑟NOT ∈ [0, 1] is a fixed parameter.

The gadget will have a buyer named the inverter, and also an auxiliary buyer. The interaction

between the buyers and the goods is shown below, where an arrow indicates that the buyer has a

non-zero utility function for that good.
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out in

ref

inverter

aux(out, 𝑟 )

The inverter is specified as follows.

• The budget of the inverter is 𝑒inverter = 𝑡 · 𝐻low.

• The inverter’s utility for in is

𝑢inverter,in (𝑥) =
{
𝑎 · 𝑥 if 𝑥 ≤ 𝑡 ,

𝑎 · 𝑡 otherwise.

• The inverter’s utility for out is 𝑢inverter,out (𝑥) = 𝑠 · 𝑥 .
• The inverter’s utility for ref is 𝑢inverter,ref (𝑥) = 𝑥 .

• The inverter’s utility for all other goods is zero.

Recall that we intend to set 𝑠 < 1 and 𝑎 to be very large. Thus, the inverter buyer is heavily

incentivized to buy 𝑡 units of the input good before buying anything else. However, once 𝑡 units of

the input good have been bought, the inverter no longer has any interest in buying more units.

We call 𝑡 the anti-endowment for the inverter: that buyer must
3
buy a specific amount of the good

before being able to spend money elsewhere.

The high-level idea is that if the input variable is 1, then 𝑝in ≥ 𝐻 ≥ 𝐻low. Since we have fixed the

budget of the inverter to be 𝑒inverter = 𝑡 · 𝐻low, this means that the inverter will spend all of their

budget buying their anti-endowment, and will have no money left to spend on the output good.

Thus, the demand on the output good will be low, and so its price cannot be high.

On the other hand, if the input variable is 0, then 𝑝in ≤ 𝐿 = 𝑠 ·𝐻/𝑎. Since we will set 𝑎 to be very

large, this means that the inverter spends almost no money buying their anti-endowment, and so

has essentially their entire budget left over. In this scenario, the inverter will have a large amount

of money to spend on the output good, which will cause it to have a high price.

The utility of the inverter towards the reference good serves to ensure that the output good’s

price cannot rise above 𝐻 . Since 𝐻 = 𝑠 · 𝑝ref , if 𝑝out > 𝐻 then the marginal utility of buying the

output good would be strictly less than 𝑠/(𝑠 · 𝑝ref) = 1/𝑝ref , whereas the marginal utility of buying

the reference good is 1/𝑝ref , and so in this scenario the inverter would spend all of their remaining

money on the reference good, and no money on the output good. We will ensure that the output

good fails to clear in this scenario, which will ensure that the price of the output good is capped at

𝐻 in any approximate equilibrium.

The auxiliary buyer allows us to change how much of the output good can be bought by the

inverter, since we can adjust the 𝑟 parameter to change how much of the output is taken by the

3
Actually, if the price of the output good is very close to zero, then the inverter may prefer to buy the output good before

the input good. We will deal with this case separately in our proofs.
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auxiliary buyer. The high-level idea here is that by changing 𝑟 , we can change how the output

good’s price changes relative to the inverter’s remaining budget after buying the anti-endowment.

This will be used critically when we use NOT gates to implement the PURIFY gate.

NAND gates. For eachNAND gate with inputs in1 and in2, and output out, we use the following

construction.

out

in1

in2

ref

inverter

aux(out, 𝑟NAND)

The construction uses two buyers. The auxiliary buyer has a parameter 𝑟NAND that will be fixed

later. The inverter buyer is slightly different than that of the NOT gate and is specified as follows.

• The budget of the inverter is 𝑒inverter = 2𝑡 · 𝐻low.

• The inverter’s utility for good 𝑗 ∈ {in1, in2} is

𝑢inverter, 𝑗 (𝑥) =
{
𝑎 · 𝑥 if 𝑥 ≤ 𝑡 ,

𝑎 · 𝑡 otherwise.

• The inverter’s utility for out is 𝑢inverter,out (𝑥) = 𝑠 · 𝑥 .
• The inverter’s utility for ref is 𝑢inverter,ref (𝑥) = 𝑥 .

• The inverter’s utility for all other goods is zero.

This is a straightforward generalization of the NOT gate to two inputs. The inverter now has a

budget of 2𝑡 · 𝐻low and an anti-endowment of 𝑡 units for both of the input goods. So if both inputs

have a high price, the inverter will spend all their money on the input goods, and so they will not

be able to increase the price of the output good. If either of the two inputs has a low price, then the

inverter will have money left over, and will be able to push the price of the output good higher.

PURIFY gates. For a PURIFY gate with input in and outputs out1 and out2, we use the following

construction.

in

NOT(𝑟 1

1
)

NOT(𝑟 2

1
)

𝑔1

1

𝑔2

1

NOT(𝑟 1

2
)

NOT(𝑟 2

2
)

𝑔1

2

𝑔2

2

· · ·

· · ·

out1

out2

We use two chains of 𝑑 NOT gates to compute the two outputs, where 𝑑 is a parameter. To do

this, we introduce intermediate goods {𝑔1

𝑗 , 𝑔
2

𝑗 : 1 ≤ 𝑗 ≤ 𝑑 − 1 }. To simplify the definition, we

use 𝑔1

0
= 𝑔2

0
= in, and we use 𝑔1

𝑑
= out1 and 𝑔2

𝑑
= out2. Then for each 𝑖 ∈ {1, 2}, and for each
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𝑗 ∈ {1, 2, . . . , 𝑑} we include a gadget NOT(𝑔𝑖𝑗−1
, 𝑔𝑖𝑗 , 𝑟

𝑖
𝑗 ) where 𝑟 𝑖𝑗 ∈ R is a parameter that we will

fix later.

We treat each of the NOT gates and each of the intermediate goods as full gates and variables in

our instance. This means that each intermediate good 𝑗 will also have an auxiliary buyer aux( 𝑗, 𝑡)
that buys 𝑡 units of the good, to compensate for the fact that the good is only used as an input to

one other gate.

The idea is that we will set 𝑑 to be some large even number. Therefore each chain of NOT gates

will have even length. So if the input variable is a 1 or 0, both chains of NOT gates will output that

value, as required by the PURIFY constraints. If the input good has a price that is strictly between 𝐿

and 𝐻 , meaning that it encodes a ⊥ value, then one of the two chains is required to output a value

in {0, 1}. We will ensure this by carefully selecting values for the parameters 𝑟 𝑖𝑗 .

More specifically, the parameters are chosen so that there exists a price 𝑝∗
in
such that, if the price

of the input good is at least 𝑝∗
in
, then the prices of the goods in the top chain will increase and we

will have that 𝑝out1 = 𝐻 . On the other hand, if 𝑝in is less than 𝑝∗
in
, then the prices in the bottom

chain will decrease and we will have that 𝑝out2 ≤ 𝐿. This implies that at least one of the two chains

will always output a pure value no matter what the input price is, as required by the PURIFY gate.

Circuit copies. So far we have described a full reduction from Pure-Circuit to a Fisher market,

and while this construction is strong enough to give hardness for a constant 𝜀, the bound that we

would obtain would be much smaller than 1/11. The main reason for this is the uncertainty in

the price of the reference good. As we mentioned earlier, this price should be close to 1, but as 𝜀

increases, our bounds on it get weaker.

To address this, we will introduce 𝑘 copies of the circuit, where each copy is only required to

work when the reference price is within a particular range. Specifically, letting 𝐻min := 𝑠/2 and

𝐻max := 2𝑠 , we divide the region [𝐻min, 𝐻max] into 𝑘 equally sized non-overlapping regions. Then

for each such region [𝑥,𝑦], we build a copy of the circuit setting 𝐻low = 𝑥 and 𝐻high = 𝑦. As we

will show, the price of the reference good in any 𝜀-equilibrium will be bounded by 𝑝−
ref

:= 1/2 and

𝑝+
ref

:= 2, and so we will indeed always have that 𝐻 ∈ [𝐻min, 𝐻max].
When we are given an approximate equilibrium of the Fisher market, we first find an interval

[𝑥,𝑦] that contains 𝐻 , and then decode the assignments to the Pure-Circuit instance from the

copy that corresponds to that interval, while ignoring all other copies.

The key advantage of this is that each circuit copy can now assume 𝐻low and 𝐻high are very close

together, which then increases the values of 𝜀 for which we can show hardness.

The sufficient condition. Finally, we will verify that the sufficient condition for the existence

of an equilibrium holds for our construction. Recall that this condition requires that for every buyer

𝑖 , there exists a good 𝑗 such that 𝑢𝑖, 𝑗 is a strictly increasing function. There are three types of buyers

in our market: inverters, auxiliary buyers, and the reference buyer. All of these buyers have the

same utility for the reference good, and so for every buyer 𝑖 in the market we have 𝑢𝑖,ref (𝑥) = 𝑥 .

Therefore the sufficient condition is satisfied.

4 Analysis

Fix any 𝜀 < 1/11. The construction described in the previous section uses several parameters. For

our proofs, we will fix these parameters to the following values. We first set 𝛿 := 11

4
· (1/11− 𝜀) > 0.
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Parameter Value Description

𝑡 4/11 The size of each inverter’s anti-endowment

𝑑 4 · ⌈ln(4/𝛿)⌉ The length of the NOT gate chains in a PURIFY gate

𝑘 110/𝛿 The number of copies of the circuit

𝑠 1/(20𝑘𝑑 |𝑉 |) The inverter’s marginal utility for the output good

𝑎 max{2, 4𝑠/𝛿} The inverter’s marginal utility for the input good

𝑟NOT 2/11 The value of 𝑟 used in the NOT gate

𝑟NAND 2/11 The value of 𝑟 used in the NAND gate

𝑟 1

𝑗 , 𝑗 is odd 0 The 𝑟 values used in the first NOT chain in a PURIFY gate

𝑟 1

𝑗 , 𝑗 is even 2/11

𝑟 2

𝑗 , 𝑗 is odd 2/11 The 𝑟 values used in the second NOT chain in a PURIFY gate

𝑟 2

𝑗 , 𝑗 is even 0

For the rest of this section, we will consider an 𝜀-approximate market equilibrium (𝑝, 𝑥) of the
market. Omitted proofs can be found in the appendix.

General properties of the construction. Before we prove the correctness of each of the

individual gates, we first prove some general properties of the construction that will be useful later.

We start by considering the reference good. Recall that the reference good was intended to have

price close to 1. The following lemma shows this this is indeed the case.

Lemma 4.1. We have 𝑝ref ∈ [𝑝−
ref
, 𝑝+

ref
], where 𝑝−

ref
= 1/2 and 𝑝+

ref
= 2. In particular, it follows that

𝐻 = 𝑠 · 𝑝ref ∈ [𝐻min, 𝐻max], where 𝐻min = 𝑠/2 and 𝐻max = 2𝑠 .

Proof. If 𝑝ref = 0, then, by construction, the reference buyer will demand an infinite amount of

good ref. In particular, OPT𝑏ref (𝑝) = ∅, and we cannot be at an 𝜀-equilibrium. Thus, we must have

𝑝ref > 0. In that case, any optimal bundle for buyer 𝑏ref will demand exactly 𝑒𝑏ref/𝑝ref = 1/𝑝ref units
of the reference good. If 𝑝ref < 𝑝−

ref
= 1/2, then buyer 𝑏ref demands 1/𝑝ref > 2 > 1 + 𝜀 units of good.

Since there is only one unit of good available, this is a contradiction to the 𝜀-clearing condition.

Thus, we must have 𝑝ref ≥ 𝑝−
ref
.

Let 𝐸−𝑏ref denote the sum of budgets of all buyers, except the reference buyer 𝑏ref, i.e., 𝐸−𝑏ref =∑
𝑖∈𝐵\{𝑏ref } 𝑒𝑖 . By construction, the budget of any buyer 𝑖 ≠ 𝑏ref satisfies 𝑒𝑖 ≤ 𝐻max. Indeed, the

budget of any such buyer is either 𝑡 ·𝐻low, or 2𝑡 ·𝐻low, or 𝑟 ·𝐻high for some 𝑟 ∈ [0, 1]. Furthermore,

we have |𝐵 \ {𝑏ref}| ≤ 4𝑘𝑑 |𝑉 |, since there are 𝑘 copies and in each copy there are at most 𝑑 |𝑉 |
goods, and for each such good there are at most four buyers having non-zero utility for it. Thus,

we can bound 𝐸−𝑏ref ≤ 4𝑘𝑑 |𝑉 |𝐻max.

We can now proceed to prove the upper bound on the price 𝑝ref . The total demand on the

reference good is at most (𝑒𝑏ref + 𝐸−𝑏ref )/𝑝ref . This corresponds to the case where all buyers spend

all of their budget on the reference good. In order for the reference good to 𝜀-clear, we must thus

have that (𝑒𝑏ref + 𝐸−𝑏ref )/𝑝ref ≥ 1 − 𝜀, i.e.,

𝑝ref ≤
𝑒𝑏ref + 𝐸−𝑏ref

1 − 𝜀
=

1

1 − 𝜀
+
𝐸−𝑏ref
1 − 𝜀

≤ 1

1 − 𝜀
+ 5𝑘𝑑 |𝑉 |𝐻max ≤

1

1 − 𝜀
+ 10𝑘𝑑 |𝑉 |𝑠 ≤ 2 = 𝑝+

ref

where we used 𝜀 < 1/11, 𝐸−𝑏ref ≤ 4𝑘𝑑 |𝑉 |𝐻max, 𝐻max = 2𝑠 , and 𝑠 ≤ 1/(20𝑘𝑑 |𝑉 |). □

Recall that we have 𝑘 copies of the circuit, and that each of the circuits is required to work only

when 𝑝ref is within the given range for that circuit. From now on for the rest of this section we

will focus only on the circuit copy that was built for the particular value of 𝑝ref in our equilibrium.

Observe that by construction we have 𝐻low ≤ 𝐻 ≤ 𝐻high in this copy. We can also apply Lemma 4.1

to obtain the following bounds, which will prove useful later. We have

𝐻high − 𝐻low ≤ 2𝑠/𝑘 (2)
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and thus

1 − 4/𝑘 ≤ 𝐻low/𝐻high ≤ 1 (3)

where we used 𝐻high ≥ 𝐻min = 𝑠/2.

The next lemma gives, for each NOT or NAND gate, an upper bound on the amount of the output

good that can be allocated to buyers other than the inverter which uses that good as an output.

Lemma 4.2. For any good 𝑗 ∈ 𝐺 \ {ref}, let 𝑖 be the inverter that implements the gate using 𝑗 as an
output variable. If the gate is a NOT gate with parameter 𝑟 , then the total amount of good 𝑗 allocated
to buyers other than 𝑖 is at most 2𝑡 + 𝑟 , while if the gate is a NAND gate, then the total amount 𝑗
allocated to buyers other than 𝑖 is at most 2𝑡 + 𝑟NAND.

Proof. The only buyers other than buyer 𝑖 who have non-zero utility toward good 𝑗 are:

• The auxiliary buyer from the NOT or NAND gate that outputs to good 𝑗 . A NAND gate

auxiliary will buy at most 𝑟NAND units of good 𝑗 , while an auxiliary for a NOT gate with

parameter 𝑟 will buy at most 𝑟 units of good 𝑗 .

• The inverters from gates that take good 𝑗 as an input, who each can buy at most 𝑡 units of

good 𝑗 .

• Auxiliary buyers that buy at most 𝑡 units of good 𝑗 whenever that good is not used as an

input to exactly two other gates.

These buyers cannot buy more than the amount specified above because once they have been

allocated their specified amount, their marginal utility for good 𝑗 becomes 0, whereas by the

sufficiency condition, all buyers have at least one good with positive marginal utility for which

they are never satiated. The same is true for all buyers that have utility 0 for good 𝑗 .

Hence, for a NOT gate with parameter 𝑟 , the total amount demanded by buyers other than buyer

𝑖 is at most 𝑟 + 2𝑡 while for a NAND gate total amount demanded by buyers other than buyer 𝑖 is at

most 𝑟NAND + 2𝑡 . □

The next lemma states that for each NOT or NAND gate, the inverter must be allocated strictly

more than 0 units of the output good.

Lemma 4.3. For any good 𝑗 ∈ 𝐺 \ {ref}, let 𝑖 be the inverter that implements the NOT or NAND
gate that has 𝑗 as its output variable. Then, buyer 𝑖 is allocated strictly more than 0 units of good 𝑗 .

Next we prove that price of every good other than the reference good can have price at most 𝐻 .

Lemma 4.4. For any good 𝑗 ∈ 𝐺 \ {ref}, 0 < 𝑝 𝑗 ≤ 𝐻 .

The next lemma states that the auxiliary players always do their jobs correctly, meaning that

they buy exactly as much of the target good as we have specified.

Lemma 4.5. For any auxiliary buyer 𝑖 ∈ 𝐵 with target good 𝑗 ∈ 𝐺 \ {ref} and mandated amount
𝑟 ∈ [0, 1], the buyer is allocated exactly 𝑟 units of good 𝑗 , i.e., 𝑥𝑖, 𝑗 = 𝑟 .

4.1 Bounds on anti-endowment purchases

Recall that our intention is that for each variable-encoding good, the gadgets that take that good as

an input should purchase 𝑡 units of the good as an anti-endowment. As we mentioned earlier, this

is unfortunately not the case, and it is possible that less that 𝑡 units are purchased by each gadget.

In this section we formally prove bounds on how much each gadget purchases.

The following lemma shows that if the output good has price strictly greater than 𝐿, then the

inverter buyer must purchase their full anti-endowment before buying any other good. In particular,

since Lemma 4.3 requires the inverter to spend non-zero money on the output good, this means

that the inverter must buy 𝑡 units of all input goods.
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Lemma 4.6. Let 𝑗 be an inverter in any NOT or NAND gate. If 𝑝out > 𝐿 then
• if the gate is a NOT gate then 𝑗 must buy 𝑡 units of in before buying any other good; and
• if the gate is a NAND gate then 𝑗 must buy 𝑡 units of in1 and 𝑡 units of in2 before buying any
other good.

Proof. If the gate is a NOT gate, then the inverter’s marginal utility for in is 𝑎/𝑝in ≥ 𝑎/𝐻 , where

the second inequality comes from Lemma 4.4. On the other hand, their marginal utility for out is

𝑠/𝑝out < 𝑠/𝐿 = 𝑎/𝐻 , and their marginal utility for ref is 1/𝑝ref = 𝑠/𝐻 . Since 𝑠 < 𝑎, the inverter will

buy up to 𝑡 units of in before buying any other good.

For the case where the gate is a NAND gate, we have that the inverter’s marginal utility for in1

is 𝑎/𝑝in1 ≥ 𝑎/𝐻 , and the inverter’s marginal utility for in2 is 𝑎/𝑝in2 ≥ 𝑎/𝐻 , where in both cases

the second inequality comes from Lemma 4.4. We can now use the same argument as above to

conclude that the inverter must buy 𝑡 units of both in1 and in2 before buying any other good. □

The only remaining case is when 𝑝out ≤ 𝐿. In this case the inverter may actually purchase the

output good before buying any of the input goods. However, since 𝐿 is very close to zero, the

maximum amount of money that the inverter can spend on the output good without violating the

𝜀-clearing constraint is also very small. This may cause the inverter to buy slightly less than their

full anti-endowments. The following pair of lemmas give formal bounds on this for NOT gates and

NAND gates, respectively.

Lemma 4.7. For any NOT gate, the inverter’s allocation of the input good, in, satisfies 𝑥inverter,in ∈
[𝑡 − 3/𝑘, 𝑡].
Lemma 4.8. For any NAND gate, the inverter buyer’s allocations of the input goods, in1 and in2,

satisfy 𝑥inverter,in1, 𝑥inverter,in2 ∈ [𝑡 − 5/𝑘, 𝑡].
We do not need to treat the PURIFY gates separately, since each PURIFY gate is constructed

entirely out of NOT gates. Combining the previous two lemmas gives the following bound.

Lemma 4.9. For any gate, the total amount of the output good that is allocated to buyers that are
not part of the gate’s construction lies in [2𝑡, 2𝑡], where 𝑡 := 𝑡 − 5/𝑘 .

4.2 Correctness of the gates

We now show that the gate constructions correctly simulate the gates of a Pure-Circuit. In this

section we will also use the notation 𝐿high := 𝑠 · 𝐻high/𝑎. Since 𝐻 ∈ [𝐻low, 𝐻high] and 𝐿 = 𝑠 · 𝐻/𝑎,
we thus also have 𝐿 ≤ 𝐿high.

NOT gates. The constraints of a NOT gate in a Pure-Circuit only require the gate to work

when the input is either 0 or 1. So to prove that the NOT gate works, it is sufficient to consider

the cases where 𝑝in ≤ 𝐿 and 𝑝in ≥ 𝐻 . However, since we use NOT gates to implement PURIFY

gates, and since PURIFY gates must output a pure value even when the input is ⊥, we will need to

understand the relationship between the price of the output good and the price of the input good

even when 𝐿 < 𝑝in < 𝐻 . We do this in the following pair of lemmas, which give upper and lower

bounds on 𝑝out with respect to 𝑝in.

Lemma 4.10. For any NOT(in, out, 𝑟 ) gate with 𝑟 ∈ [0, 1] satisfying 1 − 2𝑡 − 𝑟 − 𝜀 > 0, we have

𝑝out ≤ max

(
𝐿, (𝐻low − 𝑝in) ·

𝑡

1 − 2𝑡 − 𝑟 − 𝜀

)
.

Lemma 4.11. For any NOT(in, out, 𝑟 ) gate with 𝑟 ∈ [0, 1] satisfying 1 − 2𝑡 − 𝑟 − 𝜀 > 0, we have

𝑝out ≥ min

(
𝐻, (𝐻low − 𝑝in) ·

𝑡

1 − 2𝑡 − 𝑟 + 𝜀

)
.
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We can now prove that theNOT gate works for pure values by applying the previous two lemmas.

Lemma 4.12. For each NOT gate with input in and output out, we have the following.
• If 𝑝in ≥ 𝐻 then 𝑝out ≤ 𝐿.
• If 𝑝in ≤ 𝐿 then 𝑝out ≥ 𝐻 .

Proof. For the first claim we can apply Lemma 4.10 to obtain

𝑝out ≤ max

(
𝐿, (𝐻low − 𝑝in) ·

𝑡

(1 − 2𝑡 − 𝑟NOT − 𝜀)

)
≤ max

(
𝐿, (𝐻low − 𝐻 ) · 𝑡

(1 − 2𝑡 − 𝑟NOT − 𝜀)

)
≤ max (𝐿, 0)
= 𝐿,

where the second inequality uses the fact that 𝑝in ≥ 𝐻 , and the third inequality used the fact that

𝐻low − 𝐻 < 0, that 𝑡 > 0, and that 1 − 𝜀 − 2𝑡 − 𝑟NOT = 1/11 − 𝜀 > 0.

For the second claim we can apply Lemma 4.11 to obtain

𝑝out ≥ min

(
𝐻, (𝐻low − 𝑝in) ·

𝑡

1 − 2𝑡 − 𝑟NOT + 𝜀

)
≥ min

(
𝐻, (𝐻low − 𝐿high) ·

𝑡

1 − 2𝑡 − 𝑟NOT + 𝜀

)
where the second inequality uses the fact that 𝑝in ≤ 𝐿 ≤ 𝐿high.

(𝐻low − 𝐿high) ·
𝑡

1 − 2𝑡 − 𝑟NOT + 𝜀
≥ (𝐻 − 2𝑠/𝑘 − 𝑠 · 𝐻high/𝑎) ·

𝑡

1 − 2𝑡 − 𝑟NOT + 𝜀

≥ (𝐻 − 2𝑠/𝑘 − 𝑠 · (𝐻 + 2𝑠/𝑘)/𝑎) · 𝑡

1 − 2𝑡 − 𝑟NOT + 𝜀

≥ (𝐻 − 𝐻/𝑘 − 𝑠 · (𝐻 + 𝐻/𝑘)/𝑎) · 𝑡

1 − 2𝑡 − 𝑟NOT + 𝜀

≥ (1 − 2/𝑘 − 2/𝑘2) · 𝐻 · 𝑡

1 − 2𝑡 − 𝑟NOT + 𝜀
.

The second inequality uses the fact that 𝐻low ≥ 𝐻 − 2𝑠/𝑘 which arises from Equation (2) and that

𝐿high = 𝑠 · 𝐻high/𝑎 by definition. The third inequality uses the fact that 𝐻high ≤ 𝐻 + 2𝑠/𝑘 which

again arises from Equation (2). The fourth inequality uses the fact that 𝐻 = 𝑠 · 𝑝ref ≤ 2𝑠 from

Lemma 4.1. The fifth inequality uses the fact that 𝑠 ≤ 1/(20𝑘𝑑 |𝑉 |) ≤ 1/𝑘 and 𝑎 ≥ 1. Since 𝑘 ≥ 3,

we have that (1 − 2/𝑘 − 2/𝑘2) > 0, and so we can continue with the following chain of inequalities

on the multiplier of 𝐻

𝑡 · (1 − 2/𝑘 − 2/𝑘2)
1 − 2𝑡 − 𝑟NOT + 𝜀

≥ 4/11 · (1 − 2/𝑘 − 2/𝑘2)
1 − 8/11 + 5/𝑘 − 𝑟NOT + 𝜀

≥ 4/11 · (1 − 2/𝑘 − 2/𝑘2)
2/11 + 5/𝑘

≥ 1.

The first inequality used the fact that 𝑡 ≥ 𝑡 − 5/𝑘 from Lemma 4.9, the fact that 𝑡 = 4/11 by

definition, the second inequality uses the fact that 𝑟NOT = 2/11, and the final inequality uses the

fact that 𝑘 ≥ 32. So we have shown that 𝑝out ≥ max(𝐻,𝐻 ), and therefore we can conclude that

𝑝out ≥ 𝐻 . □
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NAND gates. For NAND gates we simply need to verify that the gate works for pure inputs.

The following pair of lemmas shows that the NAND gate construction correctly implements the

constraints of the NAND gate.

Lemma 4.13. For eachNAND gate with inputs in1 and in2 and output out, if 𝑝in1 ≥ 𝐻 and 𝑝in2 ≥ 𝐻 ,
then 𝑝out ≤ 𝐿.

Lemma 4.14. For each NAND gate with inputs in1 and in2 and output out, if there exists an input
good 𝑗 ∈ {in1, in2} such that 𝑝 𝑗 ≤ 𝐿, then 𝑝out ≥ 𝐻 .

Proof. Assume, for the sake of contradiction, that 𝑝out < 𝐻 . We have that the marginal utility

of buying the reference good is 1/𝑝ref = 𝑠/𝐻 , whereas the marginal utility of the output good is

𝑠/𝑝out > 𝑠/𝐻 . Thus the inverter strictly prefers the output good to the reference good. Since the

inverter can never be satiated by the output good, this means that the inverter cannot buy the

reference good.

Furthermore, the inverter cannot buy more than 𝑡 units of either of the input goods, because the

inverter’s marginal utility becomes 0 once 𝑡 units have been bought. This means that the inverter

can spend at most 𝑡 · 𝑝in1 money on in1 and 𝑡 · 𝑝in2 on in2. The inverter’s remaining budget will

therefore be at least

𝑒inverter − 𝑡 · 𝑝in1 − 𝑡 · 𝑝in2 = 𝑡 · (2𝐻low − 𝑝in1 − 𝑝in2)
≥ 𝑡 · (2𝐻low − 𝐻 − 𝐿)

money left over after buying all goods other than out, where the final inequality has used the

assumption that one of the two input goods 𝑗 satisfies 𝑝 𝑗 ≤ 𝐿 while the other has price at most 𝐻

due to Lemma 4.4. This money must therefore be spent on out. Therefore, the number of units of

the output good bought by the inverter will be at least

𝑡 · (2𝐻low − 𝐻 − 𝐿)/𝑝out ≥ 𝑡 · (2𝐻low − 𝐻 − 𝐿)/𝐻
≥ 𝑡 · (2𝐻low − 𝐻high − 𝐿high)/𝐻high

≥ 𝑡 · (2𝐻low − 𝐻high − 𝑠 · 𝐻high)/𝐻high

≥ 𝑡 · (2𝐻low − 1.05𝐻high)/𝐻high

≥ 𝑡 · (2𝐻low/𝐻high − 1.05)
≥ 𝑡 · (2 · (1 − 4/𝑘) − 1.05)
> 0.75𝑡

= 3/11.

The first inequality uses the fact that 𝑝out ≤ 𝐻 while the second inequality uses the fact that

𝐻 ≤ 𝐻high and 𝐿 ≤ 𝐿high. The third inequality uses the fact that 𝐿high = 𝑠 · 𝐻high/𝑎 by definition,

and since 𝑎 ≥ 1 we therefore have 𝐿high ≤ 𝑠 · 𝐻high. The fourth inequality uses the fact that

𝑠 ≤ 1/(20𝑘𝑑 |𝑉 |) ≤ 1/20. The sixth inequality uses fact that 𝐻low/𝐻high ≥ 1 − 4/𝑘 from Equation

Equation (3), and the final inequality uses the fact that 𝑘 > 40 and the fact that 𝑡 = 4/11.

By Lemma 4.9 we have that buyers who are external to the NAND gate will buy at least 2𝑡 units

of the output good, and by Lemma 4.5 we have that 𝑟NAND units of the output good will be bought

by the auxiliary buyer of the NAND gate. Since the good must 𝜀-clear, this means that the number

of units of the output good that the inverter can buy is at most

1 − 2𝑡 − 𝑟NAND + 𝜀 < 1 − 8/11 + 10/𝑘 − 2/11 + 1/11

= 2/11 + 10/𝑘.
< 3/11.
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where the first inequality uses the fact that 𝑡 ≥ 𝑡 − 5/𝑘 from Lemma 4.9, that 𝑟NAND = 2/11, and

that 𝜀 < 1/11, while the second inequality uses the fact that 𝑘 > 110.

So we have shown that the inverter must buy strictly more than 3/11 units of the output good, but

also can buy strictly less than 3/11 units of the output good, so we have arrived at a contradiction. □

PURIFY gates. We now prove the correctness of the PURIFY gates. For the proofs of this section,

we will use the following auxiliary notation. Let 𝐴 := 1−2𝑡−𝑟−𝜀
𝑡

, 𝐴′
:= 1−2𝑡−𝑟 ′−𝜀

𝑡
, 𝐵 := 1−2𝑡−𝑟+𝜀

𝑡
,

𝐵′
:= 1−2𝑡−𝑟 ′+𝜀

𝑡
, where 𝐴,𝐴′, 𝐵, ∈ (0, 1), and 0 < 𝐵′ = 1 − 4/𝑘 − 𝑠/𝑎 < 1.

In the following two lemmas and corollary, we prove a relationship between the input price to a

chain of NOT gates and the output price.

Lemma 4.15. Consider a chain of gates NOT(in,mid, 𝑟 ), NOT(mid, out, 𝑟 ′). For any 𝑃 ∈ [𝐿,𝐻 ], if
𝑝in ≥ 𝐻low · (1 −𝐴) + 𝑃 · 𝐴𝐵′ then 𝑝out ≥ 𝑃 .

Lemma 4.16. Consider a chain of gates NOT(in,mid, 𝑟 ), NOT(mid, out, 𝑟 ′). For any 𝑃 ∈ [𝐿,𝐻 ], if
𝑝in ≤ 𝐻low (1 − 𝐵) + 𝑃 · 𝐴′𝐵 then 𝑝out ≤ 𝑃 .

Corollary 4.17. For some even 𝑑 ≥ 2, consider a chain made by connecting 𝑑/2 pairs of gates
NOT(𝑔 𝑗−1, 𝑔 𝑗 , 𝑟 ), NOT(𝑔 𝑗 , 𝑔 𝑗+1, 𝑟

′), where 𝑗 ∈ {1, 3, 5, . . . , 𝑑 − 1}. Also, let in := 𝑔0, and out := 𝑔𝑑 be
the input and output of the chain, respectively.

• If 𝑝in ≥ 𝐻low · 1−𝐴
1−𝐴𝐵′ + (𝐴𝐵′)𝑑/2 ·

(
𝐻 − 𝐻low · 1−𝐴

1−𝐴𝐵′
)
, then 𝑝out ≥ 𝐻 , and

• if 𝑝in ≤ 𝐻low · 1−𝐵
1−𝐴′𝐵 + (𝐴′𝐵)𝑑/2 ·

(
𝐿 − 𝐻low · 1−𝐵

1−𝐴′𝐵

)
, then 𝑝out ≤ 𝐿.

Proof. By construction, the last pair’s input serves as the output of the previous pair, and so on,

until the second pair’s input serves as the output of the first pair. Suppose now that we require the

output of the chain to be at least 𝑃 ∈ [𝐿,𝐻 ]. Then by repeatedly applying the bound of Lemma 4.15,

i.e., substituting 𝑃 with 𝐻low · (1 −𝐴) + 𝑃 · 𝐴𝐵′
for 𝑖 times, and finally setting 𝑃 = 𝐻 , we get the

first part of the statement.

To prove the first part of the statement, let the lower bound for the input of the (𝑑/2−𝑖+1)-st pair
of NOT gates be 𝑃𝑖 , for 𝑖 ∈ {1, . . . , 𝑑/2}. Now set 𝑃0 = 𝐻 , and observe that the first time we substitute

(i.e., we consider only the last pair of gates), the lower bound for 𝑝in becomes 𝑃1 := 𝐻low · (1 −𝐴)+𝑃0 ·
𝐴𝐵′

which agrees with the first part of the statement for 𝑑 = 2. We will use this as a base case. Now,

given that for some 𝑖 ∈ {1, . . . , 𝑑/2− 1} it is 𝑃𝑖 := 𝐻low · 1−𝐴
1−𝐴𝐵′ + (𝐴𝐵′)𝑖 ·

(
𝑃0 − 𝐻low · 1−𝐴

1−𝐴𝐵′
)
, we will

prove that if 𝑃𝑖+1 = 𝐻low · (1 −𝐴) +𝑃𝑖 ·𝐴𝐵′
, then 𝑃𝑖+1 = 𝐻low · 1−𝐴

1−𝐴𝐵′ + (𝐴𝐵′)𝑖+1 ·
(
𝑃0 − 𝐻low · 1−𝐴

1−𝐴𝐵′
)
.

Indeed, by this substitution we get

𝑃𝑖+1 = 𝐻low · (1 −𝐴) +
(
𝐻low · 1 −𝐴

1 −𝐴𝐵′ + (𝐴𝐵′)𝑖 ·
(
𝑃0 − 𝐻low · 1 −𝐴

1 −𝐴𝐵′

))
· 𝐴𝐵′

= 𝐻low · (1 −𝐴)
(
1 + 𝐴𝐵′

1 −𝐴𝐵′

)
+ (𝐴𝐵′)𝑖 ·

(
𝑃0 − 𝐻low · 1 −𝐴

1 −𝐴𝐵′

)
· 𝐴𝐵′

= 𝐻low · 1 −𝐴

1 −𝐴𝐵′ + (𝐴𝐵′)𝑖+1 ·
(
𝑃0 − 𝐻low · 1 −𝐴

1 −𝐴𝐵′

)
,

therefore, by induction on 𝑖 until 𝑖 = 𝑑/2, we complete the first statement of the lemma, for 𝑃0 = 𝐻 .

The second part of the proof is symmetric, using Lemma 4.16 and 𝑃0 = 𝐿, and we omit it. □

We now prove that the PURIFY gate is correct. Specifically, we consider a PURIFY gate with

an input good in and two output goods out1, out2. It consists of two chains of NOT gates; one,

called chain 1, with input in and output out1, and the other, called chain 2, with input in and

output out2. Each chain contains 𝑑/2 pairs of NOT gates, where 𝑑 ≥ 4 ⌈ln(4/𝛿)⌉ is an even number.

Each chain 𝑖 ∈ {1, 2} has pairs of gates NOT(𝑔𝑖𝑗−1
, 𝑔𝑖𝑗 , 𝑟

𝑖
𝑗 ), NOT(𝑔𝑖𝑗 , 𝑔𝑖𝑗+1

, 𝑟 𝑖𝑗+1
), where the𝑤-th pair,
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𝑤 ∈ {1, . . . , 𝑑/2} corresponds to the aforementioned 𝑗-th and ( 𝑗 + 1)-st NOT gates, with 𝑗 = 2𝑤 − 1.

Also, the first good of both chains is common, i.e., 𝑔1

0
= 𝑔2

0
. Finally, chain 1 has in := 𝑔1

0
, out1 := 𝑔1

𝑑
,

𝑟 1

𝑗 = 0 for 𝑗 odd, and 𝑟 1

𝑗 = 2/11 for 𝑗 even; chain 2 has in := 𝑔2

0
, out2 := 𝑔2

𝑑
, 𝑟 2

𝑗 = 2/11 for 𝑗 odd, and

𝑟 2

𝑗 = 0 for 𝑗 even.

Lemma 4.18. For each PURIFY gate we have the following.
• If 𝑝in ≥ 𝐻 , then 𝑝out1 ≥ 𝐻 and 𝑝out2 ≥ 𝐻 .
• If 𝑝in ≤ 𝐿, then 𝑝out1 ≤ 𝐿 and 𝑝out2 ≤ 𝐿.
• If 𝑝in ∈ (𝐿,𝐻 ), then at least one of 𝑝out1, 𝑝out2 is outside of (𝐿, 𝐻 ).

5 Inapproximability for Arrow-Debreu Exchange Markets

In this section we show that our inapproximability result also applies to Arrow-Debreu exchange

markets.

Exchangemarkets. An exchange market is given by a tuple

(
𝐺, 𝐵, (𝑤𝑖, 𝑗 )𝑖∈𝐵,𝑗∈𝐺 , (𝑢𝑖 )𝑖∈𝐵

)
, where:

• 𝐺 is a set of (divisible) goods.

• 𝐵 is a set of buyers (or traders).

• For every 𝑖 ∈ 𝐵 and 𝑗 ∈ 𝐺 ,𝑤𝑖, 𝑗 ≥ 0 is the endowment of good 𝑗 owned by buyer 𝑖 . Without

loss of generality, we assume that there is one unit of each good available, i.e.,

∑
𝑖∈𝐵𝑤𝑖, 𝑗 = 1

for all 𝑗 ∈ 𝐺 .

• For every 𝑖 ∈ 𝐵, 𝑢𝑖 : R
|𝐺 |
≥0

→ R≥0 is an SPLC utility function, as defined in the preliminaries.

Optimal bundles. Given a price vector 𝑝 ∈ R |𝐺 |
≥0

, the set of optimal bundles for buyer 𝑖 , denoted

OPT𝑖 (𝑝) ⊆ R |𝐺 |
≥0

, is the set of optimal solutions of the following optimization problem:

max 𝑢𝑖 (𝑥𝑖 )

s.t.

∑︁
𝑗∈𝐺

𝑝 𝑗𝑥𝑖, 𝑗 ≤
∑︁
𝑗∈𝐺

𝑝 𝑗𝑤𝑖, 𝑗

𝑥𝑖, 𝑗 ≥ 0 ∀𝑗 ∈ 𝐺.

In other words, the budget of the buyer is the amount of money obtained by selling its endowment.

Existence of equilibria. The definition of market equilibrium is identical to the one given

for Fisher markets in the preliminaries.
4
The following condition is sufficient to guarantee the

existence of a market equilibrium for exchange markets [Maxfield, 1997, Vazirani and Yannakakis,

2011]:

Sufficient Condition: The economy graph of the market is strongly connected. This graph is

defined on the set of buyers 𝐵 by introducing a directed edge from buyer 𝑖 to buyer 𝑖′ if
there exists a good 𝑗 ∈ 𝐺 such that𝑤𝑖, 𝑗 > 0 and 𝑢𝑖′, 𝑗 is a strictly increasing function.

Theorem 5.1. It is PPAD-complete to compute an 𝜀-approximate market equilibrium in Arrow-
Debreu exchange markets with SPLC utilities for any constant 𝜀 < 1/11.

Proof. To prove this result we use a simple folklore reduction from Fisher markets to exchange

markets. Fix any 𝜀 < 1/11 and let (𝐺, 𝐵, (𝑒𝑖 )𝑖∈𝐵, (𝑢𝑖 )𝑖∈𝐵) denote a Fisher market that satisfies

the sufficient condition for Fisher markets. We construct the corresponding exchange market

(𝐺, 𝐵, (𝑤𝑖, 𝑗 )𝑖∈𝐵,𝑗∈𝐺 , (𝑢𝑖 )𝑖∈𝐵), where the endowments are given by

𝑤𝑖, 𝑗 :=
𝑒𝑖∑

𝑘∈𝐵 𝑒𝑘
4
This is sometimes called an 𝜀-tight market equilibrium; see the discussion in [Chen et al., 2017].
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for all 𝑖 ∈ 𝐵 and 𝑗 ∈ 𝐺 . Note that have
∑

𝑖∈𝐵𝑤𝑖, 𝑗 = 1 for all 𝑗 ∈ 𝐺 , as desired. Furthermore, it is

easy to see that the exchange market satisfies the sufficient condition, because we have𝑤𝑖, 𝑗 > 0 for

all 𝑖, 𝑗 and moreover, by the sufficient condition for the Fisher market, for any 𝑖 ∈ 𝐵 there exists

a good 𝑗 ∈ 𝐺 such that 𝑢𝑖, 𝑗 is a strictly increasing function. Thus, the economy graph is strongly

connected.

Now consider any 𝜀-approximate market equilibrium (𝑝, 𝑥) of the exchange market. It is easy to

see that the prices are invariant to scaling, so without loss of generality we can assume that∑︁
𝑗∈𝐺

𝑝 𝑗 =
∑︁
𝑖∈𝐵

𝑒𝑖 .

As a result the budget available to buyer 𝑖 in the exchange market at prices 𝑝 is∑︁
𝑗∈𝐺

𝑝 𝑗𝑤𝑖, 𝑗 =
∑︁
𝑗∈𝐺

𝑝 𝑗

𝑒𝑖∑
𝑘∈𝐵 𝑒𝑘

= 𝑒𝑖

∑
𝑗∈𝐺 𝑝 𝑗∑
𝑘∈𝐵 𝑒𝑘

= 𝑒𝑖 .

But this is exactly the budget of buyer 𝑖 in the Fisher market, so it follows that bundle 𝑥𝑖 is also

optimal for buyer 𝑖 in the Fisher market. Finally, since

∑
𝑖∈𝐵𝑤𝑖, 𝑗 = 1 for all 𝑗 ∈ 𝐺 , the 𝜀-clearing

constraint in the exchange market and Fisher market are identical. It follows that (𝑝, 𝑥) is also an

𝜀-approximate market equilibrium for the Fisher market. Thus, finding an 𝜀-approximate market

equilibrium (𝑝, 𝑥) of the exchange market is PPAD-hard. Furthermore, membership in PPAD is

known from [Vazirani and Yannakakis, 2011]. □
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A Omitted proofs from Section 4

Proof of Lemma 4.3. From Lemma 4.2 we have that buyers other than buyer 𝑖 can buy at most

max

(
{𝑟NOT, 𝑟NAND} ∪ {𝑟𝑝𝑞 : 1 ≤ 𝑝 ≤ 2, 1 ≤ 𝑞 ≤ 𝑑}

)
+ 2𝑡

≥ 2/11 + 8/11 = 10/11

units of good 𝑗 , where we have used the fact that 𝑡 = 4/11, that 𝑟NOT = 𝑟NAND = 2/11, and that

each 𝑟
𝑝
𝑞 ≤ 2𝜀 < 2/11. Since 𝜀 < 1/11 we have that 10/11 < 1 − 𝜀, so if 𝑥𝑖, 𝑗 = 0, then good 𝑗 does not

𝜀-clear, and so we are not in an 𝜀-equilibrium. □

Proof of Lemma 4.4. We first prove that 𝑝 𝑗 > 0. For the sake of contradiction, suppose that

some good 𝑗 ∈ 𝐺 \ {ref} has 𝑝 𝑗 = 0. Recall that in the Pure-Circuit instance, each vertex is an

output of exactly one gate. As a result, in our construction, for every good 𝑗 ∈ 𝐺 \ {ref} there is
a buyer 𝑖 , namely the inverter of the gate whose output is 𝑗 , who is never satiated with 𝑗 . Since

the price of good 𝑗 is 0, this buyer will demand an infinite amount of good 𝑗 , making OPT𝑖 (𝑝) = ∅.
This implies that we cannot be in an 𝜀-equilibrium.

We now prove that 𝑝 𝑗 ≤ 𝐻 . So, for the sake of contradiction, suppose that 𝑝 𝑗 > 𝐻 . By construction,

as mentioned above, good 𝑗 is the output good of some gate, and in particular, an inverter uses this

good as an output. That inverter’s marginal utility for ref is 1/𝑝ref , and for good 𝑗 the marginal

utility is 𝑠/𝑝 𝑗 < 𝑠/𝐻 = 1/𝑝ref . Moreover, the inverter is never satiated with ref, meaning that they

will demand zero units of good 𝑗 . We can now use Lemma 4.3 to obtain a contradiction. □

Proof of Lemma 4.5. We first argue that 𝑥𝑖, 𝑗 ≤ 𝑟 . This follows from the fact that, once buyer 𝑖

is allocated 𝑟 units of good 𝑗 , their marginal utility for good 𝑗 is 0, whereas their marginal utility

for the reference good is 1/𝑝ref > 0. Thus buyer 𝑗 strictly prefers the reference good to good 𝑗 , and

so cannot be allocated more than 𝑟 units of good 𝑗 .

Next we argue that 𝑥𝑖, 𝑗 ≥ 𝑟 . If buyer 𝑖 has been allocated strictly less than 𝑟 units of good 𝑗 , then

their marginal utility for good 𝑗 is 2𝑠/𝑝 𝑗 . From Lemma 4.4, we have that 𝑝 𝑗 ≤ 𝐻 , so their marginal

utility for good 𝑗 is at least 2𝑠/𝐻 . On the other hand, their marginal utility for reference good is

1/𝑝ref = 𝑠/𝐻 , and their marginal utility for all other goods is 0. Thus buyer 𝑖 strictly prefers good 𝑗

to any other good. Moreover, since 𝑒𝑖 = 𝑟 · 𝐻high ≥ 𝑟 · 𝐻 , buyer 𝑖 has enough money to buy 𝑟 units

of good 𝑗 . Thus any optimal bundle must allocate at least 𝑟 units of good 𝑗 to buyer 𝑖 . □

Proof of Lemma 4.7. We first consider the case where 𝑝out > 𝐿. By Lemma 4.6, we have that

the inverter must buy 𝑡 units of out before buying any other good. There are two sub-cases.

• If 𝑒inverter ≥ 𝑡 · 𝑝in then the inverter has enough money to buy 𝑡 units of in, and does so.

• If 𝑒inverter < 𝑡 · 𝑝in then the inverter does not have enough money to buy 𝑡 units of in. This

means that they spend all of their money on in, and therefore they they will demand zero

units of out, which contradicts Lemma 4.3.

We now consider the case where 0 < 𝑝out ≤ 𝐿. First note that the marginal utility of out is

𝑠/𝑝out > 𝑠/𝐿 = 𝑎/𝐻 , whereas the marginal utility of ref is 1/𝑝ref = 𝑠/𝐻 . Since 𝑎 > 𝑠 , and since the

inverter is never satiated by out, this means that the inverter cannot spend anything on ref. Due to

the 𝜀-clearing constraint, we know that the inverter can buy at most 1 + 𝜀 units of out, and so the

inverter will spend at most (1 + 𝜀) · 𝐿 money on out. All remaining money must be spent on in,

so the inverter will spend at least 𝑒inverter − (1 + 𝜀) · 𝐿 money on in. Therefore, since 𝑝in ≤ 𝐻 by

21



Lemma 4.4, the inverter will buy at least

(𝑒inverter − (1 + 𝜀) · 𝐿)/𝐻
= 𝑡 · 𝐻low/𝐻 − (1 + 𝜀) · 𝑠/𝑎
≥ 𝑡 · 𝐻low/𝐻high − (1 + 𝜀) · 𝑠/𝑎
≥ 𝑡 · (1 − 4/𝑘) − (1 + 𝜀) · 𝑠/𝑎
≥ 𝑡 − 4𝑡/𝑘 − (1 + 𝜀) · 𝑠/𝑎
≥ 𝑡 − 2/𝑘 − (1 + 𝜀) · 𝑠/𝑎
≥ 𝑡 − 2/𝑘 − 2 · (1/20𝑘)
≥ 𝑡 − 3/𝑘

units of in. Here we used that 𝑡 ≤ 1/2, that 𝑠 ≤ 1/(20𝑘𝑑 |𝑉 |) ≤ 1/20𝑘 , that 𝑎 ≥ 1, and that

1 + 𝜀 ≤ 2. □

Proof of Lemma 4.8. This proof is very similar to the proof of Lemma 4.7, but now we must

account for the fact that the inverter has two input goods.

We first consider the case where 𝑝out > 𝐿. By Lemma 4.6, the inverter must buy 𝑡 units of in1

and 𝑡 units of in2 before buying any other good. There are now two sub-cases.

• If 𝑒inverter ≥ 𝑡 · 𝑝in1 + 𝑡 · 𝑝in2 then the inverter has enough money to buy 𝑡 units of in1 and 𝑡

units of in2, and does so.

• If 𝑒inverter < 𝑡 · 𝑝in1 + 𝑡 · 𝑝in2 then the inverter does not have enough money to buy 𝑡 units of

in1 and 𝑡 units of in2. This means that they spend all of their money on the input goods,

and therefore they they will demand zero units of out, which contradicts Lemma 4.3.

We now consider the case where 0 < 𝑝out ≤ 𝐿. First note that the marginal utility of out is

𝑠/𝑝out > 𝑠/𝐿 = 𝑎/𝐻 , whereas the marginal utility of ref is 1/𝑝ref = 𝑠/𝐻 . Since 𝑎 > 𝑠 , and since the

inverter is never satiated by out, this means that the inverter cannot spend anything on ref. Due to

the 𝜀-clearing constraint, we know that the inverter can buy at most 1 + 𝜀 units of out, and so the

inverter will spend at most (1 + 𝜀) · 𝐿 money on out.

All remaining money must be spent on in1 and in2 so the inverter will spend at least 𝑒inverter −
(1 + 𝜀) · 𝐿 money on these two goods. Note also that the inverter cannot buy more than 𝑡 units of

either input good, since their marginal utility for that input becomes 0 once they have 𝑡 units. Thus,

for any input good 𝑗 ∈ {in1, in2}, in the worst case the inverter buys 𝑡 units of the other input and

pays price 𝐻 for those units, and then spends the rest of their money on good 𝑗 and pays price 𝐻

for those units as well. So the inverter will buy at least

(𝑒inverter − 𝑡 · 𝐻 − (1 + 𝜀) · 𝐿)/𝐻 = 2𝑡 · 𝐻low/𝐻 − 𝑡 − (1 + 𝜀) · 𝑠/𝑎
≥ 2𝑡 · (1 − 4/𝑘) − 𝑡 − 2 · (1/20𝑘)
≥ 𝑡 − 8𝑡/𝑘 − 1/10𝑘

≥ 𝑡 − 4/𝑘 − 1/10𝑘

≥ 𝑡 − 5/𝑘
units of good 𝑗 . Here we used that 𝑡 ≤ 1/2, that 𝑠 ≤ 1/(20𝑘𝑑 |𝑉 |) ≤ 1/20𝑘 , that 𝑎 ≥ 1, and that

1 + 𝜀 ≤ 2. □

Proof of Lemma 4.9. By construction, for each good, there are exactly two buyers that are not

part of the gate’s construction that are interested in buying that good. Those buyers are either

inverter buyers that implement a NOT or NAND gate, or are auxiliary buyers that top-up the

amount bought in the case where the variable encoded by that good is the input to fewer than two
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other gates. By Lemma 4.7 and Lemma 4.8 the inverter buyers will buy some amount in the range

[𝑡 − 5/𝑘, 𝑡], while by Lemma 4.5 the auxiliary buyers will buy exactly 𝑡 units of the good. Thus the

total amount of the good bought by these buyers lies in the range [2𝑡, 2𝑡]. □

Proof of Lemma 4.10. We begin by considering the case where 𝑝out > 𝐿. In this case, by

Lemma 4.6, which works for NOT gates with any value of 𝑟 , we have that the inverter of the

NOT gate must buy 𝑡 units of the input good before buying any other good. This means that the

inverter can spend at most

𝑒inverter − 𝑡 · 𝑝in = 𝑡 · (𝐻low − 𝑝in)
money on goods other than the input good.

By Lemma 4.2, buyers other than the inverter demand at most 2𝑡 + 𝑟 units of the output good.
Thus, to ensure that the output good 𝜀-clears, we require that at least 1 − 𝜀 − 2𝑡 − 𝑟 units of the

output good are bought by the inverter, and so the inverter must spend at least 𝑝out · (1− 𝜀 − 2𝑡 − 𝑟 )
money on the output good.

For this to be possible we must have

𝑡 · (𝐻low − 𝑝in) ≥ 𝑝out · (1 − 𝜀 − 2𝑡 − 𝑟 ),
and therefore

𝑝out ≤ (𝐻low − 𝑝in) ·
𝑡

1 − 𝜀 − 2𝑡 − 𝑟
since 1 − 𝜀 − 2𝑡 − 𝑟 > 0. So we have shown that either 𝑝out ≤ 𝐿, or that the bound above holds. So

we can conclude that

𝑝out ≤ max

(
𝐿, (𝐻low − 𝑝in) ·

𝑡

1 − 𝜀 − 2𝑡 − 𝑟

)
.

□

Proof of Lemma 4.11. We first consider the case where 𝑝out < 𝐻 . In this case, the marginal

utility of buying the reference good is 1/𝑝ref = 𝑠/𝐻 , whereas the marginal utility of the output

good is 𝑠/𝑝out > 𝑠/𝐻 . Thus the inverter strictly prefers the output good to the reference good. Since

the inverter can never be satiated by the output good, this means that the inverter cannot buy the

reference good.

Furthermore, the inverter cannot buy more than 𝑡 units of the input good, because the inverter’s

marginal utility becomes 0 at that point. This means that the inverter can spend at most 𝑡 · 𝑝in
money on the input good, and will have at least

𝑒inverter − 𝑡 · 𝑝in = 𝑡 · (𝐻low − 𝑝in)
money left over after buying all goods other than out. This money must therefore be spent on out.

By Lemma 4.9 we have that buyers who are not part of the NOT gate will buy at least 2𝑡 units of

the output good, and by Lemma 4.5 we have that 𝑟 units of the output good will be bought by the

auxiliary buyer of the NOT gate. Since the good must 𝜀-clear, this means that the inverter can buy

at most 1 − 2𝑡 − 𝑟 + 𝜀 units of the output good.

Since 𝑡 · (𝐻low − 𝑝in) money must be spent on the output good, and since at most 1 − 2𝑡 − 𝑟 + 𝜀

units of that good can be bought, we have

𝑡 · (𝐻low − 𝑝in) ≤ (1 − 2𝑡 − 𝑟 + 𝜀) · 𝑝out,
because otherwise there would be money left over that is not spent on any good, which cannot

happen in an optimal allocation. Rearranging this gives

𝑝out ≥ (𝐻low − 𝑝in) ·
𝑡

1 − 2𝑡 − 𝑟 + 𝜀
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since 1 − 2𝑡 − 𝑟 + 𝜀 ≥ 1 − 2𝑡 − 𝑟 − 𝜀 > 0.

So we have shown that we either have 𝑝out ≥ 𝐻 , or we have the inequality given above. Hence

we have

𝑝out ≥ min

(
𝐻, (𝐻low − 𝑝in) ·

𝑡

1 − 2𝑡 − 𝑟 + 𝜀

)
.

□

Proof of Lemma 4.13. Assume, for the sake of contradiction, that 𝑝out > 𝐿. Then by Lemma 4.6

we have that the inverter must buy 𝑡 units of in1 and 𝑡 units of in2 before buying any other good.

The inverter’s remaining budget after buying 𝑡 units of both of the inputs goods is

𝑒inverter − 𝑡 · 𝑝in1 − 𝑡 · 𝑝in2
= 2𝑡 · 𝐻low − 𝑡 · 𝑝in1 − 𝑡 · 𝑝in2
≤ 2𝑡 · 𝐻low − 𝑡 · 𝐻 − 𝑡 · 𝐻
≤ 0.

Hence the inverter cannot spend any money on the output good, which contradicts Lemma 4.3. □

Proof of Lemma 4.15. Consider the gate NOT(in,mid, 𝑟 ) with 𝑝in ≥ 𝐻low · (1 −𝐴) + 𝑃 · 𝐴𝐵′
.

This implies that𝐻low−𝑝in ≤ 𝐻low ·𝐴−𝑃 ·𝐴𝐵′
, or equivalently, (𝐻low−𝑝in)/𝐴 ≤ 𝐻low−𝑃 ·𝐵′

. Now

notice that 𝐻low − 𝑃 · 𝐵′ ≥ 𝐻low − 𝑃 ·
(
𝐻low

𝐻high

− 𝐿/𝐻
)
≥ 𝐿, where the two inequalities come from the

fact that 𝐵′ = 1 − 4/𝑘 − 𝑠/𝑎 ≤ 𝐻low

𝐻high

− 𝐿
𝐻
and 𝑃 ≤ 𝐻 ≤ 𝐻high, respectively. Therefore, Lemma 4.10

implies that 𝑝mid ≤ 𝐻low − 𝑃 · 𝐵′
.

Now consider the gate NOT(mid, out, 𝑟 ′). From above, we have 𝐻low − 𝑝mid ≥ 𝑃 · 𝐵′
, which

implies (𝐻low − 𝑝mid)/𝐵′ ≥ 𝑃 . Since 𝑃 ≤ 𝐻 , Lemma 4.11 implies that 𝑝out ≥ 𝑃 . □

Proof of Lemma 4.16. Consider the gate NOT(in,mid, 𝑟 ) with 𝑝in ≤ 𝐻low (1 − 𝐵) +𝑃 ·𝐴′𝐵. This
implies that 𝐻low − 𝑝in ≥ 𝐻low · 𝐵 − 𝑃 ·𝐴′𝐵, or equivalently, (𝐻low − 𝑝in)/𝐵 ≥ 𝐻low − 𝑃 ·𝐴′

. Notice

that 𝐻low − 𝑃 · 𝐴′ ≤ 𝐻low ≤ 𝐻 . Therefore, Lemma 4.11 implies that 𝑝mid ≥ 𝐻low − 𝑃 · 𝐴′
.

Now consider the gate NOT(mid, out, 𝑟 ′). As shown above, we have 𝐻low − 𝑝mid ≤ 𝑃 ·𝐴′
, which

means that (𝐻low − 𝑝mid)/𝐴′ ≤ 𝑃 . Since 𝑃 ≥ 𝐿, Lemma 4.10 implies that 𝑝out ≤ 𝑃 . □

Proof of Lemma 4.18. First, we will need to calculate the quantities 𝐴, 𝐵,𝐴′, 𝐵′
for each chain,

where we add a subscript 𝑖 ∈ {1, 2} to indicate the chain they refer to. For ease of presentation, we

define 𝛿 := 11

4
· (1/11 − 𝜀) > 0, and notice that 𝑡 ≥ 𝑡 − 5/𝑘 ≥ 𝑡 − 𝛿/22. By construction, for chain 1,

without loss of generality we can use only the first pair of NOT gates (i.e., 𝑗 ∈ {1, 2}), and by the

specified 𝑟 𝑖𝑗 above, we get

𝐴1 :=
1 − 2𝑡 − 𝑟 1

1
− 𝜀

𝑡
=

3/11 − 𝜀

4/11

𝐵1 :=
1 − 2𝑡 − 𝑟 1

1
+ 𝜀

𝑡
∈
[
3/11 + 𝜀

4/11

,
3/11 + 𝜀

4/11

+ 𝛿

]
𝐴′

1
:=

1 − 2𝑡 − 𝑟 1

2
− 𝜀

𝑡
=

1/11 − 𝜀

4/11

𝐵′
1

:=
1 − 2𝑡 − 𝑟 1

2
+ 𝜀

𝑡
∈
[
1/11 + 𝜀

4/11

,
1/11 + 𝜀

4/11

+ 𝛿

]
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Similarly, for chain 2 we have

𝐴2 :=
1 − 2𝑡 − 𝑟 2

1
− 𝜀

𝑡
=

1/11 − 𝜀

4/11

𝐵2 :=
1 − 2𝑡 − 𝑟 2

1
+ 𝜀

𝑡
∈
[
1/11 + 𝜀

4/11

,
1/11 + 𝜀

4/11

+ 𝛿

]
𝐴′

2
:=

1 − 2𝑡 − 𝑟 2

2
− 𝜀

𝑡
=

3/11 − 𝜀

4/11

𝐵′
2

:=
1 − 2𝑡 − 𝑟 2

2
+ 𝜀

𝑡
∈
[
3/11 + 𝜀

4/11

,
3/11 + 𝜀

4/11

+ 𝛿

]

Finally, notice that 𝐵2 ∈ [𝐴1 − 2𝛿,𝐴1 − 𝛿], and 𝐵′
1
∈ [𝐴′

2
− 2𝛿,𝐴′

2
− 𝛿].

Corollary 4.17 implies that for chain 1 there is an interval (𝑅𝐿
1
, 𝑅𝑈

1
) of 𝑝in prices for which 𝑝out is

not guaranteed to be at most 𝐿 or at least 𝐻 . In particular,

𝑅𝐿
1

:= 𝐻low · 1 − 𝐵1

1 −𝐴′
1
𝐵1

+ (𝐴′
1
𝐵1)𝑑/2 ·

(
𝐿 − 𝐻low · 1 − 𝐵1

1 −𝐴′
1
𝐵1

)
,

and

𝑅𝑈
1

:= 𝐻low · 1 −𝐴1

1 −𝐴1𝐵
′
1

+ (𝐴1𝐵
′
1
)𝑑/2 ·

(
𝐻 − 𝐻low · 1 −𝐴1

1 −𝐴1𝐵
′
1

)
Similarly, the corollary implies that, for chain 2, the respective interval is (𝑅𝐿

2
, 𝑅𝑈

2
) with

𝑅𝐿
2

:= 𝐻low · 1 − 𝐵2

1 −𝐴′
2
𝐵2

+ (𝐴′
2
𝐵2)𝑑/2 ·

(
𝐿 − 𝐻low · 1 − 𝐵2

1 −𝐴′
2
𝐵2

)
,

and

𝑅𝑈
2

:= 𝐻low · 1 −𝐴2

1 −𝐴2𝐵
′
2

+ (𝐴2𝐵
′
2
)𝑑/2 ·

(
𝐻 − 𝐻low · 1 −𝐴2

1 −𝐴2𝐵
′
2

)
We will now show that

𝑅𝐿
1
< 𝑅𝑈

1
≤ 𝑅𝐿

2
< 𝑅𝑈

2
.

First, by Corollary 4.17, it is immediate that 𝑅𝐿
1
< 𝑅𝑈

1
. Otherwise, 𝑝in = 𝑅𝐿

1
would result into

𝑝out1 ≤ 𝐿, but because 𝑅𝐿
1
≥ 𝑅𝑈

1
, we would have 𝑝out1 ≥ 𝐻 . This implies 𝐻 ≤ 𝐿 = 𝑠 · 𝐻/𝑎, a

contradiction, since 𝑠 < 1/2 < 𝑎. Similarly, by Corollary 4.17, it is straightforward that 𝑅𝐿
2
< 𝑅𝑈

2
.
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Now we will show that 𝑅𝑈
1
≤ 𝑅𝐿

2
. We have

𝑅𝑈
1
= 𝐻low · 1 −𝐴1

1 −𝐴1𝐵
′
1

+ (𝐴1𝐵
′
1
)𝑑/2 ·

(
𝐻 − 𝐻low · 1 −𝐴1

1 −𝐴1𝐵
′
1

)
= 𝐻low · 1 −𝐴1

1 −𝐴1𝐵
′
1

(
1 − (𝐴1𝐵

′
1
)𝑑/2

)
+ 𝐻 · (𝐴1𝐵

′
1
)𝑑/2

≤ 𝐻low · 1 −𝐴1

1 − (𝐵2 + 2𝛿)𝐵′
1

(
1 − (𝐴1𝐵

′
1
)𝑑/2

)
+ 𝐻 · (𝐴1𝐵

′
1
)𝑑/2

(𝐴1 ≤ 𝐵2 + 2𝛿)

≤ 𝐻low · 1 − 𝐵2 − 𝛿

1 − 𝐵2 (𝐴′
2
− 𝛿) − 2𝐵′

1
𝛿)

(
1 − (𝐴1𝐵

′
1
)𝑑/2

)
+ 𝐻 · (𝐴1𝐵

′
1
)𝑑/2

(𝐵′
1
≤ 𝐴′

2
− 𝛿)

= 𝐻low · 1 − 𝐵2 − 𝛿

1 −𝐴′
2
𝐵2 − 𝛿𝐵′

1

(
1 − (𝐴1𝐵

′
1
)𝑑/2

)
+ 𝐻 · (𝐴1𝐵

′
1
)𝑑/2

(𝛿, 𝐵′
1
= 𝐵2 > 0)

≤ 𝐻low · 1 − 𝐵2 − 𝛿

1 −𝐴′
2
𝐵2 − 𝛿𝐵′

1

(
1 − (1/8)𝑑/2

)
+ 𝐻 · (3/8)𝑑/2

(
1

2

· 1

4

≤ 𝐴1𝐵
′
1
≤ 3

4

· 1

2

)
≤ 𝐻low · 1 − 𝐵2

1 −𝐴′
2
𝐵2 − 𝛿𝐵′

1

− 𝐻low · 𝛿

1 −𝐴′
2
𝐵2 − 𝛿𝐵′

1

(
1 − (1/8)𝑑/2

)
+ 𝐻 · (3/8)𝑑/2

≤ 𝐻low · 1 − 𝐵2

1 −𝐴′
2
𝐵2

(
1 + 𝛿

1 −𝐴′
2
𝐵2 − 𝛿𝐵′

1

)
− 𝐻low · 𝛿

1 −𝐴′
2
𝐵2 − 𝛿𝐵′

1

+
(
𝐻low · 1

1 −𝐴′
2
𝐵2

+ 𝐻

)
· (3/8)𝑑/2

(𝛿 < 1)

≤ 𝐻low · 1 − 𝐵2

1 −𝐴′
2
𝐵2

− 𝐻low · 𝛿

1 −𝐴′
2
𝐵2 − 𝛿𝐵′

1

(
1 − 1 − 𝐵2

1 −𝐴′
2
𝐵2

)
+
(
𝐻low · 1

1 −𝐴′
2
𝐵2 − 𝛿𝐵′

1

+ 𝐻

)
· (3/8)𝑑/2

≤ 𝐻low · 1 − 𝐵2

1 −𝐴′
2
𝐵2

− 𝐻low · 1 − 𝐵2

1 −𝐴′
2
𝐵2

(3/8)𝑑/2
(4)

≤ 𝐻low · 1 − 𝐵2

1 −𝐴′
2
𝐵2

(
1 − (3/8)𝑑/2

)
≤ 𝐻low · 1 − 𝐵2

1 −𝐴′
2
𝐵2

(
1 − (𝐴′

2
𝐵2)𝑑/2

)
+ 𝐿 · (𝐴′

2
𝐵2)𝑑/2

(
𝐴′

2
𝐵2 ≤ 3

4

· 1

2

, and 𝐿 ≥ 0

)
= 𝐻low · 1 − 𝐵2

1 −𝐴′
2
𝐵2

+ (𝐴′
2
𝐵2)𝑑/2 ·

(
𝐿 − 𝐻low · 1 − 𝐵2

1 −𝐴′
2
𝐵2

)
= 𝑅𝐿

2
,

where Inequality (4) holds due to our choice of

𝑑 ≥ 4 ⌈ln(4/𝛿)⌉ ≥ 2

ln(8/3) · ln
©­«

1 + 1−𝐵2

1−𝐴′
2
𝐵2

+ 𝐻/𝐻low + 𝛿

𝛿 · 1−𝐴′
2
𝐵2

𝐵2 (1−𝐴′
2
)

ª®¬ ,

where
1−𝐵2

1−𝐴′
2
𝐵2

≤ 1 (since 𝐵2, 𝐴
′
2
∈ (0, 1)), 1−𝐴′

2
𝐵2

𝐵2 (1−𝐴′
2
) ≥ 2, 𝐻/𝐻low ≤ 2, and 𝛿 ≤ 1.
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Now we are ready to prove the first part of the lemma’s statement. Suppose 𝑝in ≥ 𝐻 . Notice that

𝐻 = 𝐻

(
1 − (𝐴2𝐵

′
2
)𝑑/2

)
+ 𝐻 · (𝐴2𝐵

′
2
)𝑑/2

≥ 𝐻 · 1 −𝐴2

1 −𝐴2𝐵
′
2

(
1 − (𝐴2𝐵

′
2
)𝑑/2

)
+ 𝐻 · (𝐴2𝐵

′
2
)𝑑/2

(0 < 𝐴2, 𝐵
′
2
< 1)

≥ 𝐻low · 1 −𝐴2

1 −𝐴2𝐵
′
2

(
1 − (𝐴2𝐵

′
2
)𝑑/2

)
+ 𝐻 · (𝐴2𝐵

′
2
)𝑑/2

= 𝐻low · 1 −𝐴2

1 −𝐴2𝐵
′
2

+ (𝐴2𝐵
′
2
)𝑑/2 ·

(
𝐻 − 𝐻low · 1 −𝐴2

1 −𝐴2𝐵
′
2

)
= 𝑅𝑈

2
.

Therefore, 𝑝in ≥ 𝑅𝑈
2
> 𝑅𝑈

1
, and as a result, 𝑝out1 ≥ 𝐻 , and 𝑝out2 ≥ 𝐻 .

Moving on to the proof of the second part of the statement, suppose 𝑝in ≤ 𝐿. We have

𝐿 = 𝐿

(
1 − (𝐴′

1
𝐵1)𝑑/2

)
+ 𝐿 · (𝐴′

1
𝐵1)𝑑/2

≤ 𝑠𝛿

2

·
(
1 − (𝐴′

1
𝐵1)𝑑/2

)
+ 𝐿 · (𝐴′

1
𝐵1)𝑑/2

(𝐿 ≤ 𝑠𝛿/2)

≤ 𝐻low · 1 − 𝐵1

1 −𝐴′
1
𝐵1

(
1 − (𝐴′

1
𝐵1)𝑑/2

)
+ 𝐿 · (𝐴′

1
𝐵1)𝑑/2

(𝐻low ≥ 𝐻min ≥ 𝑠/2, 1 − 𝐵1 = 𝛿,𝐴′
1
, 𝐵1 ≥ 0)

= 𝐻low · 1 − 𝐵1

1 −𝐴′
1
𝐵1

+ (𝐴′
1
𝐵1)𝑑/2 ·

(
𝐿 − 𝐻low · 1 − 𝐵1

1 −𝐴′
1
𝐵1

)
= 𝑅𝐿

1
.

So, 𝑝in ≤ 𝑅𝐿
1
< 𝑅𝐿

2
, therefore, 𝑝out1 ≤ 𝐿, and 𝑝out2 ≤ 𝐿.

Now, for the third part of the statement, suppose that 𝑝in ∈ (𝐿, 𝐻 ). If 𝑝in ≤ 𝑅𝐿
2
, then by Corol-

lary 4.17 we have that 𝑝out2 ≤ 𝐿. If 𝑝in > 𝑅𝐿
2
, then 𝑝in > 𝑅𝑈

1
(since we showed that 𝑅𝐿

2
≥ 𝑅𝑈

1
), and

again from Corollary 4.17, 𝑝out1 ≥ 𝐻 . Therefore, if 𝑝in ∈ (𝐿,𝐻 ), then it cannot be that both 𝑝out1
and 𝑝out2 are in (𝐿, 𝐻 ). □
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