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Abstract—The position control of magnetic medical micro-
robots is influenced by several environmental uncertainties in-
cluding the unknown characteristics of the medium and the
imaging precision. Furthermore, measuring the physical at-
tributes of the microrobots is a challenging issue. To provide
a model-free position control approach for the magnetic medical
microrobots, a saturation-tolerant Adaptive Fuzzy Sliding-Mode
Control (AFSMC) is designed in this study. In the proposed
approach, each control input comprises a fuzzy inference term
utilized to approximate an unknown nonlinear function including
uncertain forces, a robust part derived to compensate for the
fuzzy approximation error and disturbances, and a compensating
gain for input saturation. By utilizing the second theorem of
Lyapunov and Barbalat’s lemma, it is proved that the closed-loop
system is asymptotically stable. The effectuality of the presented
controller is assessed by means of two experimental scenarios.
The results show that the magnitudes of the tracking errors
corresponding to a spiral reference path are less than 0.2 mm at
the end of the motion. Moreover, in the test conducted in a 3D
printed Aorta phantom, the minimum and the maximum values
of the tracking errors are -1.22 mm and 0.95 mm, respectively.

Note to Practitioners—This article introduces an innovative,
model-free technique specifically designed to tackle the complex
challenges of position control in magnetic medical microrobots.
Achieving precise control over these microrobots is a challenging
task, compounded by the complexity of accurately measuring
their physical properties and the characteristics of their sur-
rounding medium. This challenge is further exacerbated by the
issue of input saturation, which can compromise system stability.
Our pioneering control method is designed to navigate these
obstacles effectively. It functions under the assumption that both
the lower and upper saturation limits are unknown, and it
eliminates the necessity to model the forces acting on the micro-
robot. Experimental results confirm the method’s effectiveness in
accurately tracking various reference trajectories. These findings
suggest that our method holds significant promise for various
medical applications.

Index Terms—Magnetic Manipulation, Microrobot, AFSMC,
Motion Control.
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I. INTRODUCTION

Over recent years, magnetically-actuated microrobots have
been successfully employed in an extensive variety of medical
applications including vascular interventions [1], [2], cancer
treatment [3]–[5], hyperthermia therapy [6], targeted drug
delivery [1], [7], [8], and microsurgery [1]. Magnetic actuation
systems have emerged as the favored method of the microrobot
manipulation due to safety, field generation dexterity, and
precise control of the field [9].

In the practical applications, various architectures have
been used to conduct the manipulation process. For instance,
depending on the swimming mechanism, microrobots with
helical [10]–[13], cylindrical [14], hexahedral or spherical [15]
shapes have been employed. Moreover, magnetic resonance
images [16], fluoroscopy method [17], and optical cameras
[18] have been utilized for detection of the microrobot posi-
tion.

In the motion control problem of the magnetic microrobots,
it is difficult to measure the physical attributes of the mi-
crorobot and its surrounding medium. Accordingly, the lift
force, the drag force, the weight, and the buoyant force are
assumed to be unknown. It should be mentioned that, due to
the complexities of modeling, the electrostatic force, the van
der Waals force, the contact force at the fluid container surface,
and the inertial force resulting from the added-mass effect
cannot be derived [19]. Furthermore, the imaging noise in the
detection of the position can result in performance degradation
of the controller.

In previous studies, numerous attempts have been made to
develop appropriate control methods for the manipulation of
the microrobots. As reported in [20], the PID method with
constant gains was unable to maintain a high level of tracking
performance in control of the microrobot position when some
changes were made in the system physical properties. To
improve the control performance, some control structures have
been proposed for the manipulation of the microrobots based
on the adaptive PID method [20], the H-infinity control [21],
the recursive least square method [18], the optimal control
[22], [23], and the adaptive backstepping technique [24]. How-
ever, the control schemes proposed in [21], [22], [24] require
model information. Furthermore, in [18], [20], [23], [24], only
the 2-DOF motion of the microrobot has been considered in
the design of the control structure. In [25], a control policy was
developed for microrobotic systems using the broad learning
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system (BLS) and employed to control a miniature helical
swimmer. However, the process of designing and training the
BLS-based controller is a constrained optimization problem.
Furthermore, in [26], a strategy was proposed for completely
decoupled independent control of a group of magnetically
actuated flexible millirobots. Hence, the control objective in
[26] is different from that of the above-mentioned studies.

In [27], the time-delay control (TDC) method as a robust
control law was introduced for controlling the 3-DOF motion
of the magnetic microrobots. The TDC method uses the
previous time-step information of the system to estimate the
current values of the control inputs. According to the results
reported in [27], the TDC has reduced the steady-state error,
the convergence time, and the magnitude of the overshoot in
comparison to the methods mentioned above. In continuation,
to avoid the windup phenomenon, a TDC-based structure has
been designed in [19] including an anti-windup scheme. To
put the TDC-based methods into practice, it is not needed
to employ precise model information. However, a matrix
containing the nominal value of the microrobot mass must be
used which is difficult to determine. As it has been investigated
in [28], the performance of the TDC-based methods is affected
by the nominal mass matrix set by the user. Furthermore, in the
anti-windup-based TDC approach, several tuning parameters
should be chosen on the basis of the Lyapunov stability
method. In consequence, the users of the magnetic microrobots
experience some hardships in the tuning stage of the anti-
windup-based TDC.

In this research, to deal with the limitations of the TDC-
based methods, a model-free position control structure is
designed for the magnetic medical microrobots based on the
idea of adaptive fuzzy sliding-mode control (AFSMC). To
control nonlinear systems with unknown dynamics, indirect
and direct structures of AFSMC have been introduced. In the
indirect AFSMC, the SMC model-based term is replaced by
a fuzzy approximator. Furthermore, the upper bound of the
uncertainty and the output vector of the fuzzy approximator are
computed by the designed adaptation laws. While in the direct
AFSMC which is more effective than the indirect approach
[29], each control input includes an adaptively-tuned fuzzy
approximator for an unknown function containing the system
dynamics and an adaptive robust compensator for the fuzzy
approximation error and uncertainties. Contrary to the anti-
windup-based TDC approach, the tuning parameters of the
direct AFSMC are selected without prior knowledge about the
dynamic system. Moreover, the users do not need to use the
nominal mass matrix in the design of the direct AFSMC.

Up to now, the direct AFSMC has been developed for under-
actuated systems [30], multiple-input multiple-output systems
in which the gain of the input vector is a non-diagonal and
non-positive definite square matrix [29], [31], and non-square
systems [32]. Moreover, the idea of saturation compensating
gains has been employed to guarantee the stability of the direct
AFSMC in the existence of input saturation [33]. However,
the controller presented in [33] has been designed for single-
input single-output nonlinear systems and cannot be utilized
for the control of the magnetic microrobots which are moved
by means of some electromagnetic coils.

In [28], the direct AFSMC has been employed for the posi-
tion control problem of magnetic microrobots. The simulation
results reported in [28] reveal the superiority of the direct
AFSMC over the anti-windup-based TDC method. However,
in the design of the AFSMC for the considered application,
the compensation of the actuator saturation has not been
addressed. It should be pointed out that the saturation of
control inputs can lead to instability of the microrobots. Hence,
to avoid performance deterioration and physical damage to the
body of the patient in the presence of the input saturation, it
is of high importance to redesign the direct AFSMC based on
the idea of saturation compensating gains for controlling the
magnetic microrobots.

In this study, to control the position of the magnetic mi-
crorobots, a saturation-tolerant direct AFSMC method is pro-
posed. In the presented method, each adaptive fuzzy sliding-
mode control input consists of a fuzzy inference system, a
robust part, and a compensating gain for input saturation. The
fuzzy inference system is utilized to approximate an unknown
nonlinear function which includes uncertain forces and the
robust part of the controller is considered to compensate for
the fuzzy approximation error and disturbances. In addition,
the compensating gain is designed to guarantee the asymptotic
stability when the input saturation occurs. It is worth noting
that, the adaptation laws of the control structure are derived
with the help of the second theorem of Lyapunov.

The closed-loop structure for the position control of the
magnetic microrobot is presented in Fig. 1. In this structure,
the sampling rate of the controller should be determined based
on the compuational complexity of the proposed AFSMC and
the framerate of the cameras as the position sensors of the
microrobot. Since the performance of the AFSMC in tracking
tasks can be influenced by the choice of sampling rate, the
effectuality of the proposed controller is evaluated through
experimental tests.

The organization of the article is as follows: In Section II,
the dynamic behavior of the system is modeled and the control
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Figure 1: The closed-loop structure designed for the position
control of the magnetically-actuated microrobot
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objective is defined. In Section III, the design procedure
of the saturation-tolerant AFSMC as well as the asymptotic
stability analysis are presented. In Section IV, the results of
the experimental tests are reported. Finally, conclusions and
suggestions for future works are given in Section V.

II. PROBLEM DEFINITION

In this problem, by introducing the position vector of the
microrobot X = [x, y, z]

T and the mass m, the equation of
motion by considering 3 degrees of freedom is obtained as

Ẍ =
1

m
[sat(Fm) + F∆ + Ftot] . (1)

Here, Fm = [Fm1, Fm2, Fm3]
T denotes the magnetic force

vector as the control input, F∆ is the uncertain term of the
magnetic force defined in the following, and Ftot is the sum of
all external forces acting on the microrobot, such as the weight,
the buoyant force, the lift force, and the drag force. Due to the
limitations of the actuation system in generating the magnetic
forces, the saturation in control inputs has to be considered
in modeling of the dynamic system. Hence, the saturated
input vector sat(Fm) = [sat(Fm1), sat(Fm2), sat(Fm3)]

T is
defined based on

sat(Fmi) =


Fm,max, Fmi ≥ Fm,max

Fmi, Fm,min ≤ Fmi ≤ Fm,max

Fm,min, Fmi ≤ Fm,min

(i = 1, 2, 3)

(2)
where Fm,min < 0 and Fm,max > 0 are the symbols of the
lower and the upper saturation limits, respectively.

In the employed actuation system, the magnetic force vector
Fm is generated as

Fm = (M.∇)B (3)

where B ∈ R(3×1) is the magnetic field which is generated
by the electromagnets, ∇ is the gradient operator, and M ∈
R(3×1) is the magnetic moment [19]. If the vector B does not
rotate too rapidly, we can assume that the microrobot and the
vector B are always aligned. The validity of this assumption
has been explored in [34]. Thus, by introducing ûB as the
direction vector of B, we have

ûB =
B

||B||
=

M

||M||
(4)

and equation (3) is rewritten as

Fm = ||M||


∂B
∂x
∂B
∂y

∂B
∂z

 ûB =


∂B
∂x
∂B
∂y

∂B
∂z

M. (5)

In this problem, it is assumed that the magnetic field vector
B is obtained by the linear superposition of the magnetic fields
generated by the electromagnetic coils [35]. Using the linear
superposition method for computing the vector B is valid un-
der the following ideal circumstances: the cores are utilized in
the linear magnetization regions and the material hysteresis of
the soft magnetic cores is negligible [19]. Each coil generates
a magnetic field proportional to its corresponding electrical

current. Therefore, by defining I as the vector of currents
flowing through the coils and the matrix of coefficients K,
the relationship between the magnetic force vector Fm and
the vector I is presented as

Fm = K(X,M)I. (6)

In order to compute the required vector I using (6), the matrix
K should be determined. Ideally, a calibrated model is derived
for the coefficient matrix K to map the magnetic field B and
gradient field at any point in the workspace of the microrobot
[35]. Since it can be assumed that the region surrounding the
center is uniform in nature, in our case we use a constant
matrix K at the center of the workspace. It should be noted
that, the uniformity in the matrix K decreases as we move
outwards from the center point. Since equation (4) as an
assumption is not perfectly valid and the coils are assumed
to be ideal, it is necessary to consider the uncertainty force
F∆ in the dynamic equation (1).

In this study, we aim to design a direct AFSMC for the
position control of the microrobot. Accordingly, the control
objective should be presented based on the definition of sliding
variables. By introducing the desired position vector Xd =
[xd, yd, zd]

T, the error vector X̃ = [x̃, ỹ, z̃]
T is defined as

X̃ = Xd −X. (7)

According to (7), the vector of sliding variables is generated
in the form of

s = [s1, s2, s3]
T

= ˙̃X + λX̃ (8)

where λ = diag(λ1, λ2, λ3) is a positive definite diagonal
matrix. Hence, the first-order representation of the dynamic
system (1) is obtained as

ṡ = Ẍd −
1

m
[sat(Fm) + F∆ + Ftot] + λ ˙̃X. (9)

Based on the above-mentioned notes, the control objective is
defined as follows:

Problem 1. Find the magnetic force Fm such that the asymp-
totic stability of the sliding variables is reached as limt→∞ s =
0 subject to the dynamic system (1).

III. SATURATION-TOLERANT AFSMC

A. Design of the adaptive control structure

In this study, the AFSMC is designed with the help of the
positive definite function V1(s) which is proposed as

V1(s) =
m

2
sTs. (10)

Hence, the time derivative of V1(s) is obtained as

V̇1 = msTṡ. (11)

Furthermore, sat(Fm) is rewritten as

sat(Fm) = Θ× Fm (12)
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where the normalized saturation matrix Θ = diag(θ1, θ2, θ3)
is defined based on

θi =



Fm,max

Fmi
, Fmi ≥ Fm,max

1, Fm,min ≤ Fmi ≤ Fm,max

Fm,min

Fmi
, Fmi ≤ Fm,min

(i = 1, 2, 3). (13)

By proposing the vector β∗ = [β∗1 , β
∗
2 , β
∗
3 ]

T in the form of

β∗ = mẌd − (F∆ + Ftot) +mλ ˙̃X (14)

and using (9) and (11), we have

V̇1 = sT(mṡ) = sT(β∗ −Θ× Fm). (15)

The stability condition of the dynamic system (1) is considered
as V̇1 ≤ 0. Consequently, to achieve the control objective
according to Problem 1, the input vector Fm should be
designed based on the vector β∗ and the matrix Θ which are
assumed to be unknown. It should be noted that, according to
(13), a positive constant ϑi exists such that 0 < ϑi ≤ θi ≤ 1.

To design the AFSMC, since the components of the vector
β∗ are unknown, 3 fuzzy systems are proposed as the ap-
proximators of β∗i (i = 1, 2, 3). Because β∗i is a function of
the state variables of the i-th subsystem, si is considered as
the input of the i-th fuzzy approximator. To construct the i-th
fuzzy system, the rules of inference are suggested as follows.

Rule r: If si = Ari , then βfuz
i = bri .

Here, r = 1, . . . , 5, Ari represents a fuzzy set, and bri denotes
the output value for the r-th rule of the i-th fuzzy approx-
imator. In this research, the linguistic terms “Big Negative”
(r = 1), “Negative” (r = 2), “Zero” (r = 3), “Positive”
(r = 4), and “Big Positive” (r = 5) are defined for the
sliding variable si. For r = 2, 3, 4, the membership functions
of the fuzzy sets Ari are constructed in the form of Gaussian
functions as

µAr
i
(si) = exp

[
− (si − cri )

2

2σri
2

]
(16)

with shape parameters cri and σri . Moreover, for r = 1 and
r = 5, the sigmoidal membership functions are defined as

µAr
i
(si) =

1

1 + exp

[
− (si−cri )

σr
i

] . (17)

To partition the input domain of the sets Ari in a meaningful
manner, the components of ci =

[
c1i , c

2
i , c

3
i , c

4
i , c

5
i

]T
and σi =[

σ1
i , σ

2
i , σ

3
i , σ

4
i , σ

5
i

]T
are selected arbitrarily by user.

For constructing the approximators, the singleton fuzzifica-
tion, the product inference, and the center average defuzzifi-
cation methods are utilized. Hence, by defining the function

wri =
µAr

i
(si)∑5

r=1 µAr
i
(si)

, (18)

the output of the i-th fuzzy approximator is obtained as

βfuz
i = bT

i wi (19)

where bi =
[
b1i , . . . , b

5
i

]T
and wi =

[
w1
i , . . . , w

5
i

]T
. The

structure of the fuzzy system designed for approximating
β∗i (i = 1, 2, 3) is shown in Fig. 2.

By introducingWi and Si as the compact sets of bi and si,
the ideal output vector and the minimum approximation error
corresponding to the i-th fuzzy system are defined in the form
of

b∗i = argminbi∈Wi

[
supsi∈Si |b

T
i wi − β∗i |

]
(20)

and
ψi = β∗i − b∗i

T
wi, (21)

respectively. It should be noted that, according to the general
approximation properties of the fuzzy systems [36], ψi is
assumed to be bounded as

|ψi| < Ψi (22)

where Ψi is an unknown positive value.
In this paper, the AFSMC input Fmi (i = 1, 2, 3) is

proposed as
Fmi = γ̂i

(
β̂fuz
i + urb

i

)
(23)

where β̂fuz
i as the fuzzy part of the controller is generated as

β̂fuz
i = b̂

T

i wi, (24)

the robust compensator urb
i is computed as

urb
i =

(
Ψ̂i + 2

∣∣∣b̂T

i wi

∣∣∣) sgn(si), (25)

and γ̂i is the saturation compensating gain. Furthermore, b̂i,
Ψ̂i, and γ̂i respectively represent the approximate values of
b∗i , Ψi, and ϑ−1

i .
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+
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Figure 2: The structure of the fuzzy system designed for
approximating β∗i (i = 1, 2, 3)
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To compute the values of b̂i, Ψ̂i, and γ̂i, the adaptation
laws of the AFSMC are proposed as

˙̂
bi = α1isiwi, (26)

˙̂
Ψi = α2i|si|, (27)

and
˙̂γi = α3iγ̂

3
i

(
|si|Ψ̂i +

∣∣∣sib̂T

i wi

∣∣∣) . (28)

Here, α1i, α2i, and α3i (i = 1, 2, 3) are arbitrary positive
parameters determining the rates of learning in the AFSMC.
Moreover, the initial conditions of Ψ̂i and γ̂i must be positive.

By defining γ̂ = diag(γ̂1, γ̂2, γ̂3), β̂
fuz

=[
β̂fuz

1 , β̂fuz
2 , β̂fuz

3

]T
, and urb =

[
urb

1 , u
rb
2 , u

rb
3

]T
and using

(23), the vector of AFSMC inputs is obtained as

Fm = γ̂
(
β̂

fuz
+ urb

)
. (29)

The block diagram of the proposed saturation-tolerant adaptive
control structure is presented in Fig. 3. As shown in Fig. 3,

the vectors Ψ̂ =
[
Ψ̂1, Ψ̂2, Ψ̂3

]T
and b̂ =

[
b̂

T

1 , b̂
T

2 , b̂
T

3

]T
and the matrix γ̂ are computed by the block of “Adaptation
Laws” representing (26) to (28). The vector β̂

fuz
is obtained

by the block of “Fuzzy Approximator” constructed based on
(24). Moreover, by means of (25), the block of “Robust Term”
computes the vector urb.

Remark 1. The performance of the proposed direct AFSMC in
tracking tasks is influenced by the values of α1i, α2i, and α3i

and the elements of the matrix λ. Hence, to tune the controller,
λ, α1i, α2i, and α3i are selected based on the trial-and-error
method.

Remark 2. In [28], to implement the direct AFSMC, Levant’s
exact differentiator was employed for velocity estimation of
the microrobot. However, the use of Levant’s exact differen-
tiator instead of the first-order derivative increases the compu-
tational cost. Since the proposed saturation-tolerant AFSMC
is designed with higher number of adaptive variables, we
utilize the first-order derivative in the experimental tests as

Fuzzy Approximator 

𝚿, መ𝐛

𝐮rb

+

+
Sliding Vector

Generation

Plant
𝐗

𝐗𝑑

𝐬

መ𝐛

Robust Term

Adaptation Laws

𝜷fuz

𝐅𝑚

ෝ𝜸

ෝ𝜸

Saturation 

Compensator

Figure 3: The block diagram of the AFSMC

the velocity estimator of the microrobot.

B. Stability analysis

In the following to the design of the saturation-tolerant
AFSMC, the stability analysis of the closed-loop system
should be provided based on the definition of Problem 1. For
this purpose, Theorem 1 is presented as follows.

Theorem 1. Consider the dynamic behavior of the microrobot
described by (1). With the control inputs designed as in (23),
where the adaptive variables are adjusted by (26) to (28), then
the control objective is achieved according to Problem 1.

Proof. Based on (10) and approximation errors b̃i = b∗i − b̂i,
Ψ̃i = Ψi− Ψ̂i, and γ̃i = ϑi− 1

γ̂i
, the positive definite function

V is defined as follows.

V = V1 +

3∑
i=1

1

2α1i

b̃
T

i b̃i +

3∑
i=1

1

2α2i

Ψ̃2
i +

3∑
i=1

1

2α3i

γ̃2
i (30)

Using (15), the time derivative of V is obtained as

V̇ =

3∑
i=1

si(β
∗
i − θiFmi) +

3∑
i=1

b̃
T

i
˙̃
bi

α1i

+

3∑
i=1

Ψ̃i
˙̃Ψi

α2i

+

3∑
i=1

γ̃i ˙̃γi
α3i

.

(31)
According to

˙̃
bi = − ˙̂

bi = −α1isiwi, (32)

˙̃Ψi = − ˙̂
Ψi = −α2i|si|, (33)

˙̃γi = γ̂−2
i

˙̂γi = α3iγ̂i

(
|si|Ψ̂i +

∣∣∣sib̂T

i wi

∣∣∣) , (34)

β∗i = b∗i
T
wi + ψi = b̃

T

i wi + b̂
T

i wi + ψi, (35)

and (23) to (28), V̇ is rewritten in the form of

V̇ =

3∑
i=1

si

(
b̃

T

i wi + b̂
T

i wi + ψi

)
−

3∑
i=1

siθiγ̂ib̂
T

i wi

−
3∑
i=1

θiγ̂i

(
Ψ̂i + 2

∣∣∣b̂T

i wi

∣∣∣) |si|
−

3∑
i=1

sib̃
T

i wi −
3∑
i=1

(Ψi − Ψ̂i)|si|

+

3∑
i=1

(γ̂iϑi − 1)|si|Ψ̂i +

3∑
i=1

(γ̂iϑi − 1)
∣∣∣sib̂T

i wi

∣∣∣
(36)

which can be simplified as

V̇ =

3∑
i=1

(
sib̂

T

i wi + siψi

)
−

3∑
i=1

siθiγ̂ib̂
T

i wi

−
3∑
i=1

θiγ̂i

(
Ψ̂i + 2

∣∣∣b̂T

i wi

∣∣∣) |si| − 3∑
i=1

Ψi|si|

+

3∑
i=1

γ̂iϑi|si|Ψ̂i +

3∑
i=1

(γ̂iϑi − 1)
∣∣∣sib̂T

i wi

∣∣∣ .
(37)

Since
siψi ≤ |si||ψi|, (38)

sib̂
T

i wi ≤
∣∣∣sib̂T

i wi

∣∣∣ , (39)
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and γ̂i and Ψ̂i are always positive based on (27), (28), γ̂i(0) >
0, and Ψ̂i(0) > 0, it is outlined that

V̇ ≤
3∑
i=1

(∣∣∣sib̂T

i wi

∣∣∣+ |si||ψi|
)

+

3∑
i=1

θiγ̂i

∣∣∣sib̂T

i wi

∣∣∣
−

3∑
i=1

θiγ̂i

(
Ψ̂i + 2

∣∣∣b̂T

i wi

∣∣∣) |si| − 3∑
i=1

Ψi|si|

+

3∑
i=1

γ̂iϑi|si|Ψ̂i +

3∑
i=1

(γ̂iϑi − 1)
∣∣∣sib̂T

i wi

∣∣∣
=

3∑
i=1

|si| (|ψi| −Ψi) +

3∑
i=1

γ̂i|si|Ψ̂i(ϑi − θi)

+

3∑
i=1

γ̂i

∣∣∣sib̂T

i wi

∣∣∣ (ϑi − θi)

(40)

Furthermore, based on the assumption 0 < ϑi ≤ θi ≤ 1,
3∑
i=1

γ̂i|si|Ψ̂i(ϑi − θi) ≤ 0 (41)

and
3∑
i=1

γ̂i

∣∣∣sib̂T

i wi

∣∣∣ (ϑi − θi) ≤ 0. (42)

Consequently,

V̇ ≤
3∑
i=1

|si| (|ψi| −Ψi) ≤ 0 (43)

and the elements of s, Ψ̃ =
[
Ψ̃1, Ψ̃2, Ψ̃3

]T
, b̃ =[

b̃
T

1 , b̃
T

2 , b̃
T

3

]T
, and γ̃ = diag(γ̃1, γ̃2, γ̃3) remain bounded.

It is worth noting that, due to the boundedness of ṡ on the
basis of (9), the sliding vector s is uniformly continuous for
t ≥ 0.

In the next step, the asymptotic stability of the closed-loop
system is proved based on Barbalat’s lemma. For this purpose,
the function Γ is defined in the form of

Γ =

3∑
i=1

|si| (−|ψi|+ Ψi) . (44)

Hence, according to (44), (43) is rewritten as

V̇ ≤ −Γ ≤ 0 (45)

and the following inequality is obtained.

Γ ≤ −V̇ (46)

By integrating (46) with respect to time, we have∫ t

0

Γ(τ)dτ ≤ V (s, b̃, Ψ̃, γ̃)|τ=0 − V (s, b̃, Ψ̃, γ̃)|τ=t. (47)

Because V̇ ≤ 0, the value of V (s, b̃, Ψ̃, γ̃)|τ=t does not
increase over time. In consequence, due to the boundedness of
V (s, b̃, Ψ̃, γ̃)|τ=0 and V (s, b̃, Ψ̃, γ̃)|τ=t, limt→∞

∫ t
0

Γ(τ)dτ
is also bounded. Moreover, since Γ is continuous in bounded
variables si, Γ is uniformly continuous in t on (0,+∞). Con-
sequently, according to Barbalat’s lemma [37], limt→∞ Γ(t) =

0, i.e., limt→∞ s(t) = 0.

Remark 3. To diminish chattering effects caused by the robust
compensators urb

i , the signum function sgn(si) is replaced
by a saturation function. Thus, since the closed-loop system
is asymptotically stable, the sliding variables si reach the
boundary layer of the saturation function.

IV. EXPERIMENTAL STUDY

In this study, the electromagnetic manipulation system built
in the lab has been employed to investigate the performance of
the proposed direct AFSMC. As shown in Fig. 4, the utilized
system contains eight electromagnetic coils for generating an
intended magnetic field in the working area [38]. Moreover,
the dimensions of the uniform workspace is 16 mm×16 mm×
12 mm. The microrobot is a cylindrical Neodymium magnet

Camera (top view)

Camera (front view)

Electromagnetic coils

Container

Figure 4: Experimental setup of the magnetic control system
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Figure 5: The membership functions proposed for the fuzzy
sets Ari
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Figure 6: Time evolution of (a) x, (b) y, (c) z, and (d) the
tracking errors in the case of using the anti-windup-based TDC
and choosing the spiral reference path
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Figure 7: Time evolution of (a) x, (b) y, (c) z, and (d) the
tracking errors in the case of using the proposed AFSMC and
choosing the spiral reference path
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with a length of 800 µm and a diameter of 400 µm which
has been submerged in Silicone oil of 350-cSt viscosity in a
transparent container. To simulate the in vivo situation reported
in [39], we used high-viscosity silicone oil as the medium
for the control problem of the microrobot with high magnetic
moment. In the in vivo situation of [39], a biocompatible
microrobot with low magnetic moment (0.017× 10−6 A.m2)
swims in blood of 10-cSt viscosity. Furthermore, the position
of the microrobot is measured by the two cameras. The em-
ployed cameras are ACA1300-30um, Basler AG (Germany),
where every frame is of resolution 966×966 pixels. The scale
of every frame is 29 µm/pixel and the framerate has been
chosen equal to 15 Hz, same as the sampling frequency of the
AFSMC loop.

In addition to the above-mentioned notes, Fm,min =
−50 µN, Fm,max = 50 µN, ||M|| = 0.00027 A.m2 for
the Neodymium magnet [27], B = [0, 0, 5]

T
mT, and the

matrix K was computed with the use of the magnetome-
ter THM1176 (Metrolab Technology SA, Plan-les-Ouates,
Switzerland) which has been employed for measuring the
magnetic field vectors at the center of the working area. Since
the experiments are conducted on the basis of the constant
vector B, it is allowed to claim (4) as an assumption and
obtain the magnetic force vector Fm by using (6).

In order to implement the designed AFSMC,
the constant parameters have been selected as
λ = diag(50, 50, 50), ci = [−0.3,−0.15, 0, 0.15, 0.3]

T,
σi = [−0.05, 0.05, 0.05, 0.05, 0.05]

T, α1i = 10−4,
α2i = 2.5 × 10−4, and α3i = 10−5. According to the
selected vectors ci and σi, the membership functions of
the fuzzy sets Ari are generated as in Fig. 5. It is worth
noting that, based on the proof of Theorem 1, the asymptotic
stability of the closed-loop system is not dependent on the

Figure 8: The 3D microrobot’s position graph under the anti-
windup-based TDC and the proposed AFSMC in the case of
choosing the spiral reference path

values of ci and σi. Hence, users are allowed to implement
the proposed AFSMC with the help of arbitrary vectors ci
and σi in a meaningful range of si. In addition, the initial
condition of the adaptive variables have been chosen as
γ̂i(0) = 1, b̂i(0) = [−10−6,−5× 10−7, 0, 5× 10−7, 10−6]

T,
and Ψ̂i(0) = 10−6.

In this article, the experimental study for the performance
evaluation of the proposed AFSMC has been conducted for
two test scenarios. In the first scenario, the magnetic forces
must be generated in a way that the microrobot tracks a spiral
reference path. Moreover, the performance of the proposed
AFSMC is compared with that of the anti-windup-based TDC
[19] as a state-of-the-art method. It is important to note that, to
track the desired postion smoothly, the reference path has been
generated as a combination of 1000 setpoints. In other words,
if the microrobot reaches a certain distance from each setpoint,
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Figure 9: Time evolution of the control inputs Fmi (i = 1, 2, 3)
generated by (a) the anti-windup-based TDC and (b) the
proposed AFSMC in the case of choosing the spiral reference
path
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which is called the threshold, then the microrobot has to move
toward the next setpoint. In addition, the threshold should be
determined based on the time constant of the electromagnetic
manipulation system via the trial-and-error method. In this
experiment, the threshold is chosen to be equal to 0.05 mm.

The experimental results corresponding to the first test are
presented in Fig. 6 to Fig. 9. As it is illustrated in Fig. 6
and Fig. 7, by means of the anti-windup-based TDC and the
proposed AFSMC, the microrobot has successfully tracked
the reference trajectories in x, y, and z directions where the
magnitudes of the tracking errors x̃, ỹ, and z̃ in the last
30 seconds of motion were less than 0.2 mm. Furthermore,
the 3D graphs of the microrobot position under the anti-

(a)

(b)

Figure 10: The 3D microrobot’s position graph for different
values of viscosity under (a) the anti-windup-based TDC and
(b) the proposed AFSMC in the case of choosing the spiral
reference path
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Figure 11: Control of the microrobot using the proposed
AFSMC in the presence of an external disturbance. (a) The
external magnet placed in the holder. (b) The disturbances Fdi
(i = 1, 2, 3) vesus time. (c) The inputs Fmi (i = 1, 2, 3) versus
time. (d) The 3D microrobot’s position graph.
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windup-based TDC and the proposed AFSMC have been
presented in Fig. 8. According to Fig. 8, after approaching
to the reference trajectory from different starting points, the
3D graphs corresponding the two methods have been almost
identical. The most important point is that the comparison
of the completion times shows that the proposed AFSMC
can track the desired trajectory considerably faster than the
anti-windup-based TDC. In continuation, time evolution of
the control inputs Fmi (i = 1, 2, 3) generated by the two
methods have been shown in Fig. 9. As it is seen in Fig.
9 (b), Fm3 corresponding to the proposed AFSMC has been
saturated during the first two seconds of the motion. Since the
tracking of the reference trajectory in z direction has not been
influenced by the saturation of Fm3, it can be claimed that
the proposed AFSMC has compensated for the effects of the
input saturation. It should be noted that, as shown in Fig. 9
(a), implementation of the anti-windup-based TDC has caused
the saturation of all the control inputs (Fmi (i = 1, 2, 3)).

It should be noted that the magnitudes of the tracking errors
x̃, ỹ, and z̃ and the completion time are dependent on the
value of the threshold. In continuation, for different values
of threshold and using the anti-windup-based TDC and the
proposed AFSMC, the completion time and the maximum of
|x̃|, |ỹ|, and |z̃| after t = 14 s are presented in Table I. It
is worth noting that, to better evaluate the performance of
the two methods in tracking, the magnitudes of the tracking
errors have been reported after approaching the spiral reference
path (after t = 14 s). According to the results provided
in Table I, by increasing the value of the threshold in the
implementation of the two methods, the completion time of
the mission is decreased. However, increase of the threshold
causes tracking performance degradation. As a result, with the
help of changing the threshold, the velocity of movement can
be tuned.

z

x
y

y

x
z

The top view

The front view

Figure 12: The 3D printed Aorta phantom (All scale bars
correspond to 5 mm.)

It should be emphasized that the proposed AFSMC has been
successful in significantly decreasing the completion time for
all threshold values. From another point of view, by using
the proposed AFSMC, the maximum absolute value of the
tracking errors has been increased for each threshold compared
to the anti-windup-based TDC. For instance, for the threshold
equal to 0.05 mm, the maximum of |x̃|, |ỹ|, and |z̃| has been
increased 75.7324 %. On the other hand, with the help of
the proposed AFSMC implemented based on the threshold of
0.05 mm, the completion time has reduced 74.2426 %. It is
noteworthy that, according to Fig. 6 (d) and Fig. 7 (d), the
values of |x̃|, |ỹ|, and |z̃| in the last 30 seconds of motion

Start 22 s 32 s

55 s 70 s 86 s

Top 

view

Front view

x

y

z
.

x

z

y

114 s 150 s 166 s

5 mm

Figure 13: Captured images of the microrobot manipulation
inside the phantom



11

were less than 0.2 mm. Also, in this comparative analysis,
to implement the anti-windup-based TDC, it is assumed that
the mass of the microrobot is known. As has been studied in
[28], the performance of the anti-windup-based TDC is highly
dependent on the nominal mass matrix set by the user. In other
words, if the nominal value of the mass is chosen far from the
real value, the performance of the anti-windup-based TDC will
be degraded significantly.

In order to evaluate the robustness of the controller in differ-
ent experimental conditions, the anti-windup-based TDC and
the proposed AFSMC have also been tested in Silicone oils
with 100-cSt and 1000-cSt viscosities. It is worth noting that
both the controllers have been tuned based on the trial-and-
error in the Silicone oil of 350-cSt viscosity. The experimental
results obtained for different mediums in tracking the spiral
trajectory with the threshold of 0.1 mm have been presented
in Fig. 10 and Table II. According to Fig. 10, the proposed
AFSMC has been successful in tracking the desired trajectory
even with the change of the medium. However, in the case
of testing in Silicone oil of 100-cSt, the anti-windup-based
TDC failed to track the reference path. It is worth noting that,
as reported in Table II, with the increase of the viscosity,
the completion time and the maximum of |x̃|, |ỹ|, and |z̃|
corresponding to the proposed AFSMC have increased.

In continuation, to induce external disturbances in the
system, we selected a Neodymium N52 cylindrical magnet
with dimensions of 30 mm in length and 15 mm in diameter.
This magnet was placed in a 3D-printed holder (see Fig. 11
(a)) for convenient alignment and assembly with the magnetic
actuation system. Positioned at X = [65, 0, 0]

T
mm, the mag-

net was affixed with its north pole facing inward towards the
+x-axis. This placement occurred at approximately t = 40 s
during tracking in the Silicone oil of 350-cSt viscosity and
time evolution of the force disturbances Fdi (i = 1, 2, 3) have
been presented in Fig. 11 (b). The external magnetic forces
have been estimated by the Dipole model [40] and verified
with a FEM simulation in COMSOL. The calculations show
that the microrobot faced a maximum disturbance of 20 µN
in the x-direction (i = 1).

The control inputs Fmi (i = 1, 2, 3) generated by the
proposed AFSMC and the 3D microrobot’s position graph in
the presence of the external magnet have been shown in Fig.
11 (c) and Fig. 11 (d), respectively. As is seen in Fig. 11 (c),
the compensation of the disturbance force Fd1 has caused the
saturation of Fm1 after t = 200 s. Nevertheless, according
to Fig. 11 (d), the microrobot has autonomously tracked the
spiral reference path with the threshold of 0.1 mm. Hence,
this test shows that the proposed AFSMC is also capable of
compensating for the effects of external disturbances.

In the second test scenario, with the aim of providing a more
realistic example, the electromagnetic manipulation system has
been employed to control the position of the microrobot in the
simplified Aorta phantom shown in Fig. 12. The Aorta is a
large and cane-shaped vessel delivering oxygen-rich blood to
the body [38], [41]. The 3D printed Aorta phantom that we
use was made identical to the heart of a human with reduced
number of branches, scaled down to roughly the size of a
mouse’s heart. The maximum and minimum diameters of the
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Figure 14: Time evolution of (a) x, (b) y, (c) z, and (d)
the tracking errors corresponding to the phantom experiment
scenario

vessels are 2.5 mm and 1.5 mm, respectively. Moreover, the
footprint of the phantom is 15 mm× 15 mm× 10 mm. The
phantom has been 3D printed by Logical Design (Gyeonggi-
do, South Korea) using the SLA method. The material used
is Accura ClearVue and the printer employed is called ProX
800.
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Table I: Performance comparison of the anti-windup-based TDC and the proposed AFSMC in tracking the spiral trajectory

Threshold [mm] Maximum of |x̃|, |ỹ|, and |z̃|
after t = 14 s [mm] Completion time [s]

Anti-windup-based
TDC

Proposed
AFSMC

Percentage
change

Anti-windup-based
TDC

Proposed
AFSMC

Percentage
change

0.05 0.2054 0.3610 75.7324 % 1595.5 410.9553 -74.2426 %

0.10 0.2204 0.4774 116.6140 % 896.9193 249.7678 -72.1527 %

0.15 0.2290 0.5497 140.0177 % 624.5330 177.2086 -71.6254 %

0.20 0.2721 0.5827 114.1450 % 490.4476 153.7078 -68.6597 %

0.30 0.3637 0.6831 87.7888 % 330.5236 118.7852 -64.0615 %

(a)

(b)

Figure 15: The 3D microrobot’s position graph in the phantom
experiment scenario when tracking the reference trajectory (a)
from A to B and (b) from B to A

Before starting the experiment, the phantom was placed
inside the Silicone oil 350-cSt, and then placed inside the
vacuum to eliminate the air bubbles. The results correspond-
ing to the phantom experiment scenario under the proposed
AFSMC with the threshold of 0.1 mm are shown in Fig. 13
to Fig. 16. As it was expected, Fig. 13 to Fig. 15 reveal that
the saturation-tolerant AFSMC can track the reference path
successfully in the second experiment scenario. According to

Table II: Performance comparison of the proposed AFSMC
for different values of viscosity in tracking the spiral trajectory
with the threshold of 0.1 mm

Viscosity [cSt] Maximum of |x̃|, |ỹ|, and |z̃|
after t = 14 s [mm]

Completion
time [s]

100 0.3336 223.5391

350 0.4774 249.7678

1000 0.4836 384.1903

Fig. 14 (d), the minimum and the maximum values of the
tracking errors are −1.22 mm and 0.95 mm, repectively. As
shown in Fig. 16, since the initial position of the microrobot
was near the reference starting point A, the generated control
inputs Fmi (i = 1, 2, 3) have not been saturated for the first
few seconds. It should be noted that, in the second experiment
scenario, the microrobot has tracked a path to reach the
reference destination point B and then returned toward the
reference starting point A. Hence, at the time of changing
the direction (near t = 86 s), the overshoots in x and z
and the undershoot in y have been appeared (see Fig. 14).
As supplementary materials, videos S1, S2, S3, and S4 have
been provided to show the microrobot control in the first and
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Figure 16: The generated control inputs Fmi (i = 1, 2, 3)
versus time corresponding to the phantom experiment scenario
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second test scenarios. Moreover, the FEM simulation results
corresponding to the external magnet have been provided in
the supplementary material S5.

V. CONCLUSIONS

In this article, an input saturation-tolerant adaptive fuzzy
sliding-mode control scheme has been designed to provide a
model-free approach for the position control of the magnetic
microrobots. Each AFSMC input consists of a fuzzy inference
term utilized to approximate an unknown nonlinear function
including uncertain forces, a robust part derived to compensate
for the fuzzy approximation error and disturbances, and a sat-
uration compensating gain. The presented control method can
be implemented without prior information about the physical
properties of the fluid and the microrobot. Furthermore, the
proposed control structure does not face the limitations of the
anti-windup-based TDC and previous direct AFSMC methods.
The stability of the control system with the possibility of input
saturation has been proved.

To evaluate the performance of the proposed AFSMC, two
experimental scenarios have been proposed. The experimental
results corresponding to the spiral reference path reveal that
the magnitudes of the tracking errors were less than 0.2 mm
at the end of the motion. Moreover, in the phantom experi-
ment scenario, the minimum and the maximum values of the
tracking errors were −1.22 mm and 0.95 mm, respectively.
Hence, in both scenarios, it can be claimed that the saturation-
tolerant AFSMC has tracked the reference path successfully. In
addition to the above-mentioned notes, compared to the anti-
windup-based TDC, the proposed AFSMC has been successful
in significantly decreasing the completion time and improving
the tracking performance with the change of the medium.

It is important to note that the proposed control method
has been designed with no dependency on the shape of
the microrobot. However, the range of the tracking errors
may be affected by changing the microrobot’s shape. Hence,
to obtain the best possible performance, the tuning of the
controller’s parameters should be repeated for each microrobot
geometry. Since it is of high importance to guarantee that
the microrobot does not collide with the walls of veins, the
AFSMC method can be developed for the collision avoidance
problem in future works. Moreover, designing the AFSMC
based on a guaranteed precision will have a great impact in
related applications.
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