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A B S T R A C T

Aspect sentiment triplet extraction (ASTE) combines several subtasks of aspect-based sentiment analysis, which
aims to extract aspect terms, opinion terms, and their corresponding sentiment polarities in a sentence. The
interaction relations between words have strong cueing information. However, previous ASTE approaches use
them indiscriminately, ignoring the emphasis of relations on different subtasks. In order to fully exploit the
interaction relations, we designed a multi-task learning method which uses two separate relation-encoder
networks, each focusing on a different task. We call this proposed model the dual relation-encoder network
(DRN). The two networks are the entity extraction relation-encoder (EER) and the entity matching relation-
encoder (EMR), respectively. EER uses multi-channel graph convolutional networks to add semantic and
syntactic information to the original embeddings. EMR first fuses different kinds of interaction relations,
then employs criss-cross attention to obtain interaction information from other positions in the same row and
column, which can provide a global view. Finally, we extract entities by sequence labeling and derive triplets
with the help of span-shrunken tags. To validate the efficiency of DRN, we conducted extensive experiments on
a benchmark dataset. The experimental results show that our method outperforms the strong baseline models.
1. Introduction

Opinion mining can obtain valuable information from unstructured
text. Aspect-based sentiment analysis has gained much attention as an
essential tool for opinion mining. Peng et al. [1] have characterized it
as the task of extracting a series of triplets from an input text, which
identify the aspect being referred to, the opinion term, and whether it
is positive, negative or neutral. For example, in Fig. 1, for the sentence
‘The sea food is fantastic but not cheap’, we can find two triplets, (sea
food, fantastic, POS) and (sea food, not cheap, NEG). In this case, two
opinions are being expressed simultaneously about one aspect sea food,
first that it is fantastic (a positive sentiment) and second that it is not
cheap (a negative sentiment).

Most of the work is for one of the three elements or a combination of
both. For individual elements, aspect term extraction (ATE) [2–4] aims
to extract all aspects in a sentence; opinion term extraction (OTE) [3,
5,6] aims to extract all opinions from a sentence; finally, aspect-level
sentiment classification (ASC) [7–9] determines the sentiment polarity
of a given aspect term. Among them, the ASC task has gained more
attention. Tasks for any two elements are also available. Aspect term
extraction and sentiment classification (AESC) [10–12] combines the
ATE and ASC tasks by extracting aspects and their corresponding
sentiment polarities. Taking the sentence in Fig. 1 as an example, and
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only focusing on the opinion fantastic, we can obtain (sea food, POS).
Meanwhile, pair extraction [3,13,14] combines the ATE and OTE tasks,
and extracts aspects along with the corresponding opinions. There are
two pairs (sea food, fantastic) and (sea food, not cheap) in Fig. 1.
However, these tasks solve only part of ABSA. None of them can obtain
aspects, opinions and sentiment polarities in one operation.

To provide a complete solution, Peng et al. [1] proposed a new
task, aspect sentiment triplet extraction (ASTE), which can extract
aspects, opinions and sentiment polarities simultaneously. As shown
in Fig. 1, we can get two triplets. Furthermore, the authors proposed
a two-stage method to extract triplets. First, two sequence-labeling
models were employed to extract aspects with their sentiment polar-
ities and opinions respectively. Then the two are combined to obtain
triplets. Subsequently, many new tagging schemes have been designed
to extract triplets jointly [15–18]. Other researchers have converted
ASTE tasks into novel forms to accomplish, such as multi-task learning,
pointer networks, multi-hop quiz and generating frameworks [15,19–
22].

Although previous work has achieved significant results, they ignore
the interaction relations that act on entity extraction and entity match-
ing. Complex interactions between words can lead us to extract and
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Fig. 1. Illustration of aspect sentiment triplet extraction based on an example sentence
with the corresponding part-of-speech tags and syntactic dependency structures. This
sentence has two triplets, (sea food, fantastic, POS) and (sea food, not cheap, NEG),
respectively.

match entities, such as through syntactic and semantic relations. In en-
tity extraction, we should pay more attention to the words themselves
to determine which words are entities. Interaction relations should be
taken as hints to discover multi-word entities. For example, in Fig. 1, if
we recognize food as an entity, we can find that sea is also part of the
entity through the compound relation, and get sea food.

In entity matching, we can directly utilize different types of inter-
ction relations, which are direct indicators of relationships between
ntities. For example, as there is a nsubj relationship between sea food

and fantastic, then they can probably be matched. By contrast, the
relationship between is and fantastic is cop which should be ignored.
Overall, therefore, there needs to be different emphases in utilizing
interaction relationships to accomplish entity extraction and entity
matching.

To fill the current research gap, we propose a dual relation-encoder
network (DRN) for ASTE, which employs two relation-encoders to
model the different emphases of interaction relations separately. First,
we use BiLSTM/BERT to obtain sentence representations. Second, we
use the two relation-encoders to model the interaction relations. The
entity extraction relation-encoder (EER) treats syntactic dependency
trees and multi-head self-attention scores as syntactic and semantic
interaction relations, and transforms both into multi-channel adjacency
matrices 𝐀𝑠𝑒𝑚 and 𝐀𝑠𝑦𝑛. EER uses multi-channel graph convolutional
networks (MCGCN) from Chen et al. [23] to aggregate syntactic and
semantic interactions for entity extraction. Then, entities are extracted
by using sequence labeling.

The entity matching relation-encoder (EMR) concatenates 𝐀𝑠𝑒𝑚, 𝐀𝑠𝑦𝑛

and word pairs. We first perform preliminary fusion and then use criss-
cross attention to obtain the relationships in other positions of the same
row and column to obtain the global view for entity matching. To
facilitate pairing aspects and opinions, we propose Tag Span Shrinking
(TSS). Finally, a decoding algorithm is employed to obtain the triplets.

Our contributions can be summarized as follows:

1. This paper proposes a novel multi-task model based on dual
relation-encoder networks. Such an architecture can refine the
utilization of relations in comparison to previous work, by ex-
ploiting the interaction relation between words.

2. We use multi-channel graph convolutional networks and criss-
cross attention in the two relation-encoders, respectively. Such
a design can model the relationship between the two different
tasks in ASTE.

3. We have conducted extensive experiments on benchmark data.
The experimental results show the effectiveness of the proposed
DRN model.

2. Related work

As previously discussed, aspect sentiment triplet extraction pro-
vides a complete solution for aspect-based sentiment analysis by ex-
tracting aspects, opinions, and the corresponding sentiment polarities.
2

Peng et al. [1] first proposed this task, which employs a two-stage D
pipeline approach, and published a benchmark dataset1 based on Pon-
tiki et al. [24–26] and Fan et al. [27]. The pipeline approaches repre-
sented by Peng’s work are limited by error propagation. Attempts were
made to jointly extract triplets, using two approaches, by multi-task
learning or by designing a new tag schema, respectively.

Since ASTE can be divided into three tasks, a multi-task learning
approach can be employed. Zhang et al. [19] proposes a multi-task
learning framework which adopts two sequence-labeling networks to
extract aspects and opinions separately, and then match them. Sub-
sequently, other researchers have proposed some innovative tagging
schemas that can unify the three subtasks. The position-aware tagging
scheme [15] introduces position information into tags and extracts
triplets jointly. Wu et al. [16] propose a new grid tagging scheme,
which uses a table-filling approach for ASTE tasks. Subsequently, many
similar works emerged. Chen et al. [23] utilized four interactions to
predict the labels of the grid tagging scheme and finally decoded the
grid to obtain triplets. Liang et al. [17] designed a multi-dimensional
labeling and greedy inference algorithm based [16]. Zhang et al. [18]
performed an object detection task on a two-dimensional table to
obtain triplets. Jiang et al. [28] adopted a dual encoder to enhance the
semantic information and then employed Zhang et al.’s [18] classifier
to obtain triplets.

The above methods do not directly model the interaction between
spans (candidate entities); instead, a span-based approach can solve
the problem. It enumerates the spans of different lengths in a sentence
and explicitly models the interaction between spans. Xu et al. [29] first
employ the span-based approach for ASTE. In addition, Chen et al. [30]
produce triplets through two directions with the help of spans. The
span-based methods generate numerous spans, which can be a burden.
To reduce the burden, Li et al. [31] and Jin et al. [32] utilize syntactic
reduction of spanning enumerations. But the number of spans is not
reduced actually. Li et al. [33] reduced the number of generated spans
by syntactic dependencies and Part-of-Speech (P-o-S) tags to reduce the
computational burden.

With the development of large models, it is natural to propose
methods based on them. Chen et al. [21] and Mao et al. [34] obtained
triplets through a reading comprehension mechanism. Yan et al. [22]
use the powerful generative model BART to generate multiple indices
representing triplets. Fei et al. [35] present a non-autoregressive de-
coding method which models the ASTE task as an unordered triplet set
prediction problem. Luo et al. [36] and Mukherjee et al. [37] employed
sequence labeling to facilitate T5’s [38] generation of triplets. However,
Mukherjee et al. initially utilized contrastive learning for pre-training,
distinguishing their approach.

The closest to our work is that of Chen et al. [23] The original idea
is the same: to utilize inter-word interactions to help the model extract
triplets. Conceptually, DRN aims to differentially utilize interaction
relations based on ASTE subtask characteristics, while EMC-GCN aims
to predict grid labels directly through various interaction relations. This
causes a series of differences in the model implementation, which are
described in Section 3.

3. Proposed DRN model

3.1. Outline

The detailed design of the proposed DRN model is shown in Fig. 2.
In the Sentence Encoder, the input sentence is first parsed to obtain
a syntactic dependency tree, as well as P-o-S tags for each word. We
then use BiLSTM/BERT to get the sentence representation and splice
it with the P-o-S embedding. The Entity Extraction Relation-encoder
uses multi-channel graph convolutional networks to inject syntactic and

1 https://github.com/xuuuluuu/SemEval-Triplet-data/tree/master/ASTE-
ata-V1-AAAI2020
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Fig. 2. The overall architecture of DRN, comprising the entity extraction relation-encoder (EER) and the entity matching relation-encoder (EMR).
semantic information into the sentence representation; then, the Entity
Extractor performs sequence labeling on the sentence representation
to obtain aspects and opinions. The Entity Matcher predicts the Span
Shrunken Tags (SST) on the interactions fused by The Entity Matching
Relation-encoder. Finally, the aspects, opinions and SST are passed
through the Triplet Decoder to obtain triplets.

In the next section, we start by defining the aspect sentiment triple
extraction (ASTE) task formally. Following that, we explain the other
components of the model.

3.2. ASTE task definition

Given a sentence 𝑆 =
{

𝑤1, 𝑤2, 𝑤3,… , 𝑤𝑛
}

consisting of 𝑁 words,
the ASTE task is to extract all of 𝑇 = {(𝑎, 𝑜, 𝑝)}|𝑇 |𝑘=1 in 𝑆, where 𝑇 denotes
a set of triplets, and 𝑎, 𝑜 and 𝑝 represent the aspect, the opinion and
the sentiment polarity expressed by the opinion towards the aspect.
Aspect and opinion are composed of one or more words and a sentiment
polarity 𝑝 ∈ {𝑃𝑂𝑆,𝑁𝐸𝑈,𝑁𝐸𝐺}.

We adopt sequence labeling to obtain entities, which include both
aspects and opinions. Entity tagging is based on 𝐵𝐼𝑂 tags [39]. The
scheme assigns 𝑦𝑒𝑖 ∈ 𝐶𝑒 = {𝐵-𝐴, 𝐼-𝐴,𝐵-𝑂, 𝐼-𝑂, 𝑂} to each word 𝑤𝑖 (see
Table 1).

Now that we have obtained the BIO tags for each word, they can
mark the position of the aspect and opinion in the sentence (Fig. 3).
As shown in Fig. Fig. 5(a), if we fill the grid of the sentence with
sentiment labels at locations where aspects and opinions overlap, we
can get triplets through the decoding algorithm. But to facilitate the
3

Fig. 3. Sequence labeling to extract entity terms.

Table 1
BIO tagging scheme [39].

Tag Meaning

B-A Beginning of an aspect
I-A Within an aspect
B-O Beginning of an opinion
I-O Within an opinion
O Other word

handling of multi-word entities, we propose Tag Span Shrinking (Fig.
Fig. 5(b)) to match aspects and opinions (see Section 3.7.1 below).

3.3. Sentence encoder

The input is a sentence 𝑆 = {𝑤1, 𝑤2,… , 𝑤𝑁} expressing one or more
opinions about one or more aspects (e.g. Fig. 1). We start by parsing
it with Stanza2 to obtain P-o-S tags for each token. We then utilize
BiLSTM or BERT to obtain the sentence encoding.

2 https://stanfordnlp.github.io/stanza/

https://stanfordnlp.github.io/stanza/
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Fig. 4. Example of a syntactic adjacency tree and its conversion into a syntactic
adjacency matrix.

BiLSTM: We use GloVe [40] to obtain a sequence of word em-
beddings 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑁} for a sentence 𝑆. BiLSTM [41] is then
employed to obtain the sentence representation from 𝐸:

{𝐯𝟏, 𝐯𝟐,… , 𝐯𝐍} = 𝐵𝑖𝐿𝑆𝑇𝑀(𝐸) (1)

BERT: Another alternative available is BERT [42]. To obtain sen-
tence encoding for each word, we add [𝐶𝐿𝑆] and [𝑆𝐸𝑃 ] markers to
the start and end positions of the original sentence 𝑆. Then, we feed it
to BERT.

{𝐯𝟏, 𝐯𝟐,… , 𝐯𝐍} = 𝐵𝐸𝑅𝑇 (𝑆) (2)

As a fundamental language feature, P-o-S tags reveal information
about how a word relates to those around it. For example, the P-o-S for
each word within a compound noun is NOUN. Given a P-o-S label for
a word (obtained by Stanza), we look up the corresponding trainable
embedding 𝐱𝑖 through a special embedding matrix, which is updated
by back-propagation. We then concatenate 𝐯𝑖 and 𝐱𝑖 to create 𝐡𝐢:

𝐡𝐢 =
[

𝐯𝐢, 𝐱𝐢
]

(3)

In this way, we obtain a vector 𝐡𝐢 ∈ R𝑑ℎ containing a semantic
embedding and a P-o-S embedding for each word. Then the sentence
representation is 𝐇 =

[

𝐡1,𝐡2,𝐡3,… ,𝐡𝑛
]

.

3.4. Entity extraction relation-encoder

EER aims to capture semantic and syntactic interaction information
for entity extraction. Multi-head attention scores [43] and syntac-
tic dependency trees are treated as semantic and syntactic interac-
tion relations. Then, two multi-channel graph convolutional networks
(MCGCNs) [23] are adopted to capture interaction informations. One
MCGCN is employed to capture semantics and the other to capture
syntactic dependencies. Next, we construct two adjacency matrices 𝐀𝑠𝑒𝑚

and 𝐀𝑠𝑦𝑛 as required by each of the two MCGCNs.
The semantics adjacency matrix 𝐀𝑠𝑒𝑚 ∈ R𝑛×𝑛×𝑑ℎ𝑒𝑎𝑑 is computed

using self-attention [43], where 𝑑ℎ𝑒𝑎𝑑 is the number of self-attention
heads. Self-attention calculates the attention score between each pair
of words in parallel. For a word, attention scores reflect the attention
paid to other words, which is more flexible in the calculation and is less
sensitive to syntax. We calculate the attention score matrix as 𝐀 ∈ R𝑛×𝑛:

𝐀 = sof tmax

(

𝐇𝐖𝑄 ×
(

𝐇𝐖𝐾)T

√

𝑑

)

(4)

where 𝐖𝑄 and 𝐖𝐾 are learnable weight matrices, while 𝑑 is the
dimension of the input vector feature. We obtain 𝐀𝑠𝑒𝑚 by concatenating
the attention scores of all heads.

The syntactic adjacency matrix is defined as 𝐀𝑠𝑦𝑛 ∈ R𝑛×𝑛×𝑑𝑑𝑒𝑝 , where
𝑑𝑑𝑒𝑝 is the dimension of the dependency embedding. As shown in Fig. 4,
we convert the dependency tree into a matrix in which each position
represents a dependency relationship between words. self is a particular
4

relationship related to itself. All relations are replaced with dependency
embeddings to get 𝐀𝑠𝑦𝑛. The embeddings are looked up in a special
matrix updated by back-propagation.

As mentioned above, we use MCGCNs, a form of graph convo-
lutional network (GCN) [44] to capture the interaction. Inspired by
convolutional neural networks (CNNs), a GCN can process graphs
efficiently. A graph contains nodes and edges. A GCN can aggregate
information about surrounding nodes through edges. Given a sentence
with 𝑛 words, the graph is initially represented with an adjacency
matrix 𝐀. 𝐀𝑖,𝑗 denotes the relationship between two words. Specifically,
𝐀𝑖,𝑗 = 1 if the 𝑖th node is directly connected to the 𝑗th node, 𝐀𝑖,𝑗 = 0
otherwise. However, the standard GCN cannot handle a multi-channel
adjacency matrix. Hence we use a MCGCN [23]. Its adjacency matrix
𝐴 ∈ R𝑛×𝑛×𝑑 is no longer a scalar but a vector, where d is the number
of channels. It can be formulated as:

�̃�𝑖 = 𝜎
(

𝐀∶,∶,𝑘𝐇𝐖𝑘 + 𝐛𝑘
)

(5)

�̂� = 𝑓
(

�̃�1, �̃�2,… , �̃�𝑑

)

(6)

where 𝐀∶,∶,𝑘 denotes the 𝑘th channel slice of 𝐀, 𝐖𝑘 and 𝐛𝑘 are the
learnable weight and bias, and 𝜎 is a RELU activation function. A
pooling function 𝑓 (⋅) is applied over the hidden node representations
of all channels.

The above MCGCN is generic. The inputs to the first MCGCN
are 𝐇 and 𝐀𝑠𝑒𝑚. The inputs to the second MCGCN are 𝐇 and 𝐀𝑠𝑦𝑛.
MCGCNs can be stacked in multiple layers. The output of the current
MCGCN is the input of the next MCGCN. The adjacency matrix of the
MCGCN inputs of different layers is the same. 𝐿 denotes the number
of layers of the MCGCN. Thus the outputs of the last layer of GCN are
�̂�𝑠𝑒𝑚, containing semantic information and �̂�𝑠𝑦𝑛, containing syntactic
information.

3.5. Entity extractor

The entity extractor aims to extract entities using sequence labeling.
The starting point is 𝐡𝑖 (Section 3.3, Eq. (3)) which is a vector contain-
ing, for each word, the concatenation of a semantic word embedding
with a P-o-S embedding. Let �̂�𝑠𝑒𝑚𝑖 be a vector from �̂�𝑠𝑒𝑚, and �̂�𝑠𝑦𝑛𝑖 be a
vector from �̂�𝑠𝑦𝑛. �̂�𝑠𝑒𝑚𝑖 contains semantic information, and �̂�𝑠𝑦𝑛𝑖 contains
syntactic information. The obtained representation is then fed into a
linear layer, to produce a BIO tag probability distribution for each
word:

�̂�𝑒𝑖 = sof tmax
(

𝑊 𝑒
([

𝐡𝑖, �̂�𝑠𝑒𝑚𝑖 , �̂�𝑠𝑦𝑛𝑖

])

+ 𝐛𝑒
)

(7)

where 𝐖𝑒 and 𝐛𝑒 are the trainable weight matrix and bias. As the
equation shows, output results are normalized with a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function.

Consequently, the entity extractor’s loss function can be formulated
based on the cross-entropy loss:

𝑒 = −
∑

𝑐∈𝑒
𝐲𝑒𝑖 (𝑐) log �̂�

𝑒
𝑖 (𝑐) (8)

The true BIO label probability distribution for the 𝑖th word is 𝐲𝑒𝑖 , and
𝐲𝑒𝑖 (𝑐) is the probability that the true label is c.

After training, the Entity Extractor will assign BIO tags to input
tokens, allowing entity extraction (see Fig. 3).

3.6. Entity matching relation-encoder

The main task of the EER, as described above, is to demarcate enti-
ties in the sentences, i.e. the aspects (e.g. ‘gourmet food’) and the opin-
ions (e.g. ‘delicious’). Next, the entity matcher relation-encoder (EMR)
tries to establish the relationship between such entities (e.g. ‘delicious’
is an opinion about ‘gourmet food’).

Semantic and syntactic adjacency matrices obtained in the previous
step are the critical cueing information. We concatenate 𝐀𝑠𝑒𝑚, 𝐀𝑠𝑦𝑛

and word pair embeddings together to get multi-channel interaction
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Fig. 5. Fig. 5(a) shows the matrix of word-word relationships, and Fig. 5(b) shows the
labels of the span-span relationships after Tag Span Shrinking.

information
[

𝐀𝑠𝑒𝑚,𝐀𝑠𝑦𝑛,𝐒,𝐒′
]

∈ R𝑛×𝑛×𝑑 , where 𝑑 = 𝑑ℎ𝑒𝑎𝑑 + 𝑑𝑑𝑒𝑝 + 2 × 𝑑ℎ
(Sections Section 3.3, 3.4). 𝐒 is created by stacking 𝐇 𝑛 times, where 𝑛 is
the number of words in a sentence. The first and second dimensions of
𝐒 are exchanged to get 𝐒′. Then, 𝐀𝑠𝑒𝑚, 𝐀𝑠𝑦𝑛, 𝐒, and 𝐒′ are concatenated
in the third dimension.

Next, we use a linear layer to reduce the number of channels and
remove redundant information:

𝐀 = 𝐖𝑐 [𝐀𝑠𝑒𝑚,𝐀𝑠𝑦𝑛,𝐒,𝐒′
]

+ 𝐛𝑐 (9)

where 𝐖𝑐 and 𝐛𝑐 are the trainable weight matrix and bias. To propagate
the impact of terms in the same row or column and get the global
view, we apply criss-cross attention [45] which collects contextual
information in horizontal and vertical directions to enhance pixel-wise
representative capability:

𝐀′
𝐮 =

2𝑛−1
∑

𝑖=0
𝐖𝑖,𝐮Φ𝑖,𝐮 + 𝐀𝐮 (10)

where Φ𝑢 is a collection of feature vectors in 𝐕 which are in the same
row or column with position 𝐮, and 𝐕 is generated from 𝐀′ with 1 × 1
filters. 𝐀 undergoes criss-cross attention to get 𝐀′, which contains a
global view. 𝐀′

𝑢 is a feature in 𝐀′ ∈ R𝑛×𝑛×𝑑′ at position 𝑢, and 𝐖𝑖,𝐮
is a scalar value at channel 𝑖 and position 𝐮 in 𝐖 that represents the
attention score for Φ𝑖,𝑢.

3.7. Entity matcher

3.7.1. Tag span shrinking
To pair aspects and opinion words, tag span shrinking uses four

tags 𝐶𝑝 = {𝑃𝑂𝑆,𝑁𝐸𝑈,𝑁𝐸𝐺,𝑁𝑜𝑛𝑒}, which respectively represent
positive, neutral, negative and no relation. In cases where an entity is
a compound word, we combine the cells corresponding to its span. The
resulting single cell in the grid is filled with a sentiment polarity tag.
The process is shown in Fig. 5. To obtain grid tags filled with sentiment
polarity labels, i.e., span-shrunken tags (SSTs), we first compress the
shaded part of Fig. 5(a) to create Fig. 5(b). The triplet (gourmet food,
delicious, POS) can be obtained by decoding the SST grid.

3.7.2. Biaffine attention
Biaffine attention [46] is a simple and efficient way to compute the

relation probability distribution of each word pair in a sentence. So we
adopt it to assist in predicting the relationship between entities. The
formula is as follows:

𝐀𝑏𝑖 = Biaff ine (MLP (𝐇) ,MLP (𝐇)) (11)

where 𝐀𝑏𝑖 ∈ R𝑛×𝑛×𝑑𝑏𝑖𝑜 , and 𝑑𝑏𝑖𝑜 = |𝐶𝑝
| is the number of SST sentiment

tags (i.e. POS, NEU, NEG, N).
Finally, we shrink spans (Section 3.7.1) and predict each cell in the

SST grid:

�̂�𝑚 = sof tmax
(

𝐖𝑚
([

𝐀′,𝐀𝑏𝑖, 𝐲𝑡𝑖𝑝𝑠, 𝐲𝑡𝑖𝑝𝑠T
])

+ 𝐛𝑚
)

(12)
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where 𝐖𝑚 and 𝐛𝑚 are the trainable weight matrix and bias, and 𝐲𝑡𝑖𝑝𝑠
is the span tips from the entity extractor. During the training process,
𝐲𝑡𝑖𝑝𝑠 is the ground truth of the entity extractor, because the model
should learn the accurate span information. In order not to reveal the
accurate label to the model, we make the setting 𝐲𝑡𝑖𝑝𝑠 = argmax

(

�̂�𝑒𝑖
)

in the prediction stage. �̂�𝑚𝑠𝑝𝑖 ,𝑠𝑝𝑖 ∈ R
𝑑𝑏𝑖𝑜 is the predicted distribution for

an SST grid from �̂�𝑚. The loss function for the entity matcher can be
formulated by the cross-entropy loss function between the predicted
distribution and the ground truth 𝐲𝑚𝑖,𝑗 of the SST grid:

𝑚 = −
∑

𝑠𝑝𝑖∈

∑

𝑠𝑝𝑗∈

∑

𝑐∈𝑝
I
(

𝐲𝑚𝑖,𝑗 = 𝑐
)

log
(

�̂�𝑚𝑠𝑝𝑖 ,𝑠𝑝𝑖 ∣𝑐
)

(13)

where I (⋅) is the indicator function, and  is the set containing all spans
in a sentence.

3.8. Triplet decoding

Once the BIO tags and SST grid tags are predicted, we can extract
triplets by decoding. The details are shown in Algorithm 1. Firstly, we
extract aspects and opinions using the BIO tags. Secondly, we enumer-
ate the opinions to check the SST tag for each aspect. If 𝑃 (𝑠𝑖, 𝑠𝑗 ) ≠ 𝑁𝑜𝑛𝑒,
we add the triplet (𝑎, 𝑜, 𝑝) to the final triplet set 𝑇 . Since the tags of the
upper and lower triangular parts of the grid are symmetric, we only
need to check the tags of the upper triangular part of 𝑃 . To ensure
access to the upper triangle area of 𝑃 , we need to obtain the positional
index of the first word of the aspect and opinion. Then we determine
whether to access 𝑃 (𝑎, 𝑜) or 𝑃 (𝑜, 𝑎), based on the relationship between
𝑖 and 𝑗, as shown in lines 6–13 of the algorithm.
Algorithm 1 Decoding Algorithm for ASTE
Input: The tagging results 𝐵 of a sentence in BIO mode. The SST

grid, 𝑃 , of the sentence. 𝑃 (𝑠𝑖, 𝑠𝑗 ) denotes the predicted tag of the
span-pair (𝑠𝑖, 𝑠𝑗 ).

Output: Triplets 𝑇 of the given sentence.
1: Initialize 𝐴 = {}, 𝑂 = {}, 𝑇 = {}.
2: ⊳ Extract aspects and opinions from BIO tags.
3: 𝐴 ← GetAspect (𝐵), 𝑂 ← GetAspect (𝐵)
4: for all 𝑎 ∈ 𝐴 do
5: for all 𝑜 ∈ 𝑂 do
6: ⊳ Get the first word position index.
7: 𝑖 ← GetFirstWordIndex (𝑎)
8: 𝑗 ← GetFirstWordIndex (𝑜)
9: if 𝑖 < 𝑗 then

10: 𝑝 ← 𝑃 (𝑎, 𝑜)
11: else
12: 𝑝 ← 𝑃 (𝑜, 𝑎)
13: end if
14: if 𝑝 ≠ None then
15: 𝑇 ← 𝑇 ∪ (𝑎, 𝑜, 𝑝)
16: end if
17: end for
18: end for
19: return 𝑇

3.9. Loss function and training procedure

In the training process of the proposed DRN model, the loss function
of joint training is defined for the entity extractor and the entity
matcher:

 = 𝛼𝑒 + (1 − 𝛼)𝑚 (14)

where 𝑒 is the cross-entropy loss function of the entity extractor, 𝑚
is the cross-entropy loss function of the entity matcher, and 𝛼 is the
adjustment coefficient.
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Table 2
Statistics of ASET-Data-v2. #S, #A, #O, and #T indicate the number of sentences, aspects, opinions, and triplets, respectively.

Methods 14res 14lap 15res 16res

Train Dev Test Train Dev Test Train Dev Test Train Dev Test

#S 1266 310 492 906 219 328 605 148 322 857 210 326
#A 2051 500 848 1280 295 463 862 213 432 1198 296 452
#O 2061 497 844 1254 302 466 935 236 460 1300 319 474
#T 2338 577 994 1460 346 543 1013 249 485 1394 339 514
h

4. Experiments

4.1. Experimental settings

All experiments are done on an RTX 3090. The number of MCGCN
layers 𝐿 = 2, and the dropout of MCGCN is set to 0.1. We adopted the
AdamW optimizer to train the parameters. To get the effect of the word
on itself, we add self-loops to both adjacency matrices 𝐀𝑠𝑒𝑚 and 𝐀𝑠𝑦𝑛.
All the above are the same settings for DRN with GloVe and DRN with
BERT, and the different settings are as follows:

DRN with GloVe: We use the 300-dimension domain-general em-
bedding from GloVe.3 The hidden dimension of BiLSTM is set to 300
with dropout rate 0.3. The learning rate is 1 × 10−3. The training
batch size is set to 8 with 100 epochs. The output of MCGCNs is
330. P-o-S tags and dependency labels are initialized using the normal
distribution, and their embedding dimensions are set to 30. The biaffine
attention input dimension is set to 165.

DRN with BERT: We used bert-base-uncased4 as the encoder. The
learning rate of BERT is set to 2 × 10−5, and the dropout is set to
0.5. The learning rate of the other parts of the model is 1 × 10−4. The
training batch size is set to 16 with 100 epochs. The output of BERT
has 768 dimensions, while that of the MCGCNs is 390. P-o-S tags and
dependency labels are initialized using the normal distribution, and
their embedding dimensions are set to 12 and 20, respectively. The
biaffine attention input dimension is set to 300.

4.1.1. Datasets
We evaluate the model on ASTE-Data-V25 which contains four

datasets. In the following sections, we refer to them as 14res, 15res,
16res, and 14lap. 14res, 15res, and 16res are datasets in the restaurant
domain, whereas 14lap is in the laptop domain. They were created
by Peng et al. [1] based on SemEval Challenges and refined by Xu
et al. [15]. The details of the datasets are shown in Table 2.

4.1.2. Metrics
We chose the widely-used P, R and F1 scores as metrics. In addition,

we consider that a triplet is correct when all elements in this triplet are
consistent with the ground truth.

4.2. Baselines

We selected competitive ASTE methods as baselines to demon-
strate the effectiveness of DRN. Some baselines support only GloVe or
Transformer-based word embeddings, and some support both. These
methods are as follows:

• CMLA+ [3], RINANTE+ [47], and Li-unified-R+ [48] were mod-
ified for triplet extraction by Peng et al. [1] in the original work.
CMLA and RINANTE jointly extract aspect words and opinion
words in comments. Li-unified-R extracts pairs of (aspect term,
sentiment polarity) from comments.

3 https://nlp.stanford.edu/data/glove.840B.300d.zip
4 https://huggingface.co/bert-base-uncased
5 https://github.com/xuuuluuu/SemEval-Triplet-data/tree/master/ASTE-

ata-V2-EMNLP2020
6

c

• Peng-unified [1] employs a two-stage pipeline approach. The
method obtains aspects with sentiment polarities and opinions
and then determines whether the two can form triplets.

• OTE-MTL [19] is a multi-task learning framework which extracts
aspects and opinions, and then uses biaffine attention to pair
them.

• JET (M = 6) [15] proposes an end-to-end model with a position-
aware tagging scheme which is capable of jointly extracting the
triplets.

• GTS [16] proposes a Grid Tagging Scheme (GTS), to address the
ASTE task in an end-to-end way.

• PASTE [20] presents a tagging-free solution for the task, which
adapts an encoder–decoder architecture with a pointer network.

• DE-OTE-BISDD [49] proposes a method based on double embed-
ding and a bidirectional sentiment-dependence detector.

• DGEIAN_V2 [50] incorporates an interactive attention mecha-
nism for ASTE, considering the contextual and syntactic repre-
sentations in an iterative interaction manner.

• BMRC [21] transforms the ASTE task into a multi-hop quiz
format. Two directions are used to extract as many triplets as
possible.

• BART-ABSA [22] is based on the unified task formulation, and
uses BART [51] to generate triplets in an end-to-end process.

• EMC-GCN [23] explores a variety of relations between words and
proposes a novel refining strategy to conduct the ASTE task.

• Span-DualDecoder [52] designs two different transformer-based
decoders to extract triplets for reducing cascading errors due to
sequential decoding.

• SSJE [31] proposes a span-sharing joint extraction framework to
extract aspect sentiment triplets from sentences in an end-to-end
fashion.

• BDTF [18] performs an object detection task to obtain triplets in
a grid composed of words.

4.3. Experimental results

Table 3 shows the results of DRN compared to all baseline methods
using the P, R and F1 metrics.6 First, we observe the entire table. DRN’s
F1 values are either the best or second best in most cases. Although
the DRN has a low R value, the P value exceeds most baselines. The
above suggests that DRN with dual relation-encoders is able to find
the triplets more accurately but is relatively conservative. DRN is a
multitask learning model with higher F1 values than strong single task
learning methods such as DE-OTE-BISDD, PASTE and EMC-GCN. DRN
is also ahead of Span-DualDecoder and SSJE, which are span-based
methods.

DRN with GloVe: If the four datasets are considered as a whole,
DRN achieves the best results on the balanced metric F1, and is only
slightly lower than DGEIAN_V2 on the 14res dataset. It can also be

6 We reproduced the baseline from the published source code to exclude
ardware effects. JET adopts the data from the original paper due to source
ode issues.

https://nlp.stanford.edu/data/glove.840B.300d.zip
https://huggingface.co/bert-base-uncased
https://github.com/xuuuluuu/SemEval-Triplet-data/tree/master/ASTE-Data-V2-EMNLP2020
https://github.com/xuuuluuu/SemEval-Triplet-data/tree/master/ASTE-Data-V2-EMNLP2020
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Table 3
The experimental results (%) on the ASTE task. The best scores are highlighted in bold. Second best scores are highlighted by underlining.

Methods 14res 14lap 15res 16res

P R F1 P R F1 P R F1 P R F1

With GloVe

CMLA+a 39.18 47.13 42.97 30.09 36.92 33.16 34.56 39.84 37.01 41.34 42.10 41.72
RINANTE+a 31.42 39.38 34.95 21.72 18.66 20.07 29.88 30.06 29.97 25.68 22.30 23.87
Li-unified-R+a 41.04 67.35 51.00 40.56 44.28 42.34 44.72 51.39 47.82 37.33 54.51 44.31
Peng-unifieda 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21
OTE-MTLc 63.00 55.10 58.70 49.20 40.50 45.10 57.90 42.70 48.90 60.30 53.40 56.50
JET(M=6)b 61.50 55.13 58.14 53.03 33.89 41.35 64.37 44.33 52.50 70.94 57.00 63.21
GTS-BiLSTMc 66.47 56.26 60.94 56.49 38.35 45.68 71.34 44.79 55.03 68.43 54.83 60.88
PASTEc 64.93 62.58 63.73 55.90 47.32 51.25 54.53 54.64 54.58 59.47 65.37 62.28
DE-OTE-BISDDb 68.57 59.17 63.53 56.17 46.20 50.70 61.54 48.43 54.21 65.20 61.34 63.21
DGEIAN_V2c 70.45 61.73 65.80 56.15 38.82 45.90 61.84 50.99 55.89 62.13 61.40 61.77
DRN 69.35 61.30 65.08 60.72 47.92 53.57 62.52 51.02 56.19 68.08 59.51 63.51

With Transformer-based Embedding

JET(M=6)b 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83
GTS-BERTc 67.40 67.30 67.40 54.90 52.10 53.50 63.70 55.10 59.10 65.40 68.00 66.70
PASTEc 65.60 60.30 62.80 57.90 50.60 54.00 59.90 60.80 55.70 62.90 65.00 63.90
B-MRCc 70.17 64.94 67.45 62.53 53.47 57.65 58.66 55.82 57.21 66.81 67.96 67.38
BART-ABSAc 68.92 62.68 65.65 61.41 56.19 58.69 58.91 60.00 59.45 66.11 69.46 67.74
EMC-GCNc 70.94 67.54 69.20 66.58 48.98 56.44 60.40 61.65 61.02 68.52 67.45 67.98
Span-DualDecoderc 69.68 66.50 68.05 58.37 56.75 57.54 55.87 56.91 56.38 73.26 61.28 66.74
SSJEc 66.28 69.42 67.81 60.21 52.87 56.30 61.28 57.11 59.12 69.14 68.87 69.01
BDTFc 75.53 73.24 74.35 68.94 55.97 61.74 68.76 63.71 66.12 70.45 72.37 71.40
DRN 75.24 64.49 69.45 66.99 52.61 58.94 68.61 55.47 61.34 73.30 64.42 68.57

a The results are retrieved from [15].
b The results from the original article.
c We reproduce it from the open source code.
Table 4
Overall ablation results under the metric of F1(%) on four datasets released in [15].

Method 14res 14lap 15res 16res

DRN 69.45 58.94 61.34 68.57
w/o P-o-S 68.72(↓ 0.73) 57.26(↓ 1.68) 59.41(↓ 1.93) 66.99(↓ 1.58)
w/o EER 68.78(↓ 0.67) 59.22(↑ 0.28) 59.67(↓ 1.67) 66.17(↓ 2.40)
w/o EMR 66.49(↓ 1.96) 58.05(↓ 0.89) 59.08(↓ 2.26) 66.92(↓ 1.65)
w/o both 68.81(↓ 0.64) 58.06(↓ 0.88) 57.57(↓ 3.77) 65.59(↓ 2.98)
w/o BA 68.56(↓ 0.89) 58.14(↓ 0.80) 59.23(↓ 2.11) 67.25(↓ 1.32)
w/o TSS 67.06(↓ 2.39) 53.53(↓ 5.41) 56.46(↓ 4.88) 65.69(↓ 2.88)

observed that pipeline methods F1 are poorer because of error prop-
agation, such as CMLA+, RINANTE+, Li-unified-R+, and Peng-unified.

DRN with Transformer-based embedding: The BDTF is the state-
f-the-art model for the ASTE task, but the model complexity is inferior
o that of the DRN (see Section 4.7). DRN achieves second best F1
alues on the 14res, 14lap. Compared to DRN with GloVe, the F1 value
s improved by 4.99% on average just by using BERT. It can be seen that
ERT contains rich contextual information. In conclusion, the above
esults show that DRN can fully utilize inter-word interactions and thus
mprove the ASTE task results.

.4. Ablation study

To verify the validity of each module of the model, we conducted
blation experiments. The results of the experiments are shown in
able 4, where ‘w/o’ means without a module. ↓ (↑) indicates a de-
rease (improvement) in performance when the specified module(s) are
emoved.

Taking a cursory look at Table 4, we can see that the F1 value
ecreases regardless of which module is removed, proving the effec-
iveness of the DRN design. Without P-o-S tags, F1 score decreases over
ll datasets (mean 1.48%), indicating that it helps the model identify
ore triplets. Label ‘w/o both’ indicates the removal of both EER and
7

MR. We can see that in the ‘w/o EER’, ‘w/o EMR’ and ‘w/o both’
cases, F1 scores have decreased on both the 15res and 16res datasets.
In the ‘w/o both’ case, it drops more than both ‘w/o EER’ and ‘w/o
EMR’ on F1 score. It is different for 14res; in the ‘w/o both’ case, it
drops less than either ‘w/o EER’ or ‘w/o EMR’. We speculate that the
model may have overfitted because the 14res dataset has the largest
amount of data among the four datasets. In the case of ‘w/o EER’, the
F1 score shows a 0.28% improvement on 14lap. We can observe that
all baselines have the worst results on 14lap, which has more complex
data. The interaction information is actually considered as a ‘hint’ in
the extracted triplets, but it may disturb the model in 14lap instead.
‘w/o BA’ indicates that biaffine attention does not assist in predicting
SST. It can be seen that the F1 value has decreased a bit in 14res, 14lap
and 16res datasets, which indicates that biaffine attention has a cueing
effect when matching entities. However, in the 15res dataset, the F1
value decreases more. Table 2 shows that the 15res data is the least and
any change in the model has a more significant impact on it, so biaffine
attention has a greater cueing effect on the 15res dataset. Without using
TSS, meaning that the span does not shrink, we can see that the F1
scores all significantly decrease (the mean is 3.89%) across the four
datasets. We think that, without TSS, the model will have more labels
to fit, making it harder to train and prone to inconsistent sentiment
polarity in prediction. TSS thus reduces the burden on the model.

4.5. Effect of 𝛼

We evaluate the effect of the coefficient 𝛼 on the results of the ASTE
experiments. 𝛼 adjusts the weights of the entity extractor and entity
matcher loss functions. The variation curves are shown in Fig. 6, and
we can see that the model achieves the best results on all four data
sets when the entity extractor takes larger weights. The best F1 scores
are obtained on 14lap and 15res when 𝛼 = 0.6. When 𝛼 = 0.7, the F1
score is highest on the 14res dataset, while the best results are obtained
on the 16res dataset when 𝛼 = 0.8. From the above results, it can be
seen that the entity extraction task has a greater impact on the ASTE
task. If the entities in the sentences cannot be extracted, the subsequent
matching task is powerless.
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Fig. 6. Effect of the adjustment coefficient 𝛼.

Fig. 7. Effect of the Number of Multi-Channel GCN Layers.

Table 5
Experimental results on model complexity for strong baselines.

Methods Params (M) MACs (G)

EMC-GCN 87.34 4.35
SSJE 86.84 3.92
BDTF 101.20 43.09
Ours 85.89 5.20

4.6. Effect of 𝐿

As shown in Fig. 7, we evaluated the effect of the number of MCGCN
layers 𝐿 on the experimental results. When 𝐿 = 2, the best F1 score is
obtained on res14 and lap14. Then, when 𝐿 = 3, the F1 score is best
on 16res. The difference for 15res is that the best result is obtained
when 𝐿 = 7. It may be because the interactions in the 15res dataset are
complex, so it is necessary to stack multiple layers of MCGCN to mine
them.

4.7. Model complexity

The theoretical time complexity of our model is O
(

𝑁2). To accu-
rately depict the model’s complexity, we evaluated model parameters
(Params) and multiply-accumulate operations (MACs) for several ro-
bust baselines, including BDTF [18], at a sentence length of 40. The
8

experimental results are shown in Table 5. Among them, DRN has the
smallest Params; MACs are comparable to EMC-GCN and SSJE. BDTF,
a state-of-the-art ASTE model, creatively treats the ASTE task as object
detection. However, BDTF has the most parameters and has eight times
more MACs than DRN. Additionally, as the sentence length increases,
the increase in MACs for BDTF surpasses that of DRN. Consequently,
DRN offers a relatively balanced model complexity.

4.8. Case study

We compare the DRN and the two strong baseline BMRC and BART-
ABSA predictions on three samples from the dataset. As shown in
Table 6, DRN correctly extracted all three triplets, while BMRC and
BART-ABSA had prediction errors and omissions. The first example,
S1, is simple, with BMRC, BART-ABSA and DRN all correctly extract-
ing triplets. S2 contains compound words, and aspects and opinions
are one-to-many relationships. BMRC correctly extracts triplets where
aspects and opinions are close together. BART-ABSA obtains correct
opinions but does not work with compound words. BMRC employs a
reading comprehension mechanism, and we speculate that feeding long
texts of samples and questions into the model weakens the model’s
ability to capture long-distance dependencies. BART-ABSA uses the
powerful generative model BART to generate triplets with randomness
directly. The most obvious in S3 is that aspects and opinions are many-
to-one relationships. BMRC predictions have omissions, and BART-
ABSA has prediction errors and omissions. Both BMRC and BART-ABSA
lack interaction relation injection, making it difficult to handle complex
correspondences. Conversely, DRN can handle compound words and
complex correspondences between aspects and opinions.

5. Conclusions

In this paper, we propose a dual relation-encoder framework, DRN,
for extracting aspect sentiment triplets from review texts. DRN differs
from previous approaches by modeling the emphasis of interaction
relations on different subtasks. To accomplish this, we design two
relation-encoders, the entity extraction relation-encoder (EER) and the
entity matching relation-encoder (EMR). EER uses MCGCNs to capture
multi-channel interaction relations between words for entity extraction.
EMR operates on the relationship matrix and explicitly models the
relationships themselves. EMR initially fuses the relations and then
uses criss-cross attention to obtain a global view for pairing entities.
Finally, we design a decoding algorithm to get triplets. We conduct
experiments on four widely-used datasets to verify the effectiveness of
DRN. The experimental results demonstrate that our method exceeds
the competitive baselines. However, the ASTE task is still not fully
solved, and our future work will focus on how to make the best use
of interactions.

Limitations

Despite the DRN model’s competitive achievements, it still possesses
the following limitations.

• DRN relies too much on entity extraction. Matching aspects and
opinions is dependent on the accuracy of those extracted as-
pects and opinions. Attempting to match entities that have been
incorrectly extracted is futile.

• TSS has difficulty overcoming the effects of long-distance de-
pendencies when there are multiple compound word entities, or
entities with too many words, in a sentence.

• DRN has lower recall than precision. This is because DRN mini-
mizes false predictions, which also reduces correct predictions.

We believe addressing the above limitations can improve the model’s
performance without losing its original strengths.



Neurocomputing 597 (2024) 128064T. Xia et al.

o
W
a
i

Table 6
Case study of ASTE. Incorrect results are marked with ✗.

Sentences Ground truth BMRC BART-ABSA DRN (Ours)

S1: Great food but the
service was dreadful!

{(service, dreadful, NEG),
(food, Great, POS)}

{(service, dreadful, NEG),
(food, Great, POS)}

{(service, dreadful, NEG),
(food, Great, POS)}

{(service, dreadful, NEG),
(food, Great, POS)}

S2: I highly recommend
the grand marnier shrimp,
it’s insanely good.

{(grand marnier shrimp, good,
POS), (grand marnier shrimp,
recommend, POS)}

{✗, (grand marnier shrimp,
recommend, POS)}

{(marnier shrimp✗, good, POS),
(marnier shrimp✗, recommend,
POS)}

{(grand marnier shrimp, good,
POS), (grand marnier shrimp,
recommend, POS)}

S3: You must try Odessa
stew or Rabbit stew; salads
-all good ; and kompot is
soo refreshing during...

{(kompot, refreshing, POS),
(salads, good, POS),
(Rabbit stew, good, POS),
(Odessa stew, good, POS) }

{(kompot, refreshing, POS),
(salads, good, POS),
✗,
✗}

{(kompot, refreshing, POS),
(salads, good, POS),
(stew, good, POS)✗,
✗}

{(kompot, refreshing, POS),
(salads, good, POS),
(Rabbit stew, good, POS),
(Odessa stew, good, POS) }
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