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Abstract—Facilities Management (FM) companies rely on
effective and low cost data collection from Appliance Load
Monitoring (ALM) devices to provide asset quality and energy
monitoring services. The introduction of an automated appliance
type classification pipeline during installation and inspection can
offer huge improvements in reducing cost and installation errors.
Most work focus on showcasing Voltage-Current (V-I) trajectory
features based Machine Learning (ML) and Deep Learning (DL)
algorithms on benchmarking datasets rather than providing
mechanisms for deploying their model onto a production-ready
system. This paper introduces a feature extraction preprocessing
approach for ensuring the validity of detected steady-state events
in VI trajectories that can be used with Machine Learning
(ML) models to identify FM asset types during site installations
of Appliance Load Monitoring (ALM) units. We introduce a
framework in which the approach can be used as part of
the training and deployment of ML models for verifying and
monitoring assets in FM client environments.

Index Terms—facilities management, appliance load monitor-
ing, v-i trajectories, feature extraction, machine learning

I. INTRODUCTION

N the Facilities Management (FM) industry, the ability to

gather effective appliance (also termed asset) data at low
cost is a key driver of the quality of service a FM company
can provide. A major challenge faced by these companies is
the current process of verifying appliances to be monitored
during the on-site installation of Appliance Load Monitoring
(ALM) units, more specifically the type of appliances that are
connected to the ALM units for monitoring their operating
behaviour and energy consumption.

The current ALM installation process involves three manual
steps. First, a surveyor visits each sites to determine the
number of Distribution Board (DB)s and appliances to be
monitored. Then, engineers manually identify if a connected
appliance matches an entry in a database of known appliance
types. Finally, a secondary check is done to verify if the signal
data received from each appliance matches their appliance
type. This process is time consuming, resource intensive, and
error prone since it can take several days and a lot of the
engineers’ time to complete.

One method to tackle this inefficiency is the introduction
of an automatic appliance type identifications pipeline. De-
velopments in this area centres around introducing Machine

Learning (ML) and Deep Learning (DL) algorithms trained
on limited benchmarking datasets [1]. However, these works
are not production-ready as real-world data requires more
rigorous preprocessing steps before it resembles the format
expected by the algorithms in those works. In addition, to
the best of our knowledge, there has been no work done
to showcase a deployment mechanism for such a pipeline
to be integrated into an existing production system. The
contributions of this work are as follows: (1) We introduce
a V-1 Trajectory features extraction approach that uses the
Approximate Entropy of steady-state current to ensure V-
I Trajectories are extracted from the correct data points in
non-uniformly sampled signals. (2) A deployment framework
integrating the proposed approach within an FM production
system to automate on-site asset verification during installation
of ALM units.

This paper is structured as follows. Section II outlines
related work. Section III details the proposed feature extraction
approach. We then provide an analysis of the results in Section
IV. The paper ends with conclusions and a discussion on future
work in Section V.

II. RELATED WORK

Approaches for Appliance classification rely on V-I Trajec-
tories based features as input to ML and DL algorithms [2],
[31, [4], [51, [6], [7], [5], [81, [9], [10], [11], [12]. The common
theme among these works is that they focus on maximising
the models’ evaluation score on limited benchmarking datasets
that are collected under controlled environments. Such focus
leaves two gaps before these works can be deployed into
a large scale production-ready system needed by companies
in the FM sector. First, in a real-world environment, signal
data received from appliances are not uniformly sampled.
Prior to storing signals data received from each appliance,
FM companies often fed the raw the signal data through a
data reduction algorithms that remove unnecessary data points
with the aim to reduce storage requirements. This causes
steady-state detection algorithms relied upon by these works
to incorrectly select a data point for V-I Trajectory feature
extraction. Second, to the best of our knowledge, no work has
been done on illustrating how such a model can be integrated
into a production system. Some algorithms adopted by those
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Fig. 1. (a) Samples V-I Trajectories of 3 Appliance Types. (b) Characteristics
of Incorrectly Detect Events

work lack the implementation details needed for deployment.
Furthermore, there are no explanation on how these models
can be updated and retrained when new types of appliances
are encountered.

Our work introduces a feature extraction approach to extract
V-I Trajectories based on Approximate Entropy of the steady-
state current and correlation between steady-state current and
voltage to determine the validity of a detected steady-state
events defining the Trajectory. With our proposed approach,
we introduces a mechanism to deploy it to a production-ready
system. The next sections discusses in details our proposed
approach.

III. PROPOSED FEATURE PREPROCESSING APPROACH

The proposed feature extraction approach can be subdivided
into two stages: (i) Extracting V-I Trajectories and (ii) Extract-
ing shape features from V-I Trajectories.

In the first stage, moving median replacements were used
to removed outliers from the per-appliance signal data files
(Equation 2). Then, the resulting signal data is used to deter-
mine steady-state events in stage 2. For each of the first 10
events detected, the voltage and current at the start and end
of the event were extracted and marked as V,, V;, I,, and ;.
Equation 1 was used to calculate the steady-state voltage and
current. Our observations show that events whose conditions
matches Equation 3 can be discarded since it is a misclassified
event. Figure 1b depicts the difference between a steady-state
event and a noisy event.

Based on V-I Trajectories features identified in [13], 10 fea-
tures were extracted comprising of: (i) Current Span (itc), (ii)
Area (ar), (iii) Area with loop direction (Ipa), (iv) Asymmetry
(asy), (v) Curvature of mean line (M), (vi) Self-intersection
(sc), (vii) Peak of middle segment (mi), (viii) Shape of middle

TABLE I
RESULTS ON TEST SET
’ Acc ‘ Precision ‘ Recall ‘ F1 ‘ mAP
Clean

RF | 0.903 0.890 0.841 | 0.863 | 0.863
DT | 0.861 0.808 0.786 | 0.796 | 0.740
kNN | 0.875 0.775 0.779 | 0.775 | 0.765
ML | 0.748 0.700 0.636 | 0.641 | 0.705

With Noise
RF 0.884 0.839 0.719 0.736 | 0.785
DT | 0.840 0.695 0.667 | 0.665 | 0.631
kNN | 0.866 0.690 0.708 | 0.697 | 0.686
ML | 0.748 0.608 0.545 | 0.550 | 0.623

segment (sh), (ix) Area of left and right segments (alr), and
(x) Variation of instantaneous admittance (D). Apart from
itc, the other features were calculated using normalised V-
I Trajectories. For certain features the calculation method
adopted by Wang et al. [13] were used that relies on the points
in the trajectory to be sorted. Hence before the calculation
of those features, the trajectory points were sorted based on
their distance and direction from each other. Starting from the
point with the maximum steady-state voltage (vmax), the next
trajectory point to be selected would be the closest point in
the same direction within a 40 degree angle.

V=WVat+tW)/2s I=L—-1. (1)
IQR=0Q3 - Q1 )
ApEn(m,r, N)(I) > 0.03 V |corr(V, )] < 0.5 3)

where ()1 = The first percentile of the signal.
()3 = The third percentile of the signal.

corr(V, I) = Zijil(vl;_ V)(I; = I) _
VEN - v SN - 1y

m=2; r=0.2

IV. RESULTS AND DISCUSSION

To evaluate our proposed feature extraction approach we
used it to extract training/testing data from a real-world dataset
provided by Cloudfm Group Ltd using their Mindsett PRISM
ALM units.

The dataset contained high frequency signals collected over
the span of six months from 391 appliances spanning 60
types and seven locations. Applying our approach on to the
raw dataset resulted in a dataset of 103,120 samples with 43
appliance types. We further removed samples that accounted
for less than 0.1% of the total samples and samples labelled
as Mains and Sockets since they did not reflect the underlying
appliance type. These extra cleaning procedures produced a
final dataset of 86,268 samples with 29 appliance types. We
used stratified sampling to produce a training split (70%) and
testing split (30%) from the 86,268 samples. Furthermore, to
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Fig. 2. Al driven framework for ALM installation and FM asset verification

demonstrate the effectiveness of our approach, we also created
another training split of the same size and distribution without
our appraoch applied to remove the noise.

We then trained and tested the data with four ML classifiers:
(i) Decision Tree (DT), (ii) Random Forests (RF), (iii) k-
Nearest Neighbours (kNN), and (iv) Multi-Layer Perceptron
(MLP) using Accuracy, Precision, Recall, F1 Score, and
Mean Average Precision (mAP) as evaluation metrics. The
best configuration of each model were chosen based on the
average mAP of a five fold cross-validation results where
20 parameters sets were produced for each models through
Bayesian Optimisation [14].

A. Extracted Dataset Validity

The results show clear performance drops by the different
algorithms trained with and without our feature extraction
approach added to remove the noise (Table I). This indicates
that our approach is effective when used to removed noise pre-
sented in real-world environment. Second, the performances of
models trained on data with noise removed exceed 60% (high-
est being 86% by RF). This shows that the extracted dataset
consists of useful patterns for appliance type classification.

B. Deployment Mechanism

A possible mechanism for deploying our feature extraction
approach as part of a production-ready FM system for sup-
porting ALM site installations is shown in Figure 2. Here
parallel processing over batches of data collected through
installed ALM units over a single day would be performed.
More specifically, batches of signals from newly added or
reconfigured appliances would be processed to extract the V-1
trajectory features and inferences for appliance classification

on the batched features. The predicted labels would then be
sent for verification by human engineers and stored with
their extracted features. A monitoring mechanism can be
introduced by leveraging the V-I trajectory feature database
to automatically create new training and testing splits. The
current model can be evaluated on the newly created test
set. If its mAP drops below a certain threshold ¢, then a
retraining job can be triggered with the newly created training
set. This mechanism reduces the cost of model retraining if the
asset classification is operating under acceptable performance
levels.

V. CONCLUSION

Our work describes an approach for correctly extracting
V-1 Trajectories from non-uniformly sampled high volume
consumer electronics operational data. We demonstrate that
Approximate Entropy of the steady-state current along with its
correlation with steady-state voltage can provide an indicator
for determining the validity of detected steady-state event
for accurate V-1 Trajectory extraction. This approach can be
integrated and deployed as part of a production ready system
for more scalable and cost effective monitoring of FM assets.

Future research will explore how the current feature extrac-
tion approach can be expanded to include more shape features
as well as combine other recorded signal parameters. We will
also explored the use of other ML approaches such as DL
paradigms for modelling Appliance Type classification.
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