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1 Introduction

The coexistence of structural transformation and sustained balanced growth throughout his-
tory stands out as a well-established hallmark of economic development, commonly referred
as the Kaldor [48] and Kuznets [51] facts. Recently, attention has pivoted towards the anal-
ysis of the dynamic transitions occurring within various sectors, with a special emphasis on
the expansive service sector. Notably, this sector now commands a staggering 80% share of
the labour force in developed nations, underscoring its pivotal role in shaping contemporary
economies.

A compelling trend emerges from the data we present below: certain industries in ser-
vices (and Information Technology (IT)) exhibit a dual characteristic of heightened produc-
tivity alongside an augmented labour share within the services domain. This phenomenon
defies the conventional paradigm of structural transformation, which posits that stagnant
sectors absorb increasing volumes of factor inputs. Remarkably, these industries reveal the
presence of specialized technical expertise. Beyond its intrinsic value, exploring this new pa-
tern also bears implications for comprehending the future evolution of the global economy.1

What propels the process of structural change? Existing literature delineates two mech-
anisms capable of instigating substantial economy-wide transformations. On the demand
side, when consumer preferences deviate from the Gorman form and relative prices re-
main constant, the growth in income affects differently the consumption patterns of diverse
goods.2

On the supply side, disparities in sector-specific productivity growth rates and the extent
of substitutability between capital and labour catalyze shifts in relative prices and the real-
location of production factors.3 Notably, the literature underscores that the absence of sub-
stitution either in intermediate or final goods constitutes the primary driving force behind
the influx of factors into stagnant sectors (see Ngai and Pissarides [62] and Acemoglu and
Guerrieri [4]). Conversely, the work of Ngai and Pissarides [62] reveals that inter-subsector
substitution brings the rise of the labour share in the most productive sub-sectors.

In the present paper we conceptualize productivity growth as an outcome of accumu-
lating specialized skills, while also accounting for substitution effects. This contrasts with
the literature that predominantly operates under the assumption of exogenous productivity
differences.4 Our dual methodology serves two primary objectives. Firstly, we aim to estab-

1In Acemoglu and Restrepo [5], a similar research evaluates the role of automation.
2Examples of this literature are Alder et al. [8], Alonso-Carrera and Raurich [10], Boppart [19], Buera and

Kaboski [23, 24], Echevarria [34], Foellmi and Zweimueller [35] and Kongsamut et al. [50]
3See for instance Acemoglu and Guerrieri [4], Alvarez-Cuadrado et al. [11], Caselli and Coleman [28], Ngai

and Pissarides [62], Buera et al. [25] and the survey of Herrendorf et al. [40].
4See also Hu et al. [43] who provide a unified theory with endogenous technology choice in hu-

man/knowledge capital accumulation where poverty trap, middle income trap and persistent growth are pos-
sible outcomes, or Jaimovich [46] who propose a demand-driven growth theory where process innovations and
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lish a connection between productivity differences and the specific occupational categories
they relate to. Our model will show that the spillover effect from the concentration of higher
technical professions in these industries further reinforces the positive relationship between
labour productivity and labour share.

Secondly, we strive to create a framework where economic growth dynamically interacts
with structural transformations. It is worth considering the possibility that the reassignment
of workers could dampen completly long run growth. For example, with exogenous tech-
nolgical progress and substitution in intermediate goods, Acemoglu and Guerrieri [4] find
that the progressive sub-sector increases its input share. However, with endogenous growth
they find that technological progress is stronger in the sector that is growing less which is the
labour intensive sector. On the contrary, our model delivers sustained growth. Importantly,
our framework allows for conditional convergence, while most of the literature fails to do
so.

We start our analysis by gathering our stylized facts. We partition services into two sec-
tors. We label high-skilled (HS) the sector with a positive relationship between labour share
and productivity. This sector is dominated by the presence of Information and Communica-
tion industries within services. We obtain four important stylized facts about this sector in
addition of the fact that increases in productivity and increases in the labour share are posi-
tively correlated; i) The joint labour share of these industries is increasing over time; ii) The
relative price of industries in this sector is decreasing; iii) industries in the HS sector require
workers with a high level of specialized technical skills and knowledge; and iv) across our
set of countries there in no absolute convergence of HS labour shares.

The classification of sectors is slightly different than the ones adopted in the literature.
Duernecker et al. [32] and Sen [65] use a decomposition based solely on productivity, Duarte
and Restuccia [31] distinguish according to positive or negative income elasticities, and
Buera and Kabovski [23] and Buera et al. [25] use schooling years to proxy skills. Our clas-
sification is based on productivities rather than in years of schooling as our mechanism is
specifically about skills accumulation. Furthermore, the empirical evidence on the effect of
years of schooling on productivity is not conclusive.5

We now describe the model in greater detail. We adopt a two intermediate sector model
à la Acemoglu and Guerrieri [4], where each sector uses capital and labour, only focusing on
services economy. We therefore do not account for the goods economy and consider only
two service sectors. We think the outcomes of our model do not suffer from this choice, as
argued in the model section. In the model, structural transformation relies on relative price
effects resulting from differential productivity growth across sectors. Differential growth is
endogenous and results from individual choices, similar to specific knowledge accumulation

product innovations are needed for the economy to keep growing in the long run.
5Herrendorf et al. [40] adopts a similar partition of sectors.
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in Lucas [53]. We believe that skilled intensity of workers can be measured by their knowl-
edge accumulation decisions. Finally, substitutability is attributed to intermediate goods,
rather than final goods as per our empirical data, this distinction does not pose a complica-
tion (see Sen [65]).

Sector HS employs skilled workers. These agents spend part of their working time to
accumulate technological knowledge, they split their individual unit of time between ac-
cumulation of individual technological knowledge (research) and work. We assume, as in
Lucas [53], that the equation governing knowledge accumulation is linear but we generalise
it in Section 8. Sector LS employs unskilled workers which devote all their individual unit
of time to work. While the total population is growing at an exogenously given rate, the
number of agents working in each sector is endogenously determined over time. The final
good, which is consumed, is produced through a CES technology with a constant elasticity
of substitution.

The analysis of our model proceeds in several steps. First, we define a workable equi-
librium concept. As in Lucas, knowledge accumulation is an externality to the firm, and we
consider the planner’s solution in which this externality is internalized. We then provide
a detailed characterization of the asymptotic non-balanced growth path (NBGP), character-
ized by different growth rates across sectors, and of the transitional path converging toward
this NBGP. A numerical calibrated example provides some further insights into the transition
dynamics and its empirical plausibility.

The first finding is that the pattern of labour and capital reallocations along the equilib-
rium path dramatically depends on whether the two intermediate sectors are complements
or substitutes. We show that when inputs are substitutes, technological knowledge ensures
that output growth is larger within the HS sector which becomes dominant in the long run.
The long run growth rate of the final good sector is determined by the growth rate of the HS
sector and there is capital deepening in this sector. As a result, in the long run and along
the transition, the real and nominal shares of the HS sector are increasing while the real and
nominal shares of the LS sector are decreasing. Similarly, the relative prices of the HS and
LS sectors are respectively decreasing and increasing. These conclusions therefore fit with
the pattern of labour and capital shares and value added presented in Section 3 below (see
also Appendix 11.2). We also consider the case with complementary inputs, but the equili-
bium properties are not compatible with the empirical facts previously mentioned. A similar
conclusion holds for the case with a unitary elasticity of substitution.

The analysis also reveals the path dependence of economic development. First, we de-
trend all the variables by their respective endogenous non-balanced growth rates, and prove
that there exists a manifold of steady states parameterized by the initial value of the price of
knowledge. Each steady state is saddle-point stable and is associated with a set of unique
non-balanced growth rates, which depend on the initial value of capital and knowledge.
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Thus for each initial condition the economy will follow a particular growth path converging
to a particular level of wealth. As a consequence, countries with the same fundamentals but
lower initial wealth will be characterized by lower asymptotic wealth. In the case with inputs
substitutability, the long run values of knowledge and human capital depend on the initial
price of knowledge and long run inequality concerns both stocks. Contrary to Acemoglu and
Guerrieri [4] but like Lucas [53], we obtain the existence of non-convergence across countries
in a framework with structural change.

We finally provide a numerical illustration in the substitutable case to characterize the
transitional dynamics of the main variables. Our aim is to test whether our model is able
to replicate qualitatively and possibly quantitatively the US data mentioned above. Our
calibration generates increases of the capital and labour shares and of the real and nominal
shares in GDP of the HS sector that are qualitatively consistent with the empirical evidence
provided in Section 3. Similarly, we obtain decreasing and increasing relative prices of the HS
and LS sectors respectively as shown in Section 3. We are also able to replicate quantitatively
the variations of the capital share of the HS sector.

The paper is organized as follows. In Section 2 we discuss the position of our paper
within the recent literature. In Section 3 we present empirical evidences that support our
main theoretical results. Section 4 presents the model. Section 5 characterizes the intertem-
poral equilibrium. Section 6 shows that our model generates non-balanced growth and struc-
tural change consistent with Kaldor facts. Section 7 establishes the existence of a manifold
of steady states of the stationarized dynamical system and provides a local stability analysis.
Section 8 proves the robustness of our results to the consideration of a non-linear accumula-
tion equation of knowledge. Section 9 contains some conclusions on transitional structural
change together with numerical illustration. Section 10 presents conclusions and the Ap-
pendix contains all the proofs.

2 Literature review

There is a vast literature on structural change as well as a vast literature on endogenous
growth. Here we focus on two specific areas. First, we review the strand that, leveraging the
availability of new data, focuses on structural transformation and labour productivity within
the service sector. Second, we will look at models of endogenous growth with structural
change.

In an insightful paper, Ngai and Pissarides [62] study a general classical multisector
model of growth with exogenous differences in TFP growth rates across sectors. Ngai
and Pissarides [62] give sufficient conditions on utility6 and production for the existence
of structural change, characterized by sectoral labour reallocation and balanced aggregate

6in particular a logarithmic intertemporal utility function

4



growth. The sectoral employment changes are consistent with the historical trend of struc-
tural change,7 if substitutability between the final goods produced by each sector is low.
Conversely, with highly substitutable goods, labour would move from the low stagnant sec-
tor to the progressive sector and the assymptotic aggregate growth rate would be the one of
the progressive sector.8

Duernecker et al. [32] model consists of three sectors, a goods producing sector and two
service sectors; progressive services and stagnant services. The value added is obtained lin-
early with labour services via a sector specific total factor productivity. The linear specifica-
tion implies that sectoral TFP equals labour productivity, but as this is provided by the data,
the role of capital accumulation is brought back into the model. They find that progressive
services are necessities, stagnant services are luxuries, and the two services are substitutes.

Sen [65] also decompose the service economy into a progressive and a stagnant sub-
sector and show that the definition for high and low-productivity sub-sector is robust and
stable for a large majority of developed economies. Differently than Duernecker et al. [32],
Sen [65] considers the value added of these sub-sectors, and notes that for some services
sub-sectors, as business services or wholesale and retail trade, there is no counterparts as
final consumption. As in our paper, the author also exhibits substitutability between the
two services sub-sectors, which annihilate the Baumol’s cost disease effect on productivity
growth.

Duarte and Restuccia [31] split services in traditional services characterized by positive
income elasticities, and nontraditional services marked by negative income elasticities. They
show a substantial reallocation of expenditures in services from traditional ones to non-
traditional services as income rises. Their analysis underscores the correlation between rel-
ative price decline and income, pinpointing heterogeneity within the services domain as a
source of substantial aggregate productivity losses, particularly pronounced in economically
disadvantaged nations.

Bárány and Siegel [12] consider a multi-sector growth model populated of agents with
heterogeneous skills, where agents optimally select which sector to work in. There is routine
labour-augmenting technological changes that generates variations in labour productivity
growth. Assuming that produced goods are complements, a change in relative productiv-
ities increases labour demand in the relatively slow growing sectors, and wages in these
sectors have to increase in order to attract more workers. They find that occupation and
sector components are jointly explaining 96.7 percent of occupational labour-augmenting

7The decline of agriculture’s employment share, the rise and then fall of the manufacturing share, and the rise
in the service share (Kuznets [51] and Maddison [60])

8See also Mukoyama and Popov [59] who provide a dynamic general equilibrium model with incomplete con-
tracts to examine the interaction between factor accumulation, institutions of contract enforcement, and political-
economy frictions. They show that a higher level of institutional capital can enhance industrialization through
directly improving production efficiency and indirectly encouraging physical capital accumulation.
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technological changes.
Buera and Kabovski [23] and Buera et al. [25] consider workers with heterogeneous skill

levels, in particular high-skill-intensive versus low-skill-intensive services. These authors
focus on the stock of knowledge, based on the number of schooling years of workers ob-
tained away from this sectors. For example, they include real estate in their high skilled
sector because it exhibits a share of labour compensation for more educated workers higher
than average, but has a lack of TFP growth: techniques to sell houses are barely the same
than 40 years ago. Relative prices are increasing in Buera et al. [25]. Aditionally, there are
rice effect of non-homothetic utility function.

Acemoglu and Guerrieri [4] consider a two-sector growth model with a single consump-
tion good. They focus on the role of differences in factor intensity in an environment with
modest differences in technological progress so that capital deepening is the main cause for
changes in relative price. While most of the analysis assumes that intermediate goods are
complements, they also consider the case of substitutable goods, formalised by Assump-
tion 2, ii). However, they assume that the sector with highest labour intensity has a much
larger productivity growth, so that this sector has the largest augmented rate of technologi-
cal progress. Therefore, the dominant sector has also in this case high labour intensity. Still
with substitutable goods, we rather focus on the case in which the sector intensive in capital
has also the largest productivity growth, a case excluded from their Assumption 2. Indeed,
this allows us to capture well progressive services.

Finally, focusing on automation and artificial intelligence, Acemoglu and Restrepo [5]
and Irmen [44] adopt a task-based approach to analyze the particular effect of automation
on labour productivity and labour demand. The overall effect is a reallocation of labour
from automated tasks to non-automated ones, with lower productivity growth, inducing a
decreasing labour income share in the automated industry.9

Our decomposition of the service sectors differs to this literature in several ways. In
contrast with Duernecker et al. [32] our approach distinguish between TFP growth and in-
vestment as separate determinants of sectoral labour productivity growth. These authors
assume that for the U.S. and along a balanced growth path, aggregate TFP and aggregate
capital both grow at the same constant rate. They acknowledge that distinguishing between
sectoral TFP growth and capital growth is likely to matter in middle-income and developing
countries where capital is scarce.

We contrast with Buera et al. [25] as we are looking at the development of new techniques,
and new skills, within the industry instead of the actual schooling level of workers. Our
definition of skills is based on a measure of technical development within the sector instead

9See also Iwaisako and Futagami [45] who investigate how strengthening patent protection affects economic
growth in an endogenous growth model where both innovation and capi tal accumulation are the driving forces
of economic growth.
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of within workers. This theoretical difference is at the origin of our data classification, and
explain partially why relative prices in our paper are decreasing while they are increasing
in Buera et al. [25]. The second explanation lies in the absence of demand-side mechanisms
in our paper, which eliminates the price effect of non-homothetic utility function present in
Buera et al. [25]. Our classification contrasts with Sen [65] and Duernecker et al. [32] as we
consider both productivity and labour share.

Finally, a few papers combine endogenous growth and structural change. Acemoglu and
Guerrieri [4] address the question of whether their results (as described above) are driven by
the exogeneity of technological progress. In the endogenous growth version of their model
([3]) they find that technological change tends to offset the non-balanced nature of economic
growth. In particular, technological change is stronger in the sector that is growing less
which is the labour intensive sector. The dynamic stability of their equilibrium is missing in
their analysis.

Bondarev and Greiner [17], Boppart and Weiss [20] and Foellmi and ZweimÃŒller [35]
focus on the effect of R&D on the process of structural change. Bondarev and Greiner [17]
consider horizontal and vertical innovations to generate endogenous growth with structural
change. A representative firm faces a constraint with respect to aggregate R&D spending.
Assuming that consumers have preferences for variety, the R&D process generates creative
destruction implying that older technologies are continuously replaced by newer ones and
new technologies are driven by horizontal innovations and the taste for variety. Interestingly,
if spending is insufficient, there may exist two different steady-states of the economy; one
with high productivities and less new technologies, and the other with more technologies
but lower productivities. If R&D spending is large enough the steady-state becomes unique
and all technologies are used.

Boppart and Weiss [20] provide a model of directed technical change in which structural
change is driven by both relative price and income effects. There are two final consump-
tion goods, durables and nondurables. Both goods are produced using an identical set of
intermediate industries, varying only in their intensities, with which these different indus-
tries are used. As (endogenous) innovation takes at industry level, changes in the market
sizes induce a shift in industry specific R&D, which finally determines the evolution of final
output prices. A unique endogenous balanced growth path is obtained in the long run and
endogenous structural change is driven along the transition by income effects. In both pa-
pers absolute convergence holds: all countries should converge in the long run toward the
same growth rate and level of GDP.

In Foellmi and ZweimÃŒller [35], structural change is generated by hierarchical pref-
erences defined over luxury and necessity goods. The model has monopolistic firms gen-
erating R&D-based growth. In this setup, hierarchical preferences generate heterogenous
mark-ups across firms and, for a given firm, the change over time of the mark-ups increase
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the incentives to innovate. Higher growth implies that the market expands more quickly
and leads to a faster growth of profits. This latter effect resulting in demand externalities
may give rise to multiple equilibria and thus global indeterminacy. In this model, countries
may not converge toward the same long run growth rate depending on whether optimistic
or pessimistic expectations occur.

Hori et al. [42] and Herrendorf and Valentinyi [41] focus on the mechanisms responsible
for the reallocation of labour from the goods sectors to the service sectors, and the potential
policy implications on the pace of structural transformation. Herrendorf and Valentinyi [41]
are motivating the use of endogenous growth, coupled with imperfect competition, as a way
to introduce industrial policy, through technological progress, in structural change models.
They develop a model of endogenous sector-biased technological change with a unique gen-
eralized balanced growth path. In this equilibium there is balanced aggregate growth with
more innovation in the services sector but higher productivity growth in the goods econ-
omy. In Hori et al. [42] the source of endogeneity is twofold: the number of firms in each
productive sector and the individual firm productivity, through knowledge spillover effect.
By solving the central planner and the decentralized economy problem they obtain labour
reallocation from the more productive goods sector to the low-productivity service sector,
which is consistent with decreasing prices in the high-productivity sector and balanced ag-
gregate growth. However, in the decentralized economy, structural transformation is faster
than for the central planner. Indeed, knowledge spillover creates higher productivity growth
for future firms, a phenomenon not taken into account in the decentralized economy, produc-
ing an inefficiently faster structural change. Note that in these models the balanced growth
path is unique and absolute convergence holds.

In contrast to these five papers, we propose an endogenous growth model where struc-
tural change is driven by knowledge accumulation, formalised as in Lucas [53], which affects
asymmetricaly two intermediate sectors. We therefore establish a connection between pro-
ductivity differences and the specific occupational categories they relate to link. We adress
the new question whether the reassignment of workers moderate or amplify growth via the
endogenous feedback. Finally, the model delivers conditional convergence which is com-
patible with our empirical facts. Therefore, depending on their initial wealth, countries may
converge to the same long run growth path but with different long run wealth.

3 Empirical evidence

In this section we describe our datasets and present five important stylized facts based on
our analysis of a subset of economies: i) Increases in productivity and increases in the labour
share are positively correlated for two industries (denoted the High-Skilled (HS) sector of
services); ii) The joint labour share of these industries is increasing over time; iii) The relative
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price of industries in the HS sector is decreasing; iv) industries in the HS sector require
workers with a high level of specialized technical skills and knowledge; and v) across our
set of countries there in no absolute convergence of HS labour shares.

3.1 The data

Our main source is the EUKLEMS/INTANPROD 2023 dataset (Bontadini et al. [18]). Ad-
ditionally, to enhance our results, we have incorporated data from the previous version of
EUKLEMS for nine economies: Austria, Germany, Spain, Finland, France, Great Britain,
Italy, Japan, and the US. The data spans from 1970 to 2020.

Our analysis employs the NAICS classification to allocate employment, capital, and
value-added across different industries. To ensure data completeness, we operate at the
2-digit level, which is represented by letters in our dataset. Notably, we focus solely on the
service economy, which leads us to narrow our investigation to the following industries:

G: Wholesale and retail trade; repair of motor vehicles and motorcycles
H: Transportation and storage
I: Accommodation and food service
J: Information and communication
K: Financial and insurance activities
L: Real estate activities
M N: Professional, scientific, and technical activities and administrative and support ser-

vice activities
O: Public administration and defense; compulsory social security
P: Education
Q: Human health and social work activities
R: Arts, entertainment, and recreation
S: Other service activities
As our primary focus is to analyze how productivity growth influences the share of

employment in these specific sectors, we are particularly interested in three key variables:
labour, capital, and Total Factor Productivity (TFP). To measure labour, we use the number
of individuals employed in each sector. For capital, we utilize the stock of capital data. As
for TFP, we employ the TFP index per hour worked. Since we are integrating data from two
versions of EUKLEMS, we encountered the need to align the TFP index to a common base
year. The most recent data is based on the year 2015, while the older data relies on the year
2005 as the base year. To ensure consistency, we rescaled the TFP index accordingly. Addi-
tionally, we encountered slight differences in the industry classification between the datasets.
As a result, we merged subsectors ”M” and ”N” from EUKLEMS/INTANPROD 2023 into
the aggregated subsector ”M N” to match with the older data’s classification. For both TFP
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and the aggregated ”M N” sector, we employed a Torqnvist aggregator.

3.2 Relationship between employment share and productivity growth

In this subsection, our focus is to examine the relationship between productivity growth
and the labour share within specific industries. Changes in labour share within an industry
could have two possible origins: i) reallocation within the service economy or ii) absorption
of labour from the goods economy. Our investigation centers around the former and aims
to understand how productivity growth influences this reallocation process. We then define
labour share as the share of labour allocated to a particular industry in comparison to the
entire service economy. This ensures that the sum of all labour shares in the cited industries
remains equal to one, effectively accounting for the reallocation of labour from the goods
economy.

Productivity is measured through the Total Factor Productivity (TFP) data available in
our dataset. Additionally, as a control variable, we incorporate the share of capital in each in-
dustry. The inclusion of this variable is crucial as capital investments tend to be less volatile
than labour and may indicate planned reallocation of labour due to known capital invest-
ments.

To establish the relationship between the share of labour in a specific industry and pro-
ductivity, we employ a relative measure of Total Factor Productivity (TFP) denoted as rTFP.
This variable is defined as rTFP = TFPi

TFPservices , where i represents a particular industry, and
TFPservices denotes the aggregated TFP of the entire service economy, achieved using a
Torqnvist aggregator. The rationale behind using rTFP is that TFP itself is an index con-
structed to have a value of 100 for each country and industry in 2005. As such, the absolute
value of TFP lacks informative significance. However, by examining relative TFP, we can
gauge the performance of a specific sector relative to the aggregated services economy. This
relative measure provides more informative insights into the productivity performance of
individual industries and their potential impact on labour distribution.

Our dataset is constructed as a three-dimensional panel, with each observation defined
by its industry, country, and time information. Given the structure of our data, the most
appropriate approach to estimate the productivity effect is to study the following model:

LSi,j,t = β0 + β1rTFPi,j,t + β2KSi,j,t + λi + µj + νt + ε i,j,t (1)

where LSi,j,t represent the labour share of industry i in country j in year t and KS represents
the capital share. Additionally, λi, µj and νt are the associated fixed effects and ε denotes the
residuals. However, our main focus is on understanding the value of the estimator β1, which
represents the effect of relative TFP on the labour share, but for each industry separatly.
Therefore, we will restructure equation (1) to obtain a two-dimensional panel with country-
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time indexes for each industry. The revised model is as follows:

LSi
j,t = βi

0 + βi
1rTFPi

j,t + βi
2KSi

j,t + µi
j + νi

t + εi
j,t (2)

where i stills denotes the industry level data but now we have one equation for each industry.
This formulation will allow us to get an industry specific estimator for the effect of relative
total factor productivity (TFP) on labour distribution. We are particularly interested in the
values of the individual estimators, denoted as βi

1, which quantify this effect for each indus-
try, and to obtain this estimator we are running a two-dimensional panel model on a country,
year basis. Essentially, we execute the same model twelve times, once for each industry, and
compile the results of relative TFP on labour share into a single graph, as presented in Figure
1. The comprehensive estimation details are provided in Table 3 in the appendix.

Figure 1: The relationship between productivity and labour share

In this figure, each point represents the value of the estimator, and the bar indicates the
95% confidence interval. Our model reveals a noteworthy finding: a positive and significant
relationship exists for two industries, Information and communication (J) and Education (P)
within the services economy. Specifically, as the relative productivity of these industries in-
creases, the labour share of the considered industry also rises. These results stand in contrast
to what is typically observed in the goods/services structural change literature, where lower
relative productivity in the service sector usually leads to an increasing share of labour. This
effect is often attributed to the complementarity between goods and services (Acemoglu and
Guerrieri [4] or Buera and Kaboski [24] among many others).

At this stage, we conjecture that the positivity of these estimators stems from the existence
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of a substitution effect between the two sectors of the services economy. The sectors are
labeled as HS (High-Skilled Sector) for industries with estimators larger than 0, indicating
a positive effect of labour productivity, and LS (Low-Skilled Sector) for industries with a
negative estimator. The labour force migrates to the HS sector, which is also the sector with
the fastest productivity growth. Note that the numenclature is motivated by the occupations
in these sectors, as reveled by the relevant empirical subsection below

3.3 Evolution of labour share and prices in the service sectors

In this section we aim to further investigate the presence of a substitution effect between the
HS and LS sectors. The classification relies on the relationship between labour productivity
on worker distribution, but we aim to further investigate the presence of a substitution effect
between these two service sub-sectors. To ascertain the existence of a substitution effect
between HS and LS, we examine the evolution of the labour share and relative prices of the
HS sector over time and during the development process in a subset of economies.

To observe the evolution of labour and prices in the HS sector, our analysis will focus on
nine economies: Austria, Germany, Spain, Finland, France, Great Britain, Italy, Japan, and
the US. These countries were chosen based on their data availability, spanning back to 1970,
providing us with a comprehensive 50-year observation period to study the mechanisms of
structural change. By merging two EUKLEMS datasets, we gain access to valuable historical
data, enabling a thorough examination of the long-term phenomenon of structural change
in three different regions of the world: Europe,10 the USA, and Japan.

As described earlier, calculating the labour share of the HS sector involves summing
the values of industries J and P to obtain the overall share of this sector. However, for the
price analysis, we employ a Tornqvist aggregator to aggregate the prices. This allows us to
compare the aggregated price of the HS sector with that of the entire service economy. By
doing so, we can discern whether the relative prices of HS have been increasing or decreasing
over time. The graphical representation of the evolution of labour and relative prices is
provided in the figure 2 below.

As evident from the data, the labour share and relative prices in the HS sector are moving
in opposite directions for most of the countries under study, except for Austria, where the
labour share shows fluctuations but experiences a slight overall increase. Across the eight
countries (excluding Austria), the increase in the labour share of the HS sub-sector is ac-
companied by a decrease in its relative price. This trend has remained stable over the entire
50-year period, with a small atypical episode due to the early 2000’s internet crisis.

10It is worth noting that even within Europe, while Italy, Germany, Finland, and Great Britain are part of the
same trade agreements, there are still notable differences in their industries and cultures, which can potentially
influence the outcomes of our analysis. These nuances and distinctions between the countries under study
should be considered while interpreting the results.
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Figure 2: Labour share (red line) and relative price (blue line) of the HS sub-sector

The early 2000’s internet crisis, commonly referred to as the dot-com bubble, had a no-
ticeable effect on the labour share of HS in several countries. Notably, France, Italy, the USA,
Spain, and Finland experienced a drop in the labour share of HS mainly around 2003-2005.
This decline can be attributed to the fact that the HS sector comprises the information and
communication industry (ICT), which was particularly affected by the burst of the internet
bubble. As a result, the labour share in the HS sector witnessed a temporary decline during
this period.

It is important to note that despite the setback during the dot-com bubble, the general
trend of increasing labour share and decreasing relative prices in the HS sector persisted for
the other countries and the overall 50-year period. This suggests that the structural change
mechanism driving these trends is robust and not solely dependent on short-term economic
fluctuations.

The fact that the labour share of the HS sector increased while its relative price decreased
over time, strongly suggest the presence of a substitution effect between HS and LS and
provide a compelling evidence to support our hypothesis.
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3.4 Occupations in the service sectors

To investigate the reasons behind the higher labour productivity in the HS sector, we turn to
Eurostat’s data on occupations, specifically utilizing the lfsa eisn2 dataset from the LFS sur-
vey series. These data offer valuable insights into the share of higher technical professions,
which we consider as an explanatory variable for the observed higher labour productivity in
the HS sector. Our hypothesis is that the presence of knowledge and specialized skills within
the workforce is a significant factor contributing to this effect.

Eurostat’s data on occupations possess a crucial advantage over other variables, such as
education or wages, as they provide a more nuanced perspective. Over the covered time
period, there has been a considerable increase in educational attainment, making the educa-
tional level alone less informative as a determinant of labour productivity. By focusing on
occupations, we can better capture the specific technical skills and knowledge required in
the workforce, which are likely to have a more direct impact on productivity.

In Figure 3, we present the results of our analysis, focusing on the share of higher techni-
cal professions and managers (panel a) along with technical labour (panel b) within various
services industries. We maintain the same coverage as in our previous results for consistency.

The figure highlights the distribution of higher technical professions and technical labour
across different services industries. This visual representation allows us to discern any pat-
terns or correlations between the prevalence of specialized occupations and the higher labour
productivity observed in the HS sector. However, it is important to note that the data only
focuses on European countries, and further research could expand the analysis to include a
broader geographical scope for more comprehensive conclusions.

(a) (b)

Figure 3: Share of higher occupations in total labour

The analysis of Eurostat’s data reveals a significant finding - the two industries that make
up the HS sector also have the largest share of higher technical professions compared to any
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other industry. This notable difference of more than 20 percentage points emphasizes the
crucial role of technical professions in driving the observed positive relationships between
labour productivity and labour share. It appears that the high level of specialized technical
skills and knowledge is at the core of the mechanisms underlying the growth process in the
HS sector.

3.5 Relative convergence in the HS sector

We now examin whether a cross-country convergence exists within the labour shares of the
HS sector. In figure 4 we plot the relationship between the labour share in the HS sector (x
axis) and the relative log GDP per capita.

Figure 4: The relationship between labour share in HS and Log GDP per capita

The illustration features a selection of five countries, chosen for the sake of clarity. How-
ever, the comprehensive graph encompassing the entire dataset is available in the appendix,
revealing a comparable pattern. Germany and Finland exhibit closely aligned yet consis-
tently parallel trends, rather than displaying a converging trajectory. The trends for Great-
Britain and the US are far from the others but still almost parallel, surely not converging. It
is worth mentioning that Japan stands as an exception due to a prolonged phase of sluggish
growth. Examining the historical trends of these nations, it becomes evident that absolute
convergence is not observed. Instead, a pattern of conditional convergence emerges.

The extensive body of growth literature has generated numerous mechanisms that un-
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derpin conditional convergence, some of which could conceivably apply to the realm of the
service sector, and more specifically the HS sector. Within this paper, we introduce an alter-
native mechanism anchored in the concept of knowledge accumulation, primarily facilitated
by highly skilled professionals within the HS sector. We contend that this particular mech-
anism, coupled with certain constraints governing the movement of these skilled workers
across international borders, offers valuable insights into the differences observed across
countries in the process of structural transformation within the service sector.

3.6 Introducing an endogenous growth mechanism

From the empirical evidence outlined above, we can discern several crucial findings. Firstly,
there exists a HS service sector that displays a positive correlation between labour share and
productivity. This sector is characterized by an increasing labour share and a decreasing
relative price compared to the broader services economy.

Secondly, the industries comprising the HS sector exhibit a significantly higher propor-
tion of technical labour, with a difference of at least 20 percentage points. Consequently, this
sector boasts a greater concentration of skilled labour and a more substantial accumulation
of knowledge.

Lastly, when examining the level of development achieved based on the labour share in
the HS sector, we observe parallel trends across the last five decades, which do not align
with an absolute convergence scheme among countries. Given this consistent pattern across
the five countries under consideration, it leads us to advocate in favor of conditional conver-
gence.

All these factors collectively lead us to consider the possibility of introducing an endoge-
nous growth mechanism to elucidate the behavior of the HS sector. Notably, Hori et al.
[42] and Herrendorf and Valentinyi [41] have already integrated endogenous growth mech-
anisms into the structural change literature, as elaborated in section 2. However, their focus
was primarily on accounting for industrial policy, knowledge spillovers, and size effects.

In our context, we posit that endogenous growth can serve as a valuable framework
for explaining conditional convergence with knowledge accumulation. As previously men-
tioned, our sector delineation is based on the interplay between productivity and labour
share, resulting in a categorization distinct from the conventional ”progressive” versus ”stag-
nant” classification found in the literature.

Since the seminal work of Lucas [53], we know that conditional convergence is a feature
of endogenous growth models. Moreover, given that our classification appears to stems
from the accumulation of skills, employing an exogenous mechanism seems at odd with the
broader literature on technical knowledge and skill accumulation.

For these reasons, we believe that employing an endogenous growth model will be in-
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strumental in capturing the dynamics of the HS sector within each country and, importantly,
in replicating the observed phenomenon of conditional convergence in our empirical data.

In the forthcoming sections, we will delve into the details of the endogenous structural
change model, with a series a series of robustness checks, aligning it closely with the empir-
ical findings detailed earlier

4 The model

In this section we propose a two-sector model that captures the stylized facts from the pre-
vious section. That is: i) There is a sector (noted HS) where increases in productivity and
increases in labour share occur synchronously; ii) The relative price of industries in the HS
sector is decreasing; iii) industries in the HS sector require workers with a high level of
specialized technical skills and knowledge; and iv) across countries there in no absolute con-
vergence of HS labour shares.

In this paper, our focus is exclusively on the services economy. As elucidated in section
2, the existing literature extensively delves into the driving forces behind structural changes
from agriculture and manufacturing to the services sector. However, it’s noteworthy that
services have consistently represented a substantial portion, exceeding 60%, of all devel-
oped economies since the 1970s, and this figure has risen to approximately 80% in recent
years. Even within the last quarter-century, the share of services has only experienced a
modest 5% increase, accompanied by minimal labour reallocation to from manufacturing
and agriculture to services.

For the sake of tracatability, we have chosen to construct a two-sector model exclusively
centered on services. From the existing literature with three sectors (e.g., Duernecker et al.
[32] and Sen [65]) we can hint that, at least qualitatively, the dynamics within the service
sector is not affected by the existence of the goods sector. In our model, the effect of omitting
the goods economy is mitigeted by the fact that the realocation of labour from manufacturing
and agriculture to services can be assimilated to population growth. Indeed, within our
model, population can expand at a rate denoted as n. Given that our population solely
comprises workers, n can originate from population growth itself or from the reallocation of
workers from the goods economy. Independently, workers are will eventually be allocated
to HS and LS endogenously.

Focusing on a two-sector model has also an implication regarding LS. Indeed, sector LS
has obviously residual heterogeneity in industries characteristics. However, in the LS sector
productivity is negatively associated to labour shares, a sign of complementarity (Ngai and
Pissarides [62]). We could then decompose the LS sector into two-subsectors with comple-
mentary outputs. We don’t expect this addition to modify the role of substitution in the rise
of the HS sector. Furthermore, The resulting three-sector endogenous growth model would
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become analytically untractable.
In line with the empirical evidence, we make the assumption that the two sectors produce

substitutable inputs. While the model attributes these inputs to intermediate goods, rather
than final goods as per our empirical data, this distinction doesn’t pose a complication. The
literature convincingly underscores the blurred boundary between intermediate and final
goods (see Sen [65]). Addressing point (iii) above, we adopt a knowledge accumulation
framework akin to that outlined by Lucas [53], which aptly captures the trajectory of progress
through the accrual of skill in the workforce. This choice in modeling is resonant with the
inherent nature of skill development and knowledge enhancement within industries. We
consider an economy in which at each time t there is a continuum [0, N(t)] of infinitely-lived
agents characterized by homogeneous preferences. We assume a standard formulation for
the utility function which is compatible with endogenous growth such that

u(ci(t)) =
∫ +∞

0

ci(t)1−θ

1− θ
e−ρtdt (3)

where ci(t) is consumption of agents of type i ∈ [0, N(t)] at time t, θ > 0 is the inverse of
the elasticity of intertemporal substitution in consumption and ρ > 0 is the discount factor.
We assume that the total population grows at the constant exponential rate n ∈ [0, ρ), so
that N(t) = entN(0). Agents are heterogeneous only with respect to the sector in which they
work. As explained below, this difference arises from different decisions on the allocation of
labour time.

Our economy consists of two sectors, with three factors of production, capital, K(t),
labour, L(t), and individual technological knowledge, a(t). In line with Lucas [53], we inter-
pret a(t) as the outcome of an individual’s choice. Final output, Y(t), is an aggregate of the
output of two intermediate sectors, YH(t) a “knowledge-intensive sector” or “high-skilled”
(HS) sector (e.g. sector H), and YL(t) a “non knowledge-intensive” or “low-skilled” (LS)
sector (e.g. sector L). The numbers of workers NH(t) and NL(t) in these two sectors, to-
gether with their respective growth rates ṄH(t)/NH(t) = nH(t) and ṄL(t)/NL(t) = nL(t),
are endogenously determined at the equilibrium.

Agents working in the HS sector devote a fraction u(t) ∈ (0, 1) of their unit of time
to production. Total labour in this sector is LH(t) = u(t)NH(t). The rest of time 1− u(t)
is devoted to the accumulation of individual technological knowledge a(t). Here, LH(t)
denotes the total number of hours worked in the HS sector and differs from the number
NH(t) of workers. Similarly to how Lucas [53] treats newborns, in our model each agent
entering the HS sector at any time t0 acquires the available knowledge a(t0). To simplify the
computations throughout the paper, we assume a linear formulation:11

11We show in Section 8 that all our results are robust to the consideration of a non-linear accumulation equation
of knowledge formulated as a Cobb-Douglas production function mixing knowledge and physical capital. We
thank an anonymous referee for having suggested to check for such a robustness.
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ȧ(t) = z[1− u(t)]a(t)− ηa(t) (4)

with z > 0 and η > 0 the depreciation rate of knowledge.12 By contrast, agents working
in the LS sector will spend all their unit of time working so that total labour in this sector
is LL(t) = NL(t). Contrary to the HS sector, in this sector the number of hours worked
is identical to the number of workers, since the total individual available working time is
normalized to one.

The final good is produced through a CES technology such that

Y(t) =
(

γYH(t)
ε−1

ε + (1− γ)YL(t)
ε−1

ε

) ε
ε−1

(5)

with γ ∈ (0, 1) and ε the constant elasticity of substitution. The value of ε is important
as it determines whether the inputs are substitutable (ε > 1) or complementary (ε < 1).
Sector H produces the HS intermediate good using capital, labour and knowledge through
the following Cobb-Douglas technology:

YH(t) = [LH(t)a(t)]αKH(t)1−α (6)

with α ∈ (0, 1). The product LH(t)a(t) = u(t)NH(t)a(t) then represents total efficient
labour.13 Note that, considering capital and labour (hours worked) as inputs, the total factor
productivity (TFP) is given by a(t)α and increases endogenously through equation (4).14 Sec-
tor L produces the LS intermediate good using only capital and labour through the following
Cobb-Douglas technology:

YL(t) = LL(t)βKL(t)1−β (7)

with LL(t) = NL(t) and β ∈ (0, 1). Contrary to the HS sector, the LS sector has a constant
TFP.15 While we do not impose any restriction on the capital intensity difference (α − β)

across sectors, we assume α, β > 1/2 to match standard empirical estimates of labour shares.
Denoting total capital by K(t) and total labour by L(t), capital and labour market clearing

require at each date K(t) ≥ KH(t) + KL(t) and L(t) ≥ LH(t) + LL(t) = NH(t)u(t) + NL(t).
The capital accumulation equation is standard

K̇(t) = Y(t)− δK(t)− NH(t)cH(t)− NL(t)cL(t) (8)

where δ > 0 is the depreciation rate of capital and ci the consumption of any agent working
in sector i = H, L.

12As in the formulation of Lucas [53] with human capital, our equation of knowledge accumulation is at the
individual level and does not deliver the scale effect (e.g. Romer [64] or Aghion and Howitt [7] and Jones [47]).

13As in Lucas [53], we define each worker’s output according to (u(t)a(t))α k(t)1−α where k(t) =
KH(t)/NH(t).

14See Hartley et al. [38] where a formulation similar to ours is used to study the optimal transition from fossil
fuels to renewable en classical growth economy with endogenous technological progress in energy production.
See also Adao et al. [6].

15Again, this assumption is introduced to simplify the computations. We could also assume that the LS sector
is characterized by an exogenous growth rate of TFP without altering our results. This claim is proved in Remark
1 below.

19



5 Planner solution and intertemporal equilibrium

In the model, as in Lucas [53], the welfare theorems hold and the intertemporal competitive
equilibrium can be found via the planner’s problem.16 Assume that the planner has a Ben-
thamite objective function and consider the following intertemporal optimization problem

max
{ci(t),Ki(t),Li(t)}i=H,L,u(t),a(t)

∫ +∞

0

(
NH(t)

cH(t)1−θ

1− θ
+ NL(t)

cL(t)1−θ

1− θ

)
e−ρtdt

s.t. (4), (5), (6), (7), (8) and

K(t) ≥ KH(t) + KL(t)

L(t) ≥ LH(t) + LL(t) = NH(t)u(t) + NL(t)

K(0), a(0), N(0) given

(9)

From now on, let us denote the value of increments in aggregate capital by the “price” P,
the price of the HS good by PH, the price of the LS good by PL and the price of knowledge
by Q. Solving the first order conditions of this optimization problem allows to state the
following Proposition:

Proposition 1. All agents, no matter which sector they work in, have the same labour and capital
income at the equilibrium and have the same intertemporal profile of consumption as given by cH(t) =
cL(t) = P(t)−1/θ for any t ≥ 0. Aggregate consumption is thus C(t) = N(t)P(t)−

1
θ . Moreover, for

any given initial conditions (K(0), a(0)), and considering the rental rate of capital

R(t) = (1− α)γ
(

Y
YH

) 1
ε YH

KH
= (1− β)(1− γ)

(
Y
YL

) 1
ε YL

KL
, (10)

any path {K(t), a(t), P(t), Q(t)}t≥0 that satisfies the following system of differential equations

Ṗ
P
= − [R− δ− ρ] , Q̇

Q = −(z− η − ρ) (11)

K̇
K

=
Y
K
− δ− NP−

1
θ

K
, ȧ

a = z(1− u)− η (12)

together with the transversality conditions17

lim
t→+∞

P(t)K(t)e−ρt = 0 and lim
t→+∞

Q(t)a(t)e−ρt = 0 (13)

is an optimal solution of problem (9) and therefore an intertemporal equilibrium.18

So far we have interpreted knowledge accumulation along the lines of Lucas [53] (see
footnote 2). Another interpretation of the model is as follows. Knowledge now becomes an
aggregated variable, a public good used by the firms in the high-tech sector. Since there is
no private incentive to invest in a(t), the regulator has to step in. The government manages

16The economic interpretation of competitive equilibrium is as in Lucas [53].
17See Michel [57] and Kamihigashi [49] for some proof of the necessity of the transversality condition.
18See Boucekkine [21, 22] for closed-form solutions of Lucas-type models.
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the production of a(t) by imposing lump-sum taxes on consumers and use the revenue to
hire workers from the high-tech sector. As the two sectors (low- and high-tech) are perfectly
competitive, the wage per hour needs to be identical across sectors. Note that the tax revenue
used to buy efforts from consumers working in the high-tech industry might involve a time
dependent tax system.

6 Non-balanced growth paths

We now provide the existence result and characterize the non-balanced growth paths
(NBGP) along which the variables P, Q, K, a grow at constant but potentially different rates.
Note that this implies that C, Y, Ci, Ki and Yi also grow at constant rates. We introduce the
following notations valid along the NBGP, which highlights the fact that the growth rates of
the various variables can differ:

gC = Ċ
C , gY = Ẏ

Y , gK = K̇
K , gYi =

Ẏi
Yi

, gKi =
K̇i
Ki

, gci =
ċi
ci

, ga =
ȧ
a

and

gP = Ṗ
P , gQ = Q̇

Q

for i = H, L. Along an NBGP we have K(t) = k(t)egKt, a(t) = x(t)egat, Q(t) = q(t)egQt and
P(t) = p(t)egPt. Note that NBGP can differ in their levels but still have the same 8-tuple in
R8 of growth rates.

As the final good is produced via a CES function, the dynamics strongly depends on
the value of the elasticity of substitution ε between the two intermediary sectors. When
inputs are substitute, i.e., ε > 1, as technological progress only occurs in the HS sector, it is
optimal to reallocate capital and labour inputs to sector H. Thus, eventually the HS sector
becomes dominant. On the contrary, when sectors are complement, i.e. ε < 1, both inputs
are necessary to produce efficiently the final good. In this case, in addition to the advantage
of the HS sector due to technological progress, complementarity between inputs provides
incentive to increase the production and use of the LS sector. The total effect is therefore a
priori not determined.

6.1 The case of substitutable inputs

We consider first the case of substitutable inputs, ε > 1, which will turn out to be the one
delivering outcomes in line with the recent data on services we described in the introduction.
We introduce the following restrictions which guarantee positiveness of growth rates and
interiority of the share u of time devoted to work by agents in the HS sector:

Assumption 1. ε > 1, z > η + ρ− n and
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θ > max
{

1− ρ−n
z−η , β(ε−1)(z−η−ρ+n)

n

}
From the first-order conditions (29)-(36) and the differential equations (11)-(12) we derive:

Theorem 1. Under Assumption 1, the set of non-balanced growth paths (NBGP) is non-empty and
is characterised by the same 8-tuple of growth rates. The growth rates are such that gY = gYH =

gK = gKH = gC = n + gcH = n + gcL = n− gP
θ = n + ga, gY = gYH > gYL , gK = gKH > gKL and

nH > nL. Moreover, the time devoted to production in the HS sector and the rental rate of capital are
both constant.19

Proof. See Appendix 11.3.

We can derive a number of important implications from Theorem 1. First, we obtain that
gY = gYH > gYL , gK = gKH > gKL and nH > nL. Sector H exhibits a higher growth rate
than sector L and capital and labour are allocated more intensively to the HS sector, which
becomes dominant in the economy. Consequently, in the long run there is capital deepening,
as the capital-labour ratio of both sectors is increasing and the share of skilled-labour is
increasing while the share of unskilled-labour is decreasing. This pattern of structural change
is observed in the data, as shown by Figure 2 in Section 3.

Clearly, as gK = gY = gKH = gYH = n + ga, technical knowledge, a, is the engine of
growth. It is worth noting, however, that although the HS sector is asymptotically dominant
in output, the amount of inputs used is not vanishing and workforce does not shrink. Finally,
the price of the final good decreases, gP < 0. In fact, if we decompose this price effect using
equations (10) and (11), we see that this drop is mainly due to the decreasing price of the
intermediate good H.

Remark 1. Introducing TFP growth into the LS sector
In order to get structural change, it has been necessary to consider asymmetric intermediary

sectors in terms of productivity growth. We have then considered some HS sector where TFP increases
because of knowledge accumulation and some LS sector where TFP is constant. Such an assumption
may appear as quite extreme and one may wonder what are the robustness of our results if the LS sector
is also characterized by some TFP growth. One easy way to proceed is to consider some exogenous
TFP growth as in the standard structural change literature (see e.g. Acemoglu and Guerrieri [4]). Let
us then consider that the production function of sector L is given by

YL(t) = AL(t)LL(t)βKL(t)1−β (14)

where the TFP AL(t) is such that ȦL(t)/AL(t) = gAL ≥ 0, with gAL exogenously given. Adapting
the proof of Theorem 1 shows that the same results hold with the only exception of the growth rates

19As shown through equation (63) in Appendix 11.3, the growth rate of knowledge ga is not proportional to
the size of population and thus there is no scale effect.
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associated to sector L which become

gYL = εgAL + n + (1− βε)ga

gKL = (ε− 1)gAL + n + (1 + β− βε)ga

nL = 1+β(ε−1)
β gAL + n− (ε− 1)βga

Considering that the dominant sector is naturally the HS one, it seems reasonable to assume that the
exogenous TFP growth rate gAL is sufficiently small to ensure gYH > gYL and nH > nL. This is
obtained under the assumption

ga >
1+β(ε−1)
β2(ε−1) gAL

We can also easily prove that all our results presented below in Corollaries 1 and 2, Theorems 3 and 4
still hold.

We obtain the following characterisation of the NBGP which includes the Kaldor facts:

Corollary 1. Under Assumption 1, the non-balanced growth path has the following properties:

1. There is capital deepening, i.e., the ratio K/L is increasing.

2. The growth rate of real GDP, or Y, is constant.

3. The capital-output ratio K/Y is constant.

4. The nominal share of capital income in GDP is constant and equal to sK = 1− α.

5. The real interest rate R is constant.

6. The relative prices PH/P and PL/P are respectively decreasing and increasing. As a result,
PL/PH is increasing.

7. The real and nominal shares in GDP of the HS sector and of the LS sector, as defined by YH/Y,
PHYH/PY, and YL/Y, PLYL/PY, are respectively increasing and decreasing.

Proof. See Appendix 11.4.

The mechanism at work in the economy can be described as follows. The accumulation of
individual knowledge in the HS sector is used as labour-augmenting technological progress.
Knowledge accumulation thus leads to an unbounded increase in TFP in the HS sector and
to capital deepening. The relative price of the HS good decreases because of knowledge ac-
cumulation and TFP growth, while the relative price of the LS good increases. The change in
relative prices is associated with changes in the demand for both intermediate goods by the
final sector. This mechanism endogenously determines the growth rates of the two sectors
such that the growth rate of real GDP remains constant and determined by the growth rate
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of the HS sector. The consequences of this are that the relative real and nominal shares of the
HS sector with respect to the LS sector, YH/YL and PHYH/PLYL, are both increasing, and the
real and nominal shares of the dominated LS sector are both decreasing. Finally, endogenous
technological progress makes production of the final good more and more efficient, so that
its price decreases.

These results are in line with documented facts of recent structural change in the services
which shows that both real and nominal shares of HS sector have grown (see Figure 7 in
Section 9.1). Moreover, the relative number of hours (and number of workers) in LS service
sectors have fallen (see Figure 2). Our model is also able to explain the decreasing relative
price of the HS sector in most countries (see Figure 2). Finally, our results are compatible
with the fact that the relative share of modern market services (here the HS sector) has in-
creased significantly with respect to the other sectors (here the LS sector) (see again Figure 7).
Although the mechanism at work is quite different, we get similar conclusions than Buera et
al. [25] who derive along the exogenous growth process a systematic shift in the composition
of value added to sectors that are intensive in high-skilled labour. (See Figure 7 in Section
9.1).

Note that Acemoglu et al. [1] also supports input substitution. However, their results are
obtained in a framework that focuses on the role of the environment and directed technical
change and assume two intermediary sectors characterized by dirty and clean technologies.
In our framework, we conjecture that substitution between inputs will be favored by the
development of digital goods and artificial intelligence.

6.2 The case of complementary inputs

We now consider the case of complementary inputs, i.e., ε < 1. We introduce the following
restrictions which guarantee positiveness of growth rates and interiority of the share u of
time devoted to work by agents in the HS sector:

Assumption 2. ε < 1 and z ∈
{

η + ρ− n, η + ρ + n[ε+α(1−ε)
1+α(1−ε)

}
We obtain the following theorem:

Theorem 2. Under Assumption 2, the set of NBGR is non-empty and is characterised by the same
8-tuple of growth rates. The growth rates are constant across this set and given by: gK = gY =

gKL = gYL = nL = n, gKH = nH < gKL , nH < nL and gP = gC = 0. Moreover, the time devoted to
production in the HS sector and the rental rate of capital are both constant.

Proof. See Appendix 11.5.

The mechanism at work in this case can be described as follows. When ε < 1 there ex-
ist two opposite forces: complementarity of inputs and endogenous technical change. The
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accumulation of individual knowledge in the HS sector is used as labour-augmenting tech-
nological progress. Knowledge accumulation thus leads to an unbounded increase in TFP
in the HS sector. But as the LS intermediate sector output is also needed in the production
of the final good because of the complementarity assumption, the productivity gap has to
be compensated by a stronger reallocation of capital and labour in that sector, gKH < gKL

and nH < nL. Importantly, there is no capital deepening in any sector, i.e., the ratio K/L is
constant in the long run. In addition, the share of skilled-labour is decreasing while the share
of unskilled-labour is increasing. These results here are clearly not in line with the US data.

The relative price of the HS good still decreases because of TFP growth, while the relative
price of the LS good increases. The striking result here is that these two effects offset each
other so that the price of the final good P and thus consumption are constant. The change
in relative prices is however still associated with changes in the demand for both intermedi-
ate goods by the final sector. This mixed mechanism endogenously determines the growth
rates of the two sectors such that the growth rate of real GDP remains constant and now
determined by the growth rate of sector L, but the HS sector remains dominant in the long
run. It is also worth noting that the productivity lag effect is more than compensated by the
technical change effect as the HS sector grows faster, i.e. gYH > gYL , which implies that the
dominant sector is again the HS sector.

The consequences of this are that the relative real and nominal shares of sector L with re-
spect to the HS sector, YL/YH and PLYL/PHYH, are both decreasing, and the real and nominal
shares of the HS sector are respectively increasing and decreasing. Again, these properties
are not compatible with the well documented facts of the structural change literature men-
tioned in Section 3.

6.3 The case of a unitary elasticity

For reference, we also consider the limit case ε = 1 where the production function of the
final good sector is Cobb-Douglas such that

Y(t) = YH(t)γYL(t)1−γ (15)

with γ ∈ (0, 1), and the two intermediary sectors have an elasticity of substitution equal to
one. Perfect substitution between the two intermediate inputs implies that the only driving
force determining the long run growth properties is the knowledge accumulation in the HS
sector. As a consequence, the asymptotic dominant sector is still the HS one but compared
to Theorems 1 and 2, there is a discontinuity since the growth rate of the final sector is now
determined by a convex combinaison of the growth rates of the two intermediate sectors. It
can be shown indeed that there exists a unique set of NBGR such that
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gY = gK = gKL = gKH = gC = n− gP
θ = γgYH + (1− γ)gYL , nH = nL = n,

gYH = α[γ+(1−γ)β](z−η+n−ρ)
θγα+(1−γ)β

+ n, gYL = γα(1−β)(z−η+n−ρ)
θγα+(1−γ)β

+ n,

ga =
[γα+(1−γ)β](z−η+n−ρ)

θγα+(1−γ)β

with gYH > gY > gYL . In this configuration, the ratios KH/KL, LH/LL and NH/NL are
constant along the NBGP and along the transition implying that the HS labour share and
the share of capital in the HS sector are constant. Moreover, the nominal value added of the
high-skilled sector is also constant. We disregard this case as the characteristics of the NBGP
are not in line with the empirical evidence.

7 Local dynamics

The asymptotic properties of the NBGP described in the previous section only provide a
long-run necessary condition. Yet interesting and empirically relevant properties also occur
along the transition path. Note that in the rest of the paper we will focus on the case with
substitution, i.e., ε > 1. Indeed, given the analysis in the previous Section only this case gen-
erates a growth pattern compatible with the empirical evidence. However, we will mention
some results for the case ε ≤ 1 for completeness.

We now aim to generate structural change along the transition path. We can reformulate
the dynamical system given by equations (11)-(12) using the normalization of variables in-
troduced by Caballe and Santos [26]. The stationarized NBGP is obtained by “removing” the
NBGR trend from the variables, namely: k(t) = K(t)e−gKt, x(t) = a(t)e−gat, q(t) = Q(t)e−gQt

and p(t) = P(t)e−gPt, for all t ≥ 0, with k(t), x(t), q(t) and p(t) the stationarized values for
K(t), a(t), Q(t) and P(t). As the price of knowledge Q is characterized by a constant growth
rate gQ, the solution of the corresponding equation in (11) is given by Q(t) = Q(0)e−gQt and
its stationarized value is constant with q̇(t) = 0. We then get q(t) = q(0) = q0 for all t ≥ 0.
Recall that as the population is growing at the exponential rate n, we have N(t) = entN(0)
with N(0) = N0 given.

Substituting these stationarized variables into (11)-(12), we obtain an equivalent station-
arized system of differential equations that characterizes the equilibrium path. Of course, the
expression of this dynamical system slightly differs depending on the value of the elasticity
of substitution ε. As assumed above we focus on the case with ε > 1.

Lemma 1. Let N0 be given and suppose Assumption 1 holds. Along a stationarized equilibrium path
and for any given q0, knowledge x, capital k and its price p are solutions of the following dynamical
system
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ṗ
p = −

[
(1− α)γψ

1
ε xα

(
LH(k,x,p,q0,N0)
KH(k,x,p,q0,N0)

)α

+ gP − ρ− δ

]
k̇
k = ψxα

(
LH(k,x,p,q0,N0)
KH(k,x,p,q0,N0)

)α
KH(k,x,p,q0,N0)

k − δ− gK − N0 p−
1
θ

k

ẋ
x = z

(
1− u(k, x, p, q0, N0)

)
− ga − η

(16)

with ψ = γ
ε

ε−1

(
1 + ( 1−α

1−β )
k−KH(k,x,p,q0,N0)

KH(k,x,p,q0,N0)

) ε
ε−1

.

Proof. See Appendix 11.6.20

Note also that the transversality conditions (13) become

lim
t→+∞

p(t)k(t)e−[ρ−gK−gP]t = 0 and lim
t→+∞

x(t)e−(ρ−ga−gQ)t = 0

Using the expressions of the growth rates gK, ga, gQ and gP given in Theorem 1, we easily
derive under Assumption 1 that zu∗ = z− ga − η = ρ− gK − gP = ρ− ga − gQ > 0.

Considering the stationarized dynamical systems given in Lemma 1, we can now focus
on proving the existence of a steady state solution, i.e., ṗ/p = k̇/k = ẋ/x = 0, and q̇(t) = 0
which obviously corresponds to the NBGR exhibited in Theorems 1.

Theorem 3. Let N0 be given and suppose Assumption 1 holds. The projection of the set of NBGP on
the subspace (k, x, p, q) is a one-dimensional manifold, noted M⊂ R4, parameterized by q0. Fur-
thermore, for any given q0 > 0, there exists a unique steady state (k∗(q0), x∗(q0), p∗(q0)), solution
of the dynamical system (16). Moreover, k∗

′
(q0) < 0, x∗

′
(q0) < 0 and p∗

′
(q0) > 0.

Proof. See Appendix 11.7.

Theorem 3 proves that when ε > 1, there exists a one-dimensional manifold of steady
states for the capital stock k, technological knowledge x and the price of capital p parame-
terized by the constant price of knowledge q0. Importantly, the asymptotic amount of time
devoted to production in the HS sector u∗ and the asymptotic rental rate of capital R∗, as
given in Theorem 1, do not depend on q0. Note that an analogous result to Theorem 3 for
the case ε < 1 can be obtained and shows that there still exists a manifold of steady state but
this is degenerate as only technological knowledge x depends on q0 while the capital stock k
and the price p do not.

The existence of a manifold of steady states in levels is fairly standard in endogenous
growth models (see for instance Lucas [53]) where the asymptotic equilibrium of the econ-
omy depends on some initial conditions. We will show that there exists a set K contain-
ing the setM such that for initial values of physical capital k(0) and technological knowl-

20Analogous results for the case with complementarity (ε < 1) or the case with a unitary elasticity of substitu-
tion (ε = 1) can be obtained and are available upon request.
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edge x(0) in K, a value of q0 is “automatically” selected in order for the economy to leap
onto the optimal path (i.e., the stable manifold) and then converge to the particular steady
state (k∗(q0), x∗(q0), p∗(q0)) situated on the manifold M. Note that for any given pair
(k(0), x(0)) ∈ K there exists a unique value of the price of knowledge q0 compatible with the
equilibrium conditions.

To prove such a result, we need to study the local stability properties of the steady state.
Linearizing the dynamical systems (16) around the steady state (k∗(q0), x∗(q0), p∗(q0)) for a
given q0 > 0, the local stability property of (k∗(q0), x∗(q0), p∗(q0)) is appraised through the
characteristic roots of the associated Jacobian matrix. As shown by Martinez-Garcia [56] (see
also Bond, Wang and Yip [16] and Xie [70]), since we have two state variables, k and x, and
two forward variables, p and q, with q being constant, the standard saddle-point stability
occurs if there exists a one-dimensional stable manifold, i.e. if only one characteristic root is
negative.

Lemma 2. Let Assumption 1 hold. Then for any given q0 > 0, the steady state
(k∗(q0), x∗(q0), p∗(q0)) is saddle-point stable.

Proof. See Appendix 11.8.21

In the dynamical system (16), the predetermined variables are the capital stock and the
level of individual knowledge. For given initial conditions K(0) = k(0) = k0 and a(0) =

x(0) = x0, we generically cannot find a value of q0 such that (k0, x0) = (k∗(q0), x∗(q0)) and
the economy is not in the set of NBGP from the initial date. In other words, non-trivial
transitional dynamics generically occurs starting from (k0, x0) 6= (k∗, x∗). The initial values
of the forward variables p(0) = p0 and q(0) = q0 are chosen such that the one-dimensional
stable optimal path converging toward an NBGP is selected. As the stable manifold is one-
dimensional, for any given K(0) = k(0) = k0 and x(0) = x0 there exists a unique pair
(q0, p0) compatible with an equilibrium path. This property therefore defines a conditional
convergence depending on the value of the initial price of knowledge q0.

The arguments supporting the truth of the previous statement are as follows. The dy-
namical system has two state and two forward looking variables. The steady state is then
a 4-uple (k, x, p, q). There is a one-dimensional manifold of steady states. Each of these is
saddle-path stable and q is constant on any equilibrium path. For each of these q there is
a one-dimensional stable manifold leading to the NBGP. When q spans the feasible set, this
describes a stable planar manifold. Generically there is a two-dimensional plane in space
of dimension four with a given (x(0), k(0)). The intersection of the two planes in dimen-
sion four is a set of dimension zero, a point. So for a given (x(0), k(0)) there is a unique
(p(0), q(0)).

21The same conclusion holds for the complementary case (ε < 1), i.e., Assumption 2, or the case with a unitary
elasticity of substitution (ε = 1).
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A striking property is that, although the steady state values (k∗(q0), x∗(q0), p∗(q0)) de-
pend on the selected q0, the eigenvalues do not. It follows that the rate of convergence along
any transitional path is the same, regardless of the initial conditions and thus of the asymp-
totic value of the steady state.

Building on Theorem 3, it can be shown (see Appendix 11.7) that k∗(x∗) is a linear func-
tion of x∗. The conditional convergence property can be illustrated by the following Figure.
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Figure 5: Manifold of steady states when ε > 1.

The economy is characterized by two initial conditions, k(0) = k0 and x(0) = x0, while
p(0) and q(0) are pinned down by the equilibrium conditions. All pairs (k∗, x∗) satisfying
k∗ = k∗(x∗) correspond to a common asymptotic NBGP but different optimal paths along
the transition according to the initial condition (k0, x0). For a given (k0, x0), the optimal path
will converge toward an asymptotic position located on the curve k∗(x∗) which depends
on the initial position (k0, x0) that defines the admissible initial values p0 and q0. Arrows in
Figure 5 illustrate some possible trajectories. It can be shown indeed that k(t) and x(t) evolve
in opposite directions. Such a property is easy to explain. As k and x are stationnarized
values of K and a, if we consider initial values k0 and x0 that are above the curve k∗(x∗),
the transitory growth rate of a(t) will be lower than the long run growth rate ga and will
increase progressively to ga while x(t) converges to the long run value x∗. On the contrary,
the transitory growth rate of K(t) will be initially higher than its long run value and decrease
progressively converging toward gK while k(t) converges to the long run value k∗. Opposite
results are of course obtained if we consider initial values k0 and x0 that are below the curve
k∗(x∗).

Remark: In the case of complementarity with ε < 1, k∗ is independent from x∗ and the
manifold is horizontal in the (x, k) space. The intuition on this degenerate manifold can
easily be explained as follows: as sector L is dominant in the long run, it determines the
level of capital independently from the level of technical knowledge. There is therefore
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no synergy in the long run between knowledge and capital accumulation. In the case of a
unitary elasticity of substitution ε = 1, we get a similar manifold as in Figure 5 but which is
a non-linear increasing concave function.

The following Theorem summarizes the results.

Theorem 4. Let Assumption 1 hold. There exists a set K containing the setM⊂ R4 such that for
initial values of physical capital k(0) and technological knowledge x(0) in K, the economy converges
to the steady state (k∗(q0), x∗(q0), p∗(q0)) situated on the manifoldM, where the price of knowledge
q0 and p0 are uniquely determined and the optimal path converging to the NBGP is unique.

Proof. See Appendix 11.9.

The existence of a manifold of steady states, while standard in the endogenous growth
literature, is a fundamental difference with respect to exogenous growth models where the
technological progress is exogenous, the steady state is unique and countries with the same
fundamentals but different initial endowments of physical capital will all converge toward
the same asymptotic level of wealth and the same asymptotic growth rate. By contrast, in the
present model, while all countries with the same fundamentals are characterized by the same
growth rate, they will follow different optimal paths along the transition and be asymptot-
ically characterized by different wealth levels.22 Importantly, the long run heterogeneity of
wealth will concern both physical capital and knowledge.23

8 Robustness with a non linear accumulation of knowledge

We have assumed through equation (4) a linear accumulation of knowledge. Such a formu-
lation may appear as highly specific and one may wonder whether our main conclusions
are robust to a more general formulation. A fundamental property to ensure the existence
of endogenous growth is to preserve a linear homogeneity of the accumulated factor that
drives the whole process. We may then generalize equation (4) through the consideration of
a production function of knowledge based both on the stock of knowledge and the stock of
physical capital through a linear homogeneous Cobb-Douglas formulation. Since we focus
on an individual accumulation of knowledge, we need therefore to consider an individual
stock of capital entering the production function of knowledge. Let us assume that

ȧ(t) = Ya(t) ≡ z [(1− u(t))a(t)]φ
(

Ka(t)
NH(t)

)1−φ
= z [(1− u(t))a(t)]φ

(
u(t)Ka(t)

LH(t)

)1−φ
(17)

22See also Marsiglio and Tolotti [55] who consider an endogenous growth model with heterogeneous firms
where innovation and social interactions may lead to the existence of multiple BGP equilibria.

23Note that when ε < 1, countries will converge to the same capital stock but will have heterogeneous levels
of knowledge, which is less plausible from an empirical perspective.
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with the new capital stock constraint K(t) ≥ KH(t) + Ka(t) + KL(t).24 Adjusting accordingly
the intertemporal problem (9), we easily show that Proposition 1 still holds but with the
following modifications for the dynamic equations of the stock of knowledge and its price

Q̇
Q = −z(1− u)φ

(
uKa
aLH

)1−φ 1−u(1−φ)
1−u

ȧ
a = z(1− u)φ

(
uKa
aLH

)1−φ
(18)

Obviously, contrary to the linear formulation, the growth rate of the price of knowledge is
no longer constant along the transition.

In the case of substitutable inputs, ε > 1, proceeding as in the proof of Theorem 1, let
us define the shares of capital and labour allocated to the HS sector and the share of capital
allocated for the accumulation of knowledge as

κK(t) ≡ KH(t)
K(t) , κa(t) ≡ Ka(t)

K(t) , λ(t) ≡ LH(t)
L(t) (19)

such that 1− κH − κa(t)(t) ≡ KL(t)
K(t) and 1− λ(t) ≡ LL(t)

L(t) . As shown in a proof available upon
request, we obtain:

κa(t) =
α

1− α

(1− φ)(1− u(t))
φu(t) + (1− φ)(1− u(t))

κK(t) (20)

κ(t) =

[
1 +

(
1− β

1− α

)(
1− γ

γ

)(
YL(t)
YH(t)

) ε−1
ε

+
α

1− α

(1− φ)(1− u(t))
φu(t) + (1− φ)(1− u(t))

]−1

(21)

and

λ(t) =
[

1 + β(1−α)
α(1−β)

1−κH(t)−κa(t)
κH(t)

]−1
(22)

and we also derive that
Y(t) = ψ(t)YH(t) (23)

with
ψ(t) = γ

ε
ε−1

(
1 + 1−α

1−β
1−κH(t)−κa(t)

κH(t)

) ε
ε−1

(24)

We can then compute the following differential equation for κH(t):

κ̇H
κH

= G(κ) ≡
(ε−1)βga

[
1−κH

[
1+ α

1−α
(1−φ)(1−u)

φu+(1−φ)(1−u)

]]
ε+

(β−α)(1−α)

[
1−κH

[
1+ α

1−α
(1−φ)(1−u)

φu+(1−φ)(1−u)

]]
α

[
1−α−κH

[
β− αφu

φu+(1−φ)(1−u)

]] (25)

Assuming that β > α, we have G′(κ) < 0 with G(0) > 0 and

G
([

1 + α
1−α

(1−φ)(1−u)
φu+(1−φ)(1−u)

]−1
)
= 0

This implies that equation (25) has a unique solution such that

24To simplify the formulation, we assume here that the depreciation rate of knowledge η is equal to zero.
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lim
t→∞

κH(t) = κ∗H =
1

1 + α
1−α

(1−φ)(1−u)
φu+(1−φ)(1−u)

and lim
t→∞

κa(t) = κ∗a =

α
1−α

(1−φ)(1−u)
φu+(1−φ)(1−u)

1 + α
1−α

(1−φ)(1−u)
φu+(1−φ)(1−u)

(26)

Using these asymptotic values into λ and ψ gives the following results: limt→∞ λ(t) = λ∗ = 1
and limt→∞ ψ(t) = ψ∗ = γ

ε
ε−1 . We can then derive the NBGR such that nH = n, nL = n+(1−

ε)βga, gP = −θga, gQ = gP + n, gY = kK = gYH = gKH = gKa = ga + n, gYL = n + (1− βε)ga

and gKL = n + (1 + β− βε)ga with

ga =
(1−u)(ρ−n)

1−u(1−φ)−θ(1−u) = gYa

We need finally to compute the stationary value of u. From equation (17) we derive that u is
a solution of F(u) = H(u) with

F(u) ≡ ρ−n
1−u(1−φ)−θ(1−u) and H(u) ≡ z

(
α(1−φ)u

(1−α)φu+(1−φ)(1−u)

)1−φ
(27)

Assuming ρ > n, θ < 1 and
z > ρ−n

φ

(
(1−α)φ
α(1−φ)

)1−φ

we easily prove that there exists a unique solution u∗ ∈ (0, 1). The NBGRs are then finally
computed plugging the value u∗ into the expression of ga. We then conclude that our main
results on the characteristics of the NBGRs and NBGPs as derived in Theorem 1 and Lemma
1 are robust to the consideration of a non linear accumulation equation of knowledge. It
is also possible to prove that the transitional structural change properties as provided in
Corollary 2 in the next Section also hold.

We need finally to prove that even with a non linear accumulation equation of knowl-
edge, the one-dimensional manifold of steady states as proved in Theorem 3 still exists.
We need therefore to stationarize the NBGP as in Section 7. Considering k(t) = K(t)e−gKt,
x(t) = a(t)e−gat, q(t) = Q(t)e−gQt, p(t) = P(t)e−gPt and `(t) = L(t)e−nt, for all t ≥ 0,
with k(t), x(t), q(t), p(t) and `(t) the stationarized values for K(t), a(t), Q(t), P(t) and L(t),
and that N(t) = entN(0) with N(0) = N0 given, we can derive the following stationarized
dynamical system:

k̇
k = ψxαλακ1−α

H

(
`
k

)α
− δ− gK − N0 p−1/θ

k

ẋ
x = z(1− u)φu1−φxφ−1λφ−1κ

1−φ
a

(
k
`

)1−φ
− ga

ṗ
p = −

[
(1− α)γψ1/εxαλακ−α

H

(
`
k

)α
+ gP − δ− ρ

]
q̇
q = −

[
z(1− u)φu1−φxφ−1λφ−1κ

1−φ
a

(
k
`

)1−φ
+ gQ − ρ

]
The steady state of this dynamical system is obtained considering that u = u∗, λ = λ∗ = 1
and ` = `∗ = N0u∗. Considering equation (26), we first find that
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k =

(
(1−α)γ

ε
ε−1

δ+ρ−gP

)1/α
`∗

κ∗H
x ≡ Z1x

p =

[
(1−α)N0

[(δ+ρ−gP)κ∗H−(1−α)(δ+gK)]Z1

]θ

x−θ ≡ Z2x−θ

(28)

From the first order conditions of the Hamiltonian maximization program we can get

pαγφ1/εxαλακ1−α
H `αk1−α = qz(1− u)φu1−φxφλφ−1κ

1−φ
a `φ−1k1−φ

(
φu+(1−φ)(1−u)

1−u

)
Using u = u∗, λ = λ∗ = 1 and ` = `∗ = N0u∗ with (28) and solving this equation with
respect to x we find

x∗ =

(
αγψ1/εZ2Z

φ−α
1 `∗1−φ+ακ

φ−α
H

q0z
(

α
1−α

(1−φ)u∗
φu∗+(1−φ)(1−u∗)

)1−φ
[φu∗+(1−φ)(1−u∗)]

)1/θ

≡ x∗(q0)

and thus

k∗ = Z1

(
αγψ1/εZ2Z

φ−α
1 `∗1−φ+ακ

φ−α
H

q0z
(

α
1−α

(1−φ)u∗
φu∗+(1−φ)(1−u∗)

)1−φ
[φu∗+(1−φ)(1−u∗)]

)1/θ

≡ k∗(q0)

p∗ = Z2
q0z
(

α
1−α

(1−φ)u∗
φu∗+(1−φ)(1−u∗)

)1−φ
[φu∗+(1−φ)(1−u∗)]

αγψ1/εZ2Z
φ−α
1 `∗1−φ+ακ

φ−α
H

≡ p∗(q0)

Therefore, for any given q0 > 0, there exists a unique steady state (k∗(q0), x∗(q0), p∗(q0))

with k∗
′
(q0) < 0, x∗

′
(q0) < 0 and p∗

′
(q0) > 0. We have then proved that all our main

results, in particular the existence of a manifold of steady states, are not peculiar to the lin-
ear formulation of the accumulation equation of knowledge and are robust to a non-linear
specification.25

9 Transitional structural change

Having shown the existence of paths converging to the NBGP, we focus here on the proper-
ties of these paths. When inputs are substitutable, for any given pair (k0, x0) the optimal path
will converge toward an asymptotic position located on the manifoldM. From the property
that the manifold is parameterized by q0 and that k∗

′
(q0) < 0, x∗

′
(q0) < 0 in Theorem 3, we

know that the set of NBGP is such that greater value of capital along the NBGP is associated
with greater value of knowledge (also seen in Fig. 5). It is also likely that an economy with
initially low levels of physical capital and technological knowledge will remain permanently
behind an initially better-endowed economy, as suggested by Fig. 5. In other words, q0 is
decreasing when k(0) and a(0) increase.

Theorems 1, 3 and 4, and Corollary 1 allows us to give a characterisation of the transition

25Saddle-point stability could also be proved but at the cost of cumbersome computations which are beyond
the goal of this paper.
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path toward the non-balanced growth path.

Corollary 2. Under Assumption 1, the transition toward the non-balanced growth path is charac-
terized by the following properties:

1. The shares of capital and labour in the HS sector, κ = KH/K and λ = LH/L, are increasing.

2. The real and nominal shares in GDP of the HS sector, respectively YH/Y and PHYH/PY, are
increasing.

3. The nominal share of capital income in GDP, sK = RK/Y, is increasing (decreasing) if and
only if β > (<)α.

4. The relative price of the HS sector PH/P is decreasing while the relative price of the LS sector
PL/P is increasing.

Proof. See Appendix 11.10.

The results 1, 2 and 3 in Corollary 2 are in line with the empirical evidence collected in
Sections 3 and 9.1. First, along the transition path, the share of workers in the HS sector
increases while converging toward its stationary value, and the labour force in the LS sector
decreases. As illustrated in Section 3, the share of workers in service sectors in most countries
over the period 1970-2020 (see Figure 2) follows this pattern. Other patterns reinforce this
fact. The number of hours and workers in the LS sectors relative to those in HS service
sectors have fallen and both real and nominal shares of LS sectors have also fallen. Moreover,
the relative share of modern market services plus durable goods (here the HS sector) has
increased dramatically with respect to the other sectors (here the LS sector). Our results are
thus also fully in line with these empirical facts (see Figure 7 in Section 9.1).

Results 4 is also well in line with the dynamics of relative prices highlighted in Section 3
(see Figure 2). Over the period 1970− 2020, the relative prices of services of the progressive
sector and of the stagnant sector are indeed respectively increasing and decreasing as derived
from our model. Our results are clearly explained by the productivity growth differential
across the two intermediate sectors. Indeed, as the stagnant sector has a relatively lower
growth rate than the HS sector, its relative price obviously has to increase over time.

9.1 Transitional dynamics: an illustrative calibration

We now provide an illustrative calibration to investigate whether the equilibrium dynam-
ics generated by our model is consistent with the patterns shown by the data described in
Section 3. The first step is to obtain a plausible NBGR. Our model is characterized by 10
parameters, namely ε, δ, ρ, θ, γ, α, β, n, z and η. Following Barro and Sala-i-Martin [13], we
adopt the standard values for the annual depreciation rate δ = 0.05, the annual discount rate
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ρ = 0.02 and the long-run annual interest rate R∗ = 0.08. We use the EUKLEMS database to
evaluate the annual population growth rate over the period 1970-2020 and we find n = 0.01.
Concerning the sectoral labour shares, we focus on the US data and we use26 the National
Income and Product Accounts (NIPA) between 1948 and 2005 where industries are classi-
fied according to the North American Industrial Classification System at the 22-industry
level. We classify industries according to the requirement of technological knowledge by the
workers. That is, we consider an industry to be HS if workers exhibit a higher growth of
compensation per capita than average. The Table 2 provided in Appendix 11.11 shows the
average capital share of each industry together with the sector classification. This classifi-
cation allows us to compute average shares of capital for two “aggregate sectors” in which
α = 0.62 and β = 0.64.27 Recent contributions by Mulligan [60], Vissing-Jorgensen and
Attanasio [69] and Gruber [37] provide robust estimates of the elasticity of intertemporal
substitution in consumption between 1 and 2.3. We consider here an intermediate value of
1.5 leading therefore to θ = 10/15. As we do not have any empirical evidence to calibrate
the values of the parameters z and η characterizing the accumulation of individual knowl-
edge, we adjust these values to match the endogenous annual output growth rate gY. The
total output growth between 1970 and 2020 in the EUKLEMS/INTANPROD 2021 database
is 2.5%, leading to gY = 0.025. The corresponding values of z and η are then z = 0.11 and
η = 0.09.

As in Acemoglu and Guerrieri [4] we compute the capital share of the high-skilled, κ(t),
considering equation (55) in Appendix 11.2 for five distinct countries, namely the United
States, Germany, Japan, Finland and the United Kingdom. Each κ then allow us to derive the
labour share of the high-skilled sector, λ(t) as given by (56) in Appendix 11.2. In figure 6, we
show how the model perform compare to the data for each country on the period 1970-2019.
We then compute the nominal (value added) share in GDP, PH(t)YH(t)/P(t)Y(t), and the
real (value added) share in GDP of the HS sector, YH(t)/Y(t) as given by (83) (in Appendix
11.10), the graphs are shown in Figure 7. The model allows for a numerical characterization
of the dynamics of these quantities along the transition for ε = 1.8 (reported in Figure 7).
Importantly the predictions are not very sensitive to the choice of ε within the range (1.5, 2).

We observe that for the 5 selected countries, the model fits quite well with the data and
shows a similar trend along the years, even if each starting point is different. This feature
is due to the endogenous growth mechanism and the multiplicity of equilibrium described
in the empirical evidence. Our model is able to reproduce the dynamics of some European
countries by simply changing the starting point, validating the endogenous mechanism at
stake in our model, and the multiplicity of trends.

26As Acemoglu and Guerrieri [4]
27These two numbers are obtained as the weighted average of the shares mentioned in Table 1 in Appendix

10.1 according to the relative size of each sector.
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Figure 6: labour shares transitional dynamics, for 5 countries in the model (red line) and the
data (black dots)
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Figure 7: log GDP per capita according to real and nominal value added in the HS sector, in
the data (dots) and in the model (plain line)

A number of features are worth noting. First, the dynamics of the labour shares and of
the real and nominal shares of value added in GDP of the HS sector match well the data. We
are able to reproduce this positive correlation between labour accumulation in the HS sector
and log GDP per capita. Secondly, the endogenous growth mechanism allows us to retrieve
the multiplicity of trend observed in the data. In figure 7 we clearly observe the parallel
trends for our 5 countries and the non-convergence of them in the model and in the data.
According to the endowment level in HS labour, each country will reach a different level of
development for the same share of labour/value added in the HS sector. Even if there are still
some perturbations in the data, due to the internet bubble and the 2008 financial crisis (or the
reunification for Germany), the match is consistent over the 50 years of observations allowed
by the data. We believe introducing endogenous growth in structural change models is a
promising venue to study heterogeneity of economies and industries.

Finally, the following Figure contain the dynamics of the relative prices of the HS sector.
As mentioned in the empirical part of Section 3, prices are given as an index, which does not
allow us to make level comparisons between countries. However, as observed in Section 3
for numerous countries, the relative price of the HS sector is decreasing in the model. Due
to the nature of the data we are not able to quantitatively compare the model and the data,
but at least qualitatively they are both going in the same direction.

As proved in Corollary 2 and in line with the data, we find that the relative price of the
HS sector PH/P is decreasing and reproduce the price trend observed in Austria. Moreover,
when we compare to Figure 2 we see that the model provides on average a quite good match
to the decreasing trend of price for most countries.
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Figure 8: Transitional dynamics of the relative prices

10 Conclusion

Motivated by the recent dynamics of highly productive sectors, we propose a two-sector
model of non-balanced endogenous growth. The final good is produced through a CES tech-
nology using two intermediate sectors. The progressive sector is HS as in Lucas [53] and the
accumulation of knowledge leads to an unbounded increase in TFP. Along the NBGP capital
and labour reallocate across sectors. When intermediary capital goods are substitutable, the
real and nominal shares of the HS sector are increasing while the real and nominal shares
of the LS sector are decreasing. Interestingly, the shares of capital and labour in the HS sec-
tor depend on the initial value of capital and knowledge. As a consequence, countries with
the same fundamentals but lower initial wealth will be characterized by lower asymptotic
wealth. We finally provided a numerical illustration to characterize the transitional dynam-
ics of the main variables.

In this paper we explore the dynamics of an economy in which productivity is endoge-
nous and intermediate sectors are all substitutes in the production of a final output. The
next step is to extend the economy to include also complementary intermediates. We expect
that the general dynamics will depend on the details of the model as there are obvious con-
flicting tendencies. A realistic model would also include demand side effect generated by
non-homotheticities in preferences, in the spirit of Comin et al. [29].

A more satisfactory theory of structural change would require deeper microeconomic
foundations. A promising approach is to follow recent developments able to endogenize the
linkages in an input output economy.28 Indeed, the way innovation pushes to new or better
substitutes or complements depends on these details. Similarly, the role of automation on

28See for instance Acemoglu and Azar [2], Carvalho and Tahbaz-Salehi [27], Ghiglino [36], Miranda-Pinto [58],
Oberfield [63].
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structural change through its impact on labour productivity could be precisely analyzed.29

11 Appendix

11.1 Additional empirics

In this appendix we will provide some additional empirical facts to complement section 3.
We will start by providing descriptive statistics about EUKLEMS data and then the complete
estimation related to the relationship between employment share and productivity growth
(reported in Section 3.2 and Fig. 1). We will also provide some further facts about capital
dynamics and value added, omitted from the core document.

11.1.1 Descriptive statistics

We first provide some descriptive statistics of the EUKLEMS data for the 9 selected countries
providing the relevance of each industry and their relative TFP. In table 1 we provide the
mean share of each industry as well as its growth rate, while in table 2 we provide informa-
tion about relative TFP and its growth rate. From these descriptive statistics it appears that

Industry Mean Std err Min Max Growth G std err
G 19.53 0.25 14.39 26.01 -0.96 0.13
H 7.54 0.19 3.87 11.81 -0.31 0.16
I 6.83 0.21 4.19 11.02 -0.13 0.30
J 4.29 0.07 3.10 5.92 1.00 0.20
K 3.65 0.08 2.22 5.28 -1.35 0.23
L 1.42 0.03 0.99 2.09 0.56 0.25
M N 14.79 0.41 5.42 20.39 1.63 0.20
O 10.03 0.16 7.11 12.30 -0.74 0.20
P 8.63 0.18 2.92 10.39 -0.07 0.14
Q 16.79 0.34 9.71 22.83 0.67 0.12
R 2.35 0.04 1.61 3.41 0.33 0.27
S 3.87 0.06 2.90 5.09 0.33 0.18

Table 1: Employment share and its growth rate in each industry

G, wholesale and retail trade, M N, professional, scientific and technical activities and administrative
and support services activities, as well as Q, Human Health and social work activities represent
the biggest share in the service economy, and only G has a decreasing share. M N is also the
sector with the most vivid growth followed by J, Information and communication. L, real estate

29See Acemoglu and Restrepo [5].
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activities, is the industry with the lowest share even if it is increasing by half a percentage
point per year in mean. The sign of the correlation between employment and TFP growth is
reported in the next table.

Industry Mean Std err Min Max Growth G std err
G 1.01 0.01 0.69 1.44 1.26 0.25
H 0.94 0.01 0.70 1.08 -0.42 0.33
I 0.92 0.01 0.69 1.06 -0.74 0.45
J 1.10 0.03 0.54 2.30 2.03 0.31
K 0.97 0.02 0.58 1.47 0.56 0.47
L 1.07 0.01 0.91 1.40 -0.21 0.18
M N 1.03 0.02 0.85 1.54 -0.26 0.19
O 1.08 0.01 0.98 1.22 0.10 0.16
P 0.99 0.01 0.73 1.43 0.017 0.019
Q 1.01 0.02 0.71 1.37 -0.94 0.17
R 0.99 0.01 0.66 1.35 -1.14 0.45
S 0.99 0.01 0.78 1.42 -0.83 0.25

Table 2: Relative TFP and its growth rate in each industry

From this table we observe that among the industries with positive relative TFP growth,
G, J, K and O, only J exhibits both a positive growth for employment and for TFP.

11.1.2 The relationship between labour share and TFP : a complete estimation

We now report the complete estimation related to the relationship between employment
share and relative TFP (Section 3.2 and Fig. 1). We used the panel data model described in
equation (2) on each of the 12 industries in the services sector. Table 3 shows the results. As
capital is less volatile than labour, it is important to take into account that capital movements
often precede labour movements. From this estimation we obtain that capital and labour are
always positively correlated, except in the case of industry Q, human health services, as the
effect is far from being significant. In this table we obtain the effect of capital share on labour
income share to correct for the TFP effect. Once we correct for capital, we obtain that J and
P are the only industries with a strctly positive relationship between relative TFP and labour
share, even when we take into account capital movements, country and yearly fixed effects.
As explained in section 3, we believe these movements are induced because of the high share
of technical labour within those industries.
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11.1.3 Capital share

In section 3 we have seen how labour share in the HS sector is evolving compared to prices,
but we have been agnostic on capital share. In figure 9 we show how the capital share in the
HS sector evolves over the last 50 years for our 9 countries.

Figure 9: Capital share in the HS sector

We observe that capital fluctuates more than labour and exhibits some unusual patterns :
Austria in the 2000, Germany after reunification or Italy in the 90’s. However, except for the
UK, the capital share in the HS sector is increasing or stable for those countries, with some
fluctuations according to the period.

11.2 Proof of Proposition 1

The Hamiltonian in current value associated to the optimization problem (9) is (we omit
subscript for t to simplify notations):

H = NH
c1−θ

H
1− θ

+ NL
c1−θ

L
1− θ

+ PH

[
(LHa)αK1−α

H −YH

]
+ PL

[
Lβ

LK1−β
L −YL

]
+ P

[(
γY

ε−1
ε

H + (1− γ)Y
ε−1

ε
L

) ε
ε−1

− δK− NHcH − NLcL

]
+ Q

[
z(1− u)− η

]
a

+ µK [K− KH − KL] + µL[L− LH − LL]
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with LH = uNH and µK and µL the Lagrange multipliers associated with the capital and
labour market clearing conditions. The first-order conditions with respect to the control
variables cH, cL, u, LH, LL, KH, KL, YH and YL give:

c−θ
i = P for any i = H, L (29)

PHα
YH

LHa
NH = Qz (30)

PH = Pγ

(
Y

YH

) 1
ε

(31)

PL = P(1− γ)

(
Y
YL

) 1
ε

(32)

µK = PH(1− α)
YH

KH
= PL(1− β)

YL

KL
(33)

µL = PHα
YH

LH
= PLβ

YL

LL
(34)

Substituting (31) and (32) into (33) and (34) gives

(1− α)γ

(
Y

YH

) 1
ε YH

KH
= (1− β)(1− γ)

(
Y
YL

) 1
ε YL

KL
(35)

αγ

(
Y

YH

) 1
ε YH

LH
= β(1− γ)

(
Y
YL

) 1
ε YL

LL
(36)

In the HS sector, the rental rate of capital rH and the individual wage rate wH are given by

rH = (1− α) YH
KH

, wH = α YH
NHua (37)

while in the LS sector, rL and wL are given by

rL = (1− β) YL
KL

, wL = β YL
NL

(38)

Note first that substituting (31) and (32) into (37) and (38) allows (36) to be written as follows

wH(t)a(t)PH(t) = wL(t)PL(t)

which gives the equality between nominal wages per hour devoted to production in the
relevant sector. Similarly (35) is equivalent to

rH(t)PH(t) = rL(t)PL(t) (39)

which gives the equality between the capital return in the two sectors. These two properties
imply that despite the fact that agents work in different sectors, they all consume the same
amount since cH(t) = cL(t) = P−1/θ for any t ≥ 0.

The equilibrium rental rate of capital can then be defined as
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R(t) = (1− α)γ
(

Y
YH

) 1
ε YH

KH
= (1− β)(1− γ)

(
Y
YL

) 1
ε YL

KL

= PKrK
P = PLrL

P

(40)

From the Hamiltonian, we also derive the optimality conditions that provide differential
equations for the prices P and Q of aggregate capital and knowledge:

Ṗ = ρP− ∂H

∂K
= ρP− ∂H

∂K
= P(ρ + δ)− PH(1− α)

YH

KH
(41)

Q̇ = ρQ− ∂H

∂a
= −Q(z− η − ρ) + Qzu− PHα

YH

a
(42)

Substituting equation (31) into (41) and using (40) then gives

Ṗ = −P [R− δ− ρ] (43)

Note now that using LH = uNH, equation (30) becomes PHαYH/(ua) = Qz. Substituting this
expression into (42) gives

Q̇ = −Q(z− η − ρ) (44)

Moreover, since cH(t) = cL(t) = P−
1
θ , we get aggregate consumption as

C = CH + CL = NHcH + NLcL = NP−
1
θ

We finally obtain the following differential equations for prices and stocks as given by (11)-
(12). The result follows.

11.3 Proof of Theorem 1

From (12) we immediately get ga = z(1− u)− η. Differentiating equation (29) gives using
(11)

gcH = gcL = − 1
θ gP = 1

θ

[
(1− α)γ

(
Y

YH

) 1
ε YH

KH
− δ− ρ

]
= 1

θ

[
(1− β)(1− γ)

(
Y
YL

) 1
ε YL

KL
− δ− ρ

] (45)

It follows that gP = −θgcH = −θgcL . Since gP is constant along a NBGP, we get

gKH = ε−1
ε gYH + 1

ε gY (46)

and
gKL = ε−1

ε gYL +
1
ε gY (47)

The capital accumulation equation (8) can be written as

gK = Y
K − δ− NP−1/θ

K

Differentiating this expression using the fact that along a NBGP ġK = 0 yields

gY = n− gP/θ (48)
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Since aggregate consumption is given by C = NP−1/θ we conclude that gC = gY. Differenti-
ating (6) gives:

gYH = αga + αnH + (1− α)gKH (49)

Combining (30) and (31) and differentiating gives:

gP + ε−1
ε gYH + 1

ε gY − ga = gQ = −(z− η − ρ) (50)

Now differentiating equations (35) and (36) yields:
ε−1

ε gYH − gKH = ε−1
ε gYL − gKL

ε−1
ε gYH − nH = ε−1

ε gYL − nL

(51)

The differentiation of (7) gives

gYL = βnL + (1− β)gKL (52)

and using (51) we get

gYL = (1− β)εgKH + βεnH + (1− ε)gYH
(53)

Equations (46)-(53) are not enough to determine explicitly the values of the growth rates.
We need also to determine the relationship between the growth rate of K and KH, L and LH,
Y and YH. We thus use the same methodology as in Acemoglu and Guerrieri [4].

Considering the first order conditions (30)-(34) allows to define the following maximized
value of current output given the physical capital stock K(t) and the stock of knowledge a(t)
at time t as

Φ(K(t), a(t), t) = max
KH(t),KL(t),LH(t),LL(t),u(t)

(
γY

ε−1
ε

H + (1− γ)Y
ε−1

ε
L

) ε
ε−1

Let us define the shares of capital and labour allocated to the HS sector (sector H) as

κ(t) ≡ KH(t)
K(t) , λ(t) ≡ LH(t)

L(t) (54)

We also have 1− κ(t) ≡ KL(t)
K(t) and 1− λ(t) ≡ LL(t)

L(t) . And combining this statement with the
equations (35) and (36) we obtain:

κ(t) =
[

1 +
(

1− β

1− α

)(
1− γ

γ

)(
YL(t)
YH(t)

) ε−1
ε
]−1

(55)

and

λ(t) =
[

1 +
(

1− α

1− β

)(
β

α

)(
1− κ(t)

κ(t)

)]−1

(56)

Using equation (5), we can write the maximized value of current ouput Φ(K(t), a(t), t)
as follows:

Y(t) = Φ(K(t), a(t), t) = ψ(t)a(t)αλ(t)ακ(t)1−αL(t)αK(t)1−α (57)

with
ψ(t) = γ

ε
ε−1

(
1 + 1−α

1−β
1−κ(t)

κ(t)

) ε
ε−1

(58)
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Considering that cH = cL = c, we can rewrite the Hamiltonian in maximized value:

H(c, K, a, P) = N c1−θ

1−θ + P
[

Φ(K(t), a(t), t)− δK− Nc
]

and the first order conditions with respect to consumption gives:

ċ
c = 1

θ

[
(1− α)γψ(t)

1
ε aαλακ−αLαK−α − δ− ρ

]
= − 1

θ
Ṗ
P (59)

Since along the NBGP ġc = 0, we get:

1
ε

ψ̇(t)
ψ(t) + αga + α λ̇(t)

λ(t) − α κ̇(t)
κ(t) + αn− αgK = 0

Differentiating equations (56) and (58) gives

ψ̇(t)
ψ(t) = κ̇(t)

κ(t)

(
ε(1−α)

[∆κ+(1−α)](1−ε)

)
λ̇(t)
λ(t) = κ̇(t)

κ(t)

(
(1−β)α
(1−α)β

+ 1−κ
κ

)−1

K̇(t)
K(t) = κ̇(t)

κ(t)

[
(1−α)ε

α(1−ε)[∆κ+1−α]
+

(
(1−β)α
(1−α)β

+ 1−κ
κ

)−1]
+

(
z(1− u)− η + n

)
where ∆ = α− β. Now differentiating (55) and substituting with what we have just found
allow to write the law of motion of κ as follows:

κ̇(t)
κ(t) = G(κ(t))βga (60)

with
G(κ(t)) = (1−κ)(ε−1)

ε+(ε−1)
(

∆KS(1−κ)−δκ−(1−α)−λS(α−λ∆)
(
(1−α)β+∆κ
(1−α)β

)) (61)

where
KS = (1−α)ε

α(1−ε)[∆κ+1−α]
+
(
(1−β)α
(1−α)β

+ 1−κ
κ

)−1
, λS =

(
(1−β)α
(1−α)β

+ 1−κ
κ

)−1
(62)

It is then easy to check under α, β > 1/2 that G(0) > 0, G(1) = 0 and G′(κ) < 0 for any κ.
This implies that equation (60) has a unique solution such that limt→∞ κ(t) = κ∗ = 1. Using
this asymptotic value into λ and ψ give the following results: limt→∞ λ(t) = λ∗ = 1 and
limt→∞ ψ(t) = ψ∗ = γ

ε
ε−1 .

We conclude therefore that gK = gKH and n = nH, and using the maximized value of the
output Φ(K(t), a(t), t) as is given by (57), we obtain Y(t) = ψ∗YH(t), which gives gYH = gY.
Now we can replace all these equalities into the equations (46)-(53) to obtain the explicit
values of the growth rates. From (46), (48) and (49), we have gK = gY, gP = θ(n− gK) and
gK = ga + n. Using (50) we then get gP = gQ − n = −(z− η − ρ + n) and thus

ga =
z−η−ρ+n

θ and gK = n + z−η−ρ+n
θ

(63)

From (51) and (53) we derive

gYL = n + (1− βε)ga, gKL = n + (1 + β− βε)ga and nL = n + (1− ε)βga
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Using ga = z(1− u)− η we finally obtain:

u∗ = 1
z

[
z− η − 1

θ (n− ρ + z− η)

]
(64)

and from (11)
R∗ = δ + ρ− gP = δ + ρ− θ(n− gK)

11.4 Proof of Corollary 1

Let us consider the first-order conditions (30)-(36) and Theorem 1.
1. We derive from Theorem 1 that the growth rate of K/L is equal to

gK/L = gK − n = ga > 0

2. This result is obvious from Theorem 1.
3. Along the NBGP the capital-output ratio is given by

gK/Y = gK − gY = 0

4. The share of capital income in GDP is given by

sK = RK
Y = (1− α)γ

(
Y

YH

) 1−ε
ε 1

κ

Along the NBGP with κ = 1 and Y = ψ∗YH we then get

sK = (1− α)

5. This result is obvious from Theorem 1.
6. From (5), (31) and (32) we derive that

PH
P = γ

(
Y

YH

) 1
ε
= γ

(
γ + (1− γ)

(
YL
YH

) ε−1
ε

) 1
ε−1

PL
P = (1− γ)

(
Y
YL

) 1
ε
= (1− γ)

(
γ
(

YH
YL

) ε−1
ε
+ (1− γ)

) 1
ε−1

(65)

We derive from these expressions

d
dt (PH/P)

PH/P = gPH/P = 1
ε

(1−γ)
(

YL
YH

) ε−1
ε

γ+(1−γ)
(

YL
YH

) ε−1
ε
(gYL − gYH )

d
dt (PL/P)

PL/P = gPL/P = 1
ε

γ
(

YH
YL

) ε−1
ε

γ
(

YH
YL

) ε−1
ε

+(1−γ)

(gYH − gYL)

(66)

Since gYH = gY > gYL , we conclude that gPH/P < 0, gPL/P > 0 and thus gPL/PH > 0.
7. Using the expressions of Y/YH and Y/YL in (65), we derive
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d
dt (YH/Y)

YH/Y = gYH/Y =
(1−γ)

(
YL
YH

) ε−1
ε

γ+(1−γ)
(

YL
YH

) ε−1
ε
(gYH − gYL) > 0

d
dt (YL/Y)

YL/Y = gYL/Y =
γ
(

YH
YL

) ε−1
ε

γ
(

YH
YL

) ε−1
ε

+(1−γ)

(gYL − gYH ) < 0

(67)

It follows that the real shares of the HS and LS sectors in GDP, YH/Y and YL/Y, are respec-
tively increasing and decreasing. Using (65), we also derive

PHYH
PY = γ

(
γ + (1− γ)

(
YL
YH

) ε−1
ε

)−1

PLYL
PY = (1− γ)

(
γ
(

YH
YL

) ε−1
ε
+ (1− γ)

)−1
(68)

and thus
d
dt

(
PHYH

PY

)
= ε−1

ε
PHYH

PY
(1−γ)

(
YL
YH

) ε−1
ε

γ+(1−γ)
(

YL
YH

) ε−1
ε
(gYH − gYL)

d
dt

(
PLYL
PY

)
= ε−1

ε
PLYL
PY

γ
(

YH
YL

) ε−1
ε

γ
(

YH
YL

) ε−1
ε

+(1−γ)

(gYL − gYH )

(69)

Since ε > 1, we conclude that the nominal shares of the HS and LS sectors, as defined by
PHYH/PY and PLYL/PY, are respectively increasing and decreasing.

11.5 Proof of Theorem 2

Basically, we use the same type of methodology to find the NBGP when inputs are com-
plementary. We define however in a different way the output of the final good as follows

Y(t) = φ(t)(1− λ)β(1− κ)1−βK1−βLβ (70)

with
φ = (1− γ)

ε
ε−1

(
1 +

(
1−β
1−α

) (
κ

1−κ

)) ε
ε−1

To simplify notations let us define v = 1− κ and w = 1− λ.
Using again the hamiltonian in maximized value, and the fact that along the NBGP ġC =

0, we obtain:
φ̇(t)
φ(t) + β ẇ(t)

w(t) − β v̇(t)
v(t) + β L̇(t)

L(t) − β K̇(t)
K(t) = 0

We need to transform equations (20) and (21) to express them in terms of v and w, then
we differentiate these transformed equations and also the definition of φ. We modify the
formulations and we express them in terms of v̇

v . Once we have these 3 differential equations
we use the previous equality to express K̇

K in terms of v̇
v . We have:
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v̇(t)
v(t) = − ε−1

ε (1− v)(gYH − gYL)

φ̇(t)
φ(t) = v̇(t)

v(t)

(
ε(1−β)

[∆v+(1−α)](1−ε)

)
≡ D1

v̇(t)
v(t)

ẇ(t)
w(t) = v̇(t)

v(t)

(
(1−α)β
(1−β)α

+ 1−v
v

)−1

≡ D2
v̇(t)
v(t)

K̇(t)
K(t) = 1

β
φ̇(t)
φ(t) +

ẇ(t)
w(t) −

v̇(t)
v(t) + n

The last step is to prove that v̇(t)
v = 0 when v = 1 implying that κ = 0 and λ = 0. To this

end, we compute (gYH − gYL) and we obtain the following equation:

v̇(t)
v(t) =

(1−ε)αga(1−v)

ε+(1−ε)
(

D2α 1−v
1−w+1−α+ ∆

β (1−v)D1

) ≡ G(v)

Under α, β > 1/2, G(.) is a positive and either decreasing or hump-shaped function in v,
with G(0) > 0, G′(1) < 0 and G(1) = 0. As v is defined over a compact subset [0, 1], we
conclude that v = 1 is the steady state value of the model, which implies that κ∗ = 0, λ∗ = 0
and φ∗ = (1− γ)

ε
ε−1 . We conclude therefore that gK = gKL and n = nL, and using equation

(70) we obtain Y(t) = φ∗YL(t), which gives gYL = gY. Now we can replace all these equalities
into the equations (46)-(53) to obtain the explicit values of the growth rates. From (52) and
(47), (48), we have gK = gY, gK = n and gP = 0. From (51) and (49) we get gKH = nH,
gYH = εαga + n and nH = n + (ε− 1)ga. Using (50) we get n− gQ = ga[1 + α(1− ε)] and
thus

ga =
z−η−ρ+n
1+α(1−ε)

and nH = n[ε+α(1−ε)]−(1−ε)(z−η−ρ)
1+α(1−ε)

Using ga = z(1− u)− η we finally obtain:

u∗ = 1
z

[
z− η − z−η−ρ+n

1+α(1−ε)

]
and from (11)

R∗ = δ + ρ− gP = δ + ρ

11.6 Proof of Lemma 1

Let us consider the stationarized values for K(t), a(t) and P(t) as defined by k(t) = K(t)e−gKt,
x(t) = a(t)e−gat and p(t) = P(t)e−gPt, for all t ≥ 0. Recall also that as population is growing
at the exponential rate n, we have N(t) = entN(0) with N(0) = N0 given. Let Assumption 1
hold and let us substitute the maximized output Y(t) = Φ(K(t), a(t), t) as given by (57) into
equations (23) and (26). We obtain
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Ṗ
P = −

[
(1− α)γψ

1
ε xα

(
LH
KH

)α

− ρ− δ

]
K̇
K = ψaα

(
LH
KH

)α
KH
K − δ− NP−

1
θ

K

We need to prove that LH = LH(k, a, p, q0, N0), KH = KH(k, a, p, q0, N0) and u =

u(k, a, p, q0, N0), and to compute the derivatives of these functions. From (14) and (15) we
derive:

(14) ⇔ γ(1−α)
(1−γ)(1−β)

[(LH a)αK1−α
H ]

ε−1
ε

KH
= [(L−LH)

β(K−KH)
1−β]

ε−1
ε

K−KH

(15) ⇔ γα
(1−γ)β

[(LH a)αK1−α
H ]

ε−1
ε

LH
= [(L−LH)

β(K−KH)
1−β]

ε−1
ε

L−LH

(14)
(15) ⇔

BH
BL

LH(K− KH) = KH(L− LH)

with BH = γ(1−α)
(1−γ)(1−β)

and BL = γα
(1−γ)β

. Let us then denote

ωH = BH
BL

LH(K− KH)− KH(L− LH) = 0

ωL = BH
[(LH a)αK1−α

H ]
ε−1

ε

KH
− [(L−LH)

β(K−KH)
1−β]

ε−1
ε

K−KH
= 0

If the matrix

J1 =

(
∂ωH
∂KH

∂ωH
∂LH

∂ωL
∂KH

∂ωL
∂LH

)
is non-singular, there exists locally unique functions KH = K̃H(K, a, L) and LH = L̃H(K, a, L),
with: (

∂K̃H
∂K

∂K̃H
∂a

∂K̃H
∂L

∂L̃H
∂K

∂L̃H
∂a

∂L̃H
∂L

)
= J−1

1

(
∂ωH
∂K

∂ωH
∂a

∂ωH
∂L

∂ωL
∂K

∂ωL
∂a

∂ωL
∂L

)
Tedious but straightforward computations then give

∂K̃H
∂K = K̃H

Υ

[
(α− β)(ε− 1)(L− LH)− L

]
∂K̃H
∂a = − 1

Υ α(ε− 1)(K− K̃H)K̃H L 1
a

∂K̃H
∂L = − K̃H

Υ (ε− 1)(α− β)(K− K̃H)

∂L̃H
∂K = 1

Υ
BH L̃H
BLK̃H

L̃H(α− β)(ε− 1)(K− K̃H)

∂L̃H
∂a = − 1

Υ
BH L̃H
BLK̃H

α(ε− 1)KL̃H(K− K̃H)
1
a

∂L̃H
∂L = L̃H

Υ

[
(α− β)(ε− 1)(K− K̃H)− K

]

with Υ = Υ(L, K, LH, KH) =

[
(ε− 1)(α− β)(KH

K −
LH
L )− 1

]
LK.

We need now to prove that KH = KH(K, a, P, Q, N) and LH = LH(K, a, P, Q, N). We
have shown that KH = K̃H(K, a, L) and LH = L̃H(K, a, L). We use market clearing condi-
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tions to assess L = N − (1− u)NH in order to obtain KH = L̃H(K, a, N − (1− u)NH) and
LH = L̃H(K, a, N − (1− u)NH). The first step is to prove that NH = NH(K, a, u, N), and thus
u = u(K, a, P, Q, N). Let us denote H ≡ uNH − L̃H(K, a, N − (1− u)NH) = 0. Assuming
∂H/∂NH 6= 0 implies that here exists a locally unique function NH = Ñ1(K, a, u, N) such
that

∂Ñ1
∂K =

∂L̃H
∂K

u+(1−u) ∂L̃H
∂L

, ∂Ñ1
∂a =

∂L̃H
∂a

u+(1−u) ∂L̃H
∂L

∂Ñ1
∂N =

∂L̃H
∂L

u+(1−u) ∂L̃H
∂L

, ∂Ñ1
∂u = − Ñ1(1−

∂L̃H
∂L )

u+(1−u) ∂L̃H
∂L

Let us consider now equation (30) such that:

G(K, a, u, P, Q, N) = αγ
zau PY(K, a, u, N)

1
ε YH(K, a, u, N)

ε−1
ε −Q = 0

Assuming ∂G/∂u 6= 0, there exists a locally unique function u = u(K, a, P, Q, N) such that:

∂u
∂K = −

∂G
∂K
∂G
∂u

; ∂u
∂a = −

∂G
∂a
∂G
∂u

; ∂u
∂P = −

∂G
∂P
∂G
∂u

; ∂u
∂Q = −

∂G
∂Q
∂G
∂u

; ∂u
∂N = −

∂G
∂N
∂G
∂u

with:

∂G
∂K = Q

[
1
ε

1
Y

∂Y
∂K + 1−ε

ε
1

YH

∂YH
∂K

]
, ∂G

∂a = Q
[
− 1

a +
1
ε

1
Y

∂Y
∂a + 1−ε

ε
1

YH

∂YH
∂a

]
, ∂G

∂P = Q
P ,

∂G
∂u = Q

[
1
ε

1
Y

∂Y
∂u + 1−ε

ε
1

YH

∂YH
∂u −

1
u

]
, ∂G

∂Q = −1, ∂G
∂N = Q

[
1
ε

1
Y

∂Y
∂N + 1−ε

ε
1

YH

∂YH
∂N

]
Let us then denote

KH = K̃H(K, a, N − (1− u(K, a, P, Q, N)Ñ1(K, a, u(K, a, P, Q, N)))

⇔ KH = KH(K, a, P, Q, N)

LH = L̃H(K, a, N − (1− u(K, a, P, Q, N)Ñ1(K, a, u(K, a, P, Q, N)))

⇔ LH = LH(K, a, P, Q, N)

(71)

Tedious but straightforward computations allow therefore to express all the derivatives we
need. For example, considering the derivatives with respect to K we get:

∂Y
∂K =

(
γ ∂YH

∂K Y−
1
ε

H + (1− γ) ∂YL
∂K Y−

1
ε

L

)
Y

1
ε

∂YH
∂K = YH

(
α 1

LH

∂LH
∂K + (1− α) 1

KH

∂KH
∂K

)
∂YL
∂K = −YL

(
β 1

L−LH

∂LH
∂K + (1− β) 1

K−KH

∂KH
∂K

)
∂LH
∂K = ∂L̃H

∂K

(
u

u+(1−u) ∂L̃LH
∂L

)
KH
∂K = ∂K̃H

∂K − (1− u) ∂K̃H
∂L

∂L̃H
∂K

u+(1−u) ∂L̃H
∂L

We do similar computations to obtain all the derivatives KH and LH with respect to K, a, P, Q
and N. Recalling that NH as follow: NH = Ñ1(K, a, u(K, a, P, Q, N), N) = NH(K, a, P, Q, N)

we finally derive:
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∂NH
∂K = ∂Ñ1

∂K + ∂Ñ1
∂u

∂u
∂K , ∂NH

∂A = ∂Ñ1
∂A + ∂Ñ1

∂u
∂u
∂A , ∂NH

∂P = ∂Ñ1
∂u

∂u
∂P ,

∂NH
∂Q = ∂Ñ1

∂u
∂u
∂Q , ∂NH

∂N = ∂Ñ1
∂N + ∂Ñ1

∂u
∂u
∂N

Using these results into (71) we obtain:

∂KH
∂K = ∂K̃H

∂K + ∂K̃H
∂L

[
∂u
∂K NH − (1− u) ∂NH

∂K

]
, ∂KH

∂A = ∂K̃H
∂A + ∂K̃H

∂L

[
∂u
∂A NH − (1− u) ∂NH

∂A

]
∂KH
∂P = ∂K̃H

∂L

[
∂u
∂P NH − (1− u) ∂NH

∂P

]
, ∂KH

∂Q = ∂K̃H
∂L

[
∂u
∂Q ÑH − (1− u) ∂NH

∂Q

]
∂KH
∂N = ∂K̃H

∂N + ∂K̃H
∂L

[
∂u
∂N NH − (1− u) ∂NH

∂N

]
, ∂LH

∂K = ∂L̃H
∂K + ∂L̃H

∂L

[
∂u
∂K NH − (1− u) ∂NH

∂K

]
∂LH
∂A = ∂L̃H

∂A + ∂L̃H
∂L

[
∂u
∂A NH − (1− u) ∂NH

∂A

]
, ∂LH

∂P = ∂L̃H
∂L

[
∂u
∂P NH − (1− u) ∂NH

∂P

]
∂LH
∂Q = ∂L̃H

∂L

[
∂u
∂Q NH − (1− u) ∂NH

∂Q

]
, ∂LH

∂N = ∂L̃H
∂N + ∂L̃H

∂L

[
∂u
∂N NH − (1− u) ∂NH

∂N

]
We have proved therefore that KH and LH are functions of K, a, P, Q and N, and we have
all the derivatives of our main variables. Using the property that a homogeneous of degree
1 CES function generates input demand functions which are homogeneous of degree 0, we
state finally:

KH(K, a, P, Q, N) = KH(k, x, p, q0, N0)

LH(K, a, P, Q, N) = LH(k, x, p, q0, N0)

u(K, a, P, Q, N) = u(k, x, p, q0, N0)

The stationarized dynamical system (16) is then easily derived.

11.7 Proof of Theorem 3

Consider the stationarized dynamical system as given by (16). Using (57) we can rewrite it
as follows

ṗ
p = −

[
(1− α)γψ

1
ε xαλακ1−αlαk−α + gP − ρ− δ

]
k̇
k = ψxαλακ1−αlαk−α − δ− gK − N0 p−

1
θ

k

ẋ
x = z(1− u)− ga − η

(72)

A steady-state is therefore a solution of the following system

(1− α)γψ
1
ε xαλακ−αlαk−α = ρ + δ− gP (73)

ψxαλακ1−αlαk−α = δ + gK +
N0 p−

1
θ

k
(74)

z(1− u) = ga + η (75)
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From (75) we get u = (z− ga − η)/z ≡ u∗ as given by (64). Since at steady state we have
λ∗ = 1 we derive LH = L and NH = N. Recalling that L = N− (1− u)NH, we get l∗ = u∗N0

with N0 the initial value of N(t). Taking the ratio of (74) on (73) gives after simplification

gK + δ + N0 p−
1
θ

k = δ+ρ−gP
(1−α)γ

κψ
ε−1

ε (76)

Using the fact that κ∗ = 1 and ψ∗ = γ
ε

ε−1 , substituting (76) into (74) and solving for k gives

k =

(
(1−α)γ

ε
ε−1

ρ+δ−gP

) 1
α

l∗x ≡ Z1x (77)

Solving (76) with respect to p using (77) gives

p =
[

(1−α)N0
[δ+ρ−gP−(1−α)(δ+gK)]Z1

]θ
x−θ ≡ Z2x−θ (78)

Consider finally equation (30) which can be written at the steady state as

pγψ
1
ε αlαxαlαk1−α = q0zux (79)

Substituting (77) and (78) into (79) and solving for x finally gives

x∗ =
(
Z2Z1−α

1 γ
ε

ε−1 αl∗α

q0zu∗

) 1
θ

≡ x∗(q0) (80)

Therefore, substituting (80) into (78) and (77), we find

k∗ = Z1

(
Z2Z1−α

1 γ
ε

ε−1 αl∗α

q0zu∗

) 1
θ

≡ k∗(q0)

p∗ = Z2
q0zu∗

Z1−α
1 γ

ε
ε−1 αl∗α

≡ p∗(q0)

(81)

We conclude that for any given q0 > 0, there exists a unique steady state
(k∗(q0), x∗(q0), p∗(q0)) with k∗

′
(q0) < 0, x∗

′
(q0) < 0 and p∗

′
(q0) > 0.

11.8 Proof of Lemma 2

Under Assumption 1, let us consider the dynamical system

ṗ = −p
{
(1− α)γψ

1
ε xα

(
LH(k, x, p, q0, N0)

KH(k, x, p, q0, N0

)α

+ gP − ρ− δ

}
≡ F (p, k, x)

k̇ = k
{

ψxα

(
LH(k, x, p, q0, N0)

KH(k, x, p, q0, N0

)α KH(k, x, p, q0, N0)

k
− δ− gK −

N0 p−
1
θ

k

}
≡ G(p, k, x)

ẋ = x
{

z
(

1− u(k, x, p, q0, N0)

)
− ga − η

}
≡ H(p, k, x)
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The linearization around the steady state yields the following Jacobian matrix:

J =


F1(p∗, k∗, x∗) F2(p∗, k∗, x∗) F3(p∗, k∗, x∗)

G1(p∗, k∗, x∗) G2(p∗, k∗, x∗) G3(p∗, k∗, x∗)

H1(p∗, k∗, x∗) H2(p∗, k∗, x∗) H3(p∗, k∗, x∗)


with F1(p∗, k∗, x∗) = −(ρ + δ− gP)

α
1−α < 0, F2(p∗, k∗, x∗) = 0

F3(p∗, k∗, x∗) = (ρ + δ− gP)
α

1−α
p∗
x∗ > 0

G1(p∗, k∗, x∗) = k∗
p∗

[
(ρ + δ− gP)

α
(1−α)2 +

1
θ N0

p∗
−1
θ

k∗

]
> 0

G2(p∗, k∗, x∗) = (ρ + δ− gP)
1

1−α − δ− gK > 0

G3(p∗, k∗, x∗) = (ρ + δ− gP)
1

(1−α)2
k∗
x∗ > 0

H1(p∗, k∗, x∗) = − x∗
p∗

zu∗
1−α < 0, H2(p∗, k∗, x∗) = − x∗

k∗ zu∗ < 0

H3(p∗, k∗, x∗) = z(1− u∗)− ga − η + zu∗
1−α = zu∗

1−α > 0
We then derive the characteristic polynomial

Q(λ) = λ3 − λ2T + λS −D (82)

with

T = F1(p∗, k∗, x∗) + G2(p∗, k∗, x∗) +H3(p∗, k∗, x∗)

S = F1(p∗, k∗, x∗)G2(p∗, k∗, x∗) + G2(p∗, k∗, x∗)H3(p∗, k∗, x∗)−H2(p∗, k∗, x∗)G3(p∗, k∗, x∗)

+ F1(p∗, k∗, x∗)H3(p∗, k∗, x∗)−H1(p∗, k∗, x∗)F3(p∗, k∗, x∗)

D = F1(p∗, k∗, x∗) [G2(p∗, k∗, x∗)H3(p∗, k∗, x∗)− G3(p∗, k∗, x∗)H2(p∗, k∗, x∗)]

+ F3(p∗, k∗, x∗) [G1(p∗, k∗, x∗)H2(p∗, k∗, x∗)− G2(p∗, k∗, x∗)H1(p∗, k∗, x∗)]

Consider first the expression of T . We get

T = ρ− gp − gK + u∗z
1−α = u∗z + u∗z

1−α > 0

which does not depend on q0. Consider now the expression of D. We get

G2H3 − G3H2 = u∗z
(1−α)2 [(ρ + δ− gP)(1 + α) + (1− α)zu∗] > 0

G1H2 − G2H1 = x∗
p∗ u∗z

[
ρ−gP−gK

1−α − 1
θ N0

p∗
−1
θ

k∗

]
and thus

D = −(ρ + δ− gP)
αzu∗
1−α

[
1
θ N0

p∗
−1
θ

k∗ + (ρ + δ− gP)
1+α

(1−α)2

]
< 0

which does not depend on q0 either. Finally, straightforward computations also show that S
does not depend on q0 either. We conclude that the eigenvalues do not depend on the value
of q0 and nor on the value of the steady state (p∗(q0), k∗(q0), x∗(q0)). Therefore, since T > 0
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and D < 0, we conclude that there exists a unique negative eigenvalue and thus that any
given steady state (p∗(q0), k∗(q0), x∗(q0)) on the manifold is a saddle-point.

11.9 Proof of Theorem 4

In the case ε > 1, we have shown in the proof of Lemma 2 that the eigenvalues of the
linearized dynamical system do not depend on the value of q0 and nor, therefore, on the
value of the steady state (p∗(q0), k∗(q0), x∗(q0)). Therefore, since T > 0 and D < 0, we
conclude that for any given steady state (p∗(q0), k∗(q0), x∗(q0)) on the manifold, the local
stability properties are the same. For any given q0 > 0, there exists a unique characteristic
root with negative real part and the steady state (p∗(q0), k∗(q0), x∗(q0)) is saddle-point stable.
Therefore, for any given q0 > 0, there exists a unique p0 > 0 such that the unique converging
path is on the stable manifold of dimension one. Along this converging path all the variables
are bounded and the transversality conditions are satisfied. Therefore this converging path
is the unique optimal solution.

11.10 Proof of Corollary 2

Let Assumption 1 holds.
i) From Theorems 3 and 4, and Corollary 1, we know that along the NBGP, κ = λ = 1,

and that the unique steady state is saddle-point stable. As κ(0) and λ(0) are necessarily less
than 1, the result follows.

ii) From (5), (31) and (55) we get

YH
Y = γ

ε
1−ε

(
(1−β)κ

(1−β)κ+(1−α)(1−κ)

) ε
ε−1

, PHYH
PY = (1−β)κ

(1−β)κ+(1−α)(1−κ)
(83)

and thus

∂YH/Y
∂κ = ε

ε−1
YH
Y

(1−α)
κ[(1−β)κ+(1−α)(1−κ)]

> 0, ∂PHYH/PY
∂κ = (1−β)(1−α)

[(1−β)κ+(1−α)(1−κ)]2
> 0

The result follows from i).
iii) From (10) and (83) we get

sK = RK
Y = (1−β)(1−α)

(1−β)κ+(1−α)(1−κ)
and thus ∂sK

∂κ = (1−β)(1−α)(β−α)

[(1−β)κ+(1−α)(1−κ)]2
(84)

The result follows.
iv) From (65) and (83) we derive

PH
P = γ

ε
ε−1

[
1 + (1−κ)(1−α)

κ(1−β)

] 1
ε−1

and PL
P = (1− γ)

ε
ε−1

[
1 + κ(1−β)

(1−κ)(1−α)

] 1
ε−1 (85)
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It follows therefore
∂PH/P

∂κ < 0 and ∂PL/P
∂κ > 0 (86)

The result follows.

11.11 Data used for the computation of the capital shares

We followed Acemoglu and Guerrieri [4]. We use the National Income and Product Ac-
counts (NIPA) between 1948 and 2005 where industries are classified according to the North
American Industrial Classification System at the 22-industry level, and classify industries ac-
cording to the requirement of technological knowledge by the workers. That is, we consider
an industry to be HS if workers exhibit a higher growth of compensation per capita than
average. The following Table shows the average capital share of each industry together with
the sector classification.

Industry Sector Capital share
Educational services H 0.10
Information H 0.53
Management of companies and enterprises L 0.20
Health care and social assistance L 0.22
Administrative and waste management services L 0.28
Other services, except government L 0.33
Professional, scientific and technical services L 0.34
Transportation and warehousing L 0.35
Accommodation and food services L 0.36
Retail trade L 0.42
Arts, entertainment and recreation L 0.42
Finance and insurance L 0.45
Wholesale trade L 0.46
Utilities L 0.77

Table 4: Industry capital shares

References

[1] Acemoglu, D., P. Aghion, L. Bursztyn and D. Hemous (2012): “The Environment and
Directed Technical Change,” American economic review, 102(1), 131-66.

[2] Acemoglu, D. and P. Azar (2020): “Endogenous Production Networks,” Econometrica,
88, 33-82.

56



[3] Acemoglu, D. and V. Guerrieri (2006): “Capital Deepening and Nonbalanced Economic
Growth,” NBER Working Paper 12475.

[4] Acemoglu, D. and V. Guerrieri (2008): “Capital Deepening and Nonbalanced Economic
Growth,” Journal of Political Economy, 116, 467-498.

[5] Acemoglu, D. and P. Restrepo (2019): “Automation and New Tasks: How Technology
Displaces and Reinstates labour,” Journal of Economic Perspectives, 33, 3-30.

[6] Adao, B., B. Narajabad and T. Temzelides (2021): “Renewable Technology Adoption
and the Macroeconomy,” CESIFO Working Paper no 6372.

[7] Aghion, P. and P. Howitt (1992): “A Model of Growth Through Creative Destruction,”
Econometrica, 60, 323-351.

[8] Alder, S., Boppart, T., and Müller, A. (2021): “A Theory of Structural Change that Can
Fit the Data,” forthcoming in American Economic Journal: Macroeconomics.

[9] Alonso-Carrera, J. and X. Raurich (2010): “Growth, Sectoral Composition and the Evo-
lution of Income Levels,” Journal of Economic Dynamics and Control, 34, 2440-2460.

[10] Alonso-Carrera, J. and X. Raurich (2015): “Demand-Based Structural Change and Bal-
anced Economic Growth,” Journal of Macroeconomics, 46, 359-374.

[11] Alvarez-Cuadrado, F., N. Van Long and M. Poschke (2017): “Capital-labour, Substitu-
tion, Structural Change and Growth,” Theoretical Economics, 12, 1229-1266.

[12] Barany, Z. and C. Siegel. (2021): “Engines of Sectoral labour Productivity Gowth,” Re-
view of Economic Dynamics, 39, 304-343.

[13] Barro, R. and X. Sala-i-Martin (2004): Economic Growth, Cambridge, MA: MIT Press..

[14] Bauer, P., I. Fedotenkov, A. Genty, I. Hallak, P. Harasztosi, D. Martinez Turegano, D.
Nguyen, N. Preziosi, A. Rincon-Aznar and M. Sanchez Martinez (2020): “Productivity
in Europe: Trends and Drivers in a Service-Based Economy,” Publications Office of the
European Union.

[15] Baumol, W. (1967): “Macroeconomics of Unbalanced Growth: The Anatomy of Urban
Crisis”, American Economic Review, 57, 415-426.

[16] Bond, E., P. Wang and C. Yip (1996): “A General Two-Sector Model of Endogenous
Growth with Human and Physical Capital: Balanced Growth and Transitional Dynam-
ics,” Journal of Economic Theory, 68, 149-173.

57



[17] Bondarev, A. and A. Greiner (2019): “Endogenous Growth and Structural Change
Through Vertical and Horizontal Innovations,” Macroeconomic Dynamics, 23, 52-79

[18] Bontadini F., C. Corrado, J. Haskel, M. Iommi and C. Jona-Lasinio (2023) : “EUKLEMS
& INTANProd: industry productivity accounts with intangibles,” LUISS lab of European
economy, Deliverable D2.3.1

[19] Boppart, T. (2014): “Structural Change and the Kaldor Facts in a Growth Model with
Relative Price Effects and Non-Gorman Preferences,” Econometrica, 82, 2167-2196.

[20] Boppart, T. and F. Weiss (2013): “Non-Homothetic Preferences and Industry Directed
Technical Change,” ECON - Working Papers 123, Department of Economics - University
of Zurich.

[21] Boucekkine, R. and R. Ruiz-Tamarit (2008): “Special Functions for the Study of Eco-
nomic Dynamics: The Case of the Lucas-Uzawa Model,” Journal of Mathematical Eco-
nomics, 44, 33-54.

[22] Boucekkine, R., B. Martinez and R. Ruiz-Tamarit (2008): “A Note on Global Dynamics
and Imbalance Effects in the Lucas-Uzawa Model: Further Results,” International Journal
of Economic Theory, 4, 503-518.

[23] Buera, F. and J.P. Kaboski (2012): “The Rise of the Service Economy,” American Economic
Review, 102, 2540-2569.

[24] Buera, F. and J.P. Kaboski (2012): “Scale and Origins of Structural Change,” Journal of
Economic Theory, 147, 684-712.

[25] Buera, F., J.P. Kaboski, R. Rogerson and J. Vizcaino (2018): “Skilled-Biased Structural
Change,” CEPR Working Paper.

[26] Caballe, J. and M. Santos (1993): “On Endogenous Growth with Physical and Human
Capital,” Journal of Political Economy, 101, 1042-1068.

[27] Carvalho, V. and A. Tahbaz-Salehi (2019): “Production Networks: A Primer,” Annual
Review of Economics, 11, 635-663.

[28] Caselli, F. and J. Coleman (2001): “The U.S. Structural Transformation and Regional
Convergence: A Reinterpretation,” Journal of Political Economy, 109, 584- 617.

[29] Comin, D., D. Lashkari and M. Mestieri (2021): “Structural Change with Long-run In-
come and Price Effects,” Econometrica, 89, p. 311-374

[30] Dabla-Norris, Ms Era, et al. (2015): “The New Normal: A Sector-Level Perspective on
Productivity Trends in Advanced Economies,” International Monetary Fund.

58



[31] Duarte, M. and D. Restuccia (2020): “Relative Prices and Sectoral Productivity,” Journal
of the European Economic Association, 18(3), 1400-1443.

[32] Duernecker, G., B. Herrendorf and A. Valentinyi (2019): “Structural Change within the
Services Sector and the Future of Cost Disease,” CEPR Discussion Paper.

[33] Duernecker, G., and Sanchez-Martinez, M. (2021). Structural change and productivity
growth in the European Union: Past, present and future (No. 09/2021). JRC Working
Papers on Territorial Modelling and Analysis.

[34] Echevarria, C. (1997): “Changes in Sectoral Composition Associated with Economic
Growth,” International Economic Review, 38, 431-452.

[35] Foellmi, R. and J. Zweimüller (2008): “Structural Change, Engel’s Consumption Cycles
and Kaldor’s Facts of Economic Growth,” Journal of Monetary Economics, 55, 1317-1328.

[36] Ghiglino, C. (2012): “Random Walk to Innovation: Why Productivity Follows a Power
Law,” Journal of Economic Theory, 147, 713-737.

[37] Gruber, J. (2013): “A Tax-Based Estimate of the Elasticity of Intertemporal Substitution,”
Quarterly Journal of Finance, 3, 1-20.

[38] Hartley, P., K. Medlock III, T. Temzelides and X. Zhang (2016): “Energy Sector Innova-
tion and Growth: An Optimal Energy Crisis,” The Energy Journal, 37(1), 233-258.

[39] Herrendorf, B., C. Herrington and A. Valentinyi (2015): “Sectoral Technology and Struc-
tural Transformation,” in Handbook of Economic Growth Vol. 2, edited by Philippe Aghion
and Steven Durlauf, Elsevier, pp. 855-941.

[40] Herrendorf, B., R. Rogerson and A. Valentinyi (2014): “Growth and Structural Transfor-
mation,” American Economic Journal: Macroeconomics, 7, 104-133.

[41] Herrendorf, B., and A. Valentinyi (2022): “Endogenous Sector-Biased Technological
Change and Industrial Policy,” Economic Modelling, 113, 105875.

[42] Hori, T., N. Mizutani and T. Uchino (2018): “Endogenous Structural Change, Aggregate
Balanced Growth, and Optimality,” Economic Theory, 65, 125-153.

[43] Hu, Y., T. Kunieda, K. Nishimura and P. Wang (2023): “Flying or Trapped?,” Economic
Theory, 75, 341-388.

[44] Irmen, A. (2021): “Automation, Gowth, and Factor Shares in the Era of Population Ag-
ing,” Journal of Economic Growth, 26, 415-453.

59



[45] Iwaisako, T. and K. Futagami (2013): “Patent Protection, Capital Accumulation, and
Economic Growth”, Economic Theory, 52, 631-668.

[46] Jaimovich, E. (2021): “Quality Growth: From Process to Product Innovation Along the
Path of Development”, Economic Theory, 71, 761-793.

[47] Jones, C. (1995): “R& D-Based Models of Economic Growth,” Journal of Political Economy,
103, 759-784.

[48] Kaldor, N. (1961): “Capital Accumulation and Economic Growth,” in The Theory of Capi-
tal: Proceedings of a Conference of the International Economic Association, edited by Friedrich
A. Lutz and Douglas C. Hague. London: Macmillan.

[49] Kamihigashi, T. (2001): “Necessity of Transversality Conditions for Infinite Horizon
Problems,” Econometrica, 69, 995-1012.

[50] Kongsamut, P., S. Rebelo and D. Xie (2001): “Beyond Balanced Growth,” Review of Eco-
nomic Studies, 68, 869-882.

[51] Kuznets, S. (1957): “Quantitative Aspects of the Economic Growth of Nations II: In-
dustrial Distribution of National Product and labour Force,” Economic Development and
Cultural Change, 5, 1-111.

[52] León-Ledesma, M. and A. Moro (2020): “The Rise of Services and Balanced Growth in
Theory and Data,” American Economic Journal: Macroeconomics, 12, 109-46.

[53] Lucas, R. (1988): “On the Mechanics of Economic Development,” Journal of Monetary
Economics, 22, 3-42.

[54] Maddison, A. (1980): “Economic Growth and Structural Change in the Advanced Coun-
tries.” In Western Economies in Transition: Structural Change and Adjustment Policies in In-
dustrial Countries, ed. Irving Leveson and Jimmy W. Wheeler, 41-65. London: Croom
Helm

[55] Marsiglio, L. and M. Tolotti (2018): “Endogenous Growth and Technological Progress
with Innovation Driven by Social Interactions”, Economic Theory, 65, 293-328.

[56] Martı́nez-Garcı́a, M.P. (2003): “The General Instability of Balanced Paths in Endogenous
Growth Models: the Role of Transversality Conditions,” Journal of Economic Dynamics
and Control, 27, 599-618.

[57] Michel, P. (1982): “On the Transversality Condition in Infinite Horizon Optimal Prob-
lems,” Econometrica, 50, 975-985.

60



[58] Miranda-Pinto, J. (2021): “Production Network Structure, Service Share, and Aggregate
Volatility,” Review of Economic Dynamics, 39, 146-173.

[59] Mukoyama, T. and L. Popov (2020): “Industrialization and the Evolution of Enforce-
ment Institutions”, Economic Theory, 69, 745-788.

[60] Mulligan, C. (2002): “Capital Interest and Aggregate Intertemporal Substitution,” NBER
Working Paper 9373.

[61] Mulligan, C. and X. Sala-i-Martin (1993): “Transitional Dynamics in Two Sector Models
of Endogenous Growth,” Quarterly Journal of Economics, 103, 739-773.

[62] Ngai, R. and C. Pissarides (2007): “Structural Change in a Multi-Sector Model of
Growth,” American Economic Review, 97, 429-443.

[63] Oberfield, E. (2018): ”A Theory of Input-Output Architecture,” Econometrica, 86, 559-
589.

[64] Romer, P. (1990): “Endogenous Technological Change,” Journal of Political Economy, 98,
S71-S102.

[65] Sen, A. (2020): “Structural Change within the Services Sector, Baumol’s Cost Disease,
and Cross- Country Productivity Differences,” MPRA Paper 99614.

[66] Shrawan, A. and A. Dubey (2021): “A Reassessment of the Relationship Between Ser-
vices and Economic Growth in Low-Income and Lower-Middle Income Countries: a
Non-Linear Approach,” Applied Economics, DOI: 10.1080/00036846.2021.1990847

[67] Swiecki, T. (2017): “Determinants of Structural Change,” Review of Economic Dynamics,
24, 95-131.

[68] Uzawa, H. (1963): “On a Two-Sector Model of Economic Growth II,” Review of Economic
Studies, 30, 105-118.

[69] Vissing-Jorgensen, A., and O. Attanasio (2003): “Stock-Market Participation, Intertem-
poral Substitution and Risk Aversion,” American Economic Review Papers and Proceedings
93, 383-391.

[70] Xie, D. (1994): “Divergence in Economic Performance: Transitional Dynamics with Mul-
tiple Equilibria,” Journal of Economic Theory, 63, 97-112.

61


