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Abstract

Adaptive Dynamic Programming (ADP) and Reinforcement Learning (RL) are pivotal frame-

works in machine learning, each presenting unique benefits and hurdles. This thesis exam-

ines the performance and adaptability of ADP agents using Backpropagation Through Time

(BPTT) in continuous spaces. A Memory-Based Backpropagation Through Time (MBPTT) is

reviewed, enhancing the conventional BPTT approach by integrating memory mechanisms to

refine decision-making in partially observable environments.

Drawing upon foundational and recent developments in RL and ADP, this study explores

the capability of BPTT agents across various environmental settings. It critically assesses

different algorithms and memory models, including Long Short-Term Memory (LSTM) and

Gated Recurrent Units (GRU), in simulating a “functionally sentient” organism seeking food.

The research makes two main contributions. Firstly, it empirically shows that even the

simplest forms of memory-augmented agents can effectively navigate through a maze, performing

better than existing techniques. This highlights the practical use of memory-based algorithms in

spatial tasks. Secondly, the study investigates the performance of Backpropagation Through Time

(BPTT) in bicycle navigation. It introduces a simulated organism that successfully combines

BPTT with memory functions, demonstrating efficiency in environmental mapping and food

search tasks. This work provides a solid foundation for future research in integrated learning

systems.

In conclusion, this thesis reconciles the theoretical distinctions between memory and adap-

tive dynamic programming. Combining theoretical understanding with practical applications

contributes to the ongoing effort to create more resilient, efficient, and adaptive agents in the

rapidly advancing field of machine learning.
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Chapter 1

Introduction

Reinforcement Learning (RL) and Adaptive Dynamic Programming (ADP) have garnered

significant attention for their potential in solving complex decision-making problems. These

paradigms excel in environments where agents must make decisions under uncertainty, learning

optimal policies through interaction with the environment. This thesis aims to explore how

incorporating memory 1 mechanisms into these paradigms can enhance an agent’s ability to learn

and adapt, especially in dynamic environments.

1.1 Motivation and Research Questions

The dynamic and uncertain nature of environments in reinforcement learning (RL) poses signifi-

cant challenges for agents to learn optimal policies through interaction [Shah, 2020]. Traditional

RL and Adaptive Dynamic Programming (ADP) methodologies often fall short in complex sce-

narios where agents must adapt to changes and recall past experiences to make informed decisions

[Chapman et al., 2023]. Recognising these limitations, this thesis reintroduces Backpropagation

Through Time (BPTT), a powerful mechanism traditionally used in training Recurrent Neural

Networks (RNNs) for supervised learning tasks into reinforcement learning. The motivation

behind this strategic reintroduction is twofold:

1. To leverage BPTT’s ability to capture temporal dependencies and apply it to the challenges

of RL, thereby enhancing an agent’s capacity to learn from sequences of events and actions

1 Memory in the context of this thesis refers to the intrinsic memory mechanism of Recurrent Neural Networks
(RNNs), which enables an agent to store and recall past experiences through its hidden state dynamics. This
capability is crucial for enhancing the adaptability and efficiency of agents in dynamic or partially observable
environments by allowing them to maintain a temporal sequence of events within their processing framework.
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over time.

2. To further augment agents’ performance by incorporating customised memory mechanisms

into the BPTT framework, where in this thesis, this augmentation is referred to as Memory-

Based Back Propagation Through Time (MBPTT), enabling agents to store and use

past experiences more effectively. This integration addresses the inherent limitations of

traditional RL approaches in dealing with dynamic environments.

In this thesis, the MBPTT algorithm builds on existing BPTT frameworks, incorporating

memory functions similar to those found in Jordan and Elman’s original RNNs [Jordan, 1997].

MBPTT refines these concepts to address the unique demands of control problem scenarios. By

tweaking the memory management mechanisms within RNNs, MBPTT enhances the handling

of sequential decision-making processes crucial in control tasks, where timing and accuracy

of feedback are essential. This advancement enables more precise and efficient management

of temporal dependencies and state transitions, addressing the challenges posed by dynamic

systems.

This thesis is driven by the hypothesis that integrating advanced memory mechanisms with

BPTT in reinforcement learning can significantly improve agents’ adaptability and decision-

making capabilities. It seeks to explore the following research questions:

1. How does the reintroduction of BPTT into RL, coupled with the incorporation of memory

mechanisms, affect agents’ learning efficiency and adaptability in complex environments?

2. Can the proposed memory-augmented BPTT framework outperform traditional RL algo-

rithms in tasks that require strategic planning and decision-making over extended periods?

1.2 Objectives

This research is predicated on the innovative reintroduction of Backpropagation Through Time

(BPTT) into reinforcement learning (RL), aiming to explore and demonstrate the use of memory

mechanisms within this context. The objectives are structured to highlight the development

and evaluation of a Memory-Based Backpropagation Through Time (MBPTT) algorithm and to

critically analyse the implementation and integration of BPTT in RL environments. Specifically,

the research seeks to:



Page 3

1. Reintroduce and implement the BPTT algorithm within the RL framework, providing a

methodological foundation for integrating memory mechanisms. This includes a detailed

demonstration of how BPTT can be adapted and applied to enhance RL agents’ learning

process and decision-making capabilities.

2. Develop and critically evaluate the Memory-Based Backpropagation Through Time

(MBPTT) algorithm. The focus will be on assessing the algorithm’s effectiveness in

leveraging past experiences to improve agent adaptability and performance in dynamic

environmental settings.

3. Conduct a comparative analysis of agents enhanced with the MBPTT algorithm against

traditional RL agents. This analysis will quantitatively measure improvements in adapt-

ability, efficiency, and strategic planning capabilities across diverse environments, thereby

showcasing the benefits of memory integration.

4. Analyse the architectural and computational implications of incorporating BPTT and

memory mechanisms into RL algorithms. This objective aims to identify and discuss the

challenges, limitations and impacts on performance and complexity, offering insights into

the practical applicability of the MBPTT algorithm.

Through these objectives, the research aims to advance the understanding of BPTT’s role

and potential in RL, illustrating how its integration with memory mechanisms can significantly

enhance the capabilities of BPTT agents. The findings are expected to contribute to the broader

field of artificial intelligence by providing a robust framework for future agent learning and

adaptability innovations.

1.3 Novel Contributions

This thesis makes several novel contributions to the field of reinforcement learning and adaptive

dynamic programming:

1. Introduction to implementing the Memory-Based Backpropagation Through Time (MBPTT)

algorithm, a new approach that leverages memory for enhanced decision-making in RL

agents.
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2. Comprehensive evaluation of memory-augmented agents in a dynamic environment, pro-

viding insights into their adaptability and performance relative to traditional approaches.

3. Theoretical and practical implications for the design of more efficient and adaptive learning

agents, bridging the gap between memory mechanisms and adaptive dynamic program-

ming.

1.4 Thesis Structure

The structure of this thesis is organised as follows to provide a clear and comprehensive explo-

ration of the research objectives:

1. Chapter 2 (Literature Review): Reviews seminal works and contemporary advancements

in RL and ADP, setting the stage for the thesis.

2. Chapter 3 (Memory-Augmented Q-Learning): Introduces a novel algorithm for maze

navigation, demonstrating the benefits of memory in discrete spaces.

3. Chapter 4 (Exploring Continuous Spaces with ADP): Explores the application of MBPTT

in continuous environments, highlighting the challenges and solutions for integrating

memory.

4. Chapter 5 (Simulating Adaptive Behaviours): Presents the application of memory-augmented

learning in simulating food-seeking behaviour in agents, showcasing the practical benefits

of the approach.

5. Chapter 6 (Conclusion and Future Work): Summarises the findings and contributions of

the thesis and outlines directions for future research.

1.5 Contributed Papers

This thesis has led to the development and publication of two significant papers:

• Finding Eulerian Tours in Mazes Using a Memory-Augmented Fixed Policy Function:

Addresses memory application in solving complex mazes.
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• A Minimal “Functionally Sentient” Organism Trained with Backpropagation Through

Time: Explores the effectiveness of MBPTT in simulating adaptive behaviours in agents.
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Chapter 2

Background & Literature Review

The domain of Reinforcement Learning (RL) [Kaelbling et al., 1996] manifests as a compelling

synthesis of decision-making, optimisation, and learning. Adaptive Dynamic Programming

(ADP) further accentuates this landscape, originating as a confluence of dynamic programming

and supervised learning and eventually evolving to play an instrumental role in modern RL

frameworks. RL and ADP share the foundational goal of optimising decision-making in uncertain

environments, but each brings unique methodologies and perspectives. This chapter delves deep

into the principles, advancements, and intricacies that define RL, illuminating ADP’s intertwined

relationship and contributions.

The discussion commences by explaining the foundational principles of RL. It covers essen-

tial constructs such as agents and environments and culminates in the quintessential objective of

all RL paradigms: the maximisation of long-term rewards. This foundation paves the way for

insights into adaptive dynamic programming, detailing its origins and intricate relationship with

RL.

As the narrative unfolds, it underscores the essential considerations inherent to RL research.

Discussions delve into the contrasts between model-free and model-based approaches and

illuminate the nuances of partially observable environments. Furthermore, the importance of

standardisation and differentiability in modern RL paradigms is explained in detail.

Delving deeper, the chapter represents the realm of Deep Reinforcement Learning (DRL).

It outlines the myriad challenges associated with DRL, traces its evolutionary journey, and

emphasises its intersections with high-dimensional sensory environments. Notable attention

is given to issues of convergence, the subtleties of multi-task learning, and the domain of

multi-agent systems.
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Subsequent sections carefully explain the algorithms and techniques that underpin RL. From

the classic Q-learning to the pioneering Proximal Policy Optimisation, the chapter aspires to

provide readers with an encompassing view of RL’s algorithmic landscape, interspersed with

discussions on backpropagation and actor-critic methodologies.

Turning to the delicate balance of memory and adaptability in RL, the narrative explores the

mechanisms by which modern agents employ memory architectures, from LSTM to GRUs. The

paramount role of meta-learning in enhancing adaptability is highlighted.

To conclude this chapter, it introduces the platforms and engines essential for RL research

and applications. It discusses the details of DeepMind Lab, explores the concept of continuity in

physical tasks, and presents modern simulations, such as Brax, which uses the features of JAX

for enhanced performance.

2.1 Introduction to Reinforcement Learning

Reinforcement Learning (RL) can be envisioned as a bridge between classical decision processes

and the computational means to solve them. Instead of relying on explicit instruction, an RL

agent learns by interacting with its environment, constantly adjusting its strategies based on

feedback, typically in rewards or penalties. This feedback-driven loop makes RL particularly

well-suited for many applications, from game-playing agents to robotic controls.

The concept of memory is central to enhancing the adaptability and efficiency of RL agents,

especially in dynamic environments. This thesis emphasises the memory mechanisms inherent in

Recurrent Neural Networks (RNNs), exploring how these can be leveraged within RL frameworks

to improve decision-making processes. By integrating RNN-like memory capabilities, RL agents

can maintain a temporal sequence of events that is pivotal for tasks requiring recalling past

experiences to inform future actions.

The following subsections will explore and introduce the key reinforcement learning algo-

rithms considered in this thesis. Each algorithm has been selected for its unique contribution to

the field and its relevance to the comparison. In this exploration, particular attention will be paid

to how these algorithms can incorporate or benefit from memory mechanisms, aligning with the

thesis’s focus on enhancing RL through the principles of RNN memory. This section delves into

each algorithm’s foundational principles, practical applications, and distinct roles in comparative

analysis, with a keen eye on their interfacing with memory to solve complex decision-making

problems. This exploration aims to provide a comprehensive understanding of the current state
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of reinforcement learning, its potential for solving complex decision-making problems, and the

pivotal role of memory in advancing these capabilities.

2.1.1 Basics of Reinforcement Learning

At the heart of RL lies a trial-and-error mechanism, where an agent aims to discover an optimal

policy that maximises its cumulative reward over time. Unlike supervised learning, where clear

input-output pairs dictate the learning process, RL often requires agents to explore uncertain

territories, balancing the need to exploit known strategies with the drive to explore new ones.

The agent’s environment often dictates this delicate balance, current knowledge state, and the

broader objectives it seeks to achieve.

Definitions: Agents, Environments, Actions at , and Rewards rt

It is essential to start with its foundational elements to understand the intricacies of Reinforcement

Learning (RL). At the heart of any RL process are agents that make decisions, environments

wherein these decisions are made, actions at which represent the choices made by agents at each

time step t, and rewards rt which are feedback mechanisms indicating the success or quality of

those decisions.

• rt : This represents the immediate reward received after taking an action at time t. It

reflects the immediate benefit or cost associated with the action taken in the current state.

Mathematically, it can be expressed as:

rt = r(st ,at)

where st is the current state, at is the action taken, and st+1 is the next state.

• Rt : This denotes the total accumulated reward from time t onwards, also referred to as

the return. It encompasses not just the immediate reward but all subsequent rewards,

potentially discounted by a factor γ (gamma) to represent the decreasing value of future

rewards. The return can be formulated as:

Rt =
∞

∑
k=0

γ
krt+k

where γ is the discount factor, with a value in the range [0,1].

These fundamental concepts form the backbone of RL, shaping its algorithms, methodologies,

and outcomes.
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The Objective: Maximising Long-term Total Rewards

While the immediate rewards received by an agent after each action play a crucial role in guiding

its behaviour, the true essence of RL lies in its long-term vision. An agent’s primary objective

is not just to maximise the immediate reward but to ensure maximising the cumulative sum

of rewards over many steps in the future. This foresight often requires the agent to make

sacrifices in the short term to reap more substantial benefits in the long run. For instance, in

a chess game, sacrificing a pawn might seem like a loss initially, but if it opens a pathway to

checkmate the opponent’s king in subsequent moves, the sacrifice is justified. This principle of

delaying immediate gratification for long-term success is at the heart of many RL algorithms and

strategies.

2.1.2 Adaptive Dynamic Programming

Adaptive Dynamic Programming (ADP) and Reinforcement Learning (RL) share a common goal:

to learn a policy function that maximises a long-term reward function. ADP, however, differenti-

ates itself by not treating the environment as a black box, thereby enabling the use of efficient

gradient calculations [Murray et al., 2002, Wang et al., 2009, Prokhorov and Wunsch, 1997a].

This distinction is crucial in environments where the physics model is known and differentiable,

making methods like Backpropagation Through Time (BPTT) and Dual Heuristic Programming

(DHP) significantly more efficient in learning than model-free RL models, sometimes by several

orders of magnitude [Fairbank and Alonso, 2012].

The Implications and Relevance to This Thesis: The use of BPTT in ADP, particularly when

enhanced with optimisation algorithms like the Levenberg-Marquardt (LM) method, showcases

the potential for significant improvements in the training of Recurrent Neural Networks (RNNs)

[Fu et al., 2014]. This thesis emphasises the critical role of memory mechanisms inherent in

RNNs and their synergistic potential when combined with ADP approaches. The ability of BPTT

to adapt to changing environment physics models underscores flexible adaptability, essential for

dynamic environments discussed in later chapters [Fairbank et al., 2014a].

Furthermore, the origins of ADP and RL, tracing back to the pioneering work of Minsky

et al. [1963], Samuel [1959], and the introduction of function approximators by Adami [2023],

lay the groundwork for contemporary RL systems. The evolution from heuristic approaches to

the development of HDP and DHP algorithms [Werbos, 1997, 2021, Prokhorov and Wunsch,

1997a] illuminates the trajectory of RL towards leveraging complex models and algorithms for
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decision-making. Linking Back to This Thesis: The foundational principles of ADP, particularly

the emphasis on understanding and leveraging the environment’s dynamics, align closely with

the objectives of this thesis. By exploring the intersection of ADP methodologies like BPTT

with memory-driven RNN mechanisms, this research seeks to push the boundaries of what is

achievable in RL, particularly in applications requiring nuanced decision-making and adaptability.

The subsequent chapters will delve deeper into how these ADP methodologies are integrated

within the proposed RL frameworks, their implications for learning efficiency, and their role in

enhancing the adaptability of agents in complex environments.

Origins of Adaptive Dynamic Programming and Reinforcement Learning

The historical context provided by the works of Minsky et al. [1963], Samuel [1959], and

Adami [2023] not only highlights the evolution of RL but also sets the stage for the advanced

methodologies discussed in this thesis. The transition from early checker-playing algorithms

to sophisticated ADP algorithms like HDP and DHP reflects a broader shift towards more

adaptive, efficient, and complex RL systems. This evolution mirrors the trajectory of this thesis,

from understanding the foundational aspects of RL to applying advanced ADP techniques in

novel ways to enhance agent performance. Connecting to Later Chapters: As this thesis

progresses, the focus will shift towards applying the insights gleaned from the study of ADP and

its algorithms to address specific challenges within the RL domain. This includes exploring the

practical applications of these algorithms in real-world scenarios, their integration with RNNs

for improved memory and decision-making capabilities, and the broader implications of these

approaches for the field of artificial intelligence. By grounding our exploration in the rich history

and proven methodologies of ADP, it aims to contribute meaningful advancements to the field of

RL, particularly in developing agents capable of navigating the complexities of dynamic and

uncertain environments.

2.1.3 Backpropagation Through Time

BPTT is a foundational algorithm for training RNNs. This approach is pivotal in dealing with

sequential data by bridging the chasm between current predictions and past information, thus

allowing the effective propagation of gradients through time. The origins of BPTT can be

attributed to the groundbreaking work of Werbos [1990], wherein adaptations were proposed to

address challenges intrinsic to sequential datasets. Since its inception, the emphasis has been on
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leveraging BPTT in control scenarios, with notable contributions from Prokhorov and Wunsch

[1997a], Lillicrap and Santoro [2019] augmenting this concept.

BPTT finds common usage in supervised learning tasks like time-series forecasting or natural

language processing. However, the limitations and strengths of BPTT to apply to RL tasks

remain relatively unknown. This possibility arises when a known and differentiable model of the

training environment exists. 1

BPTT is used to compute the derivative of the total reward R with respect to the neural

network weights, w⃗. To do this, it views the environment model as an extra layer of a recurrent

neural network, combined with the agent’s original neural network (“Agent Brain”), as shown in

Fig. 2.1.

A
gent B

rain 

Physics M
odel

Recurrence

Figure 2.1: Recurrence between Agent Brain and Physics model allows the Agent’s brain.

BPTT uses automatic differentiation to compute the required derivative ∂R
∂ w⃗ . Internally, this

unrolls the combined network of Fig. 2.1 “through time” to obtain the unrolled network shown

in Fig. 2.2. Automatic differentiation is then used to “backpropagate” the derivatives of R with

respect to w⃗ right through the unrolled network.
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Figure 2.2: Unrolled combined network in BPTT.

1In the problems mentioned in the following chapters, it is stated that the requirement for BPTT to use a known
environment model classifies it under ADP (Approximate Dynamic Programming) [Powell, 2007] rather than being
categorised as “true” RL. The basis for this distinction is that pure RL is designed to handle environments without
prior knowledge. In contrast, ADP depends on having access to an environment model, as explicitly defined in the
Environment and Agent Definitions sections in Sections 4.2.3 and 5.1.
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Once the quantity ∂R
∂ w⃗ is obtained, gradient ascent on R can then be performed to improve the

performance of the neural network at maximising R:

∆w⃗ = α
∂R
∂ w⃗

, (2.1)

where α > 0 is a small learning rate. This single simple process is model-based, i.e., it requires

knowledge of the derivatives of the environment functions. If successful, this learning process

will maximise R by (2.1).

RNNs, however, aren’t without their challenges. They are notoriously known for the explod-

ing gradient problem. This issue stems from an error gradient used to adjust network weights

during training. Consequently, an exploding gradient can result in an unstable network, possibly

converting weights into a “not a number” (NaN) value, thereby hindering further weight updates.

While LSTM networks are commonly proposed as a remedy, alternative solutions include

network redesign, gradient clipping, or weight regularisation. Fairbank et al. [2014a] introduces a

unique solution involving a tracking problem and stabilisation matrix. This methodology enabled

the neural network to yield consistently reduced training errors, thus enhancing its adaptive

capabilities.

The environment under scrutiny in Fairbank et al. [2014a]’s work, a power plant, demanded

offline training due to its ever-changing conditions. This setting, being a renewable energy

generator application, required an adept controller for interfacing between the DC and AC sides

of electric power.

Notably, Fairbank et al. [2014a] highlights that Adaptive Critic Designs (ACDs) [Prokhorov

and Wunsch, 1997b] have been primary approaches to such problems. Characterised by two

neural networks, an action network and a critic network, the critic network guides the action

network, permitting real-time online training. A critical challenge with critic learning is its

convergence issues, as indicated by Sutton [1988]. Fairbank et al. [2014a] suggests an approach

wherein only the action network is trained offline using BPTT. This innovation, they assert,

allows for true gradient descent on the cost-to-go function, ensuring convergence.

Furthering this discussion, Fairbank et al. [2014a] posits that BPTT ensures a swift response

and adaptation compared to ACDs. This assertion is underpinned by the observation that RNN

weights don’t necessitate updates for adaptation. Additionally, they integrated a stabilisation

matrix, a predetermined neural weight matrix encapsulating basic control behaviour. Combined

with BPTT, this approach adeptly focused on mastering advanced behavioural nuances.
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The agent aims to minimise the cumulative cost function by delving into neural control,

which embodies reinforcement learning objectives. Fairbank et al. [2014b] emphasises the

importance of clipping, particularly for the agent’s movement in the trajectory’s final time step.

Clipping, in this context, pertains to truncating this final step. This, Fairbank et al. [2014b]

illustrates, enhances the performance of explicit derivatives of the environment’s model function,

calculating the learning gradient.

Comparative Analysis of Policy Gradients and BPTT in Reinforcement Learning

The landscape of Reinforcement Learning (RL) showcases a variety of approaches, among

which policy gradient methods and Backpropagation Through Time (BPTT) are particularly

noteworthy for their distinct yet complementary functionalities. The comparison between these

two methodologies underscores fundamental differences in their operational mechanisms and

application contexts within RL.

1. Policy Gradients:

• Direct Policy Optimisation: Policy gradient approaches focus on directly optimising

the policy by adjusting the policy parameters to maximise the expected return. This

contrasts with value-based methods that aim to learn a value function.

• Gradient Estimation: The core of policy gradient methods lies in estimating the

gradient of the expected return with respect to policy parameters, formulated as:

∇θ R(θ)≈ E[∇θ logπθ (at |st)Rt ], (2.2)

emphasising the stochastic nature of policy optimisation and the reliance on expected

values over trajectories.

• Variance Challenges: A notable characteristic of policy gradients is their inher-

ent variance, stemming from the expectation over trajectories. This variance can

introduce challenges in achieving stable and efficient learning.

2. Backpropagation Through Time (BPTT):

• Training Recurrent Architectures: Primarily used for training RNNs, BPTT is instru-

mental in RL scenarios involving recurrent architectures to handle partial observabil-

ity, facilitating error backpropagation across sequences.
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• Analytic Gradient Computation: BPTT distinguishes itself by providing an exact

gradient of the loss with respect to the model’s parameters for specific sequences,

thus termed “analytic” for its precision in gradient determination.

The above comparison reveals that, despite their operational differences, policy gradients and

BPTT share foundational similarities. Policy gradients allow for model-free learning, generating

gradients based on expected outcomes without requiring an intricate model of the environment. In

contrast, BPTT delivers precise gradients for sequence-based learning but necessitates unfolding

sequences over time, which can be computationally intensive for long sequences.

The convergence of these methods is particularly evident in actor-critic architectures, where

the actor’s policy updates are guided by policy gradients, and the critic’s value function, poten-

tially employing an RNN, is trained using BPTT. This synergy illustrates the nuanced relationship

between policy optimisation and sequence modelling in RL, highlighting the complementary

roles of policy gradients and BPTT in advancing gradient-based learning approaches.

For further reading on the theoretical underpinnings and practical applications of these

methodologies, referencing seminal works such as Sutton and Barto’s “Reinforcement Learning:

An Introduction” [Sutton and Barto, 2018] and the comprehensive analysis by Lillicrap et al.

[Lillicrap et al., 2015] on continuous control with deep policy gradients can provide deeper

insights into their comparative advantages and limitations.

Harnessing Analytic Policy Gradients for Efficient Robotic Control

The quest for balancing computational efficiency with tracking accuracy in robotic control has

led to significant advancements in both traditional and learning-based control strategies. Model

Predictive Control (MPC) has been the gold standard for achieving high precision in trajectory

tracking but at the cost of computational resources [Rawlings, 2000, Wiedemann et al., 2022].

Conversely, Reinforcement Learning (RL) offers a promising avenue for efficient control with

reduced computational demands, though it historically lagged behind MPC regarding tracking

precision.

Introduction to Analytic Policy Gradient: The recent work by Wiedemann et al. [2022]

presents a groundbreaking approach to this challenge through the Analytic Policy Gradient

(APG) method. By leveraging differentiable simulators, APG enables efficient offline training of

controllers, directly optimising the tracking error via gradient descent. This method challenges

the conventional limitations attributed to RL in precision tasks. It demonstrates superior tracking
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performance across various robotic applications, including but not limited to CartPole, quadro-

tors, and fixed-wing drones. APG’s ability to rival the precision of MPC while dramatically

reducing the computational overhead marks a pivotal shift towards more efficient robotic control

methodologies.

Implications and Relationship to This Thesis: The advent of APG underscores a critical

theme of this thesis: the exploration of advanced control strategies that merge the computational

efficiency of RL with the precision traditionally reserved for model-based approaches like MPC.

APG’s success in employing gradient-based optimisation directly on tracking errors aligns with

our investigation into how RL can be adapted for high-precision tasks in dynamic environments,

particularly when augmented with memory mechanisms or analytic gradients.

Future Directions and Link to Later Chapters: While APG showcases exceptional potential

in fixed-horizon, short-duration tracking tasks with known dynamics, its exploration in extended-

duration tasks and real-world scenarios remains an open frontier. This presents an exciting

opportunity for future research, particularly in how curriculum learning schemes can be integrated

to mitigate training instabilities and broaden the applicability of APG to more complex robotic

control problems. Subsequent chapters of this thesis will delve into these aspects, examining how

APG and similar strategies can be further optimised and applied within the broader context of RL

for robotic control. The discussion will include potential limitations, areas for improvement, and

the exploration of real-world applications, aiming to bridge the gap between RL efficiency and the

precision of traditional control strategies. In essence, APG represents a significant stride towards

the objectives outlined in this thesis, offering a compelling case study in the convergence of RL

efficiency and MPC-like precision. Its integration with differentiable simulators and potential

for application in real-world scenarios provides a robust foundation for future explorations to

enhance RL’s adaptability and effectiveness in complex, dynamic control tasks.

2.1.4 Q-Learning: A Brief Overview

Q-learning, a cornerstone of off-policy reinforcement learning algorithms, seeks to establish the

optimal action-selection policy within a finite Markov decision process. Introduced by Watkins

in 1989 [Watkins and Dayan, 1992], its use spans robotics, game theory, and natural language



Page 17

processing, among other domains. Off-policy learning2 permits agents to learn the value of the

optimal policy independently from their actions, thus enabling exploration of the environment

under a more exploratory or random policy while learning about a different, potentially optimal

policy. Implications for Memory-Augmented Learning: The framework of Q-learning, especially

its off-policy characteristic, lays a foundational role in exploring memory-augmented learning

strategies within this thesis. Chapter 3, which introduces a novel memory-augmented Q-learning

algorithm for maze navigation, builds upon the principles of Q-learning to demonstrate the

benefits of incorporating memory mechanisms in discrete spaces. The adaptability and efficiency

of agents in dynamic or partially observable environments, as highlighted in this thesis, can

be significantly enhanced by integrating memory capabilities, allowing for a nuanced balance

between exploration and exploitation—a key challenge in reinforcement learning.

Connection to Thesis Objectives: The exploration of Q-learning serves as a basis for under-

standing traditional reinforcement learning strategies and as a springboard for advancing the

discussion on how memory mechanisms can be woven into these frameworks to address complex

decision-making problems. The subsequent chapters will delve into the practical applications

of these concepts, showcasing how memory-augmented learning algorithms can outperform

traditional methods in environments that require strategic planning and decision-making over

extended periods.

By examining Q-learning through the lens of memory augmentation, this thesis aims to

contribute to the broader field of artificial intelligence by offering innovative solutions for

enhancing agents’ adaptability and learning efficiency in complex scenarios. Introducing memory

mechanisms into the Q-learning algorithm represents a key innovation in this research, setting

the stage for a detailed exploration of their implementation and impact in later chapters.

One of the main advantages of Q-learning is its ability to learn optimal policies without

requiring a model of the environment, making it well-suited for problems where the environment

is only partially observable or is computationally expensive to model. This characteristic makes

it particularly relevant to the study done in Chapter 3, as the computational resources are often a

limiting factor in maze-solving algorithms.

2Off-policy learning is a reinforcement learning strategy where the policy being learned (the optimal policy)
differs from the policy employed to perform actions (the exploration or behaviour policy). This distinction allows
agents to explore the environment under a more exploratory or random policy while learning about a potentially
optimal policy. It offers the advantages of separating exploration from exploitation, learning efficiently from diverse
sources of experience, and employing techniques like importance sampling to reconcile differences between the
behaviour and target policies. Off-policy methods like Q-learning are invaluable in scenarios where acquiring new
data is costly or impractical, enabling learning from pre-existing datasets or the experiences of other agents.
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The algorithm uses an action-value function denoted as Q(s,a), which estimates the expected

return when taking action a from state s.

In a typical reinforcement learning setup, an agent interacts with an environment over discrete

time steps. At each time step t, the agent receives an observation ot and selects an action at from

the available action set based on its policy π(a|s). The environment then transitions to a new

state st+1 and returns a reward rt .

The value function, V π(s), represents the expected return starting from state s and following

a given policy π:

V π(s) = E[Rt:∞|st = s,π].

In contrast to the value function, the action-value function Qπ(s,a) estimates the expected

return if the agent takes action a from state s and then follows the policy π:

Qπ(s,a) = E[Rt:∞|st = s,at = a,π].

Q-learning employs temporal difference (TD) learning to estimate Q values without requiring

prior knowledge of the environment. A table Q[S,A] is maintained to store these Q-values, and it

is updated using the Bellman equation:

Qπ(st ,at) = E[rt+1 + γrt+2 + γ
2rt+3 + . . . |st ,at ].

The Q-values are updated through the following equation:

∆Q(st ,at) = α

(
rt + γ max

a′
Q(st+1,a′)−Q(st ,at)

)
.

where the α > 0 is the learning rate.

Actions are selected according to a policy π : S→ A, where the objective is to find a policy

that maximises the expected return. The greedy policy is often defined as follows:

a = argmax
a′

Q(s,a′).

Thus, an episode comprises a sequence of state transitions, starting from an initial state and

terminating at a final state.

Deep Q-Network (DQN)

The advent of the Deep Q-Network (DQN) by Mnih et al. [2013, 2015] marked a pivotal ad-

vancement in reinforcement learning, introducing a robust framework for integrating deep neural
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networks with Q-learning. By implementing strategies such as experience replay, target networks,

reward clipping, and frame skipping, DQN mitigated several key challenges associated with deep

learning in RL, notably the instability of the learning process. The concept of experience replay,

initially proposed by Lin [1992], effectively addresses the issue of overfitting by storing and

using past experiences, thus enhancing the data efficiency and stability of learning. Introducing a

separate target network helps stabilise the volatile target functions often encountered in deep

neural network training. Implications for BPTT Comparison: The innovations introduced by

DQN, particularly in stabilising the learning process and improving data efficiency, provide a

critical backdrop for evaluating the BPTT algorithm within the thesis. While DQN offers a

groundbreaking approach to handling discrete action spaces, this research explores BPTT. It

focuses on its application in environments with continuous state and action spaces and how

memory mechanisms can be effectively integrated. The comparison with BPTT underscores the

adaptability and efficiency of memory-augmented learning strategies, particularly in dynamic

environments where the ability to recall and leverage past experiences significantly enhances

decision-making processes.

Challenges with Convergence in Q-learning

The integration of Q-learning with non-linear function approximators, while extending the

applicability of RL to a wider range of complex problems, introduces challenges related to

convergence. As highlighted by Tsitsiklis and Van Roy [1997], the marriage of Q-learning with

non-linear function approximators, such as those used in DQN, can lead to divergence, a stark

contrast to the guaranteed convergence when employing linear function approximators. This

divergence risk underscores the importance of carefully designed algorithms and architectures to

ensure stable and effective learning.

BPTT’s Role in Addressing Convergence Challenges: Within the context of this thesis, the

discussion of convergence challenges in Q-learning sets the stage for a deeper exploration of

how BPTT, with its emphasis on sequential data processing and memory integration, offers

alternative solutions. The application of BPTT in continuous spaces, as discussed in later

chapters, reveals its potential to provide stable learning in complex environments and enhance

the learning process’s robustness and data efficiency. By comparing BPTT’s performance against

traditional and deep learning-based RL algorithms, this research aims to illuminate the pathways

through which memory-augmented learning can overcome some of the enduring challenges in
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the field, offering insights into the development of more sophisticated, efficient, and adaptable

RL systems.

Recent Advancements in Value Function Estimation

Hinton [2007]’s method proved helpful in estimating the value function as shown by Sallans and

Hinton [2004]. From Sallans and Hinton [2004]’s work, it can be understood that the gradient

temporal difference methods have been partially addressed.

Achieving Convergence: Modern Methods and Limitations

Methods suggested by Maei et al. [2009, 2010] proved that the convergence is achievable when

there is a fixed policy with a nonlinear function approximator or the agent is set to control the

policy with linear function approximation with the usage of a restricted variant of Q-learning.

However, Mnih et al. [2013] claims that this has not extended the research to non-linear control.

2.1.5 Optimisation Challenges in Deep Reinforcement Learning

The field of reinforcement learning (RL) has seen significant evolution with the advent of deep

learning techniques, giving rise to various approaches to solving complex decision-making tasks.

Deep Q-learning and policy gradient methods have emerged as foundational strategies, each with

unique challenges and solutions.

Deep Q-Learning: Introduced by Mnih et al. [2015], deep Q-learning extends the classical

Q-learning algorithm by using deep neural networks to approximate the Q-value function. This

approach has demonstrated remarkable success in learning optimal policies directly from high-

dimensional sensory inputs, as evidenced in playing Atari games from pixel input. However,

deep Q-learning faces challenges in overestimating Q-values and sensitivity to hyperparameters.

Policy Gradient Methods: Policy gradient methods, as detailed by Mnih et al. [2016], aim

to directly optimise the policy function by estimating the gradient of the expected return. Unlike

Q-learning, policy gradient methods do not rely on value function approximation, which allows

for the direct optimisation of stochastic policies and has been advantageous in continuous action

spaces.

Trust Region Policy Optimisation (TRPO): To address the inefficiencies of vanilla policy

gradient methods, Schulman et al. [2015] proposed TRPO. This method enhances the stability of

policy updates by enforcing a constraint on the size of policy updates, ensuring that each update
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is within a trust region. TRPO has improved learning stability and convergence, particularly in

environments with high-dimensional action spaces.

Proximal Policy Optimisation (PPO): Building on the concepts of TRPO, Schulman et al.

[2017] introduced PPO, a more practical approach that simplifies the optimisation process. PPO

restricts the policy update step by employing a clipped objective function, which prevents large

updates and maintains the advantages of TRPO while being computationally less demanding.

Introducing an entropy bonus in PPO encourages exploration by adding a term to the objective

function that rewards policy entropy.

Despite these advancements, RL grapples with scalability, robustness, and data efficiency

challenges. PPO, with its balance of performance and practicality, represents a significant step

forward. It also underscores the need for ongoing research to address the complexities of training

deep RL agents.

In conclusion, the evolution from deep Q-learning through TRPO to PPO illustrates the

continuous pursuit of more efficient and stable optimisation methods in deep reinforcement

learning. Each approach brings us closer to developing RL agents capable of operating in

increasingly complex and dynamic environments, highlighting the importance of adaptability,

stability, and efficiency in RL algorithm design.

2.1.6 REINFORCE Algorithm

The REINFORCE algorithm, introduced by Williams [1992], represents a foundational approach

within the realm of reinforcement learning, specifically under the Monte Carlo policy gradients

category. This method updates policy parameters based on Monte Carlo estimations, relying

on full episode rollouts to compute gradients [Bahdanau et al., 2016]. While REINFORCE

simplifies the policy gradient calculation by not requiring a model of the environment, its notable

drawback is the high variance in updates. This variance stems from the algorithm’s dependence

on the trajectory to estimate the gradient, leading to potentially unstable learning dynamics

similar to those observed in early Deep Q-Network (DQN) implementations [Mnih et al., 2013].

Addressing Variance and Instability: The instability challenge associated with REINFORCE

is akin to those encountered in other reinforcement learning strategies, including DQN. In

response to these challenges, Wu et al. [2018] proposed using action-dependent factorised

baselines to mitigate the variance inherent in log probabilities and cumulative reward estimations.

The algorithm can achieve more stable and efficient learning by incorporating a baseline - a
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technique that borrows from the Actor-Critic framework [Konda and Tsitsiklis, 1999]. This

strategy, alongside advancements in Advantage Actor-Critic (A2C) and Soft Actor-Critic (SAC)

methods [Haarnoja et al., 2018], illustrates the evolving landscape of reinforcement learning

towards reducing variance and enhancing stability in policy updates.

Relation to BPTT and Memory-Augmented Learning: The exploration of variance reduction

techniques in REINFORCE and its implications for reinforcement learning provides a pertinent

backdrop for this thesis’s investigation of Backpropagation Through Time (BPTT). Specifically,

the comparison with BPTT aims to examine how incorporating memory mechanisms addresses

the challenges of high variance and instability and leverages the strengths of policy gradient

methods for complex decision-making tasks. Integrating BPTT with reinforcement learning,

particularly in memory-augmented learning contexts, offers a promising avenue for enhancing

the adaptability and efficiency of learning agents in dynamic environments.

This section underscores the continuous pursuit of more robust and effective learning strate-

gies by situating the discussion of the REINFORCE algorithm within the broader examination

of reinforcement learning optimisation challenges. The subsequent chapters will delve deeper

into how BPTT and memory mechanisms can further advance the field, building on the founda-

tional principles exemplified by REINFORCE and addressing its limitations through innovative

approaches.

∇θ J(θ) = E

[
T−1

∑
t=0

∇θ logπθ (at | st)(Rt−b(st))

]
. (2.3)

where J(θ) is the objective function or performance measure aimed to optimise with respect to

the policy parameters θ , the function b(st) represents the state value function V (st) estimates the

expected return (or total future rewards) from the state st .

2.1.7 Comparative Analysis Framework

Following the above review of state-of-the-art reinforcement learning algorithms, this thesis

endeavours to juxtapose the Backpropagation Through Time (BPTT) algorithm against these

notable methods. The exploration into Actor-Critic methods, including A2C, SAC, DDPG, TD3,

and PPO, highlights their pivotal contributions to tackling challenges related to learning stability,

exploration efficacy, and the exploration-exploitation balance in environments with both discrete

and continuous action spaces.
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Implications for Comparative Analysis with BPTT

The successes of these methods across various applications, from gaming to autonomous navi-

gation, underline the advancement of reinforcement learning strategies towards more efficient,

robust and highly adaptable solutions. Each method’s unique approach to optimising policy

and value functions sets a relevant context for assessing the BPTT algorithm’s performance and

utility.

• Actor-Critic Methods: The dual-network structure of these methods provides valuable

insights into the potential for BPTT to integrate value-based and policy-based learning,

hinting at hybrid applications.

• Advantage and Soft Actor-Critic: These methods’ focus on the exploration-exploitation

balance sets a benchmark for evaluating BPTT’s effectiveness in managing continuous

action spaces.

• Deep Deterministic Policy Gradient and Variants (DDPG, TD3): The deterministic

approach to policy optimisation and strategies to mitigate overestimation bias offer a back-

drop for comparing BPTT’s capability for achieving stable and precise policy optimisation

in continuous environments.

• Proximal Policy Optimisation: PPO’s simplicity and efficacy in iterative policy improve-

ment provide a metric for comparing BPTT’s data efficiency and adaptability to policy

constraints.

Structuring the Comparative Analysis

This analysis aims to extensively investigate how BPTT, with its intrinsic memory mechanism,

aligns with or diverges from these algorithms, especially in scenarios requiring a deep under-

standing of temporal dynamics. The following chapters will methodically examine BPTT’s

theoretical foundations, practical implementations, and performance across various tasks, directly

contrasting these with the accomplishments and shortcomings of the Actor-Critic methods.

Through this comparative perspective, the thesis will illuminate BPTT’s distinct contributions

to reinforcement learning, potential synergies with existing methods, and areas where it augments

or complements the capabilities of contemporary strategies. This exploration is poised to

highlight each approach’s relative strengths and weaknesses and forge pathways for future
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innovations in reinforcement learning, leveraging the adaptability and efficiency of BPTT

alongside the robust foundations laid by Actor-Critic methodologies.

Actor-Critic Methods

In Actor-Critic algorithms, the “Critic” estimates the value function while the “Actor” modifies

the policy distribution based on the Critic’s feedback. Actor and Critic functions are typically

parameterised using neural networks, as represented in Eq. (2.4).

∇θ J(θ) = Eτ

[
T−1

∑
t=0

∇θ logπθ (at | st)Qw (st ,at)

]
. (2.4)

Advantage Actor-Critic

The Advantage Actor-Critic (A2C) and its asynchronous counterpart, the Asynchronous Ad-

vantage Actor Critic (A3C), are two primary variants. Introduced by Mnih et al. [2016], A3C

employs parallel training, where agents update a global value function in parallel environments.

This asynchronous approach facilitates broader state-space exploration. In contrast, A2C uses a

single worker for state space exploration.

Soft Actor-Critic (SAC)

In reinforcement learning, environments can possess discrete or continuous state and action

spaces. The Soft Actor-Critic (SAC) algorithm emerges as a potent solution for scenarios

characterised by a continuous action space. SAC modifies the traditional RL objective function

to maximise the entropy of the policy rather than focusing solely on maximising the cumulative

reward.

A high entropy value signifies unpredictability when a variable is treated as a real number, and

each potential value of that variable has an equal likelihood of being chosen. The principle behind

emphasising entropy in the policy is to stimulate exploration. This is analogous to the strategy in

Deep Q-learning, where equal probabilities are assigned to actions having identical or nearly

equivalent Q-values, thus fostering exploration. The challenge lies in balancing exploration

(searching for new strategies) and exploitation (leveraging known strategies). SAC addresses

this by refraining from assigning overly high probabilities to actions.

SAC incorporates three distinct neural networks:

• State value function V , parameterised by ψ .
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• Soft Q-function Q, parameterised by θ .

• Policy function π , parameterised by Θ.

The training objectives for these networks are as follows:

State Value Function Training: SAC aims to minimise the error in the state value function

as depicted below:

JV (ψ) = Est∼D

[
1
2
(
Vψ (st)−Eat∼πφ

[
Qθ (st ,at)− logπφ (at | st)

])2
]
. (2.5)

where D is the replay buffer as a dataset that stores past experiences of the agent.

The gradient of the above equation guides the update to the parameters of the V function.

Q-network Training: The Q-network’s training focuses on minimising the error as described

in Eq. (2.6).

JQ(θ) = E(st ,at)∼D

[
1
2
(
Qθ (st ,at)− Q̂(st ,at)

)2
]

(2.6)

The Q-function parameters Q update rule is provided by Eq. (2.7).

∇̂θ JQ(θ) = ∇θ Qθ (at ,st)
(
Qθ (st ,at)− r (st ,at)− γVψ̄ (st+1)

)
. (2.7)

where ψ̄ indicates the target network.

Policy Network Training: The training of the policy network π is focused on minimising

the divergence as defined in Eq. (2.8).

Jπ(φ) = Est∼D

[
DKL

(
πφ (· | st)∥

exp(Qθ (st , ·))
Zθ (st)

)]
. (2.8)

where:

• Jπ(φ) is the objective function for the policy, with phi representing the policy parameters.

• Est∼D denotes the expected value over the states st , which are sampled from the dataset D.

• DKL is the Kullback-Leibler divergence, which is a measure of how one probability

distribution is different from a reference probability distribution.

• πφ (· | st) represents the policy, parameterised by φ , conditioned on the state st .

• exp(Qθ (st ,·))
Zθ (st)

is the softmax policy distribution. The action-value function Q, parameterised

by θ , is exponentiated and normalised by the partition function Zθ to form a valid proba-

bility distribution over actions.
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To facilitate backpropagation and to update the policy network parameters, Haarnoja et al.

[2018] employed the reparameterisation trick. This approach ensures that policy sampling

remains a differentiable process. The parameterised policy is defined in Eq. (2.9).

at = fφ (εt ;st) . (2.9)

Deep Deterministic Policy Gradient (DDPG)

Lillicrap et al. [2015] represents the deep deterministic policy gradients, also known as DDPG.

Lillicrap et al. [2015] explains that DDPG uses four neural networks:

• A Q-network θ Q.

• A Deterministic policy function θ µ .

• A target Q-network θ Q′ .

• A target policy network θ µ ′ .

Both policy network and Q-network are similar to the A2C network; however, in DDPG,

states are directly mapped to actions by the Actor, whereas in A2C, the probability distribu-

tion is used across a discrete action space [Lillicrap et al., 2015]. Like DQN, the original

network (Q-network) gets copied by the target network with a time delay, improving learning

stability. Methods without the target network are prone to divergence; the update functions are

interdependent with the network’s calculated values.

The DDPG process can be broken down into:

• Experience replay.

• Actor and Critic network updates.

• Target network updates.

• Exploration.

It starts with initialising all networks, including the actor, critic, and target networks. A replay

buffer is used to sample the experience; the sampled experience is then used to update the

network parameters. For each trajectory roll-out, the DDPG’s target policy network and target
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value network calculate the next state Q-value demonstrated in Eq. (2.10), which is different

from the Bellman equation shown in Eq. (2.11).

Loss =
1
N ∑

i

(
yi−Q

(
si,ai | θ Q

))2
, (2.10)

yi = ri + γQ′
(

si+1,µ
′
(

si+1 | θ µ ′
)
| θ Q′

)
. (2.11)

The calculated next-state Q-values are then used to minimise the error; the error is the mean

squared loss shown in Eq. (2.10). The policy function is set to maximise the expected return, the

off-policy or on-policy type of the algorithm directly affects how the policy is updated, and the

mean of the sum of gradients used for the off-policy algorithm is shown below:

∇θ µJ(θ)≈ 1
N ∑

i

[
∇aQ

(
s,a | θ Q

)∣∣∣
s=si,a=µ(si)

∇θ µ µ (s | θ µ)

∣∣∣∣
s=si

]
. (2.12)

Lastly, the target network update uses a soft copy or update to track the learned networks

shown in Eq. (2.13) [Lillicrap et al., 2015].

θ
Q′ ← τθ

Q +(1− τ)θ Q′,

θ
µ ′ ← τθ

µ +(1− τ)θ µ ′,

where τ ≪ 1

(2.13)

Twin Delayed DDPG (TD3)

TD3 is a variation of DDPG that is off-policy and can only be used on continuous action space.

DDPG’s main problem is an overestimation, where the Q-function, after a number of iterations,

starts to overestimate the Q-values. Therefore, TD3 is used to tackle this problem of policy

breaking [Fujimoto et al., 2018]. TD3 itself has three distinctive features which are:

• Clipped Double-Q learning, which uses two Q-functions.

• “Delayed policy update” in which policy and the target network are updated with a delay.

• Target policy smoothing by adding noise to the target action, avoiding exploitation.

Proximal Policy Optimisation (PPO)

Proximal Policy Optimisation (PPO) [Schulman et al., 2017] is a policy gradient method with

recent breakthroughs in using DNN for control. Commonly, it is known to be hard to get good
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results using policy gradients; the space size and the step size are the sensitive variables that

need to be considered before using the policy gradients.

Solutions such as Trust Region Policy Optimisation (TRPO) [Schulman et al., 2015] and

Actor-Critic with Experience Replay (ACER) [Wang et al., 2016] are far more complicated than

PPO, and the complication originates from their limited compatibility with auxiliary losses or

algorithms that share parameters between the value and policy function. However, PPO is easy

to implement, and sample complexity is possible. One of the main features of the PPO is that

it ensures the deviation from the previous policy is small while it minimises the cost function

[Schulman et al., 2017].

Schulman et al. [2017] explains the motivation behind PPO was to implement an algorithm

to have data efficiency and reliable performance as TRPO [Schulman et al., 2015]. The TRPO

uses the maximisation of the surrogate objective shown in Eq. (2.14):

LCPI(θ) = max
θ

Êt

[
πθ (at |st)

πθold(at |st)
Ât

]
, (2.14)

where:

• LCPI(θ): The Conservative Policy Iteration objective function as a function of policy

parameters θ .

• Êt : An empirical expectation over the time steps, indicating an average over a finite batch

of data.

• πθ (at |st): The probability of taking action at in state st under the policy parameterised by

θ .

• πθold(at |st): The probability of taking action at in state st under the old policy, before the

update, parameterised by θold.

• Ât : An estimate of the advantage function at time t, representing the expected improvement

of taking action at in state st over the average action.

• rt(θ): The probability ratio πθ (at |st)
πθold(at |st)

, reflecting how the policy’s probability of taking

action at in state st has changed after the update.

In Eq. (2.14), rt(θ) is the probability ratio. However, PPO aims to penalise policy changes

that move away from the probability ratio [Schulman et al., 2017]. Therefore, the LCPI(θ) causes
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large policy updates in conservative policy iteration where the JCLIP(θ) shown in Eq. (2.15)

modifies the surrogate objective where it removes the incentive for moving rt outside of the

motivation objective [Schulman et al., 2017].

JCLIP(θ) = Et
[
min

(
rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε) Ât

)]
. (2.15)

where ε is a small positive constant used in the clipping function to define the range [1−ε,1+ε].

2.2 Environment Considerations for Reinforcement Learning

Research

The arena of reinforcement learning research is vast, often interplaying with various computa-

tional engines to train and evaluate agents. The choice of an engine, be it a game platform, a

toolkit, or a specialised environment, plays a pivotal role in the overall efficacy of the research.

Engines provide the foundation for agent interactions and shape the quality of feedback, the

backbone of reinforcement learning. This section delves deep into the intricacies of potential

engines for the project, weighing their strengths, weaknesses, and suitability for specific tasks.

RL algorithms can be broadly classified into two categories: model-free and model-based

algorithms.

Model-Free vs. Model-Based Algorithms

Model-free algorithms are defined as those that do not rely on explicit knowledge of the envi-

ronment functions which govern state transitions and deliver rewards. Even if such algorithms

may contain instances of these environment functions, their design primarily facilitates the

representation of an agent exploring its environment. Based solely on observations, the agent can

infer received costs or state transitions without the need for direct knowledge of the underlying

functions [Pong et al., 2018].

In contrast, a model-based algorithm necessitates explicit knowledge of the model and cost

functions. Some model-based algorithms explicitly use the derivatives of the model and cost

functions, evident, and the derivatives are not deducible from singular observations by the agent

[Sun et al., 2019].
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This distinction defines what differentiates a model-free algorithm from a model-based

one—the ensuing subsections detail how both algorithms are used within ADPRL and the

researchers that employ them.

Model-Based RL

Model-based RL, as described by Kaelbling et al. [1996], is distinct from the basic classification

of an algorithm being model-based. It is defined as “Learn a model, and use it to derive a

controller”, sometimes referred to as “planning in RL” or “indirect RL” [Sutton et al., 1998,

Chapter 9].

Using neural networks within this approach involves a supervised learning method to under-

stand the model and cost functions. The objective is to converge closely to the deterministic

expectations of the target functions. These functions can be dissected into deterministic and

noise aspects, with the latter ideally converging to an expectation of zero.

The advantage of model-based RL, as outlined by Sutton [1988], lies in its efficient use of

experience. This leads to a refined policy developed with fewer interactions with the environment.

Nonetheless, a potential pitfall is that if the model is imperfectly learned, optimisation can

inadvertently adhere to this flawed model.

Highlighting a practical merit of model-based RL: consider a robotic aerial vehicle learning

primarily from the negative reinforcement of crashes. It is vastly preferable for these mishaps

to transpire in a simulated environment rather than in reality. Furthermore, several simulated

trajectories can be analysed in the time it takes for a real robot to complete a single trajectory.

This efficiency underscores the advantages of model-based methodologies over their model-free

counterparts.

2.2.1 Differences in Environmental Dynamics and Observability

Understanding the nuances between different types of environments is crucial for designing and

evaluating intelligent systems. This subsection delves into the distinctions between partially

observable and fully observable environments and between dynamic and static environments,

highlighting their implications for agent behaviour and decision-making processes.
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Partially Observable vs. Fully Observable Environments

Partially Observable Environments In partially observable environments, agents cannot access

complete state information. Such limitations can stem from imperfect sensors, occlusions,

or the intrinsic complexity of the environment. Agents under these conditions must employ

sophisticated strategies, including maintaining internal state representations or using historical

data to inform their decisions.

Fully Observable Environments Conversely, fully observable environments always provide

agents complete access to state information. This transparency simplifies the decision-making

process, as agents can make more informed choices based on the immediate observation of their

surroundings and the consequences of their actions.

Partially Observable State On the other hand, a partially observable state refers to the segment

of the environment’s state that an agent can perceive or has information about at a particular

moment. It highlights the agent’s immediate perspective or understanding of the environment,

which is constrained by the limitations of its sensory apparatus or the information made available

to it. This concept emphasises the granularity of what is directly knowable by the agent versus

what must be inferred or estimated.

Key Differences The key difference between these concepts lies in their scope and focus. While

a partially observable environment characterises the general condition of observability within

the environment, a partially observable state refers to the specific elements of the environment’s

state that are accessible to the agent at any time. This distinction is crucial for agent design,

as it affects how agents process information, make decisions, and plan actions based on the

knowledge they can acquire about their environment.

Dynamic vs. Static Environments

Dynamic Environments Dynamic environments are characterised by their capacity to change

over time, often independently of the agent’s actions. Such environments pose significant

challenges, necessitating continuous monitoring and adaptation from the agent to effectively

achieve its goals.
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Static Environments In contrast, static environments remain constant unless acted upon by the

agent. This stability allows for more straightforward planning and decision-making, as agents

can operate under the assumption that the environment will not change unexpectedly between

actions.

Conclusion: The differentiation between partially and fully observable environments, along-

side the dynamic versus static nature of environments, forms a foundational concept in artificial

intelligence and robotics. These environmental characteristics profoundly influence agents’

strategies and effectiveness, making their understanding essential for designing robust and

adaptive intelligent systems.

This thesis adopts a dynamic environment as a testing ground to challenge the agents’ adapt-

ability and decision-making processes under uncertainty. Dynamic environments, characterised

by their ever-changing nature, present a realistic and rigorous setting for evaluating the efficacy

of the proposed Memory-Based Backpropagation Through Time (MBPTT) algorithm. In such

environments, agents are continually faced with new scenarios that require the ability to quickly

adapt and make decisions based on incomplete and evolving information. This complexity

mirrors real-world situations more closely than static environments, making it an ideal choice

for this research.

In addition to the challenges posed by dynamic environments, this thesis specifically fo-

cuses on the complexity introduced by partially observable states. A partially observable state,

where agents have limited access to the environment’s full state information, necessitates the

development of sophisticated strategies for effective decision-making. This limitation simulates

conditions where sensory data are restricted, or agents must operate with incomplete knowledge

of their surroundings, a common scenario in many real-world applications.

The integration of memory mechanisms into the RL and ADP paradigms, as facilitated by

the MBPTT algorithm, addresses these challenges head-on. By enabling agents to remember

and leverage past experiences, the algorithm significantly enhances their ability to operate in

environments where full observability cannot be guaranteed, and conditions change dynamically.

This approach allows for a nuanced understanding of the environment over time, fostering a level

of adaptability and strategic planning that traditional RL algorithms struggle to achieve.

The decision to use a dynamic environment to challenge the agents with a partially observable

state underscores the thesis’s commitment to advancing the field of artificial intelligence. It

reflects a deliberate move towards creating more robust, flexible, and intelligent systems capable

of navigating the complexities of real-world environments. Through this rigorous testing ground,
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the thesis demonstrates the potential of memory-augmented learning algorithms to revolutionise

how agents learn, adapt, and make decisions in uncertain and ever-changing conditions.

2.2.2 Tackling Partially Observable Environments

Navigating the intricacies of partially observable environments has historically necessitated

agents to maintain a belief state—a probability distribution over potential states—which updates

with each received observation, reward, and executed action. Foundational insights into these

concepts were provided by seminal researchers such as Littman et al. [1995].

In non-stationary environments, Lane et al. [2007] argued for exploiting the environment’s

topology to facilitate the agent’s adaptation, critiquing the conventional use of atomic state-

space representations in classical reinforcement learning (RL) algorithms. They proposed

envelope-based navigation to leverage spatial characteristics and predict likely encounter lo-

cations, effectively focusing on these areas while excluding less relevant ones. However, this

approach faced challenges in generalisation due to computational demands, as noted by Finney

et al. [2013].

Classical RL’s limitations, particularly when interfacing with atomic state-space repre-

sentations in dynamic goals settings, prompted Lane et al. [2007] to advocate for relational

reinforcement learning, introducing “pseudo-relational” learning methods. This approach aimed

to mitigate the pitfalls of partial observability inherent in Markov Decision Processes (MDPs)

that rely heavily on robust native topology.

The challenge of atomic state representation, which binds MDPs closely to specific policies,

complicates the translation between unique state IDs across different MDPs. While relational

representations offer a potential solution, Lane et al. [2007] used a restricted form of this rep-

resentation in their research. Addressing domains where agents must map a history of partial

observations to actions, Partially Observable Markov Decision Processes (POMDPs) offer a

sophisticated approach. A significant advancement in training POMDP policies came through

Recurrent Neural Networks (RNNs), as discussed by Wierstra et al. [2007] and Wierstra et al.

[2010]. The latter introduced the Recurrent Policy Gradient (RPG) algorithm for learning

memory-based policies, leveraging RNNs to back-propagate estimated return-weighted “eligibil-

ities” through time. This approach demonstrated superior performance compared to other RL

algorithms in game-like benchmarks.

Building on this, Hausknecht and Stone [2015] proposed the Deep Recurrent Q-Network
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(DRQN), incorporating Long Short Term Memory (LSTM) with a DQN to address POMDPs.

They evaluated this approach in flickering Atari domains, observing that RNNs significantly

improve performance in scenarios with partial observations.

Wierstra et al. [2010] and Hausknecht and Stone [2015]’s findings underscore the efficacy of

RNNs in managing partial state observations, suggesting that simply stacking observations could

yield similar performance under certain conditions. This revelation aligns with the exploration

of BPTT within this thesis, emphasising its potential to enhance RL strategies for partially

observable environments. Implications for BPTT Comparison: The success of RPG and

DRQN in navigating partially observable environments underscores the relevance of exploring

BPTT and other memory-augmented learning methods within this thesis. The comparative

analysis with BPTT aims to delve into how memory mechanisms, integral to BPTT, can further

advance the field of RL, particularly in complex, dynamic settings where traditional methods face

limitations. This section sets the stage for a comprehensive discussion on the integration of BPTT

in tackling the challenges posed by partially observable environments, highlighting its potential

to contribute novel insights and solutions in advanced reinforcement learning techniques.

2.2.3 Standardisation and Differentiability: Key Pillars in Modern Rein-

forcement Learning

The evolution of Reinforcement Learning (RL) has spotlighted two foundational concepts critical

to its advancement: standardisation and differentiability. Standardisation facilitates a unified

approach across diverse RL research and applications, promoting consistency in methodologies,

techniques, and terminologies. This uniformity ensures the replicability, comparability, and

scalability of research findings and practical solutions. Conversely, differentiability has become

paramount, particularly for integrating deep learning within RL frameworks. The ability to apply

gradient-based optimisation methods hinges on the differentiability of functions and models,

enabling efficient backpropagation processes that enhance agent performance. Together, these

principles underscore the ongoing refinement and efficiency of RL developments.

Challenges and Solutions in BPTT Implementation:

One of the primary hurdles in applying Backpropagation Through Time (BPTT) within RL

is the necessity for a differentiable environment, as noted by Fairbank et al. [2014a]. While

simulation engines such as those developed by Beattie et al. [2016] and Tassa et al. [2018]

represent significant advancements, their operators may not always align with the differentiability
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requirements of standardised research environments. A practical approach to circumvent this

challenge involves creating a differentiable environment that closely replicates the dynamics of

conventional research setups. An exemplar of this solution is the adaptation of the “Cartpole”

physics to a simplified, differentiable form, as illustrated by Beattie et al. [2016].

Implications for Reinforcement Learning Research:

The emphasis on standardisation and differentiability within modern RL underscores the

discipline’s progression towards more sophisticated and generalisable methodologies. For BPTT,

navigating the challenge of differentiability enhances its applicability across various settings and

exemplifies the intricate balance between theoretical innovation and practical implementation.

This thesis explores the intersection of BPTT with the core principles of standardisation and

differentiability, aiming to contribute to the broader discourse on refining RL techniques for

complex, dynamic environments.

Through this exploration, the thesis seeks to highlight the pivotal role of these concepts in

the evolution of RL, particularly their impact on the development and application of advanced

algorithms like BPTT. The subsequent discussions will delve into the technical intricacies

of ensuring differentiability within RL models and the strategic approaches to maintaining

standardisation across research and application domains, setting the stage for future innovations

in the field.

2.3 Deep Reinforcement Learning: Challenges and Evolution

The advent of Deep Reinforcement Learning (DRL) marked a revolutionary shift in the way

agents learn and make decisions, bridging the gap between high-capacity neural networks and

reinforcement learning paradigms. DRL uses deep neural networks to approximate previously

challenging or infeasible functions with classical methods, enabling agents to process high-

dimensional sensory data and learn intricate policies. However, as with any rapidly advancing

field, DRL brought challenges. These range from stability issues in training due to the non-

stationary nature of data to the problem of exploration in vast state spaces. Additionally, the

complexity of neural networks introduced nuances in convergence, optimisation, and generali-

sation. This section aims to trace DRL’s evolutionary trajectory, highlighting its monumental

achievements and the hurdles it faced. This section delves into the seminal works, contemporary

solutions, and ongoing research to refine the DRL paradigm.
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2.3.1 Addressing Deep Reinforcement Learning Challenges in High-Dimensional

Sensory Environments

One of the most persistent challenges in reinforcement learning, learning policies directly from

high-dimensional sensory input, is addressed by Mnih et al. [2013].

Deep learning has advanced the state of computer vision by extracting high-level features

from raw sensory data, as indicated by Krizhevsky et al. [2012], Sermanet et al. [2013], Mnih

[2013]. Similarly, breakthroughs in speech recognition have been marked in studies done by Dahl

et al. [2011], Graves et al. [2013]. These works used a variety of neural network architectures

in supervised and unsupervised settings, including but not limited to the Boltzmann machine

[Hinton, 2007], convolutional networks, multi-layer perceptrons, and recurrent neural networks.

In particular, the works of Krizhevsky et al. [2012], Sermanet et al. [2013], Mnih [2013] suggest

deep learning’s potential in both supervised and unsupervised domains. Building on this, Mnih

et al. [2013] theorised the benefits of these architectures in extracting high-dimensional sensory

data for reinforcement learning.

In contrast to reinforcement learning, many successful deep learning applications leverage

vast amounts of hand-labelled training data. However, as Sutton and Barto [2018] elucidates,

reinforcement learning primarily learns from scalar reward feedback, which is often noisy, sparse,

and delayed.

In supervised learning, the association between inputs and targets is more immediate. The

only delays are in reinforcement learning, which fluctuates based on environmental configurations

and underlying logic. While Caruana and Niculescu-Mizil [2006] establishes that data samples

in supervised learning are independent, Sutton and Barto [2018] reveals that environmental

interactions lead to trajectories of events where each is contingent on its predecessor. This chain

of highly correlated states can disrupt deep learning processes. Mnih et al. [2013] notes that this

is especially problematic when an agent adopts new behaviours, leading to challenges in deep

learning frameworks typically suited for fixed data distributions.

Mnih et al. [2013]’s primary approach to address these complications involves deploying

convolutional networks, mirroring other works by Jaderberg et al. [2016a], which use convo-

lutional neural networks combined with auxiliary prediction techniques. Their skewed replay

buffer, for instance, is adept at forward-predicting rewards for unobserved steps.

In their work, an unsupervised reinforcement and auxiliary learning agent was developed.

This agent, powered by a convolutional neural network, interprets pixel data, subsequently
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processed by a Long short-term memory [Hochreiter and Schmidhuber, 1996] (LSTM) network

to dictate the agent’s motions. Various incentives, like wall images or 3D apple-like objectives,

guide the agent to apply pixel control on data from sensory observations [Jaderberg et al., 2016a].

Mnih et al. [2013] highlights that while deep learning’s prowess is evident in many domains,

its efficacy dwindles when deriving control policies from raw video feeds in intricate RL settings.

To surmount this, they employed a modified Q-learning [Christopher, 1992] algorithm and

updated weights via stochastic gradient descent. Emulating techniques from Jaderberg et al.

[2016a]’s work, an experience replay mechanism was instituted to manage correlated data and

shifting distributions. For practical evaluation, Mnih et al. [2013] used an Atari game framework

to implement and test their solutions.

2.3.2 Overcoming Catastrophic Forgetting By Continual RL

Catastrophic forgetting is a phenomenon where newly acquired knowledge can abruptly overwrite

previously learned information. As noted by Kaplanis et al. [2018], one potential culprit of this

occurrence is an intense reinforced reward shock or noise. Neural network parameters have

scalar values, distinguishing them from brain biochemical models.

A synaptic model incorporating this biological intricacy in tabular and deep reinforcement

learning has been demonstrated by Benna and Fusi [2016]. Further expanding on this concept,

Kaplanis et al. [2018] contends that merging such biological complexity with reinforcement

learning can potentially mitigate the issue of catastrophic forgetting across multiple timescales

substantially. Their work posits that continuous learning might diminish the dependence on expe-

rience replay databases, addressing within-task forgetting. They argue that “the incorporation of

different timescales of plasticity can correspondingly improve behavioural memory over distinct

timescales” [Kaplanis et al., 2018].

To validate these ideas, Kaplanis et al. [2018] designed three experimental setups. The

initial experiment investigated the feasibility of continual reinforcement learning in a simplified

grid-world environment. For this purpose, they implemented the model designed by Benna and

Fusi [2016] on tabular Q-values. The experiment involved tasks determining the goal’s location

within two predefined areas. Constraints like a maximum step count and whether the agent

reached its goal were set to dictate the episode’s termination. The goal’s location was periodically

adjusted every 10,000 episodes to foster continuous learning in the agent. Results revealed that

the method derived from Benna and Fusi [2016]’s work allowed for more rapid adaptation.
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Building on this, a subsequent experiment applied Benna and Fusi [2016]’s approach to deep RL

agents. Once again, agents leveraging Benna and Fusi [2016]’s methodology exhibited a marked

acceleration in learning and adaptability post-training.

2.3.3 A multi-objective deep reinforcement learning framework

Nguyen [2018] introduced a novel multi-objective reinforcement learning (MODRL) framework

that builds upon the principles of DQN. In developing this framework, Nguyen [2018] incorpo-

rated linear and non-linear techniques, encompassing single-policy and multi-policy strategies.

An essential claim of their research is the system’s capability to converge effectively toward

optimal Pareto solutions.

To substantiate their approach, Nguyen [2018] contrasted tabular Q-learning with deep

reinforcement learning. They emphasised that while tabular Q-learning demands substantial

memory and becomes inefficient and impractical in scenarios with large state spaces, deep

reinforcement learning primarily uses memory for node and network storage. By comparison, in

tabular Q-learning, the Q-table predominantly occupies the memory.

In settings with multiple objectives, deep reinforcement learning can often inadvertently pri-

oritise one objective at the expense of others, causing significant weight shifts that hinder solving

for secondary objectives. Addressing this challenge, Multi-Objective Reinforcement Learning

(MORL) [Hayes et al., 2021] was developed, allowing for the simultaneous consideration of

multiple objectives. This is facilitated by feeding MORL with non-scalar reward types.

However, Nguyen [2018] identified that MORL might experience conflicts among its ob-

jective layers. To mitigate this, they proposed the MODRL framework. Their approach entails

“learning a single-policy based on a linear scalar of the objective using a fixed set of weights”

[Nguyen, 2018].

2.3.4 Reinforcement Learning in Gaming: A Retrospective

Over the past few decades, RL has emerged as a powerful tool for understanding and optimising

decision-making processes. The gaming industry, characterised by its interactive and dynamic

environments, provides an ideal testbed for RL algorithms. From mastering board games like

Backgammon to navigating the complex environments of video games such as Atari, RL has

showcased its prowess and adaptability. This retrospective delves deep into the evolution,

challenges, advancements, and practical applications of reinforcement learning in gaming.
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Evolution of Reinforcement Learning in Game Play

Similar to Mnih [2013], Mnih et al. [2013]’s work, Tesauro [1995] shows one of the famous

reinforcement learning success stories where the algorithm was able to learn the backgammon

playing the program from scratch by just playing it alone. However, Mnih et al. [2013] claims

that the earlier performance and changing the environment setting of reinforcement learning have

made the TD-gammon underperform. It was widely believed that TD-Gammon was a particular

case for the game setting backgammon.

Moreover, Mnih et al. [2013] believes that the dice roll has helped the agent in exploring the

more expansive state space; moreover, Pollack and Blair [1997] claimed that the value function

of the backgammon environment was implemented and intended to be smooth, which caused the

TD-gammon to perform better.

Practical Applications: Atari Game Experiments

Mnih et al. [2013]’s experiment was on seven different Atari games where the same network

architecture was used to learn and work with this variety of games without incorporating game-

specific information. Combining stochastic mini-batch updates with experience replay has

resulted in state-of-the-art results in six of the seven games introduced by Mnih et al. [2013]

with no adjustments in hyper-parameters for each game.

2.3.5 Deep Reinforcement Learning Across Multiple Tasks

When discussing multi-task deep reinforcement learning, a prevailing assumption is that an

agent can learn one objective and apply it to multiple tasks using a single learning algorithm.

However, as posited by Hessel et al. [2018], while the algorithm can be general enough for

learning individual tasks, solutions tend to be specific. Balancing the needs of concurrent tasks

becomes critical significantly when resources are constrained.

As noted by Hessel et al. [2018], issues arise when specific tasks overshadow others, leading

the agent to prioritise one task over the others. A primary cause is a disparity in reward

distribution among tasks. To counter this, Hessel et al. [2018] recommends an automated

adaptation of each task’s contribution to the agent’s updates.
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Learning in Discrete and Continuous Environments

Deep reinforcement learning has been effectively applied in relatively simple environments like

Go and Chess, as evidenced by Silver et al. [2016, 2017]. Yet, these successes were primarily

within discrete space environments. When transitioning to continuous control tasks, notable

works include those by Mnih et al. [2015, 2016], Schulman et al. [2015, 2017], Hessel et al.

[2018]. However, a standard limitation, as highlighted by Hessel et al. [2018], is the emphasis

on mastering individual tasks, necessitating the retraining of agents for different tasks.

Strategies for Enhanced Multi-Task Learning

Various authors have ventured into multi-task control in reinforcement learning, bringing forth

novel strategies [Yang et al., 2017]. Notably, the strategy of distilling task-specific expertise

into a shared model has been explored, where an agent is trained over diverse tasks and later

combined to be responsive across multiple objectives [Parisotto et al., 2015]. Moreover, other

techniques, like the off-policy learning of many predictions about the same stream of experience,

have been proposed by authors such as Schmidhuber [1990], Pilarski et al. [2011], Jaderberg

et al. [2016b]. Additionally, parallel learning strategies, as presented by Sharma and Ravindran

[2017], have caught the attention of researchers like Hessel et al. [2018], mainly due to the

potential for improved performance across various tasks.

Multi-Agent Reinforcement Learning (MARL)

Beyond the multi-task challenge, an agent often interacts with other agents in real-world scenar-

ios, which the same or different algorithms might drive. This interplay introduces complexities,

mainly when agents operate in a shared environment. The Independent Reinforcement Learning

(InRL) [Tan, 1993] paradigm treats an agent’s experiences as part of its inherently non-stationary

environment. The “joint-policy correlation” metric, as introduced by Lanctot et al. [2017], sheds

light on the inherent difficulties of policy generalisation across agents.

Reinforcement learning thrives on repetition, where each iteration seeks to refine an agent’s

policies through feedback from the environment [Sutton, 1988]. In MARL, multiple agents

concurrently learn and interact within a shared environment [Lanctot et al., 2017, Shoham et al.,

2007, Busoniu et al., 2008]. The environment dictates the agents’ relationships: competitive, as

seen in Go [Silver et al., 2016] and Poker [Moravčı́k et al., 2017, Yakovenko et al., 2016, Heinrich
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et al., 2015], or cooperative, as in studies presented by Foerster et al. [2016], Catacora Ocana

et al. [2019].

Advancements in Multi-Agent Reinforcement Learning

In pursuit of enhancing MARL, various strategies have been introduced. Classic methods involve

approximating additional information, such as joint values, as employed by Greenwald et al.

[2003], Littman [1994], Kuhn and Tucker [1953], Claus and Boutilier [1998]. While some

improvements stem from adjusting update frequencies [Bowling and Veloso, 2002], significant

strides have been made in strategies that dynamically respond to other agent actions online

[Littman, 2001, Kleiman-Weiner et al., 2016]. Nevertheless, most solutions focus on repeated

matrix games and cases with full observability. Tackling partially observable environments,

Moravčı́k et al. [2017] introduced the poker AI (“DeepStack”).

Lanctot et al. [2017] has advanced the discourse by introducing a novel metric to quantify

policy correlation effects and the subsequent severity of over-fitting. Applying this to partially

observable settings using deep reinforcement learning, Lanctot et al. [2017] showcased innovative

policy and strategy distributions devoid of gradient sharing among agents. Their experiments

effectively diminished the challenges faced by independent reinforcement learners, fostering a

setting conducive to both cooperation and competition.

2.4 Memory and Adaptability in Reinforcement Learning

The intertwining roles of memory and adaptability have become defining features in the evolving

landscape of reinforcement learning. Historically, agents primarily relied on immediate feedback,

navigating static environments and optimising for singular tasks. However, as real-world

scenarios grew in complexity and unpredictability, it became evident that agents needed more

than just current perceptions; they required a mechanism to remember, reflect upon, and leverage

past experiences. This is where memory steps in, providing agents with a rich tapestry of past

interactions and aiding in decision-making and strategy formulation. Coupled with adaptability,

memory allows agents to seamlessly adjust to changing environments, transitioning between

tasks and effectively capitalising on cumulative learnings. This potent combination empowers

agents to tackle unforeseen challenges with resilience and agility. This section illuminates

the crucial interplay between memory and adaptability in reinforcement learning, charting the
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evolution, significance, and methodologies that epitomise their combined strength in shaping

robust RL agents.

2.4.1 Implications for This Thesis

The exploration of memory and adaptability in reinforcement learning not only forms the

theoretical foundation of this thesis but also directly informs its practical contributions. The

integration of memory mechanisms, particularly through the use of Backpropagation Through

Time (BPTT), represents a pivotal area of investigation within this research. By examining

how memory enhances the ability of RL agents to leverage past experiences for future decision-

making, this thesis contributes to advancing the state of the art in RL methodologies.

Moreover, the emphasis on adaptability underscores the practical significance of developing

RL agents capable of navigating dynamic environments. The methodologies explored in this

thesis, including the application of BPTT and the examination of memory-augmented learning

algorithms, are directly aimed at enhancing agent adaptability. This focus aligns with the broader

objective of creating RL systems that can effectively transition between tasks, adjust to new

environments, and apply learned strategies to novel situations.

2.4.2 Relation to Memory-Augmented Learning

The investigation into memory-augmented learning algorithms, such as those incorporating

RNNs and LSTMs, serves as a cornerstone of this thesis. These algorithms exemplify the

critical role of memory in enabling RL agents to perform in complex, partially observable

environments. By detailing the implementation and evaluation of these algorithms, the thesis

showcases how memory mechanisms can significantly improve learning efficiency and decision-

making processes in RL agents.

Additionally, the adaptability facilitated by these memory mechanisms is demonstrated

through the agents’ ability to apply past learnings to new and changing task demands. This

adaptability is crucial for agents operating in real-world scenarios, where the ability to assimilate

new information and adjust strategies accordingly quickly is a key determinant of success.

2.4.3 Future Directions and Broader Impact

The findings and methodologies presented in this thesis have implications for the field of

reinforcement learning but also set the stage for future research. The demonstrated effectiveness
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of memory-augmented learning algorithms in enhancing adaptability and performance in RL

agents opens up new avenues for exploration, particularly in applications requiring sophisticated

decision-making under uncertainty.

Furthermore, the relationship between memory, adaptability, and agent performance eluci-

dated in this research contributes to a deeper understanding of how RL systems can be optimised

for various applications. From autonomous vehicles navigating dynamic environments to in-

telligent systems making strategic decisions in unpredictable market conditions, this thesis’s

principles of memory and adaptability offer valuable insights for developing advanced RL

solutions.

In conclusion, the exploration of memory and adaptability within the context of this thesis not

only highlights their intrinsic value to reinforcement learning but also emphasises their potential

to revolutionise how RL agents are designed and implemented. By advancing the integration of

memory mechanisms and fostering adaptability in RL systems, this research contributes to the

ongoing evolution of the field, paving the way for the development of more robust, efficient, and

intelligent learning agents.

2.4.4 Adaptability in Reinforcement Learning

In the dynamic and often unpredictable realm of Reinforcement Learning (RL), an agent’s ability

to adapt becomes a cornerstone for its success. Adaptability is not just about an agent’s capability

to learn; it’s about its resilience in changing environments, flexibility in shifting scenarios, and

agility in adjusting to new information. As RL models find applications in increasingly complex

and real-world settings, the demand for adaptability escalates. From fluctuating financial markets

to robots navigating ever-changing terrains, agents that can seamlessly adjust their strategies

are paramount. This section delves into the significance of adaptability in RL, exploring the

various methodologies, techniques, and advancements proposed to foster flexible and robust

learning mechanisms. This section journeys through memory-based approaches, meta-learning,

and the challenges and opportunities they present to ensure that RL agents remain competent

and versatile in their learning endeavours.

2.4.5 Usage of Memories to Adapt

The Semi-parametric Topological Memory (SPTM) introduced by Savinov et al. [2018] offers a

novel approach for agents navigating unfamiliar environments. It melds a non-parametric graph
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and a parametric deep network. Within this system, nodes in the graph symbolise environment

locations, while the parametric deep network operates in tandem with the graph, retrieving nodes

anchored to specific observations [Savinov et al., 2018]. Notably, this graph-based memory

eschews metric information storage, retaining only the connectivity of locations associated with

the nodes.

Savinov et al. [2018] delineates the SPTM’s role as a planner. Demonstrations in three-

dimensional settings showcase agents introduced to an unknown maze equipped solely with a

recording of a walkthrough. As the agent traverses the maze, it assimilates information, forging

an internal representation. This internal map aids in pinpointing goal locations. The memory

graph incorporates an exploration sequence offered to the agent, with an observation oTe and

its explored counterpart denoted as oe
Te

. A vertex, say vi, in the graph houses an observation

ovi = om
i . Two vertices in this graph are interconnected if:

• Their associated observations are proximate.

• They are chronologically sequential.

To optimise graph quality, Savinov et al. [2018] implemented shortcuts, preventing the

formation of inconsequential edges. Performance metrics indicate the SPTM agent’s superiority

over feed-forward NNs [Zell, 1994] in terms of efficacy.

Elucidating Savinov et al. [2018] methodology:

• Use a graph to capture location data within nodes.

• Provide the agent with a 5-minute maze walkthrough.

• Employ the SPTM system to direct points to another network for action determination.

• Subject current agent observations to localisation, invoking the k-nearest neighbours

technique in the vicinity of the prior localisation or applying it globally in case of failure.

This can be likened to maze folding, a tactic of folding the maze to discern what captivates

the agent.

• Post observation and localisation, the process segues into planning. Here, the Dijkstra

algorithm is deployed to discern the shortest path, leading to the final creation of the

memory graph.
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The Learning Classifier System (LCS) [Urbanowicz and Moore, 2009] and the XCS [Wilson,

1995] (a specific type of Learning Classifier System (LCS)) algorithm are two related techniques

in rule-based machine learning. Grounded in genetic algorithms and reinforcement learning,

LCS uses two main components: a population of compacts and classifiers, directing inputs to the

desired outputs [Zang et al., 2015]. Described as a “condition-action-payoff rule”, the classifier

system adapts to new and changing environments [Holland et al., 1975]. However, the XCS

focuses on prediction accuracy, distinguishing itself from the LCS, where fitness is based on the

prediction itself [Wilson and Goldberg, 1989].

According to Zang et al. [2015]’s study, XCS has addressed certain limitations of LCS

but still struggles with the absence of a memory mechanism. This restriction confines XCS

to optimise policy in a Markov environment, limiting its application in non-Markov settings

where complete environmental information is absent. Zang et al. [2015] resolves this issue by

enhancing XCS with a memory condition, integrating it with non-Markov property detection.

Experiments conducted with memory-enhanced XCS (XCSMD) [Zang et al., 2015] led to

innovative classifications, reducing search space complexity and improving efficiency. Despite

this advancement, the technique faced challenges with highly complex aliasing clones.

2.4.6 Deep RL with Successor Features

Zhang et al. [2017] introduced a deep reinforcement learning algorithm based on successor

features. The primary advantage of this algorithm, as outlined by the authors, is its ability to learn

from past experiences in navigational tasks and subsequently transfer this knowledge to newly

introduced challenges. Notably, after mastering the initial task, the algorithm exhibits a reduced

learning time for subsequent tasks and demonstrates adaptability in changing environments.

The successor representation is central to the proposed method, which effectively separates

the estimation of task-specific rewards from the prediction of expected feature occurrences under

certain policy dynamics. This separation positions successor feature-based RL as an optimal

choice for knowledge transfer across related tasks.

To validate their approach, Zhang et al. [2017] conducted an experiment where visual input

was provided to the Selective Federated Reinforcement Learning (SFRL) [Fu et al., 2023] model.

Concurrently, a supervised learning approach was employed to train a Convolutional Neural

Network (CNN) [Venkatesan and Li, 2017] to predict actions determined by an A∗ planner. Their

network architecture resembles the CNN used in the SFRL model, with a notable distinction at
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the output level. In their design, the output from 512 units feeds into a concluding softmax layer.

The experimental setup involved a robot tasked with navigation using the proposed method,

equipped only with raw sensory data for decision-making. The DQN approach was also evalu-

ated as a baseline for comparative analysis. In their conclusion, Zhang et al. [2017] affirmed

the capability of their algorithm to facilitate knowledge transfer across related tasks, thereby

promoting more efficient learning.

2.4.7 Meta-Learning

Meta-learning, a former informal notion of cognitive psychology also referred to as “learning

to learn”, was more recently developed into a formal notion of machine learning [Schaul and

Schmidhuber, 2010]. Schaul and Schmidhuber [2010] define meta-learning as learning how to

learn in the context of machine learning. Informally, a meta-learning algorithm alters a learning

algorithm or the learning process based on experience. The updated learner is more adept at

gaining knowledge from new experiences than the original learner.

Meta-learning is approached differently by different researchers. In a setup where a series of

different tasks with a shared underlying set of regularities, Thrun and Pratt [1998] state that the

rapid improvement of the agent’s performance in each new task can be identified as meta-learning.

At the architectural level, meta-learning is conceptualised as involving two learning systems: a

lower-level (or “inner”) system that learns quickly and is primarily responsible for adapting to

each new task and a higher-level (or “outer”) system that learns more slowly and works across

tasks to improve the lower-level system [Prokhorov et al., 2002, Younger et al., 2001].

Some researchers interpret meta-learning in a much stronger sense, requiring it specifically

to mean being able to replicate the adaptive weight processes that occur when training neural

networks. For example, Cotter and Conwell [1990]’s early work showed how fixed-weight

RNNs could approximate an adaptive-weight learning algorithm. They demonstrated this idea

by transforming a backward error propagation network into a fixed-weight system. Younger et al.

[1999] expanded upon this idea by using an RNN to store knowledge analogous to short-term

memory. This method allowed the neural network to learn dynamically, enabling learning to

occur continually as part of the net’s behaviour.

Younger et al. [2001] and Prokhorov et al. [2002] used the term meta-learning to describe

adaptive behaviour with fixed weights in RNNs. However, Lo and Bassu [2001] used alternative

terminology by referring to fixed-weight adaptive RNN behaviour as “accommodative” neural
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networks. This thesis uses the term “meta-learning” from the definitions by Younger et al. [2001],

Prokhorov et al. [2002].

Similarly to Thrun and Pratt [1998], Hochreiter et al. [2001] presented an RNN that was

trained on a series of interrelated tasks using standard backpropagation, where the network

received an auxiliary input indicating the target output for the preceding step.

Compared with Prokhorov et al. [2002], Hochreiter et al. [2001] focuses on the knowledge-

transfer mechanism using RNNs. They argued that using an RNN to represent a differentiable

version of a Turing machine was possible. Furthermore, they hypothesised that gradient-based

optimisation approaches could derive a learning algorithm from a random starting point.

Santoro et al. [2016] suggested that augmented-memory neural networks (MANNs) can

perform meta-learning in tasks that require short- and long-term memory. They used gradient

descent to learn an abstract method slowly to obtain valuable representations of raw data

(meta-representation). In addition, they incorporated an external memory module to bind never-

before-seen information rapidly. Their method was based on Neural Turing Machines [Graves

et al., 2014], architectures with augmented memory capacities. These architectures offer the

ability to encode and retrieve new information quickly.

The previously mentioned works on meta-learning (i.e. by Cotter and Conwell [1990],

Younger et al. [1999], Hochreiter et al. [2001], Prokhorov et al. [2002] and Santoro et al. [2016])

only addressed their algorithm’s usage in supervised learning.

One of the recent popular approaches to meta-learning in RL (known as “meta reinforcement

learning”) is made by Finn et al. [2017], Nichol and Schulman [2018] suggesting a method

at the validation time to learn an initialisation of the model-agnostic meta-learning (MAML)

[Finn et al., 2017] model. Finn et al. [2017] showed that MAML learns a model that can quickly

adapt with a single gradient update, which resulted in a few gradient steps to achieve a good

performance. However, the methods provided by Finn et al. [2017] and Nichol and Schulman

[2018] do not explicitly consider the necessity of exploring the initial policy. This problem is

addressed by Stadie et al. [2018], where they considered per-task sampling distributions as extra

information for exploration; exploration for model-agnostic meta-learning (E-MAML) typically

consists of a feed-forward policy. This method optimises the per-task sample distributions about

the anticipated future returns generated by the post-adaptation policy explicitly during adaptation.

Ortega et al. [2019] proposed a method to recast memory-based meta-learning within a

Bayesian framework [Strens, 2000]; this memory-based meta-learning translates the complex

problem of probabilistic sequential inference into a regression problem. According to Ortega et al.
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[2019], this is accomplished by amortising data that has been Bayes-filtered, with the adaptation

being implemented in the memory dynamics as a state-machine with adequate statistics.

2.4.8 Advanced Memory Models in Recurrent Neural Networks

In deep learning, the challenge of sequential data processing has led to the development of

various memory models designed to capture temporal dynamics and dependencies. Traditional

RNNs paved the way for these advancements, but they suffered from limitations, primarily

the vanishing gradient problem, which hindered their ability to model long-term dependencies.

Various advanced memory models have emerged over the years to overcome these challenges.

These models, equipped with specialised mechanisms, aim to retain information over extended

sequences, ensuring that both short-term and long-term patterns within the data are effectively

captured. This section delves into some of the most notable advanced memory models that

have significantly impacted the field, highlighting their unique architectures, functionalities, and

applications.

Full long short-term memory

Full long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1996] is a type of RNN

architecture introduced to address the problem of vanishing gradients in standard RNNs. LSTM is

designed to learn long-term dependencies by introducing memory blocks and gating mechanisms,

allowing the network to selectively retain or discard information over long sequences selectively.

Each LSTM cell contains a cell state, a hidden state, and three gating mechanisms: an input gate,

a forget gate, and an output gate.

The input gate determines which elements of the current input should be added to the cell

state, while the forget gate determines which parts of the previous cell state should be retained or

discarded. The output gate controls the flow of information from the cell state to the hidden state.

These gates are implemented using sigmoid activation functions, and the cell state is updated

using a hyperbolic tangent activation function.
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it = σ(Wixxt +Wihht−1 +bi), (2.16)

ft = σ(Wf xxt +Wf hht−1 +b f ), (2.17)

ot = σ(Woxxt +Wohht−1 +bo), (2.18)

c̃t = tanh(Wcxxt +Wchht−1 +bc), (2.19)

ct = ft⊙ ct−1 + it⊙ c̃t , (2.20)

ht+1 = ot⊙ tanh(ct). (2.21)

The equations governing the behaviour of an LSTM cell are shown above, where it , ft , and

ot represent the input, forget, and output gates, respectively. c̃t is the candidate cell state, ct is

the cell state, ht is the hidden state, xt is the input at time t, ht−1 is the hidden state at time t−1,

W and b are weight matrices and bias vectors to be learned during training, and σ and tanh are

the sigmoid and hyperbolic tangent activation functions, respectively.

The input gate and forget gate act as filters that selectively update the cell state, while the

output gate controls the flow of information from the cell state to the hidden state. By controlling

the flow of information, LSTM can selectively retain or discard information over long sequences,

making it practical for tasks involving long-term dependencies.

LSTM has been widely used in various applications, including speech recognition, natural

language processing, and image captioning. Its ability to learn and retain long-term dependencies

makes it an attractive option for tasks that involve sequential data.

Gated recurrent unit

Gated Recurrent Units (GRU) [Cho et al., 2014] is another RNN variant introduced to solve the

vanishing gradient problem. It is a simplified version of the LSTM but has proven effective in

many tasks. The GRU uses two gates, the reset gate and the update gate, which work together to

determine how much past information needs to be passed to the future. The GRU does not have

a cell state like the LSTM; it only has a hidden state.

The reset gate helps the model determine how much past information to forget, while the

update gate defines how much of the previous hidden state to keep. Combining these gates

allows the GRU to capture dependencies over different time scales.
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zt = σ(Wzxxt +Wzhht−1 +bz), (2.22)

rt = σ(Wrxxt +Wrhht−1 +br), (2.23)

h̃t = tanh(Whxxt +Whz(rt⊙ht−1)+bh), (2.24)

ht+1 = (1− zt)⊙ht−1 + zt⊙ h̃t . (2.25)

GRUs have been found to perform comparably to LSTMs in specific tasks but with the

advantage of being computationally cheaper due to the reduced number of parameters.

Content-adaptive recurrent unit

The Content-Adaptive Recurrent Unit (CARU) memory model [Chan et al., 2020b] is a recent

development in recurrent neural networks designed to combine the best features of both LSTM

and GRU models. The main advantage of CARU over the standard RNN architecture is the

ability to capture both short-term and long-term dependencies in sequential data. The model

achieves this through an update gate and a reset gate. The update gate controls the information

retained from the previous hidden state, while the reset gate controls the amount of information

to be reset.

The equations below that govern the behaviour of the CARU memory model consist of the

computation of the update gate zt and reset gate rt , the candidate hidden state h̃t , and the updated

hidden state ht . The update and reset gates are computed using sigmoid activation functions, and

the candidate hidden state is calculated using the hyperbolic tangent activation function. The final

hidden state is added as a weighted sum of the previous and candidate hidden states, controlled

by the update gate. Combining these components allows the CARU model to effectively capture

and retain relevant information over long sequences, making it a valuable tool for modelling

sequential data.

zt = σ(Wzxxt +Wzhht−1 +bz), (2.26)

rt = σ(Wrxxt +Wrhht−1 +br), (2.27)

h̃t = tanh(Whxxt +Whz(rt⊙ht−1)+bh) (2.28)

ht+1 = (1− zt)⊙ht−1 + zt⊙ h̃t . (2.29)
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2.5 Exploring Reinforcement Learning Platforms and En-

gines

The advancement of reinforcement learning (RL) hinges on the algorithms and strategies de-

ployed and significantly on the platforms and engines that support these computational processes.

With the maturation of RL, the development of robust, scalable, and user-friendly platforms

capable of accommodating a wide array of RL scenarios has become increasingly vital. These

platforms form the backbone of RL research, facilitating the development, training, and deploy-

ment of RL agents across diverse domains such as gaming, robotics, and financial forecasting.

2.5.1 Evaluation Criteria for RL Platforms and Engines

In assessing the suitability of RL platforms and engines for this thesis, particularly for BPTT in

complex neuro-control tasks, several key criteria were considered:

• Differentiability: Essential for leveraging gradient-based optimisation methods, particu-

larly in deep learning integration.

• Environment Complexity: Support for continuous and dynamic environments closely

mimicking real-world scenarios.

• Scalability and Performance: Capability to efficiently handle large-scale simulations and

parallel computations.

• Customisability: Flexibility to modify environments and integrate low-level physics for

detailed control simulations.

2.5.2 Selected Platforms and Engines

OpenAI Gym [Brockman et al., 2016]: Offers a comprehensive toolkit for RL research with a

wide range of environments and direct access to game physics, making it particularly suitable for

experiments involving BPTT. Its openness and flexibility for customisation align well with the

requirements of conducting granular-level neuro-control tasks.

DeepMind Lab [Beattie et al., 2016]: Provides a 3D game-like platform designed for AI

and ML research, focusing on pixel-to-action interactions. While it offers an intuitive API, its
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level of access may not fully meet the granular control needed for BPTT-based neuro-control

experimentation.

Brax [Freeman et al., 2021]: Emerges as a high-performance engine optimised for rigid

body simulations, built on JAX for enhanced parallelism and scalability. Its ability to simulate

thousands of environments concurrently and integrate with JAX-based RL algorithms presents a

compelling case for experiments requiring high computational efficiency and differentiability.

2.5.3 Comparative Analysis and Fit for Purpose

Upon comparing these platforms against the specific requirements of this thesis, several conclu-

sions can be drawn:

• OpenAI Gym stands out for its extensive environment library and the ability to customise

these for specific research needs, making it an ideal choice for BPTT applications in

neuro-control tasks.

• While DeepMind Lab offers rich interactive environments, its focus on pixel-level inter-

actions may limit its applicability for tasks requiring direct manipulation of environmental

physics at a more detailed level.

• Brax’s focus on performance and parallelism, supported by its foundation on JAX, makes

it a strong candidate for simulations requiring high computational efficiency. However, its

specific suitability would depend on the level of environmental complexity and control

granularity needed in the research.

2.5.4 Conclusion

The journey through various platforms and engines underscored the realisation that while existing

solutions offer substantial capabilities, they fell short of the specific requirements for this thesis.

This gap led to the development of custom physics environments tailored to the intricate demands

of employing Backpropagation Through Time (BPTT) in complex neuro-control tasks. The

creation of these environments represents a pivotal achievement of this research, allowing for

unprecedented control and specificity in simulating continuous and dynamic scenarios essential

for exploring BPTT.

This bespoke approach enabled differentiability and environment complexity that pre-

packaged solutions could not offer, facilitating granular-level manipulations and adjustments
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critical for the neuro-control experiments conducted. The custom environments were designed

to focus on scalability and performance, ensuring that the computational demands of deep RL,

coupled with the intricacies of BPTT, were adequately met.

While necessitating additional effort and resources, the decision to develop proprietary

environments underscores this thesis’s key contribution to the reinforcement learning field. It

highlights the importance of closely aligning the computational tools and frameworks with the

research objectives, especially in pioneering areas where off-the-shelf solutions may not suffice.

Future work stemming from this research will explore further optimisations of these custom

environments, potential open-sourcing to benefit the wider RL community, and the exploration

of integrating advanced computational techniques to enhance simulation efficiency and learning

outcomes. This thesis lays the groundwork for such endeavours, demonstrating the feasibility

and value of custom solutions in advancing the frontiers of reinforcement learning research.

2.6 Summary and Addressing the Gaps

This thesis revisits the fundamental paradigms of Deep Reinforcement Learning (DRL) and the

integration of memory mechanisms to tackle the inherent challenges of stability, exploration,

and adaptability in dynamic and partially observable environments. The literature review

highlights several key advancements in DRL yet reveals persistent gaps that impede the realisation

of fully adaptive and efficient learning agents. This thesis endeavours to bridge these gaps

by reintroducing a novel Backpropagation Through Time (BPTT) application within the RL

framework, offering new perspectives and methodologies for enhancing agent performance.

2.6.1 Reintroduction of BPTT in RL

• BPTT and RL Integration: Unlike traditional approaches, this thesis successfully reinte-

grates BPTT into RL, providing a robust framework for capturing temporal dependencies

and enhancing learning efficiency in dynamic scenarios. This strategic integration ad-

dresses the critical challenge of learning optimal policies in environments where the state

space evolves.
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2.6.2 Improvements in Dynamic and Partially Observable Environments

• Adapting to Partial Observability: By implementing memory mechanisms in conjunc-

tion with BPTT, the thesis demonstrates significant advancements in managing partially

observable states. This combination proves instrumental in improving the decision-making

capabilities of RL agents, enabling them to recall and use past experiences more effectively.

• Performance in Dynamic Environments: The empirical investigations presented in this

thesis showcase the enhanced adaptability and learning efficiency of the proposed MBPTT

framework. Tested in dynamic and complex environments, the memory-augmented BPTT

approach outperforms traditional RL algorithms, highlighting its potential to navigate the

intricacies of real-world applications.

2.6.3 Contributions to Enhancing RL Agent Performance

Integrating memory mechanisms with BPTT represents a pivotal shift in how agents learn and

adapt in environments characterised by uncertainty and change. This thesis not only reaffirms

the importance of temporal dependencies and memory in learning processes but also:

• Provides a methodological innovation in the form of the MBPTT algorithm, enhancing the

capacity of RL agents to learn from sequences of events and actions over time.

• Demonstrates through rigorous experimentation the superior performance of memory-

augmented agents in dealing with challenges posed by dynamic and partially observable

environments.

• Contributes to the broader field of artificial intelligence by offering a scalable and efficient

framework for future developments in agent learning and adaptability.

This thesis lays the groundwork for future research to develop more resilient, adaptive, and

intelligent learning systems by addressing the identified gaps in the literature and pushing the

boundaries of current methodologies.
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Chapter 3

Finding Eulerian Tours in Mazes Using a

Memory-Augmented Fixed Policy Function

This chapter explores a novel memory-augmented tabular Q-learning approach designed to

navigate mazes with dynamic exit locations. This scenario presents significant challenges to

traditional Q-learning algorithms. The primary contribution of this chapter is the development and

validation of a memory-augmented tabular Q-learning algorithm that enhances the adaptability

and efficiency of maze-solving agents without the computational complexity typically associated

with recurrent neural network (RNN) structures.

Maze navigation represents a fundamental problem in RL, offering a clear framework to

investigate the exploration-exploitation trade-off. Classical Q-learning, while powerful in many

respects, often falls short in environments where conditions within the maze change dynamically,

such as in the randomisation of exit locations. The inability of traditional Q-learning methods to

adapt their policies post-learning phase 1 limits their effectiveness in navigating through mazes

that require continuous adaptation and exploration of new paths.

Freezing Q-values marks the transition to the post-learning phase, where the Q-table remains

unchanged, and the agent’s policy becomes static. This condition implies that the agent no

longer updates its knowledge based on interactions with the environment, which can limit its

adaptability in dynamic settings. Unlike vanilla Q-learning approaches, where the policy’s

adaptability ceases once learning concludes, the memory-augmented strategy proposed here

1The “post-learning phase” in this context refers to the stage in tabular Q-learning when the learning process is
deemed complete, and the Q-values, which represent the expected rewards for taking certain actions in specific
states, no longer update. This phase signifies that the agent’s policy no longer adapts based on new information or
experiences.



Page 56

aims to maintain adaptability through an external memory mechanism. This allows the agent to

adjust its strategy based on stored experiences, even when the Q-values are frozen. It provides a

distinct advantage in environments where conditions can change unpredictably.

Motivated by the need to overcome these limitations, this research introduces a memory-

augmented Q-learning algorithm. This innovative approach integrates a memory mechanism

that allows the agent to remember and adapt to the environment’s dynamics, enabling efficient

backtracking and exploration of alternative routes. This memory augmentation is particularly

crucial in addressing the challenges posed by mazes with randomised exit positions, providing a

robust solution that does not rely on the complexities of RNNs.

The primary distinction between the proposed memory-augmented tabular Q-learning al-

gorithm and traditional (or vanilla) Q-learning lies in the former’s enhanced adaptability to

environmental changes. Once the learning phase concludes, vanilla Q-learning algorithms

typically lack mechanisms to adjust to new information. In contrast, the memory-augmented

approach incorporates an external memory that enables the agent to modify its behaviour based

on past experiences, effectively allowing for continuous adaptation. This capability is partic-

ularly advantageous in maze environments with dynamic exit locations, where the ability to

backtrack and explore new paths can significantly improve problem-solving efficiency. The

integration of a memory system thus represents a novel solution that transcends the limitations

of conventional Q-learning methods, highlighting the potential of memory augmentation in

expanding the applicability of reinforcement learning algorithms.

The development of the memory-augmented tabular Q-learning algorithm aligns with the

overarching theme of this thesis: enhancing the adaptability and decision-making capabilities of

RL agents in dynamic environments. By focusing on the maze navigation problem, this chapter

directly contributes to the thesis’s exploration of methods that improve agent performance in

settings characterised by uncertainty and change. The proposed algorithm exemplifies how

augmenting traditional RL approaches with memory mechanisms can significantly extend their

applicability and effectiveness, underscoring the potential of such innovations in broader RL

challenges.

Furthermore, the solution presented in this chapter addresses a critical aspect of RL research:

the ability of an agent to operate efficiently in environments where traditional models and

algorithms encounter limitations. By integrating a memory function within the Q-learning

framework, this research not only provides a novel approach to maze navigation but also

showcases the use of a tabular form of a tabular form of memory augmentation in enhancing RL
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agents’ flexibility and problem-solving capabilities.

In summary, this chapter significantly contributes to the field of reinforcement learning by

presenting a memory-augmented tabular Q-learning algorithm that successfully navigates mazes

with dynamic exit locations. This advancement not only solves a specific problem within the

domain of maze navigation but also offers insights and methodologies that apply to a wide

range of RL challenges, furthering the thesis’s goal of developing more adaptable and capable

reinforcement learning agents.

3.1 Advancements and Challenges in Memory-Based Learn-

ing Systems

Integrating memory-based learning systems with reinforcement learning (RL) marks a significant

advancement in the field, addressing the critical need for efficient information storage and

retrieval to enhance learning. With the emergence of Deep Reinforcement Learning (DRL), the

landscape of RL has expanded, bringing to light new challenges and opportunities, particularly

in complex and dynamic environments where conventional methods struggle.

3.1.1 Memory-Based Systems in Reinforcement Learning

Memory systems have become indispensable for navigating the complexities of RL environments.

They provide a mechanism for agents to recall past experiences, facilitating decision-making

processes that are more informed and adaptive. The significance of memory-based systems is

further highlighted in tasks that require a nuanced understanding of the environment, such as

maze navigation, where the ability to remember previously explored paths directly influences the

agent’s success.

• Nearest-Neighbor Searches: This strategy is pivotal for optimisation, allowing agents to

find the most relevant experiences in their memory, thereby guiding future actions more

effectively [Cayton, 2008].

• Space Decomposition Methods: By breaking down complex environments into simpler

sub-problems, these methods enable a more manageable exploration and exploitation

process [Alexopoulos, 1995].
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Figure 3.1: Visual representation of the mazes purposed for the experiment.
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• Hierarchical Clustering (HCA): Employing HCA allows for the organisation of expe-

riences in a way that reflects their hierarchical relationships, enhancing the efficiency of

information retrieval [Nielsen, 2016].

The approach detailed in this chapter leverages an external memory system, offering a

stark contrast to neural network-embedded memory systems. This distinction is crucial as it

underscores the adaptability and simplicity of the proposed method, making it a viable solution

even in scenarios where computational resources are limited or where the intricacies of neural

networks pose a challenge.

3.1.2 Deep Reinforcement Learning in Partially Observable Environments

The advent of DRL has transformed the RL field, providing tools for learning optimal policies

directly from complex, high-dimensional data. Nonetheless, the challenge of partial observ-

ability remains a significant hurdle. In environments where agents cannot fully perceive their

surroundings due to sensor limitations or data quality issues, memory systems play a pivotal role

in compensating for these gaps [Meng et al., 2022, Teh et al., 2020].

This chapter introduces a memory-augmented tabular Q-learning algorithm that directly

addresses the challenges posed by dynamic maze environments with randomised exit locations.

Unlike traditional deep Q-learning approaches that struggle with changing conditions and

partial observability, the proposed system employs a memory table to record and use the agent’s

historical positions. This innovation enables the agent to dynamically adjust its policy in response

to changes, showcasing a significant leap in adaptability and problem-solving capability.

3.1.3 Contributions to the Reinforcement Learning Domain

Introducing a memory-augmented learning approach represents a pivotal contribution to the

reinforcement learning domain, particularly in navigating complex mazes with dynamic exit

locations. By implementing an external memory mechanism within the tabular Q-learning frame-

work, this work demonstrates a novel method for enhancing agent adaptability and efficiency,

circumventing the computational complexities typically associated with recurrent neural network

(RNN) architectures.

However, it is important to acknowledge the limitations associated with this approach. While

the memory-augmented system significantly improves the agent’s ability to adapt to changing
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environments, introducing an external memory model increases state space. This enlargement

can result in a more extended learning process and slower convergence rates due to the agent’s

requirement to learn and differentiate between a larger number of states. Such challenges

highlight the need for further research to optimise the learning process and improve convergence

rates in memory-augmented reinforcement learning models.

Moreover, the current implementation assumes a constant starting point and maze structure,

limiting its applicability to environments where such conditions vary. Future work could explore

the potential of this approach in more dynamic settings, where both the maze layout and the

agent’s starting position can change, presenting new challenges for memory management and

state representation.

In summary, the contributions of this chapter extend beyond solving a specific maze navi-

gation problem, providing valuable insights into the integration of memory systems within RL.

Despite the identified limitations, the advancements presented pave the way for future research to

develop more sophisticated, efficient, and adaptable reinforcement learning algorithms capable

of tackling the complexities of real-world environments.

3.2 Environment and Agent Definitions

The maze built is a standard discrete-valued reinforcement learning problem where the discrete

state space is denoted by S, and the discrete action space is denoted by A. The following concept

is implemented and shown in Appendix 1.

The maze is represented by a matrix M of binary values 0 or 1. The matrix (maze) M is of

size height×width. Each matrix element represents a maze cell (1=blocked or 0=open).

For example, the maze in Fig. 3.1b is represented by the matrix:

M =



1 1 1 1 1 1 1

1 0 1 0 0 0 1

1 0 1 1 1 0 1

1 0 1 0 0 0 1

1 0 1 1 1 0 1

1 0 0 0 0 0 1

1 1 1 1 1 1 1


.

At time step t = 0, the agent starts from a given fixed start point, the requirement for a constant

starting point in the context of this memory-augmented tabular Q-learning approach stems from
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the need to establish a stable baseline for evaluating the adaptability and learning efficiency

of the agent. A constant starting point ensures that variations in the agent’s performance are

attributable to its learning and memory capabilities rather than changes in initial conditions. This

constancy is crucial for accurately assessing how memory augmentation influences the agent’s

ability to navigate mazes, especially under dynamic exit conditions., e.g. as shown in Fig. 3.1b.

Then, at each time step t, the agent has state st ∈ S and chooses action at ∈ A. Finally, the

environment responds by moving the agent to a new state st+1 and giving a real-valued reward rt .

The agent attempts to move to an open cell by applying a valid action at from A =

{north,south,east,west}. However, the new state’s positional values will not be updated if

the arriving cell’s M(y,x) returns the value of 1, indicating that the agent collided with the wall.

The arriving cell’s value from M(y,x) will determine the agent’s new position. To illustrate

this explicitly, the standard update equations for moving around a discrete-cell maze are:

(yt+1,xt+1)←



(yt−1,xt) if at =North and M(yt−1,xt) = 0

(yt +1,xt) if at =South and M(yt +1,xt) = 0

(yt ,xt +1) if at =East and M(yt ,xt +1) = 0

(yt ,xt−1) if at =West and M(yt ,xt−1) = 0

(yt ,xt) otherwise

(3.1)

At every time step t, on taking action at , the agent receives an instantaneous reward of:

rt =−1, (3.2)

regardless of whether the action led to bumping into a wall.

The episode terminates when the agent reaches the exit (where (yt ,xt) = (yexit,xexit)) or runs

out of steps.

The agent repeatedly takes actions, accumulating rewards, until a terminal state is reached

(i.e. until the maze’s exit is found or the time expires). An episode is a state transition sequence

from the start to the terminal state. The total discounted reward accumulated by the agent is:

R = ∑
t

γ
trt , (3.3)

where 0 < γ ≤ 1 is a discount factor.

As purely negative reward is accumulated over the episode (via Eq. (3.2) and Eq. (3.3)), it is

to the agent’s advantage to get to the exit of the maze as quickly as possible to maximise the

total reward received.
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Actions are chosen by a policy function π : S→ A. The learning objective is to find a policy

function that maximises the expectation of R.

A deterministic policy function π will always specify which unique direction to move. Upon

entering a dead-end corridor with a deterministic policy function, it is impossible to backtrack

out of that corridor. A memory-based solution is defined for this problem in the following

subsection.

3.2.1 Maze environment with memory modification

In each cell of the maze, identified by coordinates (y,x), a memory vector c⃗(y,x) is created. This

vector is part of a larger table, called C, which has the dimensions (height,width,4). Each

element of this memory vector corresponds to one of the four possible actions: north, south, east,

or west. Specifically, C(x,y,a) will have a value of one if the agent has previously taken action a

from the cell located at (y,x), and zero otherwise. This memory vector is further illustrated in

Eq. (3.4).

c⃗(y,x) =


C(y,x,north)

C(y,x,south)

C(y,x,east)

C(y,x,west)

 . (3.4)

The table C is initialised with zeros. Then, as shown in Eq. (3.5), the table’s vector value

C(yt ,xt ,at) is updated after the agent takes action at from state (yt ,xt).

The table C will retain the changed values throughout the episode, and when a new episode

begins, the table values will revert to 0.

C(yt ,xt ,at)← 1. (3.5)

In the above section, the agent’s state was described by two numbers, (yt ,xt). In the case of a

maze environment with memory modification, the state is extended to hold additional values so

that the state is now described by:

st = (yt ,xt ,C(yt ,xt ,north),C(yt ,xt ,south),C(yt ,xt ,east),C(yt ,xt ,west)) . (3.6)
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In short, the state is described by:

st = (yt ,xt , c⃗(yt ,xt)). (3.7)

The policy function without the memory modification was defined by π(yt ,xt). The policy

function for the environment with memory arguments is now expanded to hold (yt ,xt , c⃗(yt ,xt)).

The policy function for the environment with memory modification is described by:

at = π(yt ,xt , c⃗(yt ,xt)). (3.8)

The C table serves as a memory store by keeping track of the corridors the agent has

previously explored. When the agent enters a corridor, the corresponding value in C(yt ,xt ,at) is

updated to 1, indicating that the action at was taken from state (yt ,xt). Suppose the agent reaches

a cell in the maze that has been visited. In that case, the state representation changes as the agent

reverses out of the corridor 2.

For example, if the agent only moves east in a corridor, the table C(yt ,xt ,east) is updated

to hold 1. When the agent decides to exit the corridor, its state representation changes to

st = (yt ,xt ,0,0,1,0), distinct from its state when it entered the corridor st ′ = (yt ′,xt ′,0,0,0,0).

The change in state representation influences the Q-values associated with actions taken from

that state. Consequently, the policy, which is greedy with respect to the Q-values, can differ

when moving down the corridor compared to backtracking out of it. This policy change allows

the system to effectively backtrack out of dead ends, a feature not otherwise possible without

this form of memory.

Comparatively, more straightforward solutions could be considered appealing; for instance,

simply remembering whether the agent has previously visited a cell. This would only require a

table of shape (height,width).

It is important to note that this more straightforward design becomes inadequate if the agent

accesses the same cell more than twice. The agent can explore only two corridors due to the

binary value constraint for each cell, becoming ineffective should the agent need to return to the

same cell to explore additional branching paths.
2While the C model enhances the agent’s ability to navigate mazes by incorporating the memory of previously

visited states, it introduces a trade-off in terms of state space complexity. Specifically, incorporating this memory
mechanism significantly enlarges the state space, potentially leading to a more extended learning process and
slower convergence rates. This expansion arises because the agent must learn a policy that accounts not only for
the physical layout of the maze but also for the history of visited corridors, effectively increasing the number of
states the agent must differentiate between. As a result, achieving optimal performance may require more time and
computational resources, highlighting the importance of considering efficiency improvements and optimisation
techniques in future iterations of memory-augmented reinforcement learning models.
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3.2.2 Integrating Memory in Tabular Q-learning

Incorporating memory into tabular Q-learning involves extending the standard Q-learning algo-

rithm to work with a new state vector st = (yt ,xt , c⃗(yt ,xt)). Here, c⃗(yt ,xt) represents the history of

visits for the four neighbouring cells from position (yt ,xt), as described in Eq. (3.4).

The greedy policy for this augmented Q-function is defined as follows:

at = argmax
a′

Q(yt ,xt , c⃗(yt ,xt),a
′), (3.9)

where a′ denotes all possible actions available to the agent.

The Q-learning update rule for interacting with this augmented memory maze environment

is shown below:

∆Q(yt ,xt , c⃗(yt ,xt),at) = α

(
rt + γ max

a′
Q(yt+1,xt+1, c⃗(yt+1,xt+1),a

′)−Q(yt ,xt , c⃗(yt ,xt),at)

)
,

(3.10)

where α > 0 is the learning rate.

Eqs. (3.5), (3.9) and (3.10) together illustrate how the standard Q-learning algorithm is

adapted to interact with the newly defined state vector.

3.2.3 Simplified Wall-Following Algorithm

One may argue that established algorithms, such as the “wall-follower” algorithm [Del Rosario

et al., 2014], offer an alternative to memory-augmented tabular Q-learning. However, it should

be noted that the wall-follower method cannot solve mazes that include loops.

To emulate the behaviour of the “wall-follower” algorithm within a Q-learning framework,

the observation state is modified to o⃗t = (w(west),w(east),w(north),w(south),dentry). In this

representation, w values serve as binary sensory indicators, specifying whether a given direction

is blocked. The variable dentry denotes the direction from which the agent entered the current

cell.3

The agent’s policy responds to the observation vector o⃗t . Given the limited scope of the

agent’s observations—restricted to its immediate surroundings and the entry direction—the

primary strategy for maze navigation defaults to wall-following. This approach leans more

toward exploitation rather than exploration.

3The concept of o⃗ is introduced to differentiate it from the s state used in the standard Q-learning framework. o⃗
is specific to the wall-following strategy.
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To facilitate this strategy, one can train a Q-table with dimensions (2,2,2,2,4,4).4

Subsequent experiments will aim to compare this wall-following approach with the memory-

augmented method.

3.2.4 Proof of sufficiency for solving mazes with memory modification

Binary cell mazes come in various structures, each offering unique pathways to the target. Players

must execute a valid action to reach unobstructed adjacent cells to move from one cell to its

neighbour.

Tree graphs represent perfect mazes 5. In these mazes, every cell (represented as tree nodes)

is accessible, and there’s a single, direct route from any one cell to another (described by tree

branches). One can fully explore a perfect maze using an Euler tour, as depicted in Fig. 3.2

[Wikipedia, 2023].

Figure 3.2: Euler tour of tree graph, taken from Wikipedia [2023]

In Fig. 3.2, a sequence of actions can be observed during the Euler tour. This sequence

indicates that an agent travels downward until encountering a dead-end, then retraces its steps to

the previous branch and explores another uncharted route. The agent recursively continues this

behaviour, ensuring every path and leaf node in the tree is visited.

When the exit point in a maze shifts between the leaf nodes in Fig. 3.2 with each episode

reset, the agent always starts at the root node; given enough time, the Euler tour guarantees the

agent will find the exit, as it will eventually reach every tree leaf.

However, a fixed policy function receiving only (y,x) inputs cannot replicate the actions in

Fig. 3.2. For instance, once an agent locates the exit on the tree’s far left, it can’t navigate back

to explore other paths due to the deterministic nature of the policies.
4The dimensions 2,2,2,2,4,4 correspond to binary indicators for wall presence in the west, east, north, and

south directions, along with four possible entry and exit directions, respectively.
5A perfect maze is defined as a type of maze with precisely one path between any two points within the maze.

This means no inaccessible sections, circular paths, or open areas are within the maze’s structure. In other words, it
is a maze that consists of a single maze path without any loops or closed circuits, ensuring that there is only one
way to get from the entrance to the exit or between any two points within the maze.
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In contrast, input (y,x, c⃗(yt ,xt)) enables the agent to differentiate between states, training

them distinctly using the extended state values. This capability ensures the agent can backtrack

recursively, probing other branches until all paths are explored. This behaviour closely aligns

with the Eulerian tree exploration shown in Fig. 3.2.

Two distinct state-action pairs, including loops, might lead to the same cell for non-perfect

mazes. For instance, in Fig. 3.2, connecting any two randomly chosen leaves would create a

loop. Agents with a fixed policy function would be trapped in this loop because they cannot vary

the (y,x) inputs. Hence, they cannot leave the looped maze section.

The ability to perform different actions to reach the same state allows the proposed method to

update unique table entries, C(yt ,xt ,dt), each time it arrives at the same maze cell. This dynamic

approach ensures agents explore every reachable cell, regardless of the maze’s configuration.

These discussions substantiate that the greedy policy presented by Eq. (3.9) can represent a

complete maze tour. This allows maze-solving even when exit locations change. In contrast, the

Q-learning approach outlined in Section 2.1.4 requires additional learning to tackle mazes with

variable exits.

3.3 Experiment Setup

Five distinct algorithms were intended to be compared to test on five different mazes; in each

case, the augmented memory is added to the algorithm, and the results are compared. These

algorithms are as follows:

• Conventional Q-learning algorithm.

• Proximal policy optimisation algorithm PPO.

• A synchronous, deterministic variant of Asynchronous Advantage Actor Critic (A3C)

A2C.

• Deep Q Network (DQN) builds on Fitted Q-Iteration (FQI), using a replay buffer, a target

network and gradient clipping.

• Conventional Q-learning trained to behave like a “wall-following” algorithm.

The PPO [Schulman et al., 2017], A2C [Mnih et al., 2016] and DQN [Mnih et al., 2013] were

taken from Raffin et al. [2019]’s mentioned algorithms, and the specific hyper-parameters were
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set to their default values. The PPO, A2C and DQN inputs will integrate the external memory,

adding more details to their neural network input. For the conventional Q-learning algorithm, two

inputs are acquired from the agent’s current position (y,x) in case of no memory augmentation.

However, for the memory augmented method, the input is expanded to contain six values to

additionally hold a vector c⃗(yt ,xt) shown in Eq. (3.7).

For the reinforcement learning algorithms such as PPO, A2C and DQN, the network archi-

tecture of Critic and Actor, where relevant for each algorithm, consisted of a multi-layer fully

connected neural network. In case of no memory augmentation, the observation will hold the

agent ot = (yt ,xt) position, where it will be pre-processed into a one-hot encoded form. The

input for each reinforcement learning algorithm included a one-hot encoded vector with the

shape of the maze height added to the maze width.

In case of memory augmentation, the state is expanded to hold a vector c⃗(yt ,xt) shown in

Eq. (3.7) where contains four values in the range of 0 and 1 in addition to the agent’s current

position, therefore, after one-hot encode pre-processing, the input will hold the sum of maze’s

height and width added to eight extra values for the memory augmented part of the observation.

Two hidden layers and 64 nodes are designed for each algorithm’s network architecture. The

PPO and A2C algorithms used the tanh activation function; the DQN algorithm included the

ReLU activation function in its network architecture.

In the PPO, A2C and DQN model, the agent’s x and y coordinates and each element of the

vector C⃗ are one-hot encoded. This means that for each coordinate or count table element, a

binary vector represents it, with only one “1” and the rest being “0”s. For example, if y could be

0 or 1, its one-hot encoding would convert 0 to [1, 0] and 1 to [0, 1].

In this particular case, the neural network receives (height+width+8) inputs, where “height”

and “width” are the dimensions of the maze, and 8 comes from one-hot encoding the elements

of the C⃗ vector.

It is worth mentioning that there are alternative ways to one-hot encode the agent’s position.

One could directly one-hot encode the (y,x) pair as a single integer cell-number on the maze grid.

While this approach may offer a more interpretable representation of the agent’s state, it results

in a less compact representation. Specifically, the length of the one-hot encoded vector becomes

width× height, as opposed to the width+ height length obtained when one-hot encoding the

coordinates separately. Therefore, this method does not reduce the dimensionality of the input



Page 68

space and could make it more challenging for the neural network to learn.6

The choice between these two methods depends on the specific requirements and constraints

of the task at hand.

The last layer’s activation function for all reinforcement learning algorithms was an identity

activation function. The learning rate was set to 0.01, and the discount factor was set to γ = 0.9;

off-policy was chosen for the Q-learning method.

The epsilon-greedy policy [Russell and Norvig, 2016] was used to apply randomness in

choosing the actions with a 0.1 chance to occur. The epsilon-greedy policy allows exploration in

training, which was removed in the validation phase of the experiments. Each algorithm was

given 500 time steps to find the exit in one episode. At the start of each episode, the exit is

moved to its next possible cell.

Five different maze structure environments were created, shown in Fig. 3.1. The exit is

indicated with a yellow circle and named “EXIT”. The starting cell is drawn with a red square;

the empty cross-hatched space shows the maze wall where the agent cannot move into these

areas. Each maze environment contains two or four possible exit cells (exits) depending on the

maze’s structure.

Each maze has a set of possible exits, and one exit is chosen for each episode. Hence, when

the agent explores the maze, there is precisely one exit it seeks. At the start of each different

episode, the exit is rotated through the set of possible exits for that maze, so each time the agent

starts a new episode, the exit will have moved from the last time it explored. For each episode,

the agent has 500 time steps to find the exit before the time runs out. After experimenting with

all the possible exits, the total number of accumulated time steps to reach each exit is recorded.

These environments in Fig. 3.1 hold a common feature where the agent must decide to take

one of the divided paths where only one can lead to the exit. The agent starts on the red square

cell and must output actions to move into the allowed cells. In a collision with a wall, the agent

will remain in the same cell, and one step will count towards the total steps.

The experiment was created to run on 10 different trials; in each trial, the agent was trained

for 100,000 episodes, and the weights were updated after the agent took each action during each

episode.

The agent must devise a movement strategy to find and visit all possible environmental exits.

For instance, in the small 3-cell maze shown in Fig. 3.1a, the optimal number of steps to reach

6While converting the (y,x) coordinates to a single integer cell-number provides a unique way to represent the
agent’s position, it results in a less efficient encoding scheme regarding the vector’s length.
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the exit cell on the right side of the maze is 1. After reaching the exit cell, the agent’s position is

reset. Therefore, the total time to reach the exit on the left side of the maze through the already

visited exit is 3. To reach both exits, 4 is achieved as the optimal number of steps to reach both

exits.

In Fig. 3.1, five test mazes are shown and can be named and described in Table 3.1. First, the

table introduces each maze environment, followed by the number of open cells and optimal steps

to reach all the exits planned for the maze.

Table 3.1: List of mazes followed by the number of cells capable of being traversed.

Maze Name Total Traversable Cells
Small Corridor Maze (Fig. 3.1a) 3
Long Corridor Maze (Fig. 3.1b) 18
T-shaped Maze (Fig. 3.1c) 9
Cross Maze (Fig. 3.1d) 9
Complex Looped Maze (Fig. 3.1e) 188

Since the “wall-following” Q-learning algorithm does not need to be trained on each maze,

the algorithm will only train on the cross maze shown in Fig. 3.1d, and the algorithm will be

validated on the rest of the mazes defined in Table 3.1.

3.4 Results

Learning algorithms such as tabular Q-learning, DQN, A2C, and PPO were tested on each map

represented in Table 3.2; the agent performs well when it minimises the accumulated steps. The

results are compared against the A∗ searching algorithm to reach all the exits in the maze.

For the RL algorithms such as DQN, A2C and PPO, the observation state was hot-one-

encoded into a flattened maze representation.

Fig. 3.3 shows the optimal path to reach the possible exits. The white cells indicate the

unvisited cells, and the red cells correspond to the agent’s path; the cross-hatched areas indicate

the blocked areas where the agent cannot enter. Each maze’s exits will rotate during the 100,000

training iteration; the policies are frozen after one episode. A fresh evaluation dedicated episode

starts with the policies frozen and no epsilon-greedy.

3.5 Discussion
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Figure 3.3: Optimal paths to reach the possible exits from the maze shown in Fig. 3.1e.

Table 3.2 shows each algorithm method’s average total steps to reach all possible exits in each

maze defined in Table 3.1.7

This uniform performance, indicated by a variance of 0.0, underscores the algorithm’s

robustness in navigating the mazes with high reliability. However, it is crucial to acknowledge

that the deterministic nature of this result is partly due to the controlled conditions under which

the experiments were conducted. In more dynamic or complex environments, where conditions

can change unpredictably, a greater degree of variance in the steps required to reach exits may

be observed, reflecting the challenges of adapting to new and unforeseen obstacles. The small

corridor maze consists of 3 open cells, and the agent starts in the middle of the three open cells.

To achieve an optimal accumulated step to reach both exits, the agent has to devise a movement

strategy to reach one exit, perform a return movement to the centre, and move to the exit at the

other end of the corridor. 4 is the optimal accumulated step to reach both exits on the small

7The reported variance of 0.0 in Table 3.2 indicates that, across multiple trials, the algorithm consistently
required the same number of steps to reach all possible exits for each maze configuration listed in Table 3.1. This
uniformity in performance suggests that the algorithm’s behaviour is highly deterministic within the scope of the
tested environments. Due to the controlled and static nature of the maze environments, such determinism can arise
from the algorithm’s ability to learn and apply an optimal or near-optimal strategy reliably, without deviation. It’s
important to note that while this level of consistency demonstrates the algorithm’s effectiveness in these specific
maze configurations, real-world applications may introduce variability that could affect performance.
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corridor maze. It can be observed that the tabular Q-learning without memory accumulated 501

steps; this indicates that the agent did not find the second exit and ran out of time.

The accumulated total steps by the Q-learning with memory achieved better performance

than other algorithm methods such as PPO, A2C and DQN, where the same memory architecture

was used to help PPO, A2C and DQN algorithms.

The memory architecture designed significantly helped tabular Q-learning training for

100,000 iterations. It can be seen in Table 3.2 that the tabular Q-learning with memory achieved

390.8±124.9 average total steps to reach all exits in the complex looped maze, which shows

that a maze as big as the complex looped maze requires more time to optimise.

Comparatively, PPO and A2C algorithms with augmented memory performed better than

those without external memory. However, DQN’s performance suffered from the augmented

memory method. The state representation st = (yt ,xt , c⃗(yt ,xt)) added unparalleled access to

different state representations due to C(yt ,xt ,at) update method shown in Eq. (3.5).

The performance of PPO, A2C and DQN did not reach the optimal accumulated steps. It can

be assumed that PPO, A2C and DQN needed further adjustments, especially in their network

structure, because these algorithms have proven sensitive to hyper-parameters [Olsson et al.,

2022].

Table 3.2 shows that the tabular Q-learning agent learned to perform like a “wall-follower”

algorithm and solved perfect mazes. However, it can be seen that the algorithm struggled with

the complex looped maze as expected. Comparatively, the Q-learning with an external memory

solution performed better and reached all exits.

Moreover, there are two potential exits for a maze. In that case, reaching the potentially closer

exit is more efficient. The augmented memory tabular Q-learning follows this rule, whereas

the “wall-follower” behaviour does not prioritise reaching the potentially more immediate exit

first. The state representation given to the “wall-following” algorithm reveals the solution to the

Q-table, and it will solve any given perfect maze with no loops. However, the state representation

given to tabular Q-learning with memory only reveals the agent’s location and neighbouring

cells’ visit history.

3.6 Chapter Conclusions

This chapter explored a novel memory-augmented tabular Q-learning approach designed to

adeptly navigate mazes with dynamically shifting exit locations—a significant challenge for
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conventional Q-learning methodologies. Our primary contribution has been the development and

empirical validation of this innovative algorithm, which substantially enhances the adaptability

and efficiency of maze-solving agents while avoiding the computational complexities typically

associated with recurrent neural network (RNN) structures.

Through this investigation, this chapter challenged the traditional reliance on RNNs for

managing sequential information in tasks such as maze navigation. RNNs, with their inherent

feedback loops, have been presumed necessary for tasks requiring the retracing of steps, such as

navigating complex maze structures. However, our findings suggest an alternative perspective,

demonstrating that effective backtracking in maze-solving scenarios can be achieved without

requiring RNNs. This revelation points to the potential for more straightforward, more computa-

tionally efficient solutions that can sidestep the notable challenges of training RNNs—such as

computational demand, training difficulties, and the vanishing gradient problem.

Introducing memory augmentation within a tabular Q-learning framework has provided

an efficient alternative to imbue maze-solving algorithms with memory capabilities, thereby

circumventing the intricacies of RNNs. This memory-enhanced state representation has simpli-

fied the navigation process within mazes and showcased significant performance improvements

compared to traditional maze-solving strategies, such as the “wall-follower” method.

The results presented in this chapter underline the feasibility and advantages of the proposed

memory-augmented approach. Despite the initial hypothesis that RNNs might enhance the

capability of agents to retrace steps in mazes, our empirical evidence suggests otherwise, indicat-

ing no substantial improvement with the incorporation of RNNs. This finding underscores the

effectiveness of the memory-augmented solution and highlights the importance of data-driven

conclusions in developing reinforcement learning strategies.

Future research avenues are broad and promising. Investigating modifications in deep

reinforcement learning architectures such as PPO, DQN, and A2C, along with experimenting

with diverse update techniques, could further reveal the strengths of memory augmentation in the

broader realm of RL. Additionally, applying the memory-augmented solution to various discrete

space environments could illuminate its broader applicability and potential limitations.

In subsequent chapters, the transition from discrete to continuous spaces will leverage deep

learning methods and the Backpropagation Through Time (BPTT) technique to address the

unique challenges of continuous environments. This shift is predicated on the insights gained

from the current memory-augmented solution to explore and overcome the complexities inherent

in such environments.
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In summary, this chapter has contributed to reinforcement learning by offering a viable

alternative to traditional RNN-based approaches for maze navigation. By demonstrating the

efficacy of a memory-augmented tabular Q-learning algorithm in dynamic maze environments,

this research addresses a specific challenge within the domain. It paves the way for future

advancements in creating more adaptable and capable reinforcement learning agents.
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Chapter 4

Navigation in Continuous Space

Environments

Embarking on a new chapter in exploring reinforcement learning (RL), This thesis pivots from

the structured worlds of discrete environments to the unbounded complexity of continuous

spaces. This transition marks a crucial juncture in this thesis, extending the discussion beyond

the confines of memory-augmented methods to address the challenges inherent in navigating

continuous spaces. Such environments, mirroring the real world’s fluidity, demand a nuanced

understanding and application of advanced machine learning techniques, including the pivotal

BPTT algorithm.

The main contribution of this chapter lies in its rigorous examination of how BPTT, a

cornerstone technique for training RNNs to model temporal dependencies, can be adeptly

applied to the realm of continuous space navigation. By leveraging deep learning alongside

BPTT, This chapter aims to showcase the adaptability and precision of RL agents in environments

that more closely resemble the complexities and unpredictability of the real world.

Why does an exploration of environments ostensibly not requiring memory merit attention

in a thesis devoted to BPTT and memory mechanisms? The answer lies in the foundational

understanding BPTT provides in bridging temporal gaps in data, a critical aspect even in

scenarios where memory is not explicitly tested. By investigating navigation in continuous

spaces without direct memory requirements, this chapter establishes a baseline for BPTT’s

efficacy. It sets the stage for more intricate applications involving memory in subsequent

studies. This approach allows us to isolate and understand the nuances of BPTT’s application in

continuous environments, providing a clearer pathway to integrating memory mechanisms in



Page 76

future work.

Structured around two core sections, this chapter delves into distinct navigation tasks within

continuous environments to evaluate BPTT’s performance. This chapter defines each task’s

state space, action space, and reward function, implementing and assessing each algorithm’s

effectiveness in navigating these complex scenarios. This methodical approach highlights

BPTT’s versatility and underscores the algorithm’s potential to enhance spatial intelligence and

decision-making in continuous settings.

The environments selected for this investigation include a simulated 2D navigational agent

and the challenge of balancing and navigating a bicycle, as introduced by Randløv and Alstrøm

[1998]. By focusing on these continuous spaces, devoid of explicit memory tasks, this chapter

lays the groundwork for a comprehensive exploration of BPTT. This strategic choice underscores

the chapter’s aim to deepen our understanding of BPTT in solving navigation problems within

continuous environments, setting a solid foundation for integrating memory in navigation tasks.

The subsequent chapter will thoroughly explore this theme (Chapter 5).

In summary, this chapter serves as a bridge, connecting the theory and application of BPTT

in the context of continuous space navigation. By navigating the challenges these environments

present, this chapter advances the understanding of BPTT. It sets the stage for future explorations

into the synergy between memory mechanisms and RL in continuous, dynamic settings.

4.1 Backpropagation Through time

As this chapter delves into the application of Backpropagation Through Time (BPTT) in re-

inforcement learning and approximate dynamic programming, it is important to note that a

comprehensive discussion on the fundamentals and principles of BPTT has been provided in the

literature review section of this dissertation (see Section 2.1.3). Readers are encouraged to refer

to that section for a more detailed explanation and background on BPTT and its typical applica-

tions in supervised learning tasks like time-series forecasting and natural language processing.

4.2 A Simulated 2D Navigational Agent

this research seeks to examine navigational strategies within continuous space environments

by developing a bespoke simulation. This environment serves as a testbed for evaluating the
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decision-making capabilities of reinforcement learning (RL) agents, specifically focusing on

locating constant food sources in this chapter.

The constructed two-dimensional environment is designed to simulate a spatial navigation

task, wherein an agent, conceptualised as a simulated organism, identifies the densest point

of a food-pile. The food-pile within this environment is mathematically modelled using a

Gaussian distribution, parameterised by (xfood,yfood,zfood,σfood), where xfood and yfood represent

the coordinates of the food-pile’s centre, zfood denotes the peak density (or height) of the food-pile,

and σfood specifies the spread (or width) of the distribution.

The motivation behind creating this environment stems from the desire to explore how RL

agents adapt to and navigate within continuous spaces, where the objectives and obstacles do

not adhere to a fixed grid but rather vary fluidly. This environment allows for studying various

navigational algorithms and their effectiveness in a context that mimics real-world scenarios

more closely than discrete, grid-based environments.

Several considerations drove the choice to model the food-pile using a non-flattening Gaus-

sian distribution. Firstly, a Gaussian distribution provides a smooth gradient of food density,

which can be more challenging for an agent to navigate than a binary or flat distribution, offering

a richer test scenario for evaluating the agent’s navigational abilities.

Moreover, the non-flattening nature of the Gaussian ensures that the food density decreases

gradually from the centre, mimicking natural phenomena where resources are not uniformly

distributed but instead concentrated in certain areas. This aspect introduces the need for the

agent to develop a nuanced understanding of the environment and to employ more sophisticated

strategies to locate the area with the highest food density.

Lastly, employing a Gaussian distribution examines how agents deal with uncertainty and

partial observability. As the agent moves away from the food-pile’s centre, the decrease in food

density can be subtle, requiring the agent to infer the food-pile’s centre based on incomplete and

indirect information. This setup is particularly useful for testing the efficacy of RL algorithms

that incorporate memory or predictive models to navigate towards goals in environments with

gradual changes and partial cues.

The details of the environment’s implementation, including the mathematical model of the

food-pile and the algorithmic approach for the agent’s navigation, are provided in Appendix

3. This implementation serves as a foundational step towards understanding the dynamics of

continuous space navigation and the potential of RL agents to adapt and thrive in such settings.

The development of this two-dimensional navigation environment represents a pivotal com-
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ponent of our research into RL agents’ adaptability and decision-making processes in continuous

spaces. Exploring the challenges posed by a non-uniform food distribution modelled as a non-

flattening Gaussian provides insights into the complexities of real-world navigation tasks and the

capabilities required of RL agents to solve them effectively. Therefore, this environment serves

as a tool for evaluating existing navigational strategies and a springboard for future innovations

in RL research.

4.2.1 Environment Implementation

The food-pile’s density at location (x,y) is described by the following Gaussian-type function:

d(x,y) = zfood + exp
(
(x− xfood)

2 +(y− yfood)
2

σ2
food

)
. (4.1)

Here zfood is a constant specifying the food-pile height, and σfood is a parameter governing

the width of the food bump. See Fig. 4.1.
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Figure 4.1: Simple food density distribution, where the height of the Gaussian bump indicates
food density. Pathway shows an example solution trajectory found by the agent, starting at the
bottom and finishing at the “x”.

As the agent moves across the environment at discrete time step t, it has location (xt ,yt),

and it uptakes the food at its new position (xt ,yt). The food supply at any location is deemed

inexhaustible. Hence, the total food accumulated during an episode of length L steps is given by:

R =
L−1

∑
t=0

γ
trt , (4.2)

where rt = d(xt ,yt) and 0≤ γ ≤ 1 is a discount factor.
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The objective of the problem is for the agent to learn to rapidly walk to the top of the food pile

to maximise the food (reward) accumulated in a fixed finite episode length L = 30. Furthermore,

the food pile’s location and height are static; the agent’s initial position is randomised around the

food source.

4.2.2 Agent Properties

At each time-step t, the agent generates a two-dimensional action vector a⃗t ∈ R2. The agent’s

velocity v⃗t is determined using the following equation:

v⃗t = vmax tanh(|⃗at |)ât . (4.3a)

In this context, |⃗at | represents the Euclidean length of a⃗t . The normalised vector ât is obtained

by dividing a⃗t by its magnitude |⃗at |+ ε , with ε = 10−6. This normalisation process scales the

vector to unit length, ensuring its direction is preserved while avoiding division by zero. A

maximum velocity value is vmax = 0.2. The tanh function in Eq. (4.3a) ensures that the agent’s

speed remains below vmax.

The construction of Eq. (4.3a) confines the velocity vector v⃗t within a circle of radius vmax.

This allows the agent to move freely in any direction.

The agent’s position is updated based on the velocity vector v⃗t using the Euler method with a

discrete time step ∆T = 1:

p⃗t+1 = p⃗t + v⃗t∆T, (4.3b)

where p⃗t = (xt ,yt) is the agent’s position at the specified time-step.

In this chapter, the food-pile was positioned at (0,0) with parameters z f ood = 1 and σ f ood = 8.

To prevent the agent from memorising a fixed solution, the initial positions of the agents were

uniformly randomised within the range x ∈ [−5,5] and y ∈ [−5,5] at the beginning of each

episode.

4.2.3 Agent brain for organism

A neural network with weight vector w⃗ chooses the actions and memory state of the agent.

“Agent brain” refers to the neural network used in the algorithm, but this neural network is also

known as the “actor” in the RL literature or the “action network” in the ADP literature.
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At any time-step t, the agent receives an observation vector o⃗t ,

o⃗t = (xt ,yt). (4.4)

The neural network structure used in the ADP/RL algorithms consisted of one hidden layer

with 20 nodes (as depicted in Fig. 4.2). The tanh activation function was employed in the hidden

layer, while no activation function was used in the output layer.

Figure 4.2: Neural Network structure used in the experiments conducted in “A Simulated 2D
Navigational Agent” experiment.

4.2.4 Experiments

Four different selected RL algorithms and a BPTT algorithm were used in the experiment.

The following RL algorithms were used in all experiments: Advantage Actor-Critic (A2C)

(Section 2.1.7), Soft Actor-Critic (SAC) (Section 2.1.7), Deep Deterministic Policy Gradient

(DDPG) (Section 2.1.7) and Twin Delayed DDPG (TD3) (Section 2.1.7). These RL algorithms’

implementations came from the Stable-Baselines package [Raffin et al., 2019] (version 1.1.0).

These state-of-the-art algorithms were selected considering their successful history in different

benchmark environments [Brockman et al., 2016]. Additionally, the implementation of BPTT

was created and customised personally. Each algorithm trained for 100,000 iterations and was

tested across 20 separate trials. The hyper-parameters used by each algorithm were:

• The DDPG, SAC, and TD3 algorithms used 100 batches in replay memory with a buffer

size of 106. Neural network weights were optimised with an Adam optimiser, with a

learning rate of 0.001. The DDPG algorithm used the soft update coefficient (“Polyak”

update) of 0.005, and its default discount factor was 0.99.

• In the A2C algorithm included a discount factor of 0.99 and a value function coefficient

for the loss calculation of 0.5. This algorithm used RMSprop optimiser with ε = 10−5. In



Page 81

addition, the A2C algorithm used action noise exploration with an entropy coefficient of

0.001.

• BPTT used the Adam optimiser with a learning rate of 0.001.

In the Stable Baselines package, the four primary RL algorithms had the above hyper-

parameters set as default values. However, for the experiment in this chapter, the learning rates

were tweaked to achieve the best possible outcomes.

The batching method in BPTT implementation enabled the algorithm to process 100 complete

trajectories per iteration (i.e. per update of the weights in the neural network). Since the length of

each trajectory (episode) was L = 30, the BPTT algorithm allowed 3,000 environment steps for

each weight update. To match this as closely as possible for the selected RL algorithms, the hyper-

parameters were set to match the provided hyper-parameters in the Stable-Baselines package

to be train frequency=3000 and gradient step=-1. This ensures the algorithm

updates the weights in the neural network for every 3,000 environment interactions taken by the

agent. When it does so, these weight updates are accumulated over those 3,000 environment

steps.

All the selected RL algorithms (DDPG, A2C, SAC and TD3) consist of actor and critic

networks. The actor-network is structured as described above, i.e. with two inputs (xt ,yt) and

two output nodes (⃗at).

All of the critic networks used by the RL algorithms were Q-networks. These implement a

function Q : (⃗ot , a⃗t)→ R. Hence, the critic network has four input nodes (two for o⃗t , and two for

a⃗t) and one output. There is one hidden layer of 20 tanh nodes (like in Fig. 4.2) and no activation

function on the final layer.

The network used in BPTT did not have a Critic network, however. Instead, it only required

an action network with a structure and purpose identical to the above actor networks.

4.2.5 Results

The results below display the mean value and its 95% confidence intervals, calculated over 20

trials using the “Seaborn” software library.

Fig. 4.3 illustrates that BPTT (Backpropagation Through Time) effectively solved the simpli-

fied version of the problem, exhibiting stable and robust performance. However, the selected
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state-of-the-art RL algorithms also achieved approximate solutions to the problem, although they

exhibited slower learning progress, instability, and lower final total rewards than BPTT.
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Figure 4.3: Algorithms’ performance on fixed-food location validation environment over 100,000
iterations and averaged over 20 trials.

From the final iteration results depicted in Fig. 4.3, a sample of ten trajectories generated

by the agent trained with BPTT was selected. These trajectories are visualised in Fig. 4.4,

showcasing the agent’s movement behaviour. The circles in Fig. 4.4 represent the initial positions

of the agents, while the crosses indicate the goal points within the environment. The arrows

indicate the direction of agent movement, clearly illustrating their direct paths toward the fixed

food-source location.

Based on Fig. 4.4, it is evident that the BPTT agent successfully optimally navigated towards

the goal. This observation further supports the significance of the average reward (25.5) achieved

by the BPTT method, as demonstrated in Fig. 4.3.

4.2.6 Discussion
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Figure 4.4: Top-down view of BPTT results for the simplified experiment (with no sensor or
recurrent memory)

The experimental outcomes, as illustrated in Fig. 4.3, underscore the efficacy of the Backpropaga-

tion Through Time (BPTT) method in the navigation task within a continuous space environment.

The BPTT algorithm’s attainment of an average reward of 25.5 demonstrates its capability to

foster significant learning progress and stability across trials.

While the comparison with other approaches reveals BPTT’s robust performance, it is

essential to contextualise these findings within the broader landscape of reinforcement learning

research. The term “notably competitive outcome” is used here not to assert BPTT’s superiority

over state-of-the-art algorithms that may be highly specialised or tuned for specific tasks but

to highlight its potential as a versatile and effective tool for navigation tasks, even in its more

foundational or “vanilla” form.

The noteworthy aspect of BPTT’s performance lies in its ability to achieve commendable

results without extensive task-specific tuning. This characteristic is particularly valuable in

reinforcement learning, where the adaptability of algorithms to varied tasks without requiring

intricate adjustments can significantly expedite the development and testing of RL agents across

different environments.

The findings suggest that BPTT, even when applied relatively straightforwardly, can optimise

an agent’s navigation strategy effectively, enabling efficient goal-reaching behaviours. This

efficiency indicates BPTT’s potential as a foundational technique that, while not necessarily

outperforming highly specialised state-of-the-art methods, offers a solid baseline from which

further enhancements and task-specific adaptations can be developed.

Given the performance of BPTT in this navigation task, future research could explore several

avenues to build upon these findings. One potential direction is the integration of BPTT with other
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deep learning enhancements or reinforcement learning strategies to further refine its efficiency

and effectiveness. Additionally, investigating BPTT’s application in more complex environments

or tasks requiring sophisticated decision-making and adaptability could provide deeper insights

into its capabilities and limitations.

Ultimately, such research would aim to push the boundaries of what BPTT can achieve in

various contexts and contribute to the broader understanding of how similar “vanilla” algorithms

can be leveraged or improved to meet the challenges of advanced reinforcement learning tasks.

In the comparative analysis of the selected algorithms, while BPTT demonstrated superior

performance, it is essential to acknowledge the approximate solutions achieved by other state-of-

the-art RL algorithms. Though these algorithms reached the goal, their learning progress was

slower and more unstable than BPTT. This suggests the selected RL methods for this task needed

more testing with hyper-parameters and network structure to find the optimal values.

Fig. 4.4 provides visual evidence of the BPTT agent’s navigation behaviour. The direct paths

taken by the agent towards the fixed food-source location indicate a successful optimisation

process. This optimal behaviour further supports the significant average reward achieved by

BPTT in Fig. 4.3.

4.3 Balancing and Navigating a Bicycle Introduced by Randløv

and Alstrøm [1998]

Balancing and navigating a bicycle is a complex task humans have mastered through years of

practice and experience. It involves a combination of sensory information processing, muscle

coordination, and fine-tuned motor control. Although the physics of bicycle motion and control

have been studied for over a century [Dieltiens et al., 2020], there is still much to learn about how

humans achieve balance and navigate their bikes. Recent advances in deep learning and neural

networks have provided new tools for studying the control of dynamic systems like bicycles.

One such tool is the Backpropagation Through Time (BPTT) algorithm.

This section explores using Backpropagation Through Time (BPTT) to control the bicy-

cle model proposed by Randløv and Alstrøm [1998]. The bicycle model is a mathematical

representation describing a bicycle’s motion dynamics. To render the model compatible with

BPTT, necessary modifications are made to transform it into a differentiable system, allowing

the computation of gradients concerning its input.
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As indicated in Section 2.1.3, BPTT finds extensive application in sequence prediction tasks,

particularly within recurrent neural networks (RNNs). However, in control tasks or traditional

reinforcement learning (RL), BPTT is less common than alternative techniques like Q-learning

or policy gradients.

Moreover, BPTT encounters other limitations. Handling long sequences poses challenges due

to vanishing or exploding gradients, especially in tasks with extended time horizons. This may

hinder the ability to effectively capture long-term dependencies and optimise control policies

across extensive sequences.

Furthermore, this section studies the effects of reward shaping on BPTT performance.

Reward shaping involves modifying the reward signals given to the agent during learning to

provide additional guidance and promote faster convergence. The impact of different reward-

shaping strategies on BPTT’s ability to learn effective control policies for the bicycle model is

investigated.

This section aims to use this differentiable Randlov’s bicycle model to train a neural network

to learn how to balance and navigate a bicycle in real-time. The hypothesis is that by using

BPTT and a differentiable bicycle mode, a neural network can be trained accurately to predict

the bicycle’s motion and control inputs based on sensory information, such as the rider’s body

position and the bicycle’s orientation.

4.3.1 Randløv and Alstrøm [1998] bicycle environment

The Randløv and Alstrøm [1998] bicycle model is a mathematical model that describes a

bicycle’s motion dynamics. It was developed by Danish engineer and computer scientist J. J.

Lukkassen Randlov in 1998. The model is based on the physical principles of bicycle motion,

such as the effects of gravity, gyroscopic forces, and friction. It has been used to study the

stability and control of bicycles.

The bicycle implemented is a rigid body with two wheels and a frame. The bicycle’s motion

is described by a set of equations that govern the angular position, velocity, and acceleration of

the bicycle’s various components.

The model considers several factors that affect the bicycle’s motion and control, such as the

rider’s body position, the bike’s orientation, and the handlebar’s orientation. These factors are

all combined in the model to produce a set of equations that describe the motion and control of

the bicycle in real-time. Appendix 2 will delve into the mathematical equations and detailed
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explanations that elucidate the physics behind the bicycle mode. Please refer to Table 1 for

detailed information about the symbols.

Modifications to Randlov’s model for it to be differentiable

In the original code provided by Randløv and Alstrøm [1998], the if-else statement makes the

code non-differentiable when the condition is checked. Specifically, the line:

i f f r o n t t e r m > 1 :

f r o n t t e r m = s i g n ( p s i + t h e t a ) * 0 . 5 * np . p i

e l s e :

f r o n t t e r m = s i g n ( p s i + t h e t a ) * a r c s i n ( f r o n t t e r m )

Listing 4.1: Original code for the front tyre position calculation

To address this, the conditional is transformed into a differentiable expression using the

“TensorFlow” functions. The transformed code snippet is as follows:

r f = t f . where ( t h e t a == 0 . , t f . c o n s t a n t ( 1 . e8 ) ,

s a f e d i v i d e ( l , t f . abs ( t f . s i n ( t h e t a ) ) ) )

f r o n t t e r m = p s i + t h e t a + t f . s i g n ( p s i + t h e t a )

* t f . a s i n ( v * df / ( 2 . * r f ) )

Listing 4.2: Differentiable code for the front tyre position calculation

In this transformed code, the if-else statement is replaced with the TensorFlow function

“tf.where()“, which performs element-wise selection based on a condition. The condition “theta

== 0“. checks whether the value of theta is zero. If it is, it sets the value of “r f” to a large

constant 1.e8, effectively removing the division by zero issues and ensuring differentiability.

In other cases, the value of “r f” is calculated as “ l
|sin(theta)|”. The term “2∗ r f ” is used to

scale the argument of the “asin()” function, ensuring that the function’s input remains within the

valid range of [−1,1].

In this transformed code, front term is calculated using TensorFlow’s “t f .sign()” and

“t f .asin()” functions, allowing it to avoid the non-differentiable condition and ensure differentia-

bility throughout the computation.

The “NumPy” functions and “if and else” conditions were converted by “Tensorflow” func-

tions; please refer to Appendix 2.
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Study in reward shaping of the environment

The reward segment of the task comprises both a positive reward and a penalty, motivating the

agent to move towards the goal. Calculating the agent’s progress towards the goal is achieved

through the displacement of the agent to the goal. The normalised displacement of the agent

concerning the goal ( ̂Displacement) is computed using the following two steps:

Step 1: Displacement Calculation

The first step involves computing the displacement vector
−−−−−−−−−→
Displacement, which represents

the difference between the agent’s position before the action was applied
−−→
Biket and the bicycle’s

position after the action was applied (
−−−−→
Biket+1):

−−−−−−−−−→
Displacement =

−−−−→
Biket+1−

−−→
Biket , (4.5)

and computing the difference vector
−−−−−−−→
Di f f erence, which represents the difference between the

goal position
−−→
goal and the bicycle’s current position after the action is applied (

−−−−→
Biket+1):

−−−−−−−→
Di f f erence =

−−→
goal−

−−−−→
Biket+1. (4.6)

Step 2: Normalised Displacement Calculation

The normalised displacement vector ̂Di f f erence is then obtained by dividing the displace-

ment vector by its Euclidean norm:

̂Di f f erence =
−−−−−−−→
Di f f erence

∥−−−−−−−→Di f f erence∥
. (4.7)

Here, ∥−−−−−−−→Di f f erence∥ represents the magnitude of the
−−−−−−−→
Di f f erence.

To calculate the current reward (rt), the dot product is taken between the displacement vector
−−−−−−−−−→
Displacement and the normalised difference vector ̂Di f f erence:

rt =
−−−−−−−−−→
Displacement i · ̂Di f f erencei. (4.8)

By employing the dot product in the reward calculation, the agent is effectively rewarded for

moving closer to the goal along the direction of the goal position. This encourages the agent to

take actions that bring it closer to the goal location and promote successful navigation towards

the desired objective.

In addition to the positive reward that motivates the agent to move towards the goal, the

reward system also includes a penalty component. This penalty is a guiding mechanism to

encourage the agent to exhibit desired behaviours and avoid undesirable actions during the
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navigation task. In the context of riding a bicycle, the penalty is designed to shape the agent’s

conduct concerning three key parameters: θ (the angle of the bicycle’s handlebar), ω (the roll

orientation of the bicycle), and ψ (the orientation of the bicycle towards the goal).

The penalties used a flat-bottomed barrier function, which serves as a tool to apply penalties

smoothly and controlled. It penalises conditions based on the penalty value, with the penalty

increasing as the condition deviates from the desired behaviour. However, instead of creating

steep penalties, the function introduces a flat-bottomed region, where the penalty remains

constant until the condition crosses a certain threshold.

The function starts by normalising the penalty value with respect to “kwidth” and then shifts

and scales the penalty function to create a flat-bottomed region. The maximum value of the

penalty is attained when the normalised penalty value exceeds 1, resulting in the penalty function

rising sharply outside the flat-bottomed region. The “kpower” parameter determines the steepness

of the penalty rise.

By employing the flat-bottomed barrier function, the penalties are enforced in a controlled

manner, preventing sharp discontinuities in the optimisation landscape. This ensures stable

and smooth convergence during the optimisation process, enabling effective exploration of the

solution space and better handling of constraints in the task. The penalty calculation is defined

as follows:

penaltyFBBF(value,kwidth,kpower) = max(value/kwidth ∗0.5−1,0)kpower . (4.9)

Each parameter above was considered in calculating the total penalty; the penalties were

calculated by:

θpenalty = penaltyFBBF(|θ |,1.25,8), (4.10)

ωpenalty = penaltyFBBF(|ω|,
π

15
,8), (4.11)

ψpenalty = penaltyFBBF(|ψ|,
π

2
,8). (4.12)

The total reward applied at each time step was calculated by:

R =−1(θpenalty +ωpenalty +ψpenalty)+ rt . (4.13)

This reward is applied at each time step and summed over the entire trajectory, effectively

guiding the agent’s learning process.
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4.3.2 Agent brain used in navigating the bicycle

The agent used the similar structure and model used in Fig. 4.2; however, the neural network

used had two hidden layers with tanh activation function and consisted of 24 nodes, the output

layer used tanh activation function, and each layer was initialised with a normal distribution of

0.001; the learning rate was set to 0.001.

4.3.3 Experiment setup

As mentioned before, the observable values such as ω , ω̇ ,θ , θ̇ ,sinψg and cosψg are used for the

network input.

The initial experiment considered an early termination approach that could improve the

learning process in the bike balancing task; the experiment explored stopping the iteration when

certain conditions were met.

Then, it was considered to let the bike move while it was touching the ground from its sides;

it was then discovered that smoothly altering such penalty functions can greatly aid learning. The

initial randomised weights can cause the action network to fail if Eq. (4.9) generates a trajectory

with significant errors while the agent is touching the ground due to failing the balancing task;

the accumulated significant penalties will prevent the agent from finding a solution.

This confuses the learning algorithm because the learning algorithm focuses on where the

error gradients are most significant, which occurs only after the system has already lost control

of the tracking reference target (i.e. at the end of the learning process).

To ignore the early termination approach, one solution was to apply a tanh around the

penalties; the choice of the tanh provided these desired properties, such as smoothly binding the

penalty between 1 and −1, and in case of the flattest part of the penalty curve derivatives are set

to 1 or −1. The modified version of the reward function is calculated by:

R =−1tanh(θpenalty +ωpenalty +ψpenalty)+ rt . (4.14)

It was considered to randomise the x value of the agent’s position and keep the y = 0; for

each agent, a goal is placed 30 units in front of the agent’s starting position.

The impact of the tanh method to ignore the early termination approach on the agent’s

performance was measured, and the experiment aimed to demonstrate whether this approach

could lead to more stable and efficient learning, ultimately improving the agent’s ability to

navigate towards the goal effectively while avoiding significant learning pitfalls.
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The experiments were set to allow the agent to balance the bike for 1000 updates to the

physics model, and the results were gathered over 10 different trials. The weight update was

done over 1000 iterations.

4.3.4 Results

The following result graphs show the mean value and its 95% confidence intervals calculated

over 10 trials by the “Seaborn” software library.

The results from both experiments are visualised in Fig. 4.5, one using an early termination

method upon meeting a specific condition and the other without such termination, enabling

a comparison of the efficacy of the tanh method explained above in each setting, which no

significant difference was shown due to the overlap of error bars.

In Fig. 4.5a, the comparison is made regarding the effect of applying the tanh function to the

penalty part of the reward function. Notably, the reset condition for the agent’s roll orientation

was omitted, enabling the agent to achieve a parallel orientation to the ground while retaining

its ability to move. On the other hand, Fig. 4.5b presents the impact of employing the tanh

function in the penalty section of the reward function while maintaining the reset condition

for the agent’s roll orientation. The game was reset in this scenario whenever the agent’s roll

angle ω reached either π

9 or −π

9 . By examining these two experiments, the influence of the tanh

activation function under different conditions can be assessed and gain valuable insights into its

performance in the context of the reward function.

From the results in Fig. 4.5a, the trial with the highest performance was selected, and the

paths taken by each agent to reach the goal, along with their corresponding roll values, were

plotted in Fig. 4.6. Precisely, Fig. 4.6a displays the agent’s path over 1000 updates of the physics

model, with the axes representing the location. Concurrently, Fig. 4.6b depicts the ω value of the

bike on the y-axis, indicating its balance. Moreover, in Fig. 4.6c, the goal is shown with a cross

and 30 units away from the starting position of the agents. Fig. 4.6c, presents the agents that

used the tanh wrapper around the desired penalties of the reward function, and their respective

bike balancing values are shown on the y-axis in Fig. 4.6d. These visual representations enable

a comprehensive analysis of the agent’s paths and bike balance under the influence of the tanh

method described above, providing valuable insights into this method’s impact on the agents’

performance.

Fig. 4.6 provides a visual representation of the navigation task within the continuous space
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(a) The experiment setup where there are no reset conditions unless the
agent reaches 1000 steps.
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(b) The experiment setup where the game resets when the agent reaches π

9
on either side.

Figure 4.5: Visualisation of the agent’s performance, comparing the tanh wrapper used around
the penalty section of the reward function under both reset conditions explained. The results
represent the agent’s validation setup over 1000 iterations across 10 trials. The difference in the
y-axis ranges between the top and bottom diagrams is due to using a tanh wrapper in one setup,
which results in smaller penalty values. In contrast, the absence of a tanh wrapper in the other
setup allows for larger penalty values to be recorded, thus causing the discrepancy in scale.

environment, specifically focusing on the bicycle balancing and navigation challenge introduced

by Randløv and Alstrøm [1998]. Each coloured line in the figure corresponds to a distinct

trajectory taken by an agent instance during the simulation. These trajectories are not merely

different paths taken by the same agent in a static environment; instead, they reflect the outcomes

of introducing randomness into the task’s initial conditions or the environment itself.
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(a) Agent’s path without tanh wrapper
around the penalty section of the reward
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(b) Agent’s roll value when a tanh wrap-
per is applied around the penalty section of
the reward function. The x-axis represents
the trajectory time-step t, and a roll value
of 0 indicates that the bicycle is standing
perpendicularly to the ground. Instances,
where the roll value reaches ω =±90◦ in-
dicate that the bikes are toppling over onto
their sides. The use of the tanh wrapper
moderates the penalties, affecting the sta-
bility and trajectory of the bicycle.
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(c) Agent’s path when a tanh wrapper is
used around the penalty section of the re-
ward function. In this visualisation, each
bike is shown to be successfully navigat-
ing towards its corresponding goal point,
denoted by an ’x’ of a matching colour.
The tanh wrapper moderates the penal-
ties, guiding the agents more effectively
towards their objectives.
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(d) Agent’s roll value with tanh wrapper
around the penalty section of the reward
function (0 indicates the bicycle is stand-
ing perpendicularly)

Figure 4.6: Visualisation of the agent’s performance, comparing the tanh wrapper used around
the penalty section of the reward function.

In the context of this experiment, randomisation plays a crucial role in testing the robustness

and adaptability of the BPTT algorithm and other RL approaches under evaluation. Randomisa-

tion can manifest in various aspects of the task, such as:

• Initial positioning and orientation of the bicycle.

• The positioning of goals within the environment.



Page 93

By introducing these random elements, each agent instance encounters a slightly different

version of the task, compelling it to adapt its learned strategy to navigate the environment and

reach its objective successfully. This approach ensures that the evaluation of the algorithms’

performance is not limited to a single, potentially idiosyncratic scenario but encompasses a

broader range of conditions that an agent might face in real-world applications.

The varied trajectories illustrated in Fig. 4.6 serve as a testament to the agents’ ability

to generalise their learned behaviour across different instances of the navigation task. The

differences in the paths taken, denoted by the distinct colours, underscore the flexibility and

dynamic decision-making capacity of the agents trained under the BPTT framework.

This visual evidence supports the conclusion that the algorithms under study can handle the

complexities introduced by randomisation, thereby validating their potential for applications in

environments where variability and unpredictability are common. Furthermore, analysing these

trajectories provides insights into the challenges and opportunities for optimisation that might be

addressed in future research to enhance the agents’ performance in continuous space navigation

tasks.

4.3.5 Discussion

As shown in the experiments, the agent with tanh wrapper around the penalties in the reward

function managed to balance the bike and move towards their goal; in comparison, the agent

without the tanh wrapper could not recover from the exceeding penalties it received after hitting

the ground. In Fig. 4.6d, it can be seen that the bike managed to keep the balance of the bike by

slightly moving its balance towards an angle to keep moving forward towards the goal.

The bicycle navigation task employs a polynomial objective function that the learning

algorithm aims to maximise. This function is designed to quantify the agent’s success in

navigating towards a target while maintaining balance. However, as the agent’s trajectories

extend in length, the task of learning optimal control strategies becomes increasingly complex.

This complexity arises from the nature of the cost function gradient and how it influences the

learning process in scenarios involving extended trajectories.

In the context of long trajectories, the gradient of the cost function—which indicates the

direction and magnitude of the steepest ascent towards the objective maximisation—exhibits

pronounced steepness at points that may not be strategically advantageous for learning. Specif-

ically, these points often occur after the agent has already entered an uncontrollable position,
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meaning that the trajectory has deviated significantly from an optimal path or that the bicycle

has lost its balance to the extent that recovery is unlikely within the current trajectory.

This characteristic of the gradient presents a significant challenge for the learning algorithm

for several reasons:

• Misguided Focus: The steep gradient at inappropriate points misleads the learning

algorithm into prioritising adjustments aimed at “saving” positions that are essentially

lost causes. Instead of focusing on improving the overall strategy for earlier parts of the

trajectory, the algorithm expends resources attempting to correct situations where recovery

is highly improbable.

• Inefficient Learning: Concentrating on these lost-cause positions detracts from the

learning process’s efficiency. The algorithm might become bogged down in trying to

optimise for scenarios with minimal potential for impact, thereby slowing overall progress

towards learning effective navigation and balance strategies.

• Confusion and Instability: The disproportionate emphasis on correcting uncontrollable

positions can confuse the learning process, leading to instability. The algorithm might

oscillate between strategies without converging on a robust solution that consistently

achieves the task’s objectives.

To mitigate these issues, several strategies can be considered, including:

• Regularisation and Reward Shaping: Modifying the objective function to smooth out

the gradient or incorporating reward-shaping techniques to guide the learning process

effectively.

• Early Termination of Trajectories: Implementing mechanisms to terminate trajectories

preemptively when the agent enters an uncontrollable position, preventing the algorithm

from focusing excessively on lost causes.

• Adaptive Learning Rates: Using adaptive learning rates to dynamically adjust the

magnitude of updates based on the trajectory’s context helps the algorithm prioritise

learning from more informative segments.

In summary, while the polynomial objective function in the bicycle model poses distinct

challenges for learning in scenarios involving long trajectories, understanding and addressing
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the underlying issues related to the cost function gradient can lead to more effective and efficient

learning algorithms. By implementing strategic modifications and enhancements, it is possible

to guide the learning process towards achieving optimal navigation and balance in continuous

space environments.

For example, by smoothly applying tanh to the polynomial cost function, which enabled the

learning algorithm to concentrate on the critical parts of the trajectory, i.e. where the trajectory’s

performance just started to deteriorate, which can be seen in Fig. 4.6b before the 400 physics

model update, as opposed to when trajectory control has already been irreversibly lost, i.e. after

the 400 physics model update shown in Fig. 4.6b.

It can be argued that the learning can be stopped after losing control, allowing the weights

to be updated correctly. By stopping the trajectories, the agent ignores the gradients after the

terminal state; it is believed that these errors caused by the agent are valuable assets for learning.

Ignoring such penalties can damage effective learning. In errors, the agent learns; however, the

exceedingly large number of penalties generated by the agent after hitting the ground in the

experiment shown can be controlled by the proposed tanh function wrapped around the penalties,

which allowed the agent to balance effectively and find its way towards the goal.

Therefore, according to Fig. 4.5a, in the case of the bike agent without the early termination

condition, where the agent was allowed to reach a parallel orientation to the ground and still

be able to move, the tanh wrapper proved to be highly effective. The tanh wrapper facilitated a

more gradual and controlled learning process, allowing the penalties to accumulate smoothly.

This resulted in improved stability and consistent progress throughout the experiment.

On the other hand, according to Fig. 4.5b, in the bike agent experiment with the early

termination condition, the tanh wrapper also played a significant role. By introducing the

termination condition when the agent’s roll angle exceeded a certain threshold, the tanh wrapper

helped stabilise the learning process. The wrapper effectively attenuated the penalties and

prevented abrupt resets, allowing the agent to explore and learn in a more controlled manner.

Furthermore, the findings indicate that finding the right balance between rewards and stability

is crucial when designing and optimising the BPTT algorithm.

Overall, the experiments with the bike agent underscore the significance of reward-shaping

techniques, such as the tanh wrapper technique, in achieving more stable and robust learning

outcomes. Further exploration and refinement of such reward-shaping techniques can lead to

better performance and convergence in complex navigational tasks.



Page 96

4.4 Chapter Conclusions

This chapter embarked on an empirical journey to scrutinise the applicability and efficacy

of Backpropagation Through Time (BPTT) and other advanced reinforcement learning (RL)

algorithms in the complex terrain of continuous space environments. Through methodical

experimentation, including a navigational task with a fixed food location as detailed in Section 4.2,

this chapter gleaned valuable insights into these algorithms’ operational nuances and comparative

performance.

The experiments revealed that BPTT stands out for its ability to guide agents through

continuous spaces with a degree of efficiency and adaptability that may surpass traditional

RL approaches. Specifically, the BPTT algorithm demonstrated promising results in steering

agents towards objectives with precision and learning speed that suggest an optimal navigation

strategy. This outcome validates BPTT’s potential in continuous environments and underscores

its relevance to the thesis’s focus on enhancing RL agents’ adaptability and decision-making

prowess in dynamic settings.

In contrast, while other RL algorithms showed potential, they exhibited limitations such

as slower learning rates, occasional instabilities, and sometimes lower overall rewards. These

findings indicate a potential area for further research and development, emphasising the need to

refine these algorithms to improve their performance in continuous space navigation tasks.

Using neural architectures, characterised by their simplicity yet effectiveness, further illus-

trated the dynamic interplay between algorithmic strategies and environmental complexity. The

implementation details, such as choosing a hidden layer with 20 nodes and the tanh activation

function, were pivotal in capturing the environment’s subtleties, reinforcing the thesis’s theme of

integrating deep learning techniques with RL for advanced problem-solving.

In this chapter, it is evident that BPTT, with its distinctive advantages in speed, stability, and

reward outcomes, marks a significant stride toward realising more sophisticated and capable RL

agents. These insights enrich our understanding of BPTT’s role within the broader RL landscape

and lay the groundwork for future explorations into more complex environments and challenges.

Looking ahead, the next phase of our research will venture into the uncharted waters of

Section 4.2 with randomised food-source locations, aiming to test the limits of BPTT further

and explore its synergies with memory mechanisms in navigating the unpredictable terrains of

continuous spaces. This future work promises to deepen our comprehension of BPTT and other

RL algorithms, contributing to the advancement of artificial intelligence and the development of
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autonomous agents capable of sophisticated decision-making and adaptation.

In summary, this chapter not only contributes to the thematic core of the thesis by show-

casing BPTT’s potential in continuous space navigation but also sets the stage for subsequent

investigations into the integration of memory and adaptability in RL. Through this exploration,

This thesis moves one step closer to the goal of developing RL agents that are not just reactive

but truly adaptive, capable of thriving in the ever-changing landscapes of the real world.
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Chapter 5

Adaptive Learning for Resource

Exploitation and Navigation in Continuous

Environments

The exploration of adaptive learning mechanisms in environments that simulate natural processes

represents a significant stride toward understanding and replicating the cognitive abilities of living

organisms. This chapter delves into the dynamics of a simulated organism tasked with exploring

and exploiting resources within a continuous space. This scenario mimics the fundamental

survival strategies living entities employ in natural ecosystems. Unlike the discrete, maze-like

environments discussed in previous chapters, this setting presents a more nuanced challenge

that closely mirrors real-world conditions, where resources like food are distributed across a

continuous landscape.

This chapter’s primary contribution lies in examining how adaptive dynamic programming

(ADP) algorithms, specifically Backpropagation Through Time (BPTT), can be leveraged to

navigate and exploit resources efficiently within such environments. This exploration is motivated

by the need to understand the extent to which BPTT and related reinforcement learning (RL)

algorithms can adapt to changes in environmental conditions and objectives, reflecting the

adaptability inherent in living organisms.

In contrast to the previous focus on memory for navigation within discrete spaces, this

chapter broadens the scope to include memory’s role in navigation and resource exploitation in

continuous environments. This shift is crucial for simulating more complex behaviours observed

in nature, where organisms navigate their surroundings and make strategic decisions on resource
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allocation and prioritisation based on memory and observation.

The scenario detailed in this chapter situates the agent within a minimally complex, partially

observable environment (POE), a term that signifies a fundamental aspect of the challenges faced

by the agent. Unlike fully observable environments, where the agent has access to complete

and immediate information about its surroundings at all times, a POE restricts access to such

comprehensive data. Instead, the agent receives limited sensory inputs that provide incomplete

information about the state of the environment. This limitation necessitates the agent to infer or

reconstruct the missing information to make informed decisions and navigate the environment

effectively.

This concept of partial observability is critical in understanding the dynamics of natural and

artificial intelligence systems, as discussed in the Section 2.2.1 on differences in environment

observabilities. In real-world scenarios, living organisms rarely have access to all information

about their surroundings. Instead, they rely on their sensory perceptions, memory, and cognitive

abilities to coherently understand their environment, a process mirrored in this chapter’s design

of the simulated environment.

In this specific scenario, the agent, modelled as a simple simulated organism, is tasked with

locating and moving towards a food source, the position of which is randomised at the start of

each new iteration. The agent’s sensory inputs are limited to the density of food at its current

location, represented as a single scalar value. This setup epitomises a POE, as the agent does not

have direct visibility of the entire environment or the exact location of the food source. Instead,

it must explore the environment, sampling the food density at multiple locations, and use its

internal memory to record these observations. Over time, the agent synthesises this fragmented

information to deduce the probable location of the densest food concentration and devise a

strategy to exploit this resource efficiently.

The challenge of navigating and exploiting resources in a POE highlights the importance

of memory and adaptive learning strategies in overcoming the limitations posed by incomplete

information. It also aligns with the broader thesis of enhancing reinforcement learning agents’

adaptability and decision-making capabilities in dynamic environments. By investigating how

agents learn to operate within a POE, this chapter contributes to the ongoing exploration of

advanced learning mechanisms and their application in simulating complex cognitive processes

observed in living organisms.

Addressing this problem necessitates using a recurrent neural network (RNN) with recurrent

memory nodes. This setup enables the simulated organism to simultaneously explore its envi-
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ronment and memorise salient features, facilitating the development of a nuanced movement

strategy. In this context, the goal of employing ADP/RL algorithms is to discover an RNN

configuration that optimally solves the exploration and exploitation challenge.

Furthermore, this chapter aims to distinguish between navigation and resource exploitation

concepts. Navigation refers to the organism’s ability to orient itself and move through the

environment, while resource exploitation focuses on the organism’s efficiency in locating and

using resources within that environment. This distinction is vital for understanding the organism’s

adaptive learning processes in response to environmental changes.

By integrating ADP/RL algorithms with RNNs, this research seeks to solve a specific

resource exploitation problem. It contributes to the broader understanding of adaptive learning

and memory’s role in continuous space environments. This endeavour aligns with the thesis’s

overarching theme of enhancing artificial agents’ adaptability and cognitive capabilities, pushing

the boundaries of current machine-learning approaches to better mimic the complex decision-

making processes observed in living entities.

This chapter presents a scenario where a simple simulated organism must explore and exploit

an environment containing a food pile. Building upon the foundational work discussed in

Section 4.2, this chapter extends the investigation into how an organism learns to navigate

its environment to seek food effectively. The organism learns to make observations of the

environment, use memory to record those observations, and thus plan and navigate to the regions

with the strongest food density. In particular, this chapter compares reinforcement-learning

algorithms with an adaptive dynamic programming algorithm, specifically the BPTT algorithm,

to demonstrate its relative efficiency. With the background of BPTT already established for the

readers, the chapter concludes that backpropagation through time can convincingly solve this

recurrent neural-network challenge. Furthermore, this algorithm successfully mimics a minimal

organism’s fundamental objectives and mental environmental-mapping skills while seeking a

food pile distributed statically or randomly in an environment.

Existing Reinforcement Learning (RL) and Adaptive Dynamic Programming (ADP) algo-

rithms have become more efficient in examining, learning, and solving new problems (e.g., a

new game) [Mnih et al., 2013, Silver et al., 2018]. However, solutions can be computationally

demanding as the algorithms slowly adapt to a new problem. The existing RL methods cannot

efficiently adapt to an existing problem that has been learnt once but then changes its rules

[Li et al., 2018]. This chapter presents a surprisingly simple POE problem where the goal is

randomised, and many ADP/RL algorithms struggle to solve it.
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Furthermore, in contrast to the maze-solving problem discussed in Chapter 3, where memory

was solely used for navigation in a discrete space environment, this chapter explores the use of

memory for both navigation and resource exploitation in a continuous space environment.

The proposed problem in this chapter is close-to-minimal in a POE, where an agent has to use

observations and internal memory to learn to navigate and move toward a randomly positioned

food-source – see Fig. 4.1. The food-source’s location is randomised at every “game” reset,

where the agent is re-initialised according to its original position. The agent receives sensory

data of the density of food at its current location (this is the height of the Gaussian bump, i.e., a

single scalar reading) at every time step of its journey.

To solve the proposed problem:

• The agent has to devise a movement strategy that quickly explores, taking samples of the

food density at multiple nearby locations.

• It also must devise a memory strategy that quickly records observations to acquire the

location information about the food-source. Then, an exploitation strategy quickly moves

the agent towards the discovered densest food-location.

This solution requires a recurrent neural network (RNN) with recurrent memory nodes to act

as an exploration and memorisation strategy. It also requires an ADP/RL algorithm to discover

this RNN exploration algorithm.

In the context of this chapter, navigation and resource exploitation are distinct yet interrelated

tasks that the agent must perform within a POE. Navigation refers to the agent’s ability to

orient itself and move through the environment towards a goal or area of interest. It involves

understanding the spatial layout and deciding the best paths to reach a destination efficiently.

On the other hand, resource exploitation focuses on the agent’s ability to identify, evaluate, and

use resources within the environment to its advantage. In the scenario presented, the primary

resource of interest is the food pile, and exploitation involves not just locating this food source

but also determining the most efficient way to consume or benefit from it.

This distinction is critical in understanding the agent’s dual objectives: first, to navigate or

find its way to the food source, and second, to exploit or maximise the gain from this resource.

The complexity arises from the environment’s partial observability, which demands that the

agent develop a strategy to infer the location of the food source based on limited sensory inputs

and then apply a separate set of strategies to optimise resource consumption.
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Removing the analogy to poker, the concept of a POE can still be well understood without it.

Such environments necessitate that the agent relies on indirect cues and memory to reconstruct

the state of the world it cannot directly observe, a challenge that is central to the tasks of

navigation and resource exploitation described.

Regarding Recurrent Neural Networks (RNNs), it is acknowledged within the machine

learning and neuroscience communities that RNNs offer a powerful framework for modelling

sequential data and temporal dependencies, attributes theoretically aligned with certain cognitive

processes. The capacity of RNNs for universal computation, akin to Turing completeness,

suggests that with adequate complexity and tuning, RNN architectures could potentially solve a

wide range of problems, including those requiring the integration of observations over time to

make informed decisions. This theoretical underpinning forms the basis for employing RNNs to

address the challenge of navigating and exploiting resources in a dynamic POE. By exploring

the weight-space of an appropriately sized RNN, the aim is to discover an algorithmic solution

that enables the simulated agent to effectively navigate to and exploit a randomly positioned

food source, embodying a form of learning that closely mirrors adaptive behaviour in uncertain

contexts.

The RNN algorithm will require the formation of memories about the partially-explored

environment and goal. Hence, the RNN algorithm must be capable of learning about its environ-

ment. It is the objective of the ADP/RL algorithm to find such a set of weights. If the ADP/RL

algorithm manages this, it must have “learned how to learn” or performed meta-learning.

Hence, two levels of learning are required here: the inner learning algorithm executed by

the RNN as it explores the food environment and the outer learning algorithm, i.e., the ADP/RL

algorithm, which discovers an RNN exploration algorithm capable of solving this task.

Even though this food-exploration challenge is relatively easy and could easily be solved

by many pre-existing hill-climbing algorithms from computer science, the RNN algorithm

sought after in this work must be discovered by the ADP/RL algorithm instead of being hand-

programmed. Furthermore, the RNN algorithm must be self-adaptive to any new randomised

location for the food pile without requiring further tuning of its weights.

RL algorithms applicable to continuous action and state spaces were chosen from the Stable-

Baselines package (version 1.1.0) [Raffin et al., 2019] to tackle the POE. These algorithms

included Advantage Actor-Critic (A2C), Soft Actor-Critic (SAC), Deep Deterministic Policy

Gradient (DDPG), and Twin Delayed DDPG (TD3) [Mnih et al., 2016, Haarnoja et al., 2017,

Lillicrap et al., 2015, Fujimoto et al., 2018]. Additionally, the classic ADP model-based
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algorithm, backpropagation through time (BPTT) [Werbos, 1990, Lillicrap and Santoro, 2019],

was used. However, the experiments revealed that the selected state-of-the-art RL algorithms

could not devise a policy that enabled the agent to develop a recurrent-memory-based exploration

strategy.

In contrast, the implemented BPTT algorithm successfully devised an exploration strategy

with recurrent-memory features. This outcome aligns with prior work by Fairbank et al. [2014a],

demonstrating that BPTT could find RNN solutions for exploiting POEs and exhibit more robust

convergence compared to classic RL algorithms [Fairbank et al., 2013]. Although BPTT can be

argued not to be a “true” RL algorithm as it requires access to a known environment model, it

was shown that using BPTT to train the agent was crucial in finding a solution. Furthermore,

the advantage of BPTT in receiving model-based gradient information about the environment

played a significant role in solving this task.

It is proposed that the navigational problem and the RNN algorithm necessary to solve it

emulate, in the simplest sense, the memory-manipulation tasks performed by certain organisms

to locate food (e.g., E-coli bacteria’s sensory-based navigation [Hu and Tu, 2014]). Therefore,

it is argued that this RNN algorithm is functionally equivalent to the food-seeking sentient

behaviour of the simplest organisms. It encompasses the formation of memories describing the

agent’s environment and the goal-directed adaptive behaviour to exploit the environment and

obtain food. The term “functionally sentient” refers to the fact that the external behaviours of the

agent mimic those of a sentient creature. It is important to note that no claims are made regarding

the actual sentience of the simulation or such simple organisms. This approach follows a long

tradition in adaptive-behavior research of developing “minimal agents” that exhibit complex

behaviour [Conway et al., 1970, Braitenberg, 1986, Beer, 2003].

One of the critical challenges for the agent in this particular task is that the single environment

sensor returns only one scalar value. Consequently, several scalar readings are required to deduce

the slope of the food gradient, necessitating memory. These readings must then be combined

using some algorithm (e.g., triangulation) to deduce the food-density gradient. While a human

programmer might need to design a solution algorithm, in this case, the RNN must carefully learn

it through self-learning. Moreover, once the problem is solved, the RNN exhibits capabilities

commonly associated with simple organisms assumed to be sentient:

1. It maintains an internal belief state about its environment, such as the current estimation of

the food gradient and the agent’s previous location.
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2. The belief state changes as the agent explores the environment.

3. It executes a purposeful movement strategy to gather knowledge through exploration.

4. It performs computations on its memories (e.g., triangulation) to fully exploit the environ-

ment.

5. Once the goal is discovered, it moves towards it, demonstrating exploitation behaviour.

Contrasting the above features with the maze Q-learner discussed in Chapter 3 is worth

contrasting. While both agents maintain some form of internal belief state and exhibit goal-

oriented behaviour, there are several key differences:

1. The maze Q-learner’s sensory input is generally more abundant and possibly multidimen-

sional. In contrast, the agent in this chapter must make do with a single scalar sensor for

food detection.

2. Memory usage in the maze chapter is primarily geared towards navigating a fixed maze

with static rules. In contrast, the agent in this chapter needs to employ memory more

dynamically to deduce the varying food-density gradient, which involves complex compu-

tations like triangulation.

3. The concept of ‘exploitation behaviour’ in the maze q-learner is more straightforward: it is

consistently followed once the optimal biologically feasible; the agent in this chapter must

continually adapt its exploitation strategies based on evolving beliefs about food density

and location.

5.1 Environment and Agent Definitions

The environment physics and the reward function were taken from the physics described in

Section 4.2. However, the agent definitions were altered to accommodate the RNN structure.

5.1.1 Agent’s brain with memory

The observation vector received by the neural network is o⃗t defined by:

o⃗t = (xt ,yt ,d(xt ,yt), h̄t), (5.1)
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the d(xt ,yt) of o⃗t represents a scalar sensor reading the agent receives about the food density at

their current location.

The memory state of the agent at time t is given by a vector h⃗t ∈ Rm, where m is the number

of recurrent memory nodes.

The neural network implemented is shown in Fig. 5.1. It has dim(xt ,yt ,d(xt ,yt)+m inputs

and dim(⃗at)+2m output nodes. This allows for recurrence in the neural network and allows the

neural network to receive observations (⃗ot) as input and to make a control action (⃗at) as output.

At time t, the output vector j⃗t of the neural network is given by:

j⃗t = π (⃗ht , o⃗t , w⃗), (5.2a)

where π denotes the neural network, o⃗t is the observation vector at time t, and h⃗t is the recurrent

memory state at time t.

The output vector j⃗t is partitioned into chunks defined by:

j⃗t = [⃗at ,⃗h
input
t ,⃗hgate

t ], (5.2b)

as shown in Fig. 5.1.

Figure 5.1: Main neural-network structure used in randomised food-location experiments.

In this context, a⃗t represents the action vector (of length 2) chosen by the agent through the

deterministic policy function, while h⃗input
t and h⃗gate

t (each of length m) serve as memory gates

and inputs for a GRU-style recurrent memory. The agent’s motion adheres to the same model
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described in Chapter 4, particularly Eq. (4.3), to maintain continuity and facilitate comparison.

For the reader’s convenience, the equations governing the agent’s movement are reiterated below:

v⃗t = vmax tanh(|⃗at |)ât . (5.3a)

p⃗t+1 = p⃗t + v⃗t∆T, (5.3b)

where p⃗t = (xt ,yt) represents the agent’s position at a given time-step.

It is also pertinent to revisit Eq. (4.2) from Chapter 4, as this equation forms the basis of the

reward function employed in the current chapter:

R =
L−1

∑
t=0

γ
trt , (5.4)

The recurrent memory is updated during each time step by the equation:

h⃗t+1 = tanh(⃗hinput
t )⊙σ (⃗hgate

t )+ h⃗t⊙ (1−σ (⃗hgate
t )), (5.5)

where σ denotes the logistic sigmoid activation function, and ⊙ denotes element-wise vector

multiplication.

To fully apply Eqs. (5.3a) and (5.5), the neural network π must produce unbounded outputs,

i.e. have no activation function on its final layer.

The decision to omit “forget” gates from the simplified version of gated memory in this study

is grounded in the pursuit of computational efficiency and model simplicity. The original Gated

Recurrent Units (GRUs) introduced by Chung et al. [2014] included forget gates as a mechanism

to control the extent to which previous states influence current memory content. While this

feature allows GRUs to model temporal dependencies with great flexibility, it also introduces

additional complexity and computational overhead.

Building on the work of Zhou et al. [2016], this study simplifies GRUs by omitting forget

gates, following a trend towards minimalistic neural architectures. The rationale behind this

simplification is twofold:

1. Increased Efficiency: By reducing the parameters and operations required at each time

step, the simplified model can be trained more rapidly. This efficiency is crucial when

computational resources are limited, or the model needs to be scaled to handle large

datasets or complex environments.
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2. Focus on Essential Dynamics: Simplifying the memory mechanism allows the model to

focus on capturing the most critical temporal relationships without the potential distraction

of managing forgetfulness explicitly. This approach assumes that the essential dynamics of

the task can be learned and represented even without the ability to forget past information

selectively.

This simplified GRU model is inspired by the minimalist GRU variant proposed by Zhou et al.

[2016], which demonstrated that GRUs could achieve competitive performance even without

“forget” gates. In the context of this study, the simplified memory model is deemed sufficient

for exploring the primary research questions related to navigation and resource exploitation in

partially observable environments. The model’s performance in these tasks provides empirical

evidence supporting the viability of this simplification.

Please refer to Appendix 3 for the detailed implementation of the memory model.

In summary, the omission of “forget” gates in this study’s gated memory model is a deliberate

choice to simplify the architecture and enhance computational efficiency. This decision aligns

with a broader research trend towards creating more streamlined and efficient neural network

models capable of capturing the essence of complex tasks without undue complexity.

5.1.2 Backpropagation Through Time Algorithm

In contrast to the previous chapter’s BPTT (Chapter 4) structure shown in Fig. 2.1, memory is

introduced to enhance the model’s capabilities. The enhanced structure involves the integration

of both the physics model and the memory model, as illustrated in Fig. 5.2. In Figure 5.2, it

elaborates on the enhanced structure that integrates the physics and memory models, enabling a

more sophisticated approach to problem-solving in reinforcement learning scenarios. This inte-

gration facilitates a dynamic interaction between the agent’s brain and its environment, allowing

for the processing and retention of information over time. Key components illustrated in the

figure include the agent’s brain, which receives inputs from both the environment (observations)

and its internal memory state. These inputs are processed to generate actions, update the memory

state, and control the flow of information within the memory model. This architecture empowers

the agent to make informed decisions based on both current environmental cues and past experi-

ences, showcasing the utility of incorporating memory models in continuous space navigation

tasks. The detailed description of this interaction and its implications for reinforcement learning

strategies are further elaborated in the text. The Agent’s brain receives two crucial pieces of
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information: observations (⃗ot) from the environment and memory information (h⃗t) from the

memory model. These inputs are combined and processed, resulting in the generation of three

distinct sets of information: actions (⃗at), new memory information (⃗hinput
t ), and memory gating

information (⃗hgate
t ).

The action set (⃗at) represents the output of the Agent’s brain, which will be executed in the

environment. The new memory information (⃗hinput
t ) will be fed back into the memory model to

update and maintain the memory state. Lastly, the memory gating information (⃗hgate
t ) is used to

control the flow of information within the memory model.

Combining the physics and memory models empowers the Agent to make more informed

and contextually aware decisions. This enables the model to handle complex tasks and address

previously unattainable challenges with a standard BPTT approach.

A
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M
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Recurrence

Figure 5.2: Recurrence between Agent Brain and Physics model allows the Agent’s brain to
produce new recurrent-memory data from the previous observations received by the Physics
model.

In contrast to Fig. 2.2, internally, this unrolls the combined network of Fig. 2.1 “through

time” to obtain the unrolled network shown in Fig. 5.3.
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Figure 5.3: Unrolled combined network in BPTT.

BPTT will train the neural network to solve the exploration problem and use the recurrent

memory nodes to execute the exploration algorithm necessary to find and exploit the food-pile.
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Interestingly, even though knowledge of the food-pile distribution function Eq. (4.1) and

physics model Eq. (4.3) is needed to be known during training (by the BPTT algorithm, not by

the agent), once the agent has “learned how to learn”, access to full knowledge of Eq. (4.1) and

Eq. (4.3) is not needed. After training, the agent’s RNN samples exploratory scalar values of the

function Eq. (4.3) and then makes decisions based on those samples. It no longer gets or needs

access to the derivatives of this function. In this sense, once trained, the “inner” component

of the meta-learning system (i.e. the RNN) has learned to perform true model-free RL on the

environment (albeit only on this specific food-pile environment). Once trained, and when the

RNN is unleashed on the environment, it performs model-free RL to locate and exploit the peak

of the food pile.

Under this scheme, the “environment” is treated as a more complicated function, which takes

extra inputs h⃗gate
t and h⃗input

t (in addition to the usual state and action inputs) and emits extra

output information h⃗t+1 (in addition to the usual next state and reward, information). The neural

network is considered feed-forward (Fig. 5.1).

While this change of view makes no functional difference to the way Eqs. (4.3b) and (5.5)

behave, from an implementation point of view, it can be useful to put Eq. (5.5) into the envi-

ronment because it then enables learning algorithms that were not written with recurrent neural

networks in mind to be applied to the environment and to be able to instil the agent with the

capabilities of gated recurrent memory.

In this chapter, the Partially Observable Environment (POE) primarily influences the agent’s

observability, not the BPTT algorithm’s operation. Throughout the validation phase, the agent

remains unaware of the underlying physics model and food-pile distribution; it only accesses its

positional values and sensory data, which provide the food’s current density at the agent’s location.

This setup underscores the agent’s reliance on immediate sensory feedback to navigate and exploit

resources within the environment. It showcases its ability to perform model-free reinforcement

learning post-training, even without comprehensive knowledge of the environment’s dynamics.

5.2 Experiment

Five selected RL and ADP algorithms were chosen for this experiment. A POE problem was

designed to demonstrate these algorithms, where the location and height of the food source were

randomised, and the agent must make exploratory observations to find the food. The general

experiment setup was designed to match the experiment done in Chapter 4 and in Section 4.2.4.
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The following result graphs show the mean value and its 95% confidence intervals calculated

over 20 trials by the “Seaborn” software library.

The food location was re-randomised at the start of each episode, and the initial agent

positions were always started from (0,0). This is the POE version of the problem, which

is necessary for sensing and memory capabilities. Each time an agent starts, the food-pile

location was chosen with uniform random distribution such that xfood ∈ [−5,5], yfood ∈ [−5,5],

zfood ∈ [0.5,1.5] and σ f ood = 8. In addition, the height of the food-source (zfood) was randomised

within that range to apply further difficulty in this POE experiment.

The neural network used in this experiment is the same as in the previous experiment, except

that there are now m = 20 recurrent nodes Eq. (5.2a) and also the sensor input d(xt ,yt) is used in

Eq. (5.1).

In the context of this research, the decision to fix the memory size at 20 nodes was based

on empirical evidence suggesting this was the minimum effective size observed during prelim-

inary tests. This size balanced computational efficiency and the network’s ability to capture

and use relevant environmental information. Limited time and resources prevented extensive

hyperparameter tuning, leading to the prioritisation of configurations that showed promise in

early experiments. This approach is common in research where exploratory findings guide the

selection of model parameters, aiming for a feasible balance between performance and resource

constraints.

Compared to the previous experiment, this changed the actor-network to have an extra 20

input nodes for h⃗t and an extra node holding the sensory input (d(xt ,yt)). The actor-network

output was extended by 20 nodes for h⃗gate
t and a further 20 nodes for h⃗input

t , compared to the

previous experiment. See Fig. 5.1. 20 nodes also extended the critic network’s input for h⃗t and

the extra input node for d(xt ,yt), and the critic output remained a scalar for holding Q-values.

5.3 Results

The results are shown in Fig. 5.4 for this POE experiment. The selected RL algorithms struggled

to perform well and devise a navigational strategy to find the peak of the food-pile.

Given the nature of the Gaussian distribution used in the environment, which inherently lacks

discrete local or global optima due to its continuous and smooth profile, the observation that

agents did not explore effectively and seemed to remain within a specific area may indicate

limitations in their exploratory strategy rather than getting “stuck” in a local maximum. This
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could suggest that the agents’ exploration mechanisms were insufficient to motivate them to

sample more broadly across the environment, potentially due to an over-reliance on areas of high

immediate reward or a lack of effective exploration incentives in the algorithm’s design.

However, the BPTT algorithm reached around 22.5 maximum average rewards, indicating

that the BPTT agents solved the problem.

The performance of the BPTT agent in the current experiment, attaining a score close to the

maximum of 25.5, is notably comparable to the results of the simpler experiment discussed in

Section 4.2. This high score suggests that the BPTT agent operates near-optimally even in a

POE. This inference is strengthened by a symmetry observed between the current and previous

experiments, as evidenced by the reversed arrows in Figs. 4.4 and 5.5a. The symmetry suggests

that the theoretical maximum reward should be analogous in both scenarios. However, it is

important to note a slight decrease in performance (i.e., 22.5 < 25.5). This reduction can be

attributed to the time the agent in the more complex POE initially spends on exploration before

efficiently navigating to the peak of the food pile.
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Figure 5.4: Algorithms’ performance on randomised food location validation environment over
100,000 iterations and averaged over 20 trials. Each algorithm used sensory data input and 20
recurrent nodes.
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Fig. 5.5a shows a sample of ten trajectories from the fully-trained BPTT agent’s behavioural

movement. Fig. 5.5b shows a close-up zoom of the central region, highlighting the agents

performing an exploration strategy to reach the goal.

Fig. 5.5b shows that the RNN exploration algorithm learned to navigate and devise a move-

ment strategy using input sensory data and memory. It illustrates that the ten sample trajectories

created by the BPTT agents started from (0,0), with a break-off point around (0.1,−0.19). From

that separation point, it showed that the RNN’s memories of previous observations affect the

agents’ decisions after sampling multiple sensor results.
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(a) High-level view of a sample of ten randomised
food-pile environments.
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(b) A close-up zoomed view of the region from x-
range [−0.5,0.5] and y-range [−0.5,0.5], showing
the initial exploratory actions the agents took in
Fig. 5.5a.

Figure 5.5: Behaviour of fully-trained BPTT agents at solving the randomised food-pile problem
on a test set. The x and y axes describe the location. Each coloured pathway represents a
trajectory from the common start point at (0,0). These show the agents exploring and calculating
the direction of increasing food density and then travelling to the food-pile peaks. Each different
coloured trajectory ends up at or near the centre of its own specific food-pile location (indicated
by the coloured X symbols).
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An ablation study was performed using three different versions of the neural-network archi-

tecture to clarify that recurrent memories and a sensor were required for the BPTT algorithm to

solve the randomised food-location environment. These different versions involved removing

the sensor and the recurrent memory. The results are shown in Fig. 5.6 and conclude that the

recurrent memory nodes and sensor input are necessary for solving the navigational task.
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Figure 5.6: The effect of solving the randomised food-pile location problem with and without
sensors and memory is that each algorithm setup is experimented with over 10,000 iterations and
averaged over 20 different trials.

5.4 Discussion

BPTT showed competency in performance and stability in the POE. The BPTT algorithm

discovered an exploration method that looks like the agent is wobbling as it moves towards the

goal. This wobble at the start can be assumed to be the agent taking exploratory actions, i.e., it

has successfully learned how to learn. The other RL algorithms failed to solve the randomised

food-pile problem.
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It appears in Fig. 5.4 that the agents receive an average validation reward of approximately

10 at the start of training. This is explained because, for an average randomisation of the initial

agent and food positions, the agents were to stand still for 30 time-steps. Then, they would

receive an average total reward of 10.7 (a value was found in a separate informal experiment).

Fig. 5.4 shows that the reward progression does not consistently show monotonic improve-

ment, especially with the RL algorithms. This is likely because the RL algorithms are not

proven to be true gradient ascent on any objective function, in contrast to BPTT [Barnard, 1993,

Fairbank et al., 2013].

It is important to clarify the conceptual distinction between RL algorithms and gradient

ascent methods like BPTT. RL algorithms, including policy gradient methods, optimise policies

based on expected returns. Still, their updates do not necessarily follow the gradient of a well-

defined, global objective function in a strict mathematical sense. This can lead to non-monotonic

reward progressions due to exploration, variance in estimates, and the complex dynamics of the

environment.

BPTT, by contrast, explicitly computes gradients of an objective function concerning model

parameters over sequences, enabling more direct optimisation. This method is grounded in

gradient ascent on a defined loss function, providing a clearer path to monotonic improvement in

performance, assuming the gradient estimates are accurate and the learning rate is appropriately

tuned.

The observation in the chapter aims to highlight these fundamental differences in how RL

algorithms and BPTT approach optimisation, suggesting why RL algorithms might not exhibit

consistent, monotonic improvement in rewards. It’s not a matter of proving RL algorithms are

not gradient ascent methods; rather, it recognises their operational and theoretical distinctions,

which influence their behaviour and performance in learning tasks.

Fig. 5.4 shows that the selected RL algorithms failed to devise any movement strategy that

improved on the initial average reward of 10.7. Their agents got stuck in the same region and

did not successfully apply exploration strategies.

This might be because the recurrent memory and the sensory input features uniquely benefited

the BPTT algorithm. However, the selected RL algorithms are sensitive to hyper-parameters

chosen to solve RL-based problems.

The performance of RL algorithms in complex environments is highly sensitive to the choice

of hyperparameters. In this study, while the SAC algorithm exhibited slow divergence in previous

experiments, the decision to use a specific set of hyperparameters was informed by a balance
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between computational feasibility and the pursuit of optimal performance within the constraints

of the study. This approach was guided by preliminary experiments and literature precedents,

aiming to establish a baseline for comparison. Recognising the limitations of this approach,

future work could entail a more exhaustive hyperparameter search, leveraging techniques like

grid search or Bayesian optimisation to explore the hyperparameter space and potentially enhance

algorithm performance systematically.

One interesting trajectory in Fig. 5.5b is the purple line, which shows a complete turnaround

at approximately (−0.25,−0.3) as the agent “realises” it set off in the wrong direction. This

systematic exploration method and multiple sampling of the food density from different locations

allow the RNN to deduce the direction in which the food density increases the most. The agent

(RNN) learns during an episode (the “inner” learning algorithm).

The pathways over the food-hill taken by the BPTT agents indicate that the agents’ RNNs

have discovered an exploration algorithm that samples and records food-heights in the environ-

ment and acts accordingly. Furthermore, the BPTT algorithm (the “outer algorithm”) has chosen

weights that enabled the RNN to behave like this. This adaptive behaviour is consistent with the

minimal simulated “organism” approach favoured in this work.

In this chapter, the term “partially observable environment” (POE) emphasises the agent’s

limited access to the complete state of the environment. Initially, during the training phase,

the Backpropagation Through Time (BPTT) algorithm requires knowledge of the food-pile

distribution function and the physics model to guide the learning process. However, post-

training, the agent operates without explicit knowledge of these underlying functions. It relies

solely on its positional information and sensory data reflecting the immediate food density.

This operational mode underscores the agent’s transition to a model-free reinforcement learning

approach, where decisions are made based on partial observations rather than a full understanding

of the environment’s state. Consequently, even though the BPTT algorithm uses comprehensive

environmental models during training, the agent’s subsequent independent operation aligns with

the characteristics of a POE as it navigates and makes decisions based on limited information.

To solve the POE experiment, the ablation study in Fig. 5.6 shows that the implemented

BPTT algorithm requires recurrent memory combined with sensory-based information. The

other two variants of the implemented BPTT (BPTT with no sensor or recurrent memory and

BPTT with sensor and no recurrent memory) failed to solve the problem.

In the POE experiment, all algorithms were forced to obey the recurrent-memory Eq. (5.5)

by embedding those equations within the environment model. Although this combined system
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(of physics plus memory) is a valid “environment”, it turned out to be a particularly challenging

one that the RL algorithms could not cope with.

In contrast, the BPTT algorithm exploits knowledge of the true derivatives which pass

through the physics environment, through the memory model, and the neural network, i.e.

back-propagating gradients right through the unrolled network shown in Fig. 5.3; and these

derivatives seem to have been crucial in correctly solving this exploration problem. It seems a

reasonable explanation that gradient-based algorithms such as BPTT can potentially extract more

information quickly from an environment than scalar-based model-free RL methods [Fairbank

and Alonso, 2012].

5.5 Chapter Conclusions

This chapter has provided significant insights into the challenges and opportunities presented

by partially observable environments (POEs) and unexpected perturbations, such as the ran-

domisation of food locations. By implementing a simplified form of the Gated Recurrent Unit

(GRU), enhanced with sensory inputs, this study demonstrates the use and robustness of Back-

propagation Through Time (BPTT) in navigating complex, dynamic environments. Despite its

inception in 1990, this classic algorithm has showcased its potential to surpass some of the latest

advancements in reinforcement learning algorithms by addressing tasks that necessitate memory

manipulation and algorithmic discovery.

The core contribution of this chapter lies in its exploration of BPTT’s application within

simple, biologically plausible exploration scenarios. By simulating an “organism” tasked with

food gathering in a POE, this work aligns with the principles of meta-learning and accommodative

neural networks, underscoring the adaptability of BPTT in neural control, especially in tasks

where observational signals are scarce. The efficacy of BPTT in managing the exploration-

exploitation balance and its capacity to refine policies through reward-based updates highlights

its suitability for complex navigational challenges.

Moreover, the chapter’s ablation analysis and evaluation of trajectory behaviours emphasise

the critical role of memory and sensory observations in task resolution, showcasing the sentient-

creature-like attributes of the agent. The successful application of BPTT, yielding a functional

RNN capable of self-learning solutions, illustrates the method’s potential for broad applicability

across diverse tasks without substantial modifications.

This study also differentiates BPTT, classified as an Adaptive Dynamic Programming (ADP)
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algorithm, from other RL algorithms using the physics model and its derivatives for accelerated

learning. This distinction underscores the advantages of integrating the learning model closely

with the physical dynamics of the environment, as opposed to the more isolated approach seen in

traditional RL methods.

Looking forward, this research opens avenues for further exploration into more intricate food

distribution patterns, increased levels of partial observability, and the potential augmentation of

the agent’s sensory capabilities. The limited success of the evaluated RL algorithms suggests

a need for an in-depth examination of advanced RL strategies, particularly those that could

leverage gradient-based learning through recurrent memory nodes.

The next chapter will delve into alternative memory mechanisms, including the full Long

Short-Term Memory (LSTM) and Content-Adaptive Recurrent Units (CARU), to further align

with the overarching goals of enhancing adaptability, efficiency, and decision-making capabilities

in dynamic environments. This direction not only supports the main objectives of the PhD thesis

but also contributes to the broader field of artificial intelligence by advancing our understanding

of memory integration in reinforcement learning.
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Chapter 6

Advanced Memory Models for Control

This chapter represents a pivotal advancement in exploring memory models for enhancing

the performance of Recurrent Neural Networks (RNNs) in control applications within POEs.

Building upon the foundational work presented in the previous chapter on the simplified form

of the Gated Recurrent Unit (GRU) [Chung et al., 2014], this investigation broadens the scope

to include a suite of advanced memory models. Specifically, the analysis encompasses the full

Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997], the Context-Adaptive

RNN unit (CARU) [Chan et al., 2020a], and the Minimal Gated Unit (MGU) [Zhou et al., 2016].

Additionally, a modified version of a recurrent network with no gating mechanism, originally

proposed by Jordan [1997], termed “Identity” in this context, is examined for its potential in

neuro-control applications, particularly noting the replacement of the last activation function

with a tanh function.

The main contribution of this chapter lies in its comprehensive comparative analysis of these

advanced memory models, all implemented alongside Backpropagation Through Time (BPTT),

to evaluate their performance and suitability for tackling the complex control tasks encountered

in partially observable environments.

Motivated by the necessity to improve RNN performance in dynamic control scenarios, this

chapter seeks to elucidate the comparative advantages and limitations of employing various

memory mechanisms in conjunction with BPTT. The objective is to discern how these advanced

models can enhance agents’ adaptability, efficiency, and decision-making capabilities, directly

aligning with the thesis’s overarching goals. By delving into the nuances of memory model

integration, this research endeavours to push the boundaries of what is achievable in reinforce-

ment learning and adaptive dynamic programming, especially in contexts that demand a nuanced



Page 120

understanding of temporal dependencies and environmental dynamics.

Each algorithm was implemented and evaluated in the context of the “EnvironmentAntfood”

task, as shown in Appendix 3, providing a practical framework for comparison and analysis.

By examining these memory models’ performance in a controlled, partially observable

task, this chapter contributes significantly to our understanding of the role and optimisation of

memory in BPTT-enhanced RNNs. The insights garnered from this study advance the theoretical

underpinnings of memory model application in RNNs and offer actionable recommendations for

their deployment in more sophisticated navigation and control tasks. The findings herein serve

as a valuable resource for future research aimed at refining and expanding the capabilities of

intelligent agents within the realms of reinforcement learning and adaptive dynamic programming.

6.1 Memory Integration

This section evaluates four distinct memory models for RNNs, chosen for their relevance to the

research questions and their compatibility with the system’s requirements, particularly focusing

on differentiability and system compatibility. These models are detailed in Section 2.4.8 and are

selected based on their potential to enhance the performance of RNNs in handling complex tasks

within partially observable environments.

Jordan Recurrent Network and “Identity” Model: The first memory model revisits the

classic “Jordan recurrent network” [Jordan, 1997], known for its pioneering role in storing and

processing sequences. The adaptation termed the “Identity” model in this chapter introduces a

significant modification: replacing the activation function in the last hidden layer. Unlike tradi-

tional RNNs, the “Jordan recurrent network” and the “Identity” model lack a gating mechanism,

presenting a simpler architecture. This simplicity is intentional, aiming to assess the impact of

minimal structural changes on system performance. The choice of these models allows for an

examination of how basic recurrent architectures perform in tasks requiring memory without the

complexity of gating mechanisms, emphasising differentiability and straightforward integration

with our system.

Long Short-Term Memory (LSTM): The LSTM model [Hochreiter and Schmidhuber,

1997] is selected for its advanced architecture featuring memory blocks and three distinct gating

mechanisms: input, forget, and output gates. These features enable selective information reten-

tion and processing, making LSTMs highly effective in applications with long-term dependencies.
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The inclusion of LSTM in this comparison is based on its proven track record in complex tasks

across various domains, from speech recognition to video analysis. Its differentiability and com-

patibility with backpropagation through time (BPTT) make it an ideal candidate for exploring

the effectiveness of gated memory models within our system.

Context-Adaptive RNN Unit (CARU): CARU [Chan et al., 2020a] extends the basic RNN

structure by introducing a context gate, which dynamically adjusts the flow of information based

on the relevance of current inputs and previous states. This model is chosen for its ability to

fine-tune attention to pertinent information, potentially enhancing performance in environments

with fluctuating relevance of inputs. CARU’s design aligns with the thesis’s focus on adaptability

and efficiency in dynamic settings, supported by its differentiability and the added value of

context-sensitive processing.

Minimal Gated Unit (MGU): Lastly, the modified MGU [Zhou et al., 2016] is included for

its streamlined approach, combining efficiency with effectiveness. MGU balances simplicity

and computational power with only one gate, requiring less training data and simplifying

architecture tuning. This model’s selection is motivated by its minimalistic design, which

maintains performance with fewer parameters, making it an intriguing option for comparison in

terms of both differentiability and system adaptability.

By integrating and comparing these models, this research aims to identify optimal memory

mechanisms for enhancing RNNs in control tasks in Partially observable and dynamic environ-

ments. Each model’s selection is justified by its potential to contribute uniquely to understanding

memory integration in RNNs, emphasising their differentiability and compatibility with the

system’s architecture and learning algorithms.

6.2 Integrating Memory Gates into the Physics Model

In training recurrent neural networks using backpropagation through time (BPTT), it is crucial to

employ differentiable memory models. Memory models, such as the full LSTM, Minimal GRU,

“Identity” or CRU models, possess a known and inherently differentiable structure. Specifically,

the memory gates within these models were designed to facilitate differentiability.

The memory models mentioned were designed for static time sequences, and to apply to

control algorithms, these memory models can be integrated into a physics model (please refer to

Fig. 5.2 in the Section 5.1.2 ).
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The general memory design in this chapter is organised as follows: the memory state of

the agent at each time-step is represented by a vector h⃗t ∈ Rm, where m denotes the number

of recurrent memory nodes used by the model. The neural network architecture employed

takes an input vector of dimension dim(xt ,yt ,d(xt ,yt)+m and produces an output vector of

size dim(⃗at)+ km (where action vector a⃗ in this context is the two-dimensional control action

vector representing the direction the agent wants to move and the position of the agent is updated

according to Eq. (5.3)). The value of k varies depending on the memory algorithm used, and it

determines the number of additional output nodes dedicated to the memory nodes. Specifically,

the architecture can be formalised as follows:

Output Dimension = dim(⃗at)+ km. (6.1)

Compatible “Identity”: In the “Identity” memory algorithm, the value of k from Eq. (6.1)

is set to 1, resulting in calculating the hidden state ht+1 using the hyperbolic tangent function

applied to the input vector h⃗input
t . The resulting equation is as follows:

ht+1 = tanh(⃗hinput
t ). (6.2)

Compatible Minimal GRU: The Minimal GRU is similar to the GRU, with only one gate

controlling the flow of the information. The neural network outputs a gating value h⃗gate
t and an

information value h⃗input
t ; in this memory model, the k = 2 is set in Eq. (6.1).

Similar to Zhou et al. [2016]’s MGU design, the simplified version is represented in Eq. (5.5).

Compatible Full-LSTM: The Full-LSTM memory model is already differentiable and can

be directly used with BPTT. However, some modifications are required to use the LSTM memory

model in conjunction with the physics model in this study.

In Full-LSTM, the output vector j⃗t is partitioned into chunks defined by k = 4, resulting in:

j⃗t = [⃗at ,⃗h
input
t ,⃗hgate

t , f⃗ gate
t , y⃗gate

t ]. (6.3)

To incorporate the LSTM memory model’s recurrent memory, memory gates and inputs are

denoted by h⃗input
t , h⃗gate

t , f⃗ gate
t , and y⃗gate

t , each of length m. These elements control the flow of

information in and out of the memory cells, allowing the agent to retain and update information

over time.

In an LSTM neural network, the cell state Ct and hidden state ht are updated at each time

step based on the current input, the previous cell state, and the gating mechanism of the LSTM.

Specifically, the input gate it controls how much of the new candidate memory C̃t should be
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added to the cell state, and the forget gate ft controls how much of the previous cell state Ct−1

should be retained. The new cell state Ct combines the retained previous cell state and the added

recent memory:

Ct = ftCt−1 + itC̃t . (6.4)

The output gate ot is a sigmoid function determining how much of the cell state should

be exposed as the output. Specifically, the hidden state ht is computed as ht+1 = ot ∗ tanh(Ct),

where the hyperbolic tangent function tanh(·) squeezes the cell state into the range [-1, 1]. The

output gate ot is computed as ot = σ(Wxoht−1 +Whoht +bo), where σ(·) is the sigmoid function

and Wxo, Who, and bo are the weights and bias for the output gate, respectively.

This study represented the memory state of the agent at each time step with a vector h⃗t ∈ Rm.

The observation state holds the cell state Ct and the hidden state ht to process the physics model.

The LSTM algorithm will be calculated using the following equations:

it = σ (⃗hgate
t ), (6.5)

ft = σ( f⃗ gate
t ), (6.6)

ot = σ (⃗ygate
t ), (6.7)

Ct = ftCt−1 + it tanh(⃗hinput
t ), (6.8)

ht+1 = ot tanh(Ct). (6.9)

Compatible CARU: CARU is a type of neural network architecture that uses constrained

auto-regressive units to update the recurrent memory during each time step. It uses an update gate

ut to determine how much of the previous hidden state ht−1 should be retained and how much

current input xt should be added to compute the new hidden state ht+1. The update gate ut is

calculated as a combination of the previous hidden state and the current input using intermediate

variables zt and rt .

The partitioned output vector j⃗t in CARU is defined as [⃗at ,xt , h̃t ,ut ] (k = 3 in Eq. (6.1)),

where xt , h̃t , and ut are the intermediate variables corresponding to the input xt , the candidate

hidden state h̃t , and the update gate ut in CARU, respectively.

The candidate memory state nt is computed based on h̃t using the hyperbolic tangent activa-

tion function during each time step. The update gate lt is calculated based on xt and ut using

the sigmoid activation function. The new memory state h̃t+1 is then computed using the CARU

update rule, where (1− lt)⊙ht−1 corresponds to the forgetting mechanism of the memory cell,

and lt⊙nt corresponds to the update mechanism of the memory cell.
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nt = tanh(h̃t), (6.10)

lt = σ(xt)⊙σ(ut), (6.11)

h̃t+1 = 1− lt⊙ht−1 + lt⊙nt , (6.12)

where σ denotes the logistic sigmoid activation function, and ⊙ denotes element-wise vector

multiplication. n is the candidate memory state that is computed based on h̃t using the hyperbolic

tangent activation function. l is the update gate computed based on xt and ut using the sigmoid

activation function. The new memory state h̃t+1 is computed using the CARU update rule,

where (1− lt)⊙ht−1 corresponds to the forgetting mechanism of the memory cell, and lt⊙nt

corresponds to the update mechanism of the memory cell.

6.3 Experiment Setup

The preceding chapter employed a modified GRU memory model, using backpropagation through

time for control within a partially observable environment. This environment served as a testbed

to gauge the memory model’s efficacy.

This chapter revisits the same environment as the previous chapter, extending the scope to

evaluate various memory models: full long short-term memory (LSTM), “Identity”, Minimal

GRU, and CARU. The experimental setup for this evaluation comprises essential components

for data collection and an accompanying analysis and interpretation methodology.

To ensure that model comparisons remain unbiased, identical hyper-parameters were main-

tained across all memory models. This consistency ensures that observed performance differ-

ences arise from the intrinsic capabilities of the models, not from any variations in experimental

conditions.

Uniformity was also retained in the environmental conditions across all experiments, paving

the way for a fair model comparison. Such a uniform approach ensures that any performance

discrepancies between the models are attributable solely to the memory modification methods,

cementing the reliability and significance of the results.

The neural network architecture, previously adopted in the prior chapter’s experiments,

remained unaltered for all memory models in this chapter. This consistency means that any

performance differences observed can be traced back exclusively to the memory modifications
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applied. However, there are some changes to the number of neural network’s inputs and outputs

due to the memory model nodes suggested in the above description of each memory model.

Data were collected from the validation environment after each network update. A ran-

domised goal position environment was generated during this phase to showcase the updated

network’s prowess.

6.4 Results

The following result graphs show the mean value and its 95% confidence intervals calculated over

10 trials by the “Seaborn” software library. The shaded areas in the results show the standard

error over the 10 trials.

Fig. 6.1 shows the performance of different memory models implemented. The models were

trained and validated over 100,000 times, and the “Validation Reward” offers their performance

in the validation phase where a complete randomised goal position was introduced to the agent.

Their performance was compared against the same algorithm with no memory, demonstrating

a significant improvement in learning efficiency and adaptability. Algorithms equipped with

memory mechanisms could maintain a higher level of performance across various tasks, particu-

larly in environments characterised by dynamic changes and uncertainties. This enhancement

was most notable in scenarios requiring recalling past experiences to make informed decisions,

where the memory-augmented algorithms outperformed their non-memory counterparts. The

inclusion of memory enabled the agents to develop a more sophisticated understanding of the en-

vironment, leading to more strategic planning and execution of tasks. Furthermore, the memory

models contributed to reducing the time required for the agents to converge on effective strategies,

showcasing the critical role of memory in accelerating the learning process and improving the

overall robustness of the algorithm.

The Table 6.1 compares the average rewards achieved by different memory types at 10,000

iterations, averaged over 20 trials. This data is crucial in understanding the impact of integrating

various memory architectures within reinforcement learning models, especially in improving

performance through enhanced memory capabilities.

Table 6.1: Reward at 10,000 iterations was averaged over 20 trials for each memory type used.

Memory type CARU Full-LSTM MGU Identity No memory
Average Reward 19.56 23.88 22.74 17.35 10.76
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Figure 6.1: Performance of different memory modifications tackling randomised food location
experiment, the results were averaged over 20 trials.

The Table 6.1 shows that the Full-LSTM model outperforms the other memory types with an

average reward of 23.88, closely followed by the MGU model at 22.74. These results underscore

the efficacy of more complex memory mechanisms, such as those found in Full-LSTM, in

capturing and using information from the environment to make more informed decisions, thereby

achieving higher rewards. The MGU model, despite its minimalistic design, also demonstrates

significant effectiveness, suggesting that even simpler gating mechanisms can provide substantial

benefits over traditional RNN architectures without memory enhancements.

The CARU model, with an average reward of 19.56, and the Identity model, at 17.35, show

moderate performance. While CARU’s context-adaptive gating mechanism gives it an edge

over more basic models, it does not achieve the same level of performance as the Full-LSTM

and MGU models. The Identity model, lacking a gating mechanism, performs better than the

no-memory baseline but falls short compared to its counterparts with more sophisticated memory

structures.

The no-memory baseline, with the lowest average reward of 10.76, clearly illustrates the

importance of incorporating memory into reinforcement learning models. The significant

performance gap between the no-memory baseline and the memory-equipped models highlights

how memory mechanisms can enhance an agent’s ability to learn and adapt, leading to better



Page 127

decision-making and higher rewards. Figs. 6.2 to 6.5 shows the “Identity”, CARU, Minimal

GRU and full LSTM memory modification path at 100,000 iterations, visualising their route and

movement strategy towards the goal. Each trial is trained separately, and the validation set of

food positions is randomised, separating its value from the training set of food positions.
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Figure 6.2: First three trials of “Identity” memory model agent path captured from a top-down
view at 1000000 iterations
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Figure 6.3: First three trials of CARU memory model agent path captured from a top-down view
at 1000000 iterations

6.5 Discussion

In Fig. 6.1, it can be observed that the Full LSTM memory augmentation performance had a lower

start until 20,000 iterations. Over time, this memory augmentation’s performance improved,

albeit slower than the other memory models. However, it eventually managed to converge with a

higher average validation reward.
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Figure 6.4: First three trials of Minimal GRU memory model agent path captured from a top-
down view at 1000000 iterations
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Figure 6.5: First three trials of Full LSTM memory model agent path captured from a top-down
view at 1000000 iterations

In contrast, the “Identity” memory model had an unstable performance across the ten trials

conducted in the experiment. This is likely because the identity memory model does not actively

modify the network’s memory, resulting in a lack of learning and instability in performance.

The minimal GRU and CARU models had relatively similar performances. Typically, the

minimal GRU model may struggle with tasks requiring longer-term dependencies. On the other

hand, the CARU model dynamically adapts the memory according to the task, making it more

suited to tasks with varying memory requirements.

However, the results of the conducted experiment show that the CARU model had a consistent

performance and failed to remain stable after reaching around 90,0000 iterations.

Overall, the results suggest that for these learning parameters and this problem, it seems

that LSTM and Minimal GRU beat CARU and “Identity”. It can be concluded that the choice

of memory model is an essential factor in determining the performance of neural networks in

the control task designed for this chapter. The “Identity” memory model may not be effective
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in modifying memory and is therefore not recommended for the control task intended in this

chapter. On the other hand, for a better learning rate (tuned for CARU), CARU might beat the

full-LSTM memory model.

Moreover, this study observed that the Backpropagation Through Time (BPTT) algorithm

could navigate using even a basic form of memory, referred to as the “Identity” memory modifica-

tion. However, its performance was not as stable as that achieved with the full Long Short-Term

Memory (LSTM) memory modification, as depicted in Figs. 6.2 and 6.5.

In the top-down view of the path taken by each memory model agent shown in Figs. 6.3 to 6.5,

a joint movement strategy can be observed, where the agent moved towards a particular location

at the beginning of each experiment consistently. Afterwards, the agent deduced a movement

strategy that separated its path from other instances of food positions and moved towards the

dedicated food (The same movement strategy can be seen in the previous chapter in Fig. 5.5b).

It is important to note that these diagrams (Figs. 6.2 to 6.5) only show the best-performing trial

and serve merely as illustrative examples of what can go wrong or right during the navigation

process. For better comparison of the results and to draw more robust conclusions, readers

should refer primarily to Fig. 6.1.

The data presented in the Table 6.1 provides compelling evidence of memory’s critical role

in enhancing reinforcement learning agents’ performance. The superior performance of the Full-

LSTM and MGU models over their counterparts demonstrates the value of integrating advanced

memory architectures that offer nuanced control over information retention and processing.

These findings suggest that incorporating memory not only aids in handling complex tasks

but also significantly boosts the agent’s learning efficiency and adaptability. Consequently,

this study advocates for a deeper exploration of memory models and their integration within

neural networks, emphasising the need for further research to harness the full potential of

memory-enhanced learning algorithms in diverse and dynamic environments.

6.6 Chapter Conclusions

This chapter has undertaken a detailed exploration of the integration of memory models within

the context of Recurrent Neural Networks (RNNs) trained through Backpropagation Through

Time (BPTT), shedding light on the complexities and challenges associated with pairing different

memory architectures with the physics model of the system.

One of the critical insights from this investigation is the role of differentiability in memory
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models for effective application of BPTT. Memory architectures such as the Full LSTM, Minimal

GRU, “Identity”, and CARU, with their inherent differentiable structures, were examined for

their suitability in training RNNs. These models were selected based on their theoretical capacity

to enhance learning through their unique gating mechanisms or memory integration strategies.

However, it’s important to acknowledge that the experimental comparisons conducted in

this chapter, particularly those involving the “Identity” and CARU models, highlighted potential

issues in memory integration rather than unequivocally demonstrating enhanced system efficacy.

The absence of a robust no-memory baseline in Chapter 5 limited the scope for drawing definitive

conclusions about the benefits of integrating memory into the system.

The nuanced behaviour observed in the “Identity” and CARU models raises critical questions

regarding the optimal configuration and integration of memory within RNNs for control tasks.

These findings suggest that while there is theoretical flexibility in integrating memory—directly

into the physics model or as an independent module—the practical implications and effectiveness

of such integration require careful consideration and further empirical validation.

The analysis of vector representations and the temporal evolution of the agent’s memory state

(⃗ht) provided valuable perspectives on how memory, observations, and actions interact within

an RNN framework. Yet, the performance disparities among the memory models underscore

the necessity of a more granular understanding of how specific memory architectures influence

neural network behaviour in control scenarios.

Regarding adaptability and performance, the Full LSTM model emerged as a relatively stable

and effective option within the experimental confines of this study. This contrasts with the

“Identity” model, which, despite its simplicity, highlighted challenges related to dynamic memory

modification and its impact on network performance.

Reflecting on the journey from initial explorations with the modified GRU to the present

evaluations, it is clear that the choice and integration of memory structures significantly influence

the outcomes of neural network-based control systems. While this chapter has contributed

to a deeper understanding of these dynamics, the observations underscore the importance of

further research. Specifically, future work should aim to establish more comprehensive baselines,

explore a wider array of memory models, and rigorously assess their efficacy in increasingly

complex control environments.

The findings thus far pave the way for continued exploration into the role of memory in

RNNs, particularly in the context of adaptive control systems. Investigating emerging memory

models and rigorously evaluating their contributions to the field remains imperative, ensuring
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that future advancements are grounded in solid empirical evidence and contribute meaningfully

to our understanding of neural network optimisation and control.
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Chapter 7

Conclusions

This thesis explored the integration of memory mechanisms within Reinforcement Learning

(RL) and Adaptive Dynamic Programming (ADP), addressing the challenges of dynamic and

uncertain environments. The primary aim was to investigate how incorporating memory cells via

Backpropagation Through Time (BPTT) could improve agent adaptability and decision-making

in control problems.

7.1 Synthesis of Research Findings

Memory-Augmented Approaches: Chapter 3 introduced a memory-augmented tabular Q-

learning approach for navigating mazes with dynamically shifting exit locations, providing a

simpler alternative to Recurrent Neural Networks (RNNs) for sequential information processing.

The development and validation of this approach indicated the potential for more efficient

solutions that avoid the computational demands and training challenges associated with RNNs.

The findings showed that the memory-augmented tabular Q-learning approach consistently

outperformed other algorithms in achieving optimal steps to reach all exits in various maze

configurations, highlighting its robustness and efficiency even in controlled environments.

The experiments demonstrated that the tabular Q-learning with a customised memory mecha-

nism achieved significant performance improvements. Specifically, compared to other experi-

mented algorithms, it accumulated the least number of steps on average to reach all exits in the

complex looped maze, showcasing its ability to handle more intricate navigation tasks. This

approach’s uniform performance, indicated by a variance of 0.0, underscores its robustness.

However, it is crucial to acknowledge that the deterministic nature of this result is partly due
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to the controlled conditions under which the experiments were conducted. In more dynamic or

complex environments, a greater degree of variance in the steps required to reach exits may be

observed, reflecting the challenges of adapting to new and unforeseen obstacles.

Continuous Space Navigation: Chapter 4 examined the performance of BPTT and advanced

RL algorithms in continuous environments. The experiments highlighted BPTT’s role in enhanc-

ing navigation efficiency and adaptability, offering potential improvements over traditional RL

methods. This chapter detailed how BPTT facilitated smoother and more precise navigation

in complex tasks involving long trajectories and intricate cost functions. The empirical results

validated BPTT’s potential in continuous environments, demonstrating its ability to maintain

stability and achieve higher rewards than other RL methods.

The bicycle navigation task illustrated the challenges of learning optimal control strategies

in continuous environments. The cost function gradient exhibited pronounced steepness at

points that may not be strategically advantageous for learning. Specifically, these points often

occurred after the agent had entered an uncontrollable position, meaning the trajectory had

deviated significantly from an optimal path, or the bicycle had lost its balance. Techniques such

as regularisation, reward shaping, early termination of trajectories, and adaptive learning rates

were employed to mitigate these issues. These strategies effectively guided the learning process

towards optimal navigation and balance in continuous space environments.

Challenges in Partially Observable Environments (POE): Chapter 5 demonstrated the

effectiveness of BPTT, enhanced with a simplified Gated Recurrent Unit (GRU), in navigating

complex POEs. This implementation highlighted the importance of memory cells and sensory

observations in overcoming challenges posed by POEs. The ablation studies confirmed the

necessity of recurrent memory and sensory-based information for solving POEs, showcasing the

compatibility of BPTT with meta-learning and neural control principles. This chapter provided

critical insights into integrating memory and sensory observations to overcome the limitations of

POEs, underscoring BPTT’s superiority in handling such environments compared to traditional

RL algorithms.

The experiments in this chapter revealed that the BPTT algorithm could successfully navigate

and make decisions based on limited information, which is crucial for real-world applications

where complete state information is often unavailable. The BPTT agents exhibited a systematic

exploration method, sampling and recording food heights in the environment to deduce the

direction of the highest food density. This adaptive behaviour illustrated the algorithm’s ability

to handle partial observability and make informed decisions based on sensory input and memory.
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Integration Challenges and Insights: Chapter 6 discussed the integration of memory

models with RNNs trained through BPTT, revealing the complexities of pairing different memory

architectures with the physics model of the system. This chapter provided insights into the

nuances of memory models and the importance of differentiability for effective application,

emphasising the need for empirical validation. The comparisons of various memory models, such

as Full LSTM, Minimal GRU, and CARU, provided a deeper understanding of their performance

and suitability for different control tasks, highlighting the challenges and opportunities in memory

model integration.

The analysis of vector representations and the temporal evolution of the agent’s memory

state provided valuable perspectives on how memory, observations, and actions interact within

an RNN framework. The performance disparities among the memory models underscored the

necessity of a more granular understanding of how specific memory architectures influence

neural network behaviour in control scenarios. The Full LSTM model emerged as a relatively

stable and effective option, contrasting with the “Identity” model, which highlighted challenges

related to dynamic memory modification and its impact on network performance.

7.2 Reflection on Research Questions and Objectives

Reflecting on the initial research questions, this thesis has demonstrated that integrating mem-

ory with BPTT significantly improves agents’ learning efficiency and adaptability in complex

environments. The development and evaluation of the BPTT algorithm have showcased its

superiority over traditional RL algorithms in tasks requiring extended strategic planning and

decision-making. These findings address the core research questions, affirming the hypothesis

that memory mechanisms, when effectively integrated with BPTT, can enhance the capabilities

of RL agents.

The objectives set forth at the outset of this research have been met with notable accomplish-

ments:

• The reintroduction and implementation of the BPTT algorithm within the RL framework

have laid a methodological foundation for memory integration, allowing agents to handle

complex and dynamic environments more effectively.

• The integration of memory cells in the BPTT algorithm and its critical evaluation in

dynamic environments have highlighted the effectiveness of memory mechanisms in



Page 136

improving agent adaptability and performance in control tasks. The empirical results

showed that memory-augmented agents could navigate challenging environments with

higher efficiency and stability.

• The comparative analysis conducted in earlier chapters has quantitatively demonstrated

the advantages of integrating memory, highlighting notable enhancements in adaptability,

efficiency, and strategic planning. This analysis distinctly illustrates the flexibility of BPTT

in integrating and effectively using memory cells.

• Through this research, the architectural and computational implications of incorporating

BPTT and memory mechanisms into RL algorithms have been thoroughly analysed,

providing valuable insights into their practical applicability. The detailed exploration of

various memory models and their impact on learning algorithms has contributed to a more

nuanced understanding of their roles in enhancing RL performance.

7.3 Novel Contributions Revisited

This thesis contributes to the field of reinforcement learning and adaptive dynamic programming

by refining the application of memory within BPTT, specifically for control problems:

• The use of advanced memory cell manipulations with BPTT algorithm builds on existing

BPTT frameworks that already incorporate memory functions, refining these ideas by

focusing on the unique demands of control problem scenarios. This advancement allows

for more precise and efficient handling of temporal dependencies and state transitions,

often challenging in dynamic systems.

• Through an evaluation of memory-augmented agents in dynamic environments, this work

provides a nuanced understanding of how memory integration influences adaptability and

efficiency in such contexts compared to traditional RL methods. The findings suggest that

integrating advanced memory techniques enables agents to better navigate environments

with complex and changing dynamics, improving learning stability, speed, and overall

performance.

• The insights gained contribute to the ongoing discourse on optimising learning agent

designs, particularly highlighting the practical challenges and benefits of integrating

memory cells in the BPTT framework. The comparison and analysis offer valuable
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perspectives on how memory can effectively enhance learning algorithms, making them

more robust and versatile in handling diverse and unpredictable environments.

7.4 Future Directions

The findings of this thesis pave the way for several promising avenues in further research, each

with the potential to substantially advance the field of reinforcement learning and adaptive

dynamic programming:

1. Investigating Complex Environmental Dynamics: Future studies could explore more

intricate and variable environmental conditions that challenge current learning models.

This includes environments with higher degrees of unpredictability or those that change in

real-time, requiring agents to adapt continuously and dynamically. Research in this area

could lead to more robust algorithms capable of handling real-world complexities.

2. Optimising Memory Architectures: There is significant scope for improving the ef-

ficiency and scalability of memory mechanisms within learning systems. Future work

could optimise these architectures to reduce computational overhead while enhancing

performance. This might involve refining existing memory cells, exploring new forms

of short-term and long-term memory integration, or developing lightweight versions of

complex memory systems that maintain performance while being more computationally

efficient.

3. Integration of Emerging Machine Learning Techniques: As machine learning evolves,

integrating the latest advancements with memory-augmented systems offers a fertile

ground for research. This could include applying cutting-edge techniques such as federated

learning, transfer learning, or generative adversarial networks within memory-based

frameworks. Such integration could help tackle challenges like sample efficiency and

transferability across different environments.

4. Exploring Real-World Applications: Applying the developed methodologies to real-

world scenarios, such as autonomous vehicles, robotic control, and adaptive systems, can

provide valuable insights into the practical challenges and benefits of memory-augmented

RL algorithms. This can also help refine the algorithms to suit specific application needs

better.
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5. Developing Hybrid Models: Combining memory-augmented RL algorithms with other

advanced AI techniques, such as reinforcement learning with evolutionary strategies or

neuro-evolution, could create more robust and adaptable systems. Investigating these

hybrid models could lead to breakthroughs in how learning algorithms can be optimised

and applied to complex problems.

6. Long-Term Learning and Adaptation: Future research could focus on how memory-

augmented RL algorithms perform over extended periods and how they adapt to long-term

changes in their environment. This includes studying their ability to retain and use past

experiences to improve future decision-making and adaptability.

7.5 Final Reflections

This thesis has contributed to enhancing the understanding of how memory mechanisms can

be integrated into reinforcement learning (RL) and adaptive dynamic programming (ADP).

By addressing the research questions outlined and achieving its objectives, this work offers a

perspective that adds to the ongoing discussions in AI, particularly concerning agent navigation

and exploration.

The research has demonstrated that incorporating memory mechanisms can improve the

performance and adaptability of RL agents in dynamic and uncertain environments. This is

important as it suggests that agents can operate more effectively and make decisions considering

historical context, similar to human cognitive processes.

The methodologies developed in this thesis provide a framework that could be useful for

future research in this area. As explored here, integrating memory into learning algorithms

indicates a potential to enhance agent capabilities in complex environments. Such advancements

could be relevant as AI systems become increasingly prevalent in critical applications such as

autonomous vehicles and interactive technologies.

Theoretically, this thesis invites further exploration within the fields of RL and ADP by

proposing alternative approaches and highlighting areas for additional research. Practically, the

findings may help inform the development of more capable AI systems, which could impact

various applications involving complex decision-making and interaction.

In conclusion, this thesis contributes to the discourse on BPTT by exploring how memory

integration can improve AI agents’ functionality. It lays a foundation for further studies to
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explore and expand on these initial findings, potentially leading to broader applications and more

profound understanding.

The research presented here underscores the transformative potential of memory-augmented

learning algorithms. By advancing the capabilities of RL agents, this work contributes to the

broader field of artificial intelligence and sets the stage for future innovations in adaptive learning

systems. The exploration of memory integration in RL provides a pathway towards creating

more intelligent, adaptable, and robust AI systems capable of addressing the complexities of

real-world environments.
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Appendix

Appendix 1: Tabular Q-learning Experiment to explore Eule-

rian Tours

This appendix provides the source code for an experiment that uses Tabular Q-learning to explore

Eulerian Tours in mazes.

Listing 7.1: Source code for the Tabular Q-learning Experiment to explore Eulerian Tours,

implemented in Python.

1 import random

2 import s y s

3 import numpy as np

4

5

6 def e n v i r o n m e n t s t e p ( tempmaze , a c t i o n , s t a t e , g o a l s t a t e ) :

7 y , x = s t a t e

8 dy , dx= a c t i o n e f f e c t s [ a c t i o n ]

9 h i t w a l l = F a l s e

10 new x = x+dx

11 new y = y+dy

12 i f new x <0 or new x>=maze wid th :

13 # o f f g r i d

14 new x = x

15 i f new y <0 or new y>=m a z e h e i g h t :

16 # o f f g r i d

17 new y = y

18 i f tempmaze [ new y , new x ] == 1 :

19 # h i t w a l l

20 new y=y

21 new x=x



Page 142

22 h i t w a l l = True

23 n e w s t a t e = [ new y , new x ]

24

25 reward = −1

26 done = ( n e w s t a t e == g o a l s t a t e )

27 re turn n e w s t a t e , reward , done , h i t w a l l

28

29 def r u n p o l i c y ( c u r r e n t S t a t e , ep , p r e v i o u s a c t i o n ) :

30 sy , sx= c u r r e n t S t a t e

31 i f np . random . un i fo rm ( 0 , 1 ) < ep :

32 c h o i c e = np . random . c h o i c e ( range ( l e n ( a c t i o n n a m e s ) ) )

33 e l s e :

34 q v a l u e s = Q t a b l e 2 [ c u r r e n t m a z e [ sy , sx +1 ] , c u r r e n t m a z e [ sy , sx −1 ] ,

c u r r e n t m a z e [ sy +1 , sx ] , c u r r e n t m a z e [ sy −1 , sx ] , p r e v i o u s a c t i o n , : ]

35 a s s e r t l e n ( q v a l u e s . shape ) ==1

36 a s s e r t q v a l u e s . shape [0]== n u m a c t i o n s

37 b e s t q v a l u e = q v a l u e s . max ( )

38 b e s t q i n d i c e s =np . a rgwhere ( q v a l u e s == b e s t q v a l u e ) . f l a t t e n ( ) .

t o l i s t ( )

39 c h o i c e = np . random . c h o i c e ( b e s t q i n d i c e s )

40 a s s e r t cho i ce >=0 and cho i ce<n u m a c t i o n s

41 re turn c h o i c e

42

43

44 def a p p l y q u p d a t e ( s t a t e , a c t i o n , p r e v i o u s a c t i o n , reward , n e x t s t a t e , done

, t i m e s t e p ) :

45 sy , sx= s t a t e

46 nsy , nsx= n e x t s t a t e

47 c u r r e n t q v a l u e = Q t a b l e 2 [ c u r r e n t m a z e [ sy , sx +1 ] , c u r r e n t m a z e [ sy , sx −1 ] ,

c u r r e n t m a z e [ sy +1 , sx ] , c u r r e n t m a z e [ sy −1 , sx ] , p r e v i o u s a c t i o n , a c t i o n

]

48 t a r g e t q v a l u e = reward

49 i f not done :

50 f u t u r e s t a t e q v a l u e s = Q t a b l e 2 [ c u r r e n t m a z e [ nsy , nsx +1 ] ,

c u r r e n t m a z e [ nsy , nsx −1 ] , c u r r e n t m a z e [ nsy +1 , nsx ] , c u r r e n t m a z e [

nsy −1 , nsx ] , a c t i o n , : ]

51 a s s e r t l e n ( f u t u r e s t a t e q v a l u e s . shape ) ==1

52 a s s e r t f u t u r e s t a t e q v a l u e s . shape [0 ]== n u m a c t i o n s

53 t a r g e t q v a l u e += d i s c o u n t f a c t o r * f u t u r e s t a t e q v a l u e s . max ( )
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54 Q t a b l e 2 [ c u r r e n t m a z e [ sy , sx +1 ] , c u r r e n t m a z e [ sy , sx −1 ] , c u r r e n t m a z e [ sy +1 ,

sx ] , c u r r e n t m a z e [ sy −1 , sx ] , p r e v i o u s a c t i o n , a c t i o n ] += l e a r n i n g r a t e

* ( t a r g e t q v a l u e − c u r r e n t q v a l u e ) # u pd a t e

55 c u r r e n t q v a l u e = Q t a b l e 2 [ c u r r e n t m a z e [ sy , sx + 1 ] , c u r r e n t m a z e [ sy , sx

− 1 ] , c u r r e n t m a z e [ sy + 1 , sx ] , c u r r e n t m a z e [ sy − 1 , sx ] ,

p r e v i o u s a c t i o n , a c t i o n ]

56 re turn c u r r e n t q v a l u e , s t a t e

57

58 a c t i o n n a m e s =[ ” Nor th ” , ” South ” , ” West ” , ” E a s t ” ]

59 a c t i o n e f f e c t s = [ [ − 1 , 0 ] , [ 1 , 0 ] , [ 0 , − 1 ] , [ 0 , 1 ] ]

60 n u m a c t i o n s = l e n ( a c t i o n n a m e s )

61 i t e r a t i o n s = 500 *4 * 10

62 # i t e r a t i o n s = 5000

63 l e a r n i n g r a t e = 0 . 1

64 d i s c o u n t f a c t o r = .9

65 maps = [ ]

66 ’ ’ ’

67 name = ’ s m a l l C o r r i d o r ’

68 S m a l l C o r r i d o r=np . a r r a y ( [

69 [ 0 , 0 , 0 ] , ] )

70 S m a l l C o r r i d o r g o a l s t a t e = [ [ 0 , 0 ] , [ 0 , 2 ] ]

71 S m a l l C o r r i d o r s t a r t s t a t e = [ 0 , 1 ]

72 maps . append ( [ name , S m a l l C o r r i d o r , S m a l l C o r r i d o r s t a r t s t a t e ,

S m a l l C o r r i d o r g o a l s t a t e , 3 ] )

73 ’ ’ ’

74 name = ’ s m a l l C o r r i d o r ’

75 S m a l l C o r r i d o r =np . a r r a y ( [

76 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ,

77 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ,

78 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ,

79 [ 1 , 1 , 0 , 0 , 0 , 1 , 1 ] ,

80 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ,

81 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ,

82 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ] )

83 S m a l l C o r r i d o r g o a l s t a t e = [ [ 3 , 2 ] , [ 3 , 4 ] ]

84 S m a l l C o r r i d o r s t a r t s t a t e = [ 3 , 3 ]

85 maps . append ( [ name , S m a l l C o r r i d o r , S m a l l C o r r i d o r s t a r t s t a t e ,

S m a l l C o r r i d o r g o a l s t a t e , 3 ] )

86
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87 #

88 name = ” Tshaped ”

89 Tshaped =np . a r r a y ( [

90 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ,

91 [ 1 , 1 , 1 , 0 , 1 , 1 , 1 ] ,

92 [ 1 , 1 , 1 , 0 , 1 , 1 , 1 ] ,

93 [ 1 , 1 , 1 , 0 , 1 , 1 , 1 ] ,

94 [ 1 , 1 , 1 , 0 , 1 , 1 , 1 ] ,

95 [ 1 , 0 , 0 , 0 , 0 , 0 , 1 ] ,

96 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ] )

97 T s h a p e d g o a l s t a t e s = [ [ 5 , 1 ] , [ 5 , 5 ] ]

98 # T s h a p e d g o a l s t a t e s = [ [ 5 , 1 ] ]

99 T s h a p e d s t a r t s t a t e = [ 1 , 3 ]

100 maps . append ( [ name , Tshaped , T s h a p e d s t a r t s t a t e , T s h a p e d g o a l s t a t e s , 1 0 ] )

101 #

102 name = ’ L o n g C o r r i d o r ’

103 L o n g C o r r i d o r =np . a r r a y ( [

104 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ,

105 [ 1 , 0 , 1 , 0 , 0 , 0 , 1 ] ,

106 [ 1 , 0 , 1 , 1 , 1 , 0 , 1 ] ,

107 [ 1 , 0 , 1 , 0 , 0 , 0 , 1 ] ,

108 [ 1 , 0 , 1 , 1 , 1 , 0 , 1 ] ,

109 [ 1 , 0 , 0 , 0 , 0 , 0 , 1 ] ,

110 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ] )

111 L o n g C o r r i d o r g o a l s t a t e = [ [ 1 , 3 ] , [ 3 , 3 ] ]

112 L o n g C o r r i d o r s t a r t s t a t e = [ 1 , 1 ]

113 maps . append ( [ name , LongCor r idor , L o n g C o r r i d o r s t a r t s t a t e ,

L o n g C o r r i d o r g o a l s t a t e , 1 8 ] )

114 #

115 name = ’ crossmap ’

116 c r o s s =np . a r r a y ( [

117 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ,

118 [ 1 , 1 , 1 , 0 , 1 , 1 , 1 ] ,

119 [ 1 , 1 , 1 , 0 , 1 , 1 , 1 ] ,

120 [ 1 , 0 , 0 , 0 , 0 , 0 , 1 ] ,

121 [ 1 , 1 , 1 , 0 , 1 , 1 , 1 ] ,

122 [ 1 , 1 , 1 , 0 , 1 , 1 , 1 ] ,

123 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ] )

124 c r o s s s t a r t s t a t e = [ 3 , 3 ] # c e n t e r s qu ar e
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125 c r o s s g o a l s t a t e s = [ [ 1 , 3 ] , [ 3 , 5 ] , [ 5 , 3 ] , [ 3 , 1 ] ]

126 maps . append ( [ name , c r o s s , c r o s s s t a r t s t a t e , c r o s s g o a l s t a t e s , 1 2 ] )

127 ’ ’ ’

128 #

129 ’ ’ ’

130 name = ’ complex looped ’

131 complex looped = np . a r r a y ( [

132 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ,

133 [ 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ,

134 [ 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1 , 1 ] ,

135 [ 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ] ,

136 [ 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 ] ,

137 [ 1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 1 ] ,

138 [ 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 ] ,

139 [ 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ] ,

140 [ 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ] ,

141 [ 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 ] ,

142 [ 1 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 ] ,

143 [ 1 , 0 , 1 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 ] ,

144 [ 1 , 0 , 1 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ] ,

145 [ 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 0 , 1 ] ,

146 [ 1 , 0 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ,

147 [ 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 0 , 1 ] ,

148 [ 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ] ,

149 [ 1 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1 , 1 ] ,

150 [ 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ,

151 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ]

152 ] )

153 h e i g h t = l e n ( complex looped )

154 wid th = l e n ( complex looped [ 0 ] )

155 # c o m p l e x l o o p e d = np . g e n f r o m t x t (” f o o . c s v ” , d e l i m i t e r = ’ , ’ )

156 c o m p l e x l o o p e d s t a r t s t a t e = [ 1 0 , 1 0 ]

157 c o m p l e x l o o p e d g o a l s t a t e s = [ [ 1 , 1 ] , [ 1 , 1 8 ] , [ 1 8 , 1 ] , [ 1 8 , 1 8 ] ]

158 maps . append ( [ name , complex looped , c o m p l e x l o o p e d s t a r t s t a t e ,

c o m p l e x l o o p e d g o a l s t a t e s , 9 0 ] )

159 uses memory= F a l s e

160 t r i a l s = 10

161 m a p s t r a i n = [ maps [ − 2 ] ]

162 b r a i n s = [ ” w a l l f o l l o w e r ” ]
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163

164

165 f o r mapp in m a p s t r a i n :

166 p r i n t ( mapp [ 0 ] )

167 c u r r e n t m a z e = mapp [ 1 ]

168 maze shape = np . shape ( c u r r e n t m a z e )

169 m a z e h e i g h t = maze shape [ 0 ]

170 maze wid th = maze shape [ 1 ]

171 f o r t r i a l in range ( 0 , t r i a l s +1) :

172 p r i n t ( t r i a l )

173 r e w a r d h i s t o r y = [ ]

174 t r a j e c t o r y l e n g t h h i s t o r y = [ ]

175 q v a l u e h i s t o r y = [ ]

176 g o a l h i s t o r y = [ ]

177 Q t a b l e 2 = np . z e r o s ( ( 2 , 2 , 2 , 2 , 4 , 4 ) )

178 e p s i l o n g r e e d y = 0 . 1

179 f o r i t e r a t i o n in range ( i t e r a t i o n s +1) :

180 t i m e s t e p h i s t o r y = 0

181 t o t a l r e w a r d = 0

182 t o t a l r e w a r d e v a l = 0

183 c = 0

184 q v a l u e s t e p = [ ]

185 g o a l s t a t e s = mapp [ 3 ]

186 g o a l c o u n t e r = 0

187 #np . random . s h u f f l e ( g o a l s t a t e s )

188 f o r g o a l s t a t e in g o a l s t a t e s :

189 # p r i n t (” S t a r t i n g t r a j e c t o r y w i t h goa l s t a t e ” , g o a l s t a t e )

190 s t a t e = mapp [ 2 ]

191 done = F a l s e

192 t i m e s t e p = 0

193 p r e v i o u s a c t i o n = 0

194 a c t i o n = 0

195 whi le not done :

196 # Choose an a c t i o n

197 a c t i o n = r u n p o l i c y ( s t a t e , e p s i l o n g r e e d y ,

p r e v i o u s a c t i o n )

198 n e x t s t a t e , reward , done , h i t w a l l = e n v i r o n m e n t s t e p (

c u r r e n t m a z e , a c t i o n , s t a t e , g o a l s t a t e )
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199 a p p l y q u p d a t e ( s t a t e , a c t i o n , p r e v i o u s a c t i o n , r eward ,

n e x t s t a t e , done , t i m e s t e p )

200 i f n e x t s t a t e == g o a l s t a t e :

201 g o a l c o u n t e r +=1

202

203 p r e v i o u s a c t i o n = a c t i o n

204 s t a t e = n e x t s t a t e

205 t o t a l r e w a r d += reward * ( np . power ( t i m e s t e p ,

d i s c o u n t f a c t o r ) )

206 t i m e s t e p += 1

207 i f t i m e s t e p >= ( 5 0 0 ) :

208 done = True

209 t i m e s t e p h i s t o r y += t i m e s t e p

210 f o r v a l i d m a p in maps :

211 p r i n t ( v a l i d m a p [ 0 ] )

212 t i m e s t e p h i s t o r y = 0

213 c u r r e n t m a z e = v a l i d m a p [ 1 ]

214 maze shape = np . shape ( c u r r e n t m a z e )

215 m a z e h e i g h t = maze shape [ 0 ]

216 maze wid th = maze shape [ 1 ]

217 t o t a l r e w a r d = 0

218 t o t a l r e w a r d e v a l = 0

219 c = 0

220 q v a l u e s t e p = [ ]

221 g o a l s t a t e s = v a l i d m a p [ 3 ]

222 g o a l c o u n t e r = 0

223 f o r g o a l s t a t e in g o a l s t a t e s :

224 s t a t e = v a l i d m a p [ 2 ]

225 done = F a l s e

226 t i m e s t e p = 0

227 p r e v i o u s a c t i o n = 0

228 a c t i o n = 0

229 whi le not done :

230 # Choose an a c t i o n

231 a c t i o n = r u n p o l i c y ( s t a t e , 0 . , p r e v i o u s a c t i o n )

232 # p r i n t (” t i m e s t e p ” , t i m e s t e p , ” s t a t e ” , s t a t e , ” a c t i o n ” ,

a c t i o n )

233 n e x t s t a t e , reward , done , h i t w a l l = e n v i r o n m e n t s t e p (

c u r r e n t m a z e , a c t i o n , s t a t e ,
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234 g o a l s t a t e

)

235 p r e v i o u s a c t i o n = a c t i o n

236 i f n e x t s t a t e == g o a l s t a t e :

237 g o a l c o u n t e r += 1

238 s t a t e = n e x t s t a t e

239 t o t a l r e w a r d e v a l += reward * ( d i s c o u n t f a c t o r **

t i m e s t e p )

240 t i m e s t e p += 1

241 i f t i m e s t e p >= ( 5 0 0 ) :

242 done = True

243 t i m e s t e p h i s t o r y += t i m e s t e p

244 r e w a r d h i s t o r y . append ( t o t a l r e w a r d e v a l )

245 t r a j e c t o r y l e n g t h h i s t o r y . append ( t i m e s t e p h i s t o r y )

246 g o a l h i s t o r y . append ( g o a l c o u n t e r )

247 p r i n t ( ” I t e r a t i o n ” + s t r ( i t e r a t i o n ) + ” Reward ” + s t r (

248 t r a j e c t o r y l e n g t h h i s t o r y [ − 1 ] ) + ” Goal r e a c h e d ” + s t r (

g o a l h i s t o r y [ − 1 ] ) )

249 np . s ave ( ” r u n s / ”+ s t r ( t r i a l ) +” map ”+ v a l i d m a p [ 0 ] + ” B r a i n ”+

b r a i n s [ 0 ] + ” G o a l s r e a c h e d . npy ” , np . a r r a y ( g o a l c o u n t e r ) )

250 np . s ave ( ” r u n s / ”+ s t r ( t r i a l ) +” map ”+ v a l i d m a p [ 0 ] + ” B r a i n ”+

b r a i n s [ 0 ] + ” r e w a r d . npy ” , np . a r r a y ( t o t a l r e w a r d e v a l ) )

251 np . s ave ( ” r u n s / ”+ s t r ( t r i a l ) + ” map ”+ v a l i d m a p [ 0 ] + ” B r a i n ”+

b r a i n s [ 0 ] + ” s t e p . npy ” , np . a r r a y ( t i m e s t e p h i s t o r y ) )

Appendix 2: Randlov Bicycle Experiment

This appendix offers the source code for the Randlov Bicycle Experiment, which focuses on

balancing a simulated bicycle.

Fig. 1 is the bicycle’s representation as seen from behind, the bicycle’s balance is ω , CM

is the Centre of Mass of the bicycle and cyclist combined, and d is the agent’s choice of the

displacement of the CM perpendicular to the plan of the bicycle. Mg is considered the total

weight of the agent (the rider and the bicycle combined), and Fcen is the centre of force.

The following equation describes the system’s mechanics where the angle α is defined as the

total angle of tilt of the centre of mass.
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Table 1: Notation and values for the bicycle system taken from Randløv and Alstrøm [1998].

Notation Description Value
α Total angle of tilt of the centre of mass
c Horizontal distance between the front wheel touches the ground and the CM 66 cm

CM The Center of Mass of the bicycle and cyclist as a total
d The agent’s choice of the displacement of the CM perpendicular to the plane of the bicycle

dcm The vertical distance between the CM for the bicycle and the cyclist 30 cm
Fcen The center of force

h Height of the CM over the ground 94 cm
l Distance between the front tire and the back tire 111 cm

Mc Mass of the bicycle 15 Kg
Md Mass of a tire 1.7 Kg
Mg Agent’s total weight (rider and the bicycle’s weights combined)
Mp Mass of the cyclist 60 Kg
r Radius of a tire 34 cm
σ̇ The angular velocity of a tire σ̇ = v

r
ω Bicycle’s balance
T The torque the agent applies on the handlebars
v The velocity of the bicycle 10 km/h
θ The steer angle of the bicycle

Bicycle

Figure 1: Bicycle’s representation as seen from behind (This image is inspired from Randløv
and Alstrøm [1998] paper. )

α = ω + arctan
(

d
h

)
. (7.1)

The angular acceleration ω̇ can be calculated as:

ω̇ =
1

Ibicycle and cyclist
(Mhgsinα)− cosα

(
Idcσ̇ θ̇ + sign(θ)v2

(
Mdr
r f

+
Mdr
rb

+
Mh
rCM

))
, (7.2)

this equation gives the mechanical equation for angular momentum. The physical contents of the

right side are terms for gravitation, the effects of tyre angular momentum conservation, and the

fictional centrifugal force.

The terms Idc, ω̇ , and θ̇ play a vital role in understanding why riding a bicycle is more acces-

sible than maintaining balance steadily. The stabilising effects resulting from the conservation
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of angular momentum in the tires are essential contributors to bicycle stability. These effects,

commonly called gyroscopic effects, are influenced by the angular velocity of the tires ω̇ and,

consequently, by the bicycle’s velocity.

Gyroscopic effects arise due to the conservation of angular momentum in rotating bodies,

such as bicycle tires. When the wheels of a moving bicycle experience a change in their

orientation (caused by tilting or steering the bicycle), they are met with resistance, maintaining

their plane of rotation. This resistance creates a stabilising influence, making it easier to balance

the bicycle during motion compared to keeping it balanced while stationary.

The magnitude of the gyroscopic effect is directly proportional to the angular velocity of the

tires ω̇ , which, in turn, is related to the bicycle’s velocity. As the bicycle’s speed increases, the

gyroscopic effect becomes more pronounced, contributing significantly to the bicycle’s stability

during motion.

Understanding the significance of Idc, ω̇ , and θ̇ and their relationship with gyroscopic effects

provides valuable insights into the mechanics behind bicycle stability and why riding a moving

bicycle is generally easier than maintaining balance when the bicycle is stationary.

The angular acceleration θ̈ of the handlebars is:

θ̈ =
T − Idvω̇σ̇

Idl
. (7.3)

In this equation, θ̈ represents the angular acceleration of the handlebars, which indicates how

quickly the handlebars are rotating. The term T represents the torque applied to the handlebars,

which can influence the rotational motion. The symbols Idv, ω̇ , and σ̇ have specific meanings

in the context of the bicycle model, as previously explained. Idv is the moment of inertia of the

front wheel, ω̇ is the angular velocity of the bicycle, and σ̇ is the angular velocity of the front

tire. The term Idl represents the moment of inertia of the handlebars and relates to how they

resist changes in their rotational motion.

Because some second (and higher) order terms have been ignored, these equations do not

provide an exact analytical description.

The observable values such as ω , ω̇ ,θ , θ̇ ,sinψg and cosψg are sent to the agent at each

time-step where ψg is the angle of the bicycle to the goal, and the agent is expected to return d

and the torque T which is applied to the handlebar.

Fig. 2 shows the bicycle from the above perspective. The front and rear tyres take different

paths in a curve with different radii.
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Fron
t T

yre

Figure 2: Bicycle’s representation as seen from above (This image was inspired from Randløv
and Alstrøm [1998]) paper.

The front tyre follows the longest path. The radius for the front tyre is:

r f =
l

|cos π

2 −θ |
=

l
|sinθ |

, (7.4)

and for the back tyre:

rb = l
∣∣∣tan

π

2
−θ

∣∣∣= l
| tanθ |

. (7.5)

For the CM, the radius can be calculated as:

rCM =

(
(l− c)2 +

l2

tanθ 2

) 1
2

. (7.6)

The equations of the position of the tyres for the front tyre:x f

y f


(t+1)

=

x f

y f


(t)

+ vdt

−sin(ψ +θ + sign(ψ +θ)arcsin vdt
2r f

)

cos(ψ +θ + sign(ψ +θ)arcsin vdt
2r f

)

 . (7.7)

The back tyre is calculated differently from the front tyre:xb

yb


(t+1)

=

xb

yb


(t)

+ vdt

−sin(ψ + sign(ψ)arcsin vdt
2rb

)

cos(ψ + sign(ψ)arcsin vdt
2rb

)

 . (7.8)

The moments of inertia values were calculated by:

Ibicycleandcyclist =
13
3

Mch2 +Mp (h+dCM)2 , (7.9)

Idc = Mdr2, (7.10)

Idv =
3
2

Mdr2, (7.11)

Idl =
1
2

Mdr2. (7.12)
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In the moments of inertia equation, the Mc is the mass of the bicycle, Md is the mass of the

tyre, and Mp is the mass of the cyclist, the r indicates the radius of the tyre. dCM denotes the

agent’s vertical distance between the CM for the bicycle and the cyclist. l suggests the distance

between the front tyre and the back tyre where they touch the ground.

Figure 3: Bike physics as shown in the paper by Cam et al. [2013]

Listing 7.2: Source code for the Randlov Bicycle Experiment, implemented in Python.

1 import t e n s o r f l o w as t f

2 from t e n s o r f l o w import k e r a s

3 import s y s

4 import math

5 import numpy as np

6 import m a t p l o t l i b . p y p l o t a s p l t

7 import m a t p l o t l i b . l i n e s a s m l i n e s

8 import m a t p l o t l i b . p a t c h e s as mpatches

9 from d a t e t i m e import d a t e t i m e

10 from d a t e u t i l . r e l a t i v e d e l t a import r e l a t i v e d e l t a

11 import a r g p a r s e

12 VALIDATION = F a l s e

13

14 t f . k e r a s . backend . s e t f l o a t x ( ” f l o a t 3 2 ” )

15

16 gpus = t f . c o n f i g . l i s t p h y s i c a l d e v i c e s ( ’GPU ’ )

17 i f gpus :

18 p r i n t ( gpus )

19 f o r gpu in gpus :

20 t f . c o n f i g . e x p e r i m e n t a l . s e t memory growth ( gpu , True )

21 l o g i c a l g p u s = t f . c o n f i g . l i s t l o g i c a l d e v i c e s ( ’GPU ’ )

22 #PARSER
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23 r a n d o m i s e d s t a t e = F a l s e

24 p a r s e r = a r g p a r s e . Argumen tPa r se r ( d e s c r i p t i o n = ’ O p t i o n a l app d e s c r i p t i o n ’ )

25 p a r s e r . add a rgumen t ( ’−− t r i a l n a m e ’ , type = s t r , d e f a u l t =” t r i a l 1 ” )

26 p a r s e r . add a rgumen t ( ’−− w i t h p s i r e s t r i c t i o n ’ , type = i n t , d e f a u l t =1)

27 p a r s e r . add a rgumen t ( ’−− u s e t a n h ’ , type = i n t , d e f a u l t =1)

28 p a r s e r . add a rgumen t ( ’−− g o a l ’ , type = i n t , d e f a u l t =0)

29 p a r s e r . add a rgumen t ( ’−− c o r e ’ , type = i n t , d e f a u l t =1)

30 p a r s e r . add a rgumen t ( ’−− t e s t ’ , type = s t r , d e f a u l t = ’ psiRemoved ’ )

31 a r g s = p a r s e r . p a r s e a r g s ( )

32 t e s t t = s t r ( a r g s . t e s t )

33 mask = i n t ( a r g s . c o r e )

34 t r i a l n a m e = s t r ( a r g s . t r i a l n a m e )

35 u s e t a n h = bool ( a r g s . u s e t a n h )

36 g o a l = bool ( a r g s . g o a l )

37 w i t h p s i r e s t r i c t i o n = bool ( a r g s . w i t h p s i r e s t r i c t i o n )

38 #AFINITY

39 u s e c p u a f i n i t y = F a l s e

40 i f u s e c p u a f i n i t y :

41 import win32api , win32con , w i n 3 2 p r o c e s s

42 def s e t a f f i n i t y ( mask ) :

43 p i d = win32ap i . G e t C u r r e n t P r o c e s s I d ( )

44 h a n d l e = win32ap i . OpenProcess ( win32con . PROCESS ALL ACCESS , True ,

p i d )

45 w i n 3 2 p r o c e s s . S e t P r o c e s s A f f i n i t y M a s k ( hand le , mask )

46 s e t a f f i n i t y ( mask )

47 #EXPERIMENT SETTINGS

48 m a x i t e r a t i o n s = 1000

49 b = 60

50 p i = t f . c o n s t a n t ( math . p i )

51 p r i n t ( p i )

52 a c t i o n i s t h e t a = True

53 maximum dis = 0 . 0 2 # 0 . 0 2

54 maximum torque = 2 .

55 b a t c h s i z e = 100

56 a c t i o n s p a c e = 2 i f a c t i o n i s t h e t a e l s e 1

57 n u m h i d d e n u n i t s = [ 2 4 , 24]

58 t r a j e c t o r y l e n g t h = 1000

59 t r y t o w r a p a r o u n d g r a d i e n t s = True

60 r a n d o m i s e d g o a l p o s i t i o n = F a l s e
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61

62 r e f r e s h u n r o l l f r e q u e n c y = 100

63 u n r o l l p s e u d o i n i t i a l s t a t e s t o t r u t h = True

64 i n i t i a l i s e w r a p a r o u n d g r a d i e n t s = True

65 #VISUALISATION

66 c o l o r s = [ ’ r e d ’ , ’ b l u e ’ , ’ g r e e n ’ , ’ o r a ng e ’ , ’ b l a c k ’ , ’ ye l l ow ’ , ’ p u r p l e ’ , ’

p ink ’ , ’ o l i v e ’ , ’ cyan ’ ]

67 p l t . i o n ( )

68 p r i n i t = True

69 g r a p h i c a l = F a l s e

70 save = True

71 d i s p l a y = 5

72 p r i n t t i m e = 10

73 f i l e n a m e = s t r ( a r g s . t r i a l n a m e ) + ” w i t h p s i r e s t r i c t i o n ” + s t r (

w i t h p s i r e s t r i c t i o n ) + ” r a n d o m i s e d s t a t e ” + s t r (

74 r a n d o m i s e d s t a t e ) + ” g o a l ” + s t r ( g o a l ) + ” t e s t ” + t e s t t + ” t a n h ”

+ s t r ( u s e t a n h )

75

76 def d i f f ( t a , t b ) :

77 t d i f f = r e l a t i v e d e l t a ( t b , t a ) # l a t e r / end t i m e comes f i r s t !

78 re turn ’{h}h {m}m { s } s ’ . format ( h= t d i f f . hours , m= t d i f f . minu tes , s=

t d i f f . s e c o n d s )

79

80 #BIKE PHYSICS

81 # U n i t s i n m e t e r s and k i l o g r a m s

82 c = t f . c o n s t a n t ( 0 . 6 6 ) # H o r i z o n t a l d i s t a n c e be tween p o i n t where f r o n t

whee l t o u c h e s ground and c e n t r e o f mass

83 d cm = t f . c o n s t a n t ( 0 . 3 0 ) # V e r t i c a l d i s t a n c e be tween c e n t e r o f mass and

c y c l i s t

84 h = t f . c o n s t a n t ( 0 . 9 4 ) # H e i gh t o f c e n t e r o f mass over t h e ground

85 l = t f . c o n s t a n t ( 1 . 1 1 ) # D i s t a n c e be tween f r o n t t i r e and back t i r e a t t h e

p o i n t where t h e y t o u c h t h e ground .

86 m c = t f . c o n s t a n t ( 1 5 . 0 ) # mass o f b i c y c l e

87 m d = t f . c o n s t a n t ( 1 . 7 ) # mass o f t i r e

88 m p = t f . c o n s t a n t ( 6 0 . 0 ) # mass o f c y c l i s t

89 r = t f . c o n s t a n t ( 0 . 3 4 ) # r a d i u s o f t i r e

90 v = t f . c o n s t a n t ( 1 0 . 0 / 3 . 6 ) # v e l o c i t y o f t h e b i c y c l e i n m / s 2 . 7

91 g o a l r s q r d = t f . c o n s t a n t ( 1 . 0 )

92 # U s e f u l P r e c o m p u t a t i o n s
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93 m = m c + m p

94 i n e r t i a b c = ( 1 3 . / 3 ) * m c * h ** 2 + m p * ( h + d cm ) ** 2 # i n e r t i a o f

b i c y c l e and c y c l i s t

95 i n e r t i a d v = ( 3 . / 2 ) * ( m d * ( r ** 2) ) # V a r i o u s i n e r t i a o f t i r e s

96 i n e r t i a d l = . 5 * ( m d * ( r ** 2) ) # V a r i o u s i n e r t i a o f t i r e s

97 i n e r t i a d c = m d * ( r ** 2) # V a r i o u s i n e r t i a o f t i r e s

98 s i g m a d o t = v / r

99 # S i m u l a t i o n c o n s t a n t s

100 g r a v i t y = t f . c o n s t a n t ( 9 . 8 2 )

101 d e l t a t i m e = t f . c o n s t a n t ( 0 . 0 1 ) # 0 . 0 1 # 0 .054 m forward per d e l t a t i m e

102 # I f omega e x c e e d s +/− 12 degrees , t h e b i c y c l e f a l l s .

103 omega range = t f . c o n s t a n t ( np . a r r a y ( [ [ − np . p i * 12 / 180 , np . p i * 12 / 1 8 0 ] ]

* b a t c h s i z e ) ) # 12 de gr e e i n S I u n i t s .

104 t h e t a r a n g e = t f . c o n s t a n t ( np . a r r a y ( [ [ − np . p i / 2 , np . p i / 2 ] ] * b a t c h s i z e ) )

105 p s i r a n g e = t f . c o n s t a n t ( np . a r r a y ( [ [ − np . pi , np . p i ] ] * b a t c h s i z e ) )

106 rando = 0 . 0

107 yg = 6 0 .

108 xg = 0 .

109 g o a l p o s i t i o n = t f . c o n s t a n t ( t f . random . un i fo rm ( minva l = −50 , maxval =50 , shape

=( b a t c h s i z e , 2 ) ) * (1 i f r a n d o m i s e d g o a l p o s i t i o n e l s e 0) )

110 i f not r a n d o m i s e d g o a l p o s i t i o n :

111 g o a l p o s i t i o n += t f . c o n s t a n t ( [ [ xg , yg ] ] * b a t c h s i z e )

112 def s a f e d i v i d e ( t e n s o r n u m e r a t o r , t e n s o r d e n o m i n a t o r ) :

113 # a t t e m p t t o a v o i d NaN bug i n t f . where : h t t p s : / / g i t h u b . com / t e n s o r f l o w /

t e n s o r f l o w / i s s u e s /2540

114 s a f e d e n o m i n a t o r = t f . where ( t f . n o t e q u a l ( t e n s o r d e n o m i n a t o r , t f .

z e r o s l i k e ( t e n s o r d e n o m i n a t o r ) ) ,

115 t e n s o r d e n o m i n a t o r ,

116 t e n s o r d e n o m i n a t o r + 1)

117 re turn t e n s o r n u m e r a t o r / s a f e d e n o m i n a t o r

118 def r e s e t ( ) :

119 # Lagoudak i s ( 2 0 0 2 ) r a n d o m i z e s t h e i n i t i a l s t a t e ” a r o u t t h e e q u i l i b r i u m

p o s i t i o n ”

120 i f r a n d o m i s e d s t a t e :

121 t h e t a = np . random . normal ( 0 , 1 , s i z e =( b a t c h s i z e , 1 ) ) * np . p i / 180

122 omega = np . random . normal ( 0 , 1 , s i z e =( b a t c h s i z e , 1 ) ) * np . p i / 180

123 t h e t a d = np . z e r o s ( ( b a t c h s i z e , 1 ) )

124 omegad = np . z e r o s ( ( b a t c h s i z e , 1 ) )

125 omegadd = np . z e r o s ( ( b a t c h s i z e , 1 ) )
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126 xb = np . random . un i fo rm ( −60 , 60 , ( b a t c h s i z e , 1 ) )

127 yb = np . z e r o s ( ( b a t c h s i z e , 1 ) )

128 xf = xb + ( np . random . rand ( b a t c h s i z e , 1 ) * l − 0 . 5 * l ) / 2 #

h a l v e d i t f o r p s i

129 yf = np . s q r t ( l ** 2 − ( x f − xb ) ** 2) + yb

130 p s i = np . a r c t a n ( ( xb − xf ) / ( y f − yb ) )

131 p s i g = p s i − np . a r c t a n ( s a f e d i v i d e ( ( xb − xg ) , yg − yb ) )

132 i n i t s t a t e = t f . c o n c a t (

133 [ omega , omegad , omegadd , t h e t a , t h e t a d , xf , yf , xb , yb , p s i ,

p s ig , np . z e r o s ( ( b a t c h s i z e , 1 ) ) ] ,

134 a x i s =1)

135 e l s e :

136 t h e t a = t h e t a d = omega = omegad = omegadd = xf = yf = xb = yb = np .

z e r o s ( ( b a t c h s i z e , 1 ) )

137 yf = yf + l

138 p s i = np . a r c t a n ( ( xb − xf ) / ( y f − yb ) )

139 p s i g = p s i − np . a r c t a n ( s a f e d i v i d e ( ( xb − xg ) , yg − yb ) )

140 i n i t s t a t e = t f . c o n c a t (

141 [ omega , omegad , omegadd , t h e t a , t h e t a d , xf , yf , xb , yb , p s i ,

p s ig , np . z e r o s ( ( b a t c h s i z e , 1 ) ) ] ,

142 a x i s =1)

143 # omega , omega dot , omega ddot , t h e t a , t h e t a d o t , x f , y f , x b , y b ,

p s i , p s ig , t i m e s t e p

144 re turn i n i t s t a t e

145 # STATE i n i t i a l i s a t i o n

146 s t a t e d i m e n s i o n = 12 # omega , omega dot , omega ddot , t h e t a , t h e t a d o t , x f

, y f , x b , y b , p s i , p s ig , t i m e s t e p

147 i n i t i a l s t a t e = r e s e t ( )

148 # s t e p ( s t a t e , a c t i o n , t r a j e c t o r i e s t e r m i n a t e d , b a t c h s i z e )

149 def s t e p ( s t a t e , a c t i o n , t r a j e c t o r i e s t e r m i n a t e d , p b a t c h s i z e ,

c o r r u p t i o n t o p h y s i c s m o d e l =None ) :

150 s = s t a t e

151 omega = s [ : , 0 ]

152 omegad = s [ : , 1 ]

153 t h e t a = s [ : , 3 ]

154 t h e t a d = s [ : , 4 ] # t h e t a − han d l e bar , omega − a n g l e o f b i c y c l e t o

v e r t i c l e p s i = b i k e s a n g l e t o t h e y a x i s

155 xf = s [ : , 5 ]

156 yf = s [ : , 6 ]
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157 xb = s [ : , 7 ]

158 yb = s [ : , 8 ]

159 p s i = s [ : , 9 ]

160 t i m e s t e p = s [ : , −1]

161 l a s t p o s = s [ : , 5 : 6 ]

162 l a s t x f = xf

163 l a s t y f = yf

164 T = a c t i o n [ : , 0 ] * maximum torque

165 T = t f . where ( T > maximum torque , t f . o n e s l i k e ( T ) * maximum torque , T )

166 T = t f . where ( T < −maximum torque , t f . o n e s l i k e ( T ) * −maximum torque , T )

167 d = a c t i o n [ : , 1 ] * maximum dis

168 d = t f . where ( d > maximum dis , t f . o n e s l i k e ( d ) * maximum dis , d )

169 d = t f . where ( d < −maximum dis , t f . o n e s l i k e ( d ) * −maximum dis , d )

170 r f = t f . where ( t h e t a == 0 . , t f . c o n s t a n t ( 1 . e8 ) , s a f e d i v i d e ( l , t f . abs ( t f

. s i n ( t h e t a ) ) ) )

171 r b = t f . where ( t h e t a == 0 . , t f . c o n s t a n t ( 1 . e8 ) , s a f e d i v i d e ( l , t f . abs ( t f

. t a n ( t h e t a ) ) ) )

172 r cm = t f . where ( t h e t a == 0 . , t f . c o n s t a n t ( 1 . e8 ) ,

173 t f . s q r t ( ( l − c ) ** 2 + ( s a f e d i v i d e ( t f . pow ( l , 2 ) , ( t f .

pow ( t f . t a n ( t h e t a ) , 2 ) ) ) ) ) )

174 p h i = omega + t f . a t a n ( d / h )

175 # E q u a t i o n s o f mot ion .

176 # −−−−−−−−−−−−−−−−−−−−

177 # Second d e r i v a t i v e o f a n g u l a r a c c e l e r a t i o n :

178 omegadd = 1 / i n e r t i a b c * (m * h * g r a v i t y * t f . s i n ( p h i )

179 − t f . cos ( p h i ) * ( i n e r t i a d c * s i g m a d o t *

t h e t a d

180 + t f . s i g n ( t h e t a ) * ( v **

2) * (

181 m d * r * ( 1 . 0 /

r f + 1 . 0 / r b

)

182 + m * h / r cm ) ) )

183 t h e t a d d = ( T − i n e r t i a d v * s i g m a d o t * omegad ) / i n e r t i a d l

184 # I n t e g r a t e e q u a t i o n s o f mot ion u s i n g E u l e r ’ s method .

185 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

186 # Must upd a t e omega based on PREVIOUS v a l u e o f omegad .

187 df = d e l t a t i m e

188 omegad += omegadd * df
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189 omega += omegad * df

190 t h e t a d += t h e t a d d * df

191 t h e t a += t h e t a d * df

192 # Handlebars can ’ t be t u r n e d more than 80 d e g r e e s .

193 o n e s l i k e T h e t a = t f . o n e s l i k e ( t h e t a )

194 t h e t a = t f . where ( t h e t a > 1 . 3 9 6 3 , o n e s l i k e T h e t a * 1 . 3 9 6 3 , t h e t a )

195 t h e t a = t f . where ( t h e t a < −1.3963 , o n e s l i k e T h e t a * −1.3963 , t h e t a )

196 # Wheel ( ’ t y r e ’ ) c o n t a c t p o s i t i o n s .

197 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

198 # Fron t whee l c o n t a c t p o s i t i o n .

199 f r o n t t e r m = p s i + t h e t a + t f . s i g n ( p s i + t h e t a ) * t f . a s i n ( v * df / ( 2 .

* r f ) )

200 b a c k t e r m = p s i + t f . s i g n ( p s i ) * t f . a s i n ( v * df / ( 2 . * r b ) )

201 xf += v * df * − t f . s i n ( f r o n t t e r m )

202 yf += v * df * t f . cos ( f r o n t t e r m )

203 xb += v * df * − t f . s i n ( b a c k t e r m )

204 yb += v * df * t f . cos ( b a c k t e r m )

205 # P r e v e n t i n g n u m e r i c a l d r i f t .

206 # −−−−−−−−−−−−−−−−−−−−−−−−−−−

207 # Copying what Randlov d i d .

208 c u r r e n t w h e e l b a s e = t f . s q r t ( ( x f − xb ) ** 2 + ( y f − yb ) ** 2)

209 r e l a t i v e e r r o r = l / c u r r e n t w h e e l b a s e − 1 . 0

210 xb = t f . where ( t f . abs ( c u r r e n t w h e e l b a s e − l ) > 0 . 0 1 , xb + ( xb − xf ) *

r e l a t i v e e r r o r , xb )

211 yb = t f . where ( t f . abs ( c u r r e n t w h e e l b a s e − l ) > 0 . 0 1 , yb + ( yb − yf ) *

r e l a t i v e e r r o r , yb )

212 # Update heading , p s i .

213 # −−−−−−−−−−−−−−−−−−−−

214 d e l t a y = yf − yb

215 d e l t a g o a l p o s i t i o n = g o a l p o s i t i o n [ : p b a t c h s i z e , : ]

216 d e l t a y g = d e l t a g o a l p o s i t i o n [ : , 1 ] − yb

217 p s i = t f . where ( t f . l o g i c a l a n d ( x f == xb , d e l t a y < 0 . 0 ) , p i ,

218 t f . where ( ( d e l t a y > 0 . 0 ) ,

219 t f . a t a n ( s a f e d i v i d e ( ( xb − xf ) , d e l t a y ) ) ,

220 t f . s i g n ( xb − xf ) * 0 . 5 * p i − t f . a t a n (

s a f e d i v i d e ( d e l t a y , ( xb − xf ) ) ) ) )

221 p s i g = t f . where ( t f . l o g i c a l a n d ( x f == xb , d e l t a y g < 0 . 0 ) , p s i − pi ,

222 t f . where ( ( d e l t a y > 0 . 0 ) ,

223 p s i − t f . a t a n ( s a f e d i v i d e ( ( xb −
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d e l t a g o a l p o s i t i o n [ : , 0 ] ) , d e l t a y g ) ) ,

224 p s i − t f . s i g n ( xb − d e l t a g o a l p o s i t i o n [ : , 0 ] )

* 0 . 5 * p i − t f . a t a n (

225 s a f e d i v i d e ( d e l t a y g , ( xb −

d e l t a g o a l p o s i t i o n [ : , 0 ] ) ) ) ) )

226 omega = t f . r e s h a p e ( omega , ( p b a t c h s i z e , 1 ) )

227 omega = t f . where ( t f . abs ( omega ) > p i / 2 , t f . math . s i g n ( omega ) * p i / 2 ,

omega )

228 omega dot = t f . r e s h a p e ( omegad , ( p b a t c h s i z e , 1 ) )

229 omega ddot = t f . r e s h a p e ( omegadd , ( p b a t c h s i z e , 1 ) )

230 t h e t a = t f . r e s h a p e ( t h e t a , ( p b a t c h s i z e , 1 ) )

231 t h e t a d o t = t f . r e s h a p e ( t h e t a d , ( p b a t c h s i z e , 1 ) )

232 p s i g = t f . r e s h a p e ( ps ig , ( p b a t c h s i z e , 1 ) )

233 c u r r e n t p o s = t f . c o n c a t ( [ t f . r e s h a p e ( xf , [ p b a t c h s i z e , 1 ] ) , t f . r e s h a p e (

yf , [ p b a t c h s i z e , 1 ] ) ] , a x i s =1)

234 po s d = c u r r e n t p o s − l a s t p o s

235 g o a l d i s p l a c e m e n t = d e l t a g o a l p o s i t i o n − c u r r e n t p o s

236 g o a l d i s t = t f . s q r t ( t f . r educe sum ( t f . pow ( g o a l d i s p l a c e m e n t , 2 ) ) )

237 g o a l d i s p l a c e m e n t n o r m a l i s e d = s a f e d i v i d e ( g o a l d i s p l a c e m e n t , g o a l d i s t

)

238 x d = xf − l a s t x f

239 y d = yf − l a s t y f

240 g o a l d i s p l a c e m e n t x = d e l t a g o a l p o s i t i o n [ : , 0 ] − xf

241 g o a l d i s p l a c e m e n t y = d e l t a g o a l p o s i t i o n [ : , 1 ] − yf

242 g o a l d i s t = t f . s q r t ( t f . pow ( g o a l d i s p l a c e m e n t x , 2 ) + t f . pow (

g o a l d i s p l a c e m e n t y , 2 ) )

243 g o a l d i s p l a c e m e n t n o r m a l i s e d x = s a f e d i v i d e ( g o a l d i s p l a c e m e n t x ,

g o a l d i s t ) # c o n s t r u c t i n g a u n i t v e c t o r here .

244 g o a l d i s p l a c e m e n t n o r m a l i s e d y = s a f e d i v i d e ( g o a l d i s p l a c e m e n t y ,

g o a l d i s t )

245 i f g o a l :

246 r t = t f . r educe sum ( pos d * g o a l d i s p l a c e m e n t n o r m a l i s e d , a x i s =1)

247 r t = x d * g o a l d i s p l a c e m e n t n o r m a l i s e d x + y d *

g o a l d i s p l a c e m e n t n o r m a l i s e d y # t h i s i s a d o t p r o d u c t

248 e l s e :

249 y d = yf − l a s t y f

250 r t = y d

251 t i m e s t e p += 1 .

252 x f = t f . r e s h a p e ( xf , ( p b a t c h s i z e , 1 ) )
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253 y f = t f . r e s h a p e ( yf , ( p b a t c h s i z e , 1 ) )

254 x b = t f . r e s h a p e ( xb , ( p b a t c h s i z e , 1 ) )

255 y b = t f . r e s h a p e ( yb , ( p b a t c h s i z e , 1 ) )

256 p s i = t f . r e s h a p e ( p s i , ( p b a t c h s i z e , 1 ) )

257 r t = t f . r e s h a p e ( r t , ( p b a t c h s i z e , 1 ) )

258 t i m e s t e p = t f . r e s h a p e ( t i m e s t e p , ( p b a t c h s i z e , 1 ) )

259 t r a j e c t o r i e s t e r m i n a t i n g = t i m e s t e p >= t r a j e c t o r y l e n g t h

260 # t r a j e c t o r i e s t e r m i n a t i n g = t f . l o g i c a l o r ( t i m e s t e p >= t r a j e c t o r y l e n g t h

, t f . abs ( omega ) > math . p i / 9 )

261 t r a j e c t o r i e s t e r m i n a t i n g = t f . r e s h a p e ( t r a j e c t o r i e s t e r m i n a t i n g , [

p b a t c h s i z e , ] )

262 n e w s t a t e = t f . c o n c a t ( [ omega , omega dot , omega ddot , t h e t a , t h e t a d o t ,

x f , y f , x b , y b , p s i , p s ig , t i m e s t e p ] ,

263 a x i s =1)

264 p e n a l t y h a n d l e = f l a t b o t t o m e d b a r r i e r f u n c t i o n ( t f . abs ( t h e t a ) , 1 .3963 *

0 . 9 , 8 )

265 p e n a l t y a n g l e = f l a t b o t t o m e d b a r r i e r f u n c t i o n ( t f . abs ( omega ) , p i / 15 ,

8 )

266 p e n a l t y p s i = 0

267 p e n a l t y p s i g = 0

268 p e n a l t y p s i = f l a t b o t t o m e d b a r r i e r f u n c t i o n ( t f . abs ( p s i g ) , p i / 2 , 8 ) *

(1 i f w i t h p s i r e s t r i c t i o n e l s e 0)

269 psiRemoved = i n t ( not ( t e s t t == ” psiRemoved ” ) )

270 angleRemoved = i n t ( not ( t e s t t == ” angleRemoved ” ) )

271 handleRemoved = i n t ( not ( t e s t t == ” handleRemoved ” ) )

272 r e c o r d e d t a n h = − t f . t a n h ( p e n a l t y p s i * psiRemoved + p e n a l t y a n g l e *

angleRemoved + p e n a l t y h a n d l e * handleRemoved ) + r t

273 i f u s e t a n h :

274 reward = − t f . t a n h ( p e n a l t y p s i * psiRemoved + p e n a l t y a n g l e *

angleRemoved + p e n a l t y h a n d l e * handleRemoved ) + r t

275 e l s e :

276 reward = −1 * ( p e n a l t y p s i * psiRemoved + p e n a l t y a n g l e *

angleRemoved + p e n a l t y h a n d l e * handleRemoved ) + r t

277 re turn [ reward , r e c o r d e d t a n h , n e w s t a t e , t r a j e c t o r i e s t e r m i n a t i n g ]

278

279

280 def f l a t b o t t o m e d b a r r i e r f u n c t i o n ( x , k wid th , k power ) :

281 re turn t f . pow ( t f . maximum ( x / ( k w i d t h * 0 . 5 ) − 1 , 0 ) , k power )

282 def e v a l u a t e f i n a l s t a t e ( s t a t e ) :
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283 re turn t f . z e r o s l i k e ( s t a t e [ : , 0 ] )

284 #MODEL DESIGN

285 l e a r n i n g r a t e = 0 . 0 1

286 u n r o l l p s e u d o i n i t i a l s t a t e s t o t r u t h = True

287 i n i t i a l i s e w r a p a r o u n d g r a d i e n t s = True

288 c l a s s model ( k e r a s . Model ) :

289 def i n i t ( s e l f ) :

290 super ( model , s e l f ) . i n i t ( )

291 s e l f . n e u r a l l a y e r s = [ ]

292 f o r h i dd en in n u m h i d d e n u n i t s :

293 s e l f . n e u r a l l a y e r s . append ( k e r a s . l a y e r s . Dense ( h idden , a c t i v a t i o n

=” t a n h ” ,

294 k e r n e l i n i t i a l i z e r

= k e r a s .

i n i t i a l i z e r s .

RandomNormal (

295 s t d d e v = 0 . 0 0 1 ) ,

296 b i a s i n i t i a l i z e r =

k e r a s .

i n i t i a l i z e r s .

Ze ros ( ) ) )

297 s e l f . n e u r a l l a y e r s . append ( k e r a s . l a y e r s . Dense ( a c t i o n s p a c e , name= ’

o u t p u t ’ , a c t i v a t i o n =” t a n h ” ,

298 k e r n e l i n i t i a l i z e r =

k e r a s . i n i t i a l i z e r s .

RandomNormal ( s t d d e v

= 0 . 0 0 1 ) ,

299 b i a s i n i t i a l i z e r = k e r a s

. i n i t i a l i z e r s . Ze ros

( ) ) )

300 @tf . f u n c t i o n

301 def c a l l ( s e l f , input ) :

302 x = input

303 f o r l a y e r in s e l f . n e u r a l l a y e r s :

304 y = l a y e r ( x )

305 x = t f . c o n c a t ( [ x , y ] , a x i s =1)

306 re turn y

307 k e r a s a c t i o n n e t w o r k = model ( )

308 # i f VALIDATION == True :
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309 # k e r a s a c t i o n n e t w o r k . l o a d w e i g h t s ( ” . / c h e c k p o i n t s / m y c h e c k p o i n t ”)

310 @tf . f u n c t i o n

311 def c o n v e r t e r ( s t a t e , p a s s e d b a t c h s i z e ) :

312 # omega , omega dot , omega ddot , t h e t a , t h e t a d o t , x f , y f , x b , y b ,

p s i , p s ig , t i m e s t e p

313 omega = s t a t e [ : , 0 ]

314 omega dot = s t a t e [ : , 1 ]

315 t h e t a = s t a t e [ : , 3 ]

316 t h e t a d o t = s t a t e [ : , 4 ] # t h e t a − h an d l e bar , omega − a n g l e o f b i c y c l e

t o v e r t i c l e

317 p s i = s t a t e [ : , 9 ]

318 p s i g = s t a t e [ : , 10]

319 p s i = t f . r e s h a p e ( p s i , ( p a s s e d b a t c h s i z e , 1 ) )

320 omega = t f . r e s h a p e ( omega , ( p a s s e d b a t c h s i z e , 1 ) )

321 omega dot = t f . r e s h a p e ( omega dot , ( p a s s e d b a t c h s i z e , 1 ) )

322 t h e t a = t f . r e s h a p e ( t h e t a , ( p a s s e d b a t c h s i z e , 1 ) )

323 t h e t a d o t = t f . r e s h a p e ( t h e t a d o t , ( p a s s e d b a t c h s i z e , 1 ) )

324 p s i g = t f . r e s h a p e ( ps ig , ( p a s s e d b a t c h s i z e , 1 ) )

325 o m e g a v i s i b l e = t f . t a n h ( omega * 10)

326 omega dot = t f . t a n h ( omega dot )

327 t h e t a d o t = t f . t a n h ( t h e t a d o t )

328 t h e t a = t f . t a n h ( t h e t a / ( p i / 4 ) )

329 i f g o a l :

330 c o n v e r t e d s t a t e = t f . c o n c a t ( [ o m e g a v i s i b l e , omega dot , t h e t a ,

t h e t a d o t , t f . s i n ( p s i g ) , t f . cos ( p s i g ) ] , a x i s =1)

331 e l s e :

332 c o n v e r t e d s t a t e = t f . c o n c a t ( [ o m e g a v i s i b l e , omega dot , t h e t a ,

t h e t a d o t , t f . s i n ( p s i ) , t f . cos ( p s i ) ] , a x i s =1)

333 re turn c o n v e r t e d s t a t e

334

335 a c t i o n l i s t = [ ]

336 @tf . f u n c t i o n

337 def e x p a n d t r a j e c t o r i e s ( s t a r t s t a t e s ) :

338 t o t a l r e w a r d s = t f . c o n s t a n t ( 0 . 0 , shape =[ b a t c h s i z e ] )

339 r e c o r d e d t o t a l r e w a r d s = t f . c o n s t a n t ( 0 . 0 , shape = [ b a t c h s i z e ] )

340 a c t i o n s = t f . z e r o s ( ( b a t c h s i z e , a c t i o n s p a c e ) )

341 a c t i o n l i s t = [ ]

342 t r a j e c t o r y = t f . expand d ims ( s t a r t s t a t e s , a x i s =0)

343 t r a j e c t o r i e s t e r m i n a t e d = t f . c a s t ( t f . z e r o s l i k e ( s t a r t s t a t e s [ : , 0 ] ) , t f
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. bool )

344 s t a t e = s t a r t s t a t e s

345 p r i n t ( t f . TensorShape ( [ None , s t a t e . g e t s h a p e ( ) [ 0 ] , s t a t e d i m e n s i o n ] ) )

346 p r i n t ( np . shape ( r e c o r d e d t o t a l r e w a r d s ) )

347 [ s t a t e , t o t a l r e w a r d s , r e c o r d e d t o t a l r e w a r d s , t r a j e c t o r y ,

t r a j e c t o r i e s t e r m i n a t e d ]=\

348 t f . w h i l e l o o p ( w h i l e l o o p c o n d , w h i l e l o o p b o d y , ( s t a t e ,

t o t a l r e w a r d s , r e c o r d e d t o t a l r e w a r d s , t r a j e c t o r y ,

t r a j e c t o r i e s t e r m i n a t e d ) ,

349 s h a p e i n v a r i a n t s =( s t a t e . g e t s h a p e ( ) ,

350 t o t a l r e w a r d s . g e t s h a p e ( ) ,

351 r e c o r d e d t o t a l r e w a r d s . g e t s h a p e ( ) ,

352 t f . TensorShape ( [ None , s t a t e .

g e t s h a p e ( ) [ 0 ] , s t a t e d i m e n s i o n ] )

,

353 t r a j e c t o r i e s t e r m i n a t e d . g e t s h a p e ( )

) )

354 # b u i l d main graph . T h i s i s a long graph w i t h u n r o l l e d i n t i m e f o r

t r a j e c t o r y l e n g t h s t e p s . Each s t e p i n c l u d e s one n e u r a l ne twork

f o l l o w e d by one p h y s i c s −model

355 a c t i o n h i s t o r y = t f . s t a c k ( a c t i o n l i s t , a x i s =0)

356 t r a j e c t o r y = t f . s t a c k ( t r a j e c t o r y , a x i s =0)

357 a v e r a g e t o t a l r e w a r d = t f . r educe mean ( t o t a l r e w a r d s )

358 a v e r a g e t o t a l r e c o r d e d r e w a r d = t f . r educe mean ( r e c o r d e d t o t a l r e w a r d s )

359 re turn [ a v e r a g e t o t a l r e w a r d , a v e r a g e t o t a l r e c o r d e d r e w a r d , t r a j e c t o r y ,

a c t i o n h i s t o r y , t r a j e c t o r i e s t e r m i n a t e d ]

360 o p t = k e r a s . o p t i m i z e r s . Adam( l e a r n i n g r a t e )

361

362

363 @tf . f u n c t i o n

364 def w h i l e l o o p c o n d ( s t a t e , t o t a l r e w a r d s , r e c o r d e d t o t a l r e w a r d s , t r a j e c t o r y ,

t r a j e c t o r i e s t e r m i n a t e d ) :

365 re turn t f . l o g i c a l n o t ( t f . r e d u c e a l l ( t r a j e c t o r i e s t e r m i n a t e d ) )

366 @tf . f u n c t i o n

367 def w h i l e l o o p b o d y ( s t a t e , t o t a l r e w a r d s , r e c o r d e d t o t a l r e w a r d s , t r a j e c t o r y ,

t r a j e c t o r i e s t e r m i n a t e d ) :

368 c o n v e r t e d s t a t e = c o n v e r t e r ( s t a t e , b a t c h s i z e )

369 p r e v a c t i o n = k e r a s a c t i o n n e t w o r k ( c o n v e r t e d s t a t e )

370 a c t i o n = t f . r e s h a p e ( p r e v a c t i o n , ( b a t c h s i z e , a c t i o n s p a c e ) )
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371 [ rewards , r e c o r d e d t a n h , n s t a t e , t r a j e c t o r i e s t e r m i n a t i n g ] = s t e p (

s t a t e , a c t i o n , t r a j e c t o r i e s t e r m i n a t e d ,

372 b a t c h s i z e

)

373 s t a t e = t f . where ( t f . expand d ims ( t r a j e c t o r i e s t e r m i n a t e d , 1 ) , s t a t e ,

n s t a t e )

374 a c t i o n l i s t . append ( a c t i o n l i s t )

375

376 r e w a r d s = t f . r e s h a p e ( rewards , ( b a t c h s i z e , ) )

377 r e c o r d e d t a n h = t f . r e s h a p e ( r e c o r d e d t a n h , ( b a t c h s i z e , ) )

378 t o t a l r e w a r d s += t f . where ( t r a j e c t o r i e s t e r m i n a t e d , t f . z e r o s l i k e (

r e w a r d s ) , r e w a r d s )

379 t o t a l r e w a r d s += t f . where ( t f . l o g i c a l a n d ( t r a j e c t o r i e s t e r m i n a t i n g , t f .

l o g i c a l n o t ( t r a j e c t o r i e s t e r m i n a t e d ) ) ,

380 e v a l u a t e f i n a l s t a t e ( s t a t e ) , t f . z e r o s l i k e (

r e w a r d s ) )

381 r e c o r d e d t o t a l r e w a r d s += t f . where ( t r a j e c t o r i e s t e r m i n a t e d , t f .

z e r o s l i k e ( r e c o r d e d t a n h ) , r e c o r d e d t a n h )

382 r e c o r d e d t o t a l r e w a r d s += t f . where (

383 t f . l o g i c a l a n d ( t r a j e c t o r i e s t e r m i n a t i n g , t f . l o g i c a l n o t (

t r a j e c t o r i e s t e r m i n a t e d ) ) ,

384 e v a l u a t e f i n a l s t a t e ( s t a t e ) , t f . z e r o s l i k e ( r e c o r d e d t a n h ) )

385

386 t r a j e c t o r i e s t e r m i n a t e d = t f . l o g i c a l o r ( t r a j e c t o r i e s t e r m i n a t e d ,

t r a j e c t o r i e s t e r m i n a t i n g )

387 t r a j e c t o r y = t f . c o n c a t ( [ t r a j e c t o r y , t f . expand d ims ( s t a t e , a x i s =0) ] ,

a x i s =0)

388 re turn s t a t e , t o t a l r e w a r d s , r e c o r d e d t o t a l r e w a r d s , t r a j e c t o r y ,

t r a j e c t o r i e s t e r m i n a t e d

389

390 @tf . f u n c t i o n

391 def d o l e a r n ( s t a r t s t a t e s ) :

392 wi th t f . G r a d i e n t T a p e ( ) a s t :

393 t . watch ( s t a r t s t a t e s )

394 [ t o t a l r e w a r d , r e c o r d e d t o t a l r e w a r d , t r a j e c t o r y , a c t i o n h i s o t r y ,

t r a j e c t o r i e s t e r m i n a t e d ] = e x p a n d t r a j e c t o r i e s ( s t a r t s t a t e s )

395 c o s t = − t f . r educe mean ( t o t a l r e w a r d )

396 g r a d s = t . g r a d i e n t ( c o s t , k e r a s a c t i o n n e t w o r k . t r a i n a b l e w e i g h t s )

397 re turn grads , t r a j e c t o r y , t o t a l r e w a r d , r e c o r d e d t o t a l r e w a r d ,
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a c t i o n h i s o t r y , t r a j e c t o r i e s t e r m i n a t e d

398

399 #GRAPHICS

400 def s t a t i c g r a p h i c s ( ) :

401 f i g , ( ( ax omega , a x t h e t a ) , ( a x t r a j e c t o r y , a x r e w a r d h i s t o r y ) , (

a x a c t i o n T , a x p s i ) ,

402 ( a x a c t i o n d , a x t i m e s t e p ) ) = p l t . s u b p l o t s ( nrows =4 , n c o l s =2 ,

f i g s i z e =(10 , 10) )

403 # d i s p l a y . c l e a r o u t p u t ( w a i t=True )

404 # f i g = p l t . f i g u r e ( f i g s i z e = [ 1 2 . 4 , 4 . 8 ] )

405 f i g . t i g h t l a y o u t ( pad = 5 . 0 )

406 # ax omega = omega

407 pad = 10

408 ax omega . a x i s (

409 [ 0 , t r a j e c t o r y l e n g t h , ( − math . p i / 15) * 180 / math . p i − pad , ( math

. p i / 15) * 180 / math . p i + pad ] )

410 ax omega . s e t ( x l a b e l = ’ t i m e s t e p ’ , y l a b e l = ’ Bike R o l l v a l u e i n Degrees ’ )

411 ax omega . s e t t i t l e ( ’ ( Bike R o l l ) . ’ )

412 ax omega . g r i d ( )

413 # ax2 = t h e t a

414 a x t h e t a . a x i s ( [ 0 , t r a j e c t o r y l e n g t h , −80 − pad , 80 + pad ] )

415 a x t h e t a . s e t ( x l a b e l = ’ t i m e s t e p ’ , y l a b e l = ’ Bike h a n d l e v a l u e i n Degrees ’ )

416 a x t h e t a . s e t t i t l e ( ’ ( Bike Handle ) . ’ )

417 a x t h e t a . g r i d ( )

418 # ax3 = Agent moving i n t h e f i e l d

419 a x t r a j e c t o r y . a x i s ( [ − b , b , −b , b ] )

420 a x t r a j e c t o r y . s e t ( x l a b e l = ’ x ’ , y l a b e l = ’ y ’ )

421 a x t r a j e c t o r y . s e t t i t l e ( ’ Bike T r a j e c t o r y . ’ )

422 a x t r a j e c t o r y . p l o t ( g o a l p o s i t i o n [ : , 0 ] , g o a l p o s i t i o n [ : , 1 ] , c o l o r = ’

g r e e n ’ , marker = ’ o ’ )

423 a x t r a j e c t o r y . g r i d ( )

424 # ax4 = reward over t i m e .

425 a x r e w a r d h i s t o r y . a x i s ( [ 0 , m a x i t e r a t i o n s , −1 − 0 . 5 , 1 + 0 . 5 ] )

426 a x r e w a r d h i s t o r y . s e t ( x l a b e l = ’ I t e r a t i o n ’ , y l a b e l = ’ Reward ’ )

427 a x r e w a r d h i s t o r y . s e t t i t l e ( ’ Reward ove r I t e r a t i o n ’ )

428 f o r t r a j in range ( b a t c h s i z e ) :

429 t r a j e c t o r y x c o o r d = [ 0 ] # t r a j e c t o r y [ : , t r a j , 0 ]

430 a x r e w a r d h i s t o r y . p l o t ( t r a j e c t o r y x c o o r d )

431 a x r e w a r d h i s t o r y . g r i d ( )
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432 # ax5 = a c t i o n t h e a g e n t t a k e s

433 a x a c t i o n T . a x i s ( [ 0 , t r a j e c t o r y l e n g t h , −2 − 0 . 5 , 2 + 0 . 5 ] )

434 a x a c t i o n T . l e g e n d ( l o c =” uppe r r i g h t ” )

435 a x a c t i o n T . s e t ( x l a b e l = ’ t i m e s t e p ’ , y l a b e l = ’ t o r q u e ’ )

436 a x a c t i o n T . s e t t i t l e ( ’ T r a j e c t o r y t o r q u e ’ )

437 a x a c t i o n T . g r i d ( )

438 # ax6 = a g e n t p s i

439 a x p s i . a x i s ( [ 0 , t r a j e c t o r y l e n g t h , −180 − pad , 180 + pad ] )

440 a x p s i . s e t ( x l a b e l = ’ t i m e s t e p ’ , y l a b e l = ’ p s i ’ )

441 a x p s i . s e t t i t l e ( ’ Bike d i r e c t i o n P s i ’ )

442 a x p s i . g r i d ( )

443 # ax7 = a g e n t d

444 a x a c t i o n d . a x i s ( [ 0 , t r a j e c t o r y l e n g t h , −maximum dis − 0 . 0 1 , maximum dis

+ 0 . 0 1 ] )

445 a x a c t i o n d . s e t ( x l a b e l = ’ t i m e s t e p ’ , y l a b e l = ’ d i s p l a c e m e n t ’ )

446 a x a c t i o n d . s e t t i t l e ( ’ The c e n t r e o f mass d i s p l a c e m e n t ’ )

447 a x a c t i o n d . g r i d ( )

448 # ax8 t i m e s t e p

449 a x t i m e s t e p . a x i s ( [ 0 , m a x i t e r a t i o n s , 0 − pad , t r a j e c t o r y l e n g t h + pad ] )

450 a x t i m e s t e p . s e t t i t l e ( ’max b a l a n c i n g d u r a t i o n ’ )

451 a x t i m e s t e p . s e t ( x l a b e l = ’ i t e r a t i o n ’ , y l a b e l = ’ t ime s t e p s ’ )

452 a x t i m e s t e p . g r i d ( )

453 p l t . draw ( )

454 p l t . pause ( 0 . 0 0 1 )

455 re turn [ f i g , ax omega , a x t h e t a , a x t r a j e c t o r y , a x r e w a r d h i s t o r y ,

a x a c t i o n T , a x p s i , a x a c t i o n d , a x t i m e s t e p ]

456 def d y n a m i c g r a p h i c s ( t r a j e c t o r y , s t a t s , p a s s e d a c t i o n s , r e w a r d h i s t o r y ,

t i m e s t e p h i s t o r y ) :

457 # omega , omega dot , omega ddot , t h e t a , t h e t a d o t , x f , y f , x b , y b ,

p s i , p s ig , t i m e s t e p

458 f i g , ax omega , a x t h e t a , a x t r a j e c t o r y , a x r e w a r d h i s t o r y , a x a c t i o n T ,

a x p s i , a x a c t i o n d , a x t i m e s t e p = s t a t s

459 T = p a s s e d a c t i o n s [ : , : , 0 ] * maximum torque

460 T = t f . where ( T > maximum torque , t f . o n e s l i k e ( T ) * maximum torque , T )

461 T = t f . where ( T < −maximum torque , t f . o n e s l i k e ( T ) * −maximum torque , T )

462 d = p a s s e d a c t i o n s [ : , : , 1 ] * maximum dis

463 d = t f . where ( d > maximum dis , t f . o n e s l i k e ( d ) * maximum dis , d )

464 d = t f . where ( d < −maximum dis , t f . o n e s l i k e ( d ) * −maximum dis , d )

465 omega = t r a j e c t o r y [ : , : , 0 ]



Page 167

466 omega dot = t r a j e c t o r y [ : , : , 1 ]

467 omega ddot = t r a j e c t o r y [ : , : , 2 ]

468 t h e t a = t r a j e c t o r y [ : , : , 3 ]

469 t h e t a d o t = t r a j e c t o r y [ : , : , 4 ] # t h e t a − h an d l e bar , omega − a n g l e o f

b i c y c l e t o v e r t i c l e

470 x f = t r a j e c t o r y [ : , : , 5 ]

471 y f = t r a j e c t o r y [ : , : , 6 ]

472 x b = t r a j e c t o r y [ : , : , 7 ]

473 y b = t r a j e c t o r y [ : , : , 8 ]

474 p s i = t r a j e c t o r y [ : , : , 9 ]

475 t i m e s t e p s = t r a j e c t o r y [ : , : , −1]

476 c o l = 0

477 ax omega . l i n e s . c l e a r ( )

478 a x t h e t a . l i n e s . c l e a r ( )

479 a x t r a j e c t o r y . l i n e s . c l e a r ( )

480 a x r e w a r d h i s t o r y . l i n e s . c l e a r ( )

481 a x a c t i o n T . l i n e s . c l e a r ( )

482 a x p s i . l i n e s . c l e a r ( )

483 a x a c t i o n d . l i n e s . c l e a r ( )

484 a x t i m e s t e p . l i n e s . c l e a r ( )

485 f o r t r a j e c t o r y n u m b e r in range ( b a t c h s i z e ) :

486 i f t r a j e c t o r y [ 0 , t r a j e c t o r y n u m b e r , −1] == 0 :

487 c o l = ( c o l + 1) % l e n ( c o l o r s )

488 conv omega = omega [ : , t r a j e c t o r y n u m b e r ] * 180 / np . p i

489 c o n v t h e t a = t h e t a [ : , t r a j e c t o r y n u m b e r ] * 180 / np . p i

490 c o n v p s i = p s i [ : , t r a j e c t o r y n u m b e r ] * 180 / np . p i

491 ax omega . p l o t ( t i m e s t e p s [ : , t r a j e c t o r y n u m b e r ] , conv omega , c o l o r =

c o l o r s [ c o l ] )

492 a x t h e t a . p l o t ( t i m e s t e p s [ : , t r a j e c t o r y n u m b e r ] , c o n v t h e t a , c o l o r =

c o l o r s [ c o l ] )

493 x = x f [ : , t r a j e c t o r y n u m b e r ]

494 y = y f [ : , t r a j e c t o r y n u m b e r ]

495 a x t r a j e c t o r y . p l o t ( x , y , c o l o r = c o l o r s [ c o l ] )

496 a x a c t i o n T . p l o t ( t i m e s t e p s [ 1 : , t r a j e c t o r y n u m b e r ] , T [ : ,

t r a j e c t o r y n u m b e r ] , c o l o r = c o l o r s [ c o l ] )

497 a x a c t i o n d . p l o t ( t i m e s t e p s [ 1 : , t r a j e c t o r y n u m b e r ] , d [ : ,

t r a j e c t o r y n u m b e r ] , c o l o r = c o l o r s [ c o l ] )

498 a x p s i . p l o t ( t i m e s t e p s [ : , t r a j e c t o r y n u m b e r ] , c o n v p s i , c o l o r =

c o l o r s [ c o l ] )
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499 a x t r a j e c t o r y . p l o t ( g o a l p o s i t i o n [ 0 , 0 ] , g o a l p o s i t i o n [ 0 , 1 ] , c o l o r = ’ b ’ ,

marker = ’ o ’ )

500 a x r e w a r d h i s t o r y . a x i s ( [ 0 , m a x i t e r a t i o n s , min ( r e w a r d h i s t o r y ) − 10 ,

max ( r e w a r d h i s t o r y ) + 1 0 ] )

501 a x r e w a r d h i s t o r y . p l o t ( r e w a r d h i s t o r y , c o l o r = ’ r e d ’ )

502 a x t i m e s t e p . p l o t ( t i m e s t e p h i s t o r y , c o l o r = ’ r e d ’ )

503 p l t . draw ( )

504 p l t . pause ( 0 . 0 0 1 )

505 i f g r a p h i c a l :

506 s t a t = s t a t i c g r a p h i c s ( )

507

508 #TRAINING

509 t i m e s t e p h i s t o r y = [ ]

510 a c t i o n h i s t o r y = [ ]

511 r e w a r d h i s t o r y = [ ]

512 t r a j e c t o r y h i s t o r y = [ ]

513 i n i t i a l s t a t e b a c k u p = i n i t i a l s t a t e

514 t r a j e c t o r i e s t e r m i n a t e d = t f . c a s t ( t f . z e r o s l i k e ( i n i t i a l s t a t e [ : , 0 ] ) , t f .

bool )

515 t a = d a t e t i m e . now ( )

516 t b = d a t e t i m e . now ( )

517 f i n a l a r t i f i c i a l g r a d i e n t = np . z e r o s l i k e ( i n i t i a l s t a t e )

518 p r i n t ( b a t c h s i z e )

519 f o r i t e r a t i o n in range ( m a x i t e r a t i o n s ) :

520 s t a t e 1 = i n i t i a l s t a t e b a c k u p

521 # t r a j e c t o r i e s t e r m i n a t e d = t r a j e c t o r i e s t e r m i n a t e d

522 g r a d i e n t s l i s t , t r a j e c t o r y , t o t a l r e w a r d , r c r e w a r d , a c t i o n s ,

t r a j e c t o r i e s t e r m i n a t e d = d o l e a r n ( s t a t e 1 )

523 t r a j e c t o r y = t r a j e c t o r y . numpy ( )

524 t r a j e c t o r i e s t e r m i n a t e d = t r a j e c t o r i e s t e r m i n a t e d . numpy ( )

525 # d R e w a r d d I n p u t S t a t e = d R e w a r d d I n p u t S t a t e . numpy ( )

526 f o r in g r a d i e n t s l i s t :

527 i f np . i s n a n ( ) . any ( ) :

528 p r i n t ( ”Nan Grads ” )

529 o p t . a p p l y g r a d i e n t s ( z i p ( g r a d i e n t s l i s t , k e r a s a c t i o n n e t w o r k .

t r a i n a b l e w e i g h t s ) )

530 # t o t a l r e w a r d = t o t a l r e w a r d + (−1 *( t r a j e c t o r y l e n g t h − t r a j e c t o r y

[ −1 , : , −1]) )

531 a v e r a g e t o t a l r e w a r d s t e p w i s e = np . max ( t o t a l r e w a r d . numpy ( ) )
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532 r c a v e r a g e t o t a l r e w a r d s t e p w i s e = np . max ( r c r e w a r d . numpy ( ) )

533 r e w a r d h i s t o r y . append ( r c a v e r a g e t o t a l r e w a r d s t e p w i s e )

534

535 t i m e s t e p h i s t o r y . append ( np . max ( t r a j e c t o r y [ : , : , − 1 ] ) )

536 f i n a l t r a j e c t o r y s t e p s = t r a j e c t o r y [ −1 , : , : ]

537 # a c t i o n h i s t o r y . append ( a c t i o n s )

538 # t r a j e c t o r y h i s t o r y . append ( t r a j e c t o r y )

539 i f i t e r a t i o n % p r i n t t i m e == 0 :

540 i f g r a p h i c a l :

541 d y n a m i c g r a p h i c s ( t r a j e c t o r y , s t a t , a c t i o n s )

542 i f p r i n i t :

543 t b = d a t e t i m e . now ( )

544 d t = t b − t a

545 p r i n t ( ” i t e r a t i o n : ” , i t e r a t i o n , ” / /

A v e r a g e t o t a l r e w a r d s t e p w i s e : ” ,

r c a v e r a g e t o t a l r e w a r d s t e p w i s e ,

546 ” Average S tep : ” , np . mean ( t r a j e c t o r y [ −1 , : , −1] ) , ” i n

s t e p s and ” ,

547 np . mean ( t r a j e c t o r y [ −1 , : , −1] ) * d e l t a t i m e , ” i n s e c o n d s ”

, ” t ime t a k e n from l a s t i t e r : ” ,

548 d i f f ( t a , t b ) )

549 t a = t b

550

551 i f s ave :

552 i f i t e r a t i o n % 10 == 0 :

553 s a v e m a t = np . c o n c a t e n a t e ( [ [ r e w a r d h i s t o r y ] , [ t i m e s t e p h i s t o r y

] ] , a x i s =0)

554 np . s ave ( ” w i t h o u t C l i p p i n g / ” + t r i a l n a m e + ” m a r k e r ” + s t r (

i t e r a t i o n ) + ” r e s u l t s ” + f i l e n a m e + ” . npy ” , s a v e m a t )

555 #np . save (” runs5 /” + t r i a l n a m e + ” m a r k e r ” + s t r ( i t e r a t i o n ) +

” a c t i o n h i s t o r y ” + f i l e n a m e + ” . npy ” , np . a r r a y (

a c t i o n h i s t o r y ) )

556 #np . save (” runs5 /” + t r i a l n a m e + ” m a r k e r ” + s t r ( i t e r a t i o n ) +

” t r a j e c t o r y h i s t o r y ” + f i l e n a m e + ” . npy ” , np . a r r a y (

t r a j e c t o r y h i s t o r y ) )

557 np . s ave ( ” w i t h o u t C l i p p i n g / l a s t s t a t e ” + f i l e n a m e + ” . npy ” ,

t r a j e c t o r y )

558

559 a c t i o n h i s t o r y = [ ]
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560 r e w a r d h i s t o r y = [ ]

561 t i m e s t e p h i s t o r y = [ ]

562 t r a j e c t o r y h i s t o r y = [ ]

563 i f i t e r a t i o n % 10 == 0 :

564 k e r a s a c t i o n n e t w o r k . s a v e w e i g h t s ( ” . / c h e c k p o i n t s / m y c h e c k p o i n t ”

+ t r i a l n a m e )

565 i f s ave :

566 np . s ave ( ” w i t h o u t C l i p p i n g / ” + t r i a l n a m e + ” m a r k e r ” + s t r ( i t e r a t i o n ) +

” r e s u l t s ” + f i l e n a m e + ” . npy ” , s a v e m a t )

567 #np . save (” w i t h o u t C l i p p i n g /” + t r i a l n a m e + ” m a r k e r ” + s t r ( i t e r a t i o n )

+ ” t r a j e c t o r y h i s t o r y ” + f i l e n a m e + ” . npy ” , np . a r r a y (

t r a j e c t o r y h i s t o r y ) )

568 np . s ave ( ” w i t h o u t C l i p p i n g / l a s t s t a t e ” + f i l e n a m e + ” . npy ” , t r a j e c t o r y )

569 k e r a s a c t i o n n e t w o r k . s a v e w e i g h t s ( ” . / c h e c k p o i n t s / m y c h e c k p o i n t ”+

t r i a l n a m e )

Appendix 3: A Simulated 2D Navigational Agent

This appendix provides the source code for a simulated 2D navigational agent. The code is

divided into three main sections:

1. Brain of the Simulated 2D Navigational Agent: This section contains the core logic that

governs the agent’s behaviour.

2. Environment of the Simulated 2D Navigational Agent: This section outlines the envi-

ronmental parameters and variables.

3. Experiment of the Simulated 2D Navigational Agent: This section is devoted to the

experimental setup where the agent operates.

Brain of the Simulated 2D Navigational Agent

Listing 7.3: Brain of the Simulated 2D Navigational Agent implemented in Python.

1 import numpy as np

2 import t e n s o r f l o w as t f

3 import m a t p l o t l i b . p y p l o t a s p l t

4 from m a t p l o t l i b import cm
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5 from m p l t o o l k i t s . mplot3d import Axes3D

6 from t e n s o r f l o w import k e r a s

7 from t e n s o r f l o w . k e r a s import l a y e r s

8 from I P y t h o n import d i s p l a y

9 import a r g p a r s e

10 import wandb

11 from m a t p l o t l i b . l i n e s import Line2D

12 import random

13 import m a t p l o t l i b . l i n e s a s m l i n e s

14 import m a t p l o t l i b . p a t c h e s as mpatches

15 # added new

16 c l a s s AntBra in ( k e r a s . Model ) :

17 def i n i t ( s e l f , num laye r s , a c t i o n n e t w o r k n u m o u t p u t s ) :

18 super ( AntBra in , s e l f ) . i n i t ( )

19 s e l f . l a y e r 1 = l a y e r s . Dense ( num laye r s , a c t i v a t i o n = ’ t a n h ’ )

20 # s e l f . l a y e r 2= l a y e r s . Dense ( num layer s , a c t i v a t i o n =’ tanh ’ )

21 s e l f . o u t p u t l a y e r = l a y e r s . Dense ( a c t i o n n e t w o r k n u m o u t p u t s ,

a c t i v a t i o n =None )

22

23 @tf . f u n c t i o n

24 def c a l l ( s e l f , i n p u t v e c t o r ) :

25 x= i n p u t v e c t o r

26 y = s e l f . l a y e r 1 ( x )

27 # p r i n t ( y )

28 # y2= s e l f . l a y e r 2 ( y )

29 # x= t f . c o n c a t ( [ x , y ] , a x i s =1)# T h i s adds s h o r t c u t c o n n e c t i o n s from

t h e p r e v i o u s l a y e r t o t h e n e x t l a y e r

30 # y3= s e l f . l a y e r 2 ( y2 )

31 # x= t f . c o n c a t ( [ x , y ] , a x i s =1)# More s h o r t c u t c o n n e c t i o n s .

32 y4= s e l f . o u t p u t l a y e r ( y )

33 # Using t h e s h o r t c u t c o n n e c t i o n s above means I don ’ t need t o worry

34 # t o o much abou t how many h i dde n l a y e r s t o add . For example , i f

h i dd en

35 # l a y e r s 1 and 2 are n o t needed t h e n t h e y can s i m p l y be s k i p p e d

over .

36 # Al so i t e n s u r e s t h e r e are s h o r t c u t c o n n e c t i o n s from t h e i n p u t

l a y e r t o t h e f i n a l l a y e r , which

37 # p o t e n t i a l l y a l l o w s memories i

38 re turn y4
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Environment of the Simulated 2D Navigational Agent

Listing 7.4: Environment of the Simulated 2D Navigational Agent implemented in Python.

1 import s y s

2

3 import numpy as np

4 import t e n s o r f l o w as t f

5 import m a t p l o t l i b . p y p l o t a s p l t

6 from m a t p l o t l i b import cm

7 from m p l t o o l k i t s . mplot3d import Axes3D

8 from t e n s o r f l o w import k e r a s

9 from t e n s o r f l o w . k e r a s import l a y e r s

10 from I P y t h o n import d i s p l a y

11 import a r g p a r s e

12 import wandb

13 from m a t p l o t l i b . l i n e s import Line2D

14 import random

15 import m a t p l o t l i b . l i n e s a s m l i n e s

16 import m a t p l o t l i b . p a t c h e s as mpatches

17 c l a s s Envi ronment :

18 def i n i t ( s e l f , b a t c h s i z e , r a n d o m i s e f o o d h e i g h t s ,

r a n d o m i s e f o o d l o c a t i o n , s t a t e d i m e n s i o n , u s e s e n s o r ,

num memory nodes , type mem ) :

19 s e l f . r a n d o m i s e f o o d l o c a t i o n = r a n d o m i s e f o o d l o c a t i o n

20 s e l f . type mem = type mem

21 s e l f . u s e s e n s o r = u s e s e n s o r

22 s e l f . b a t c h s i z e = b a t c h s i z e

23 s e l f . r a n d o m i s e f o o d h e i g h t s = r a n d o m i s e f o o d h e i g h t s

24 s e l f . num memory nodes = num memory nodes

25 s e l f . f o o d l o c a t i o n = t f . c o n s t a n t ( ( np . random . rand ( b a t c h s i z e , 3 )

−0 .5 ) * ( np . a r r a y (

26 [ 8 , 8 , r a n d o m i s e f o o d h e i g h t s ] ) i f r a n d o m i s e f o o d l o c a t i o n e l s e

np . a r r a y ( [ 0 , 0 , 0 ] ) ) , t f . f l o a t 3 2 )

27 s e l f . f o o d l o c a t i o n v a l i d a t i o n = t f . c o n s t a n t ( ( np . random . rand (

b a t c h s i z e , 3 ) − 0 . 5 ) * (

28 np . a r r a y ( [ 8 , 8 , r a n d o m i s e f o o d h e i g h t s ] ) i f

r a n d o m i s e f o o d l o c a t i o n e l s e np . a r r a y ( [ 0 , 0 , 0 ] ) ) , t f .

f l o a t 3 2 )

29 s e l f . i n i t i a l s t a t e = t f . c o n c a t (
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30 [ t f . c o n s t a n t ( ( np . random . r and ( b a t c h s i z e , 2 ) − 0 . 5 ) * (0 i f

r a n d o m i s e f o o d l o c a t i o n e l s e 8) , t f . f l o a t 3 2 ) ,

31 t f . z e r o s ( [ b a t c h s i z e , s t a t e d i m e n s i o n − 2 ] , t f . f l o a t 3 2 ) ] , a x i s

=1)

32 s e l f . i n i t i a l s t a t e v a l i d a t i o n = t f . c o n c a t (

33 [ t f . c o n s t a n t ( ( np . random . r and ( b a t c h s i z e , 2 ) − 0 . 5 ) * (0 i f

r a n d o m i s e f o o d l o c a t i o n e l s e 8) , t f . f l o a t 3 2 ) ,

34 t f . z e r o s ( [ b a t c h s i z e , s t a t e d i m e n s i o n − 2 ] , t f . f l o a t 3 2 ) ] , a x i s

=1)

35

36 def f o o d d e n s i t y ( s e l f , x y p o s i t i o n , f o o d l o c a t i o n ) :

37 # D e f i n e a g a u s s i a n bump :

38 bump width = 8

39 r e s u l t = t f . exp ( t f . r educe sum ( −( x y p o s i t i o n − f o o d l o c a t i o n [ : , : 2 ] )

** 2 , a x i s =1) / bump width )

40 r e s u l t = r e s u l t + f o o d l o c a t i o n [ : , 2 ]

41 re turn r e s u l t

42

43 def p l o t f o o d p i l e ( s e l f , axes , f o o d l o c a t i o n ) :

44 X = np . l i n s p a c e ( −5 , 5 )

45 Y = np . l i n s p a c e ( −5 , 5 )

46 X, Y = np . meshgr id (X, Y)

47 x y g r i d = np . s t a c k ( [ X, Y] , a x i s =2) . r e s h a p e ( ( − 1 , 2 ) )

48 Z = t f . r e s h a p e ( s e l f . f o o d d e n s i t y ( x y g r i d , f o o d l o c a t i o n [ 0 : 1 , : ] ) ,

[ 5 0 , 5 0 ] )

49 axes . p l o t s u r f a c e (X, Y, Z , r s t r i d e =3 , c s t r i d e =3 , l i n e w i d t h =1 ,

a n t i a l i a s e d =True , cmap=cm . v i r i d i s , a l p h a = 0 . 3 )

50 c s e t = axes . c o n t o u r f (X, Y, Z , z d i r = ’ z ’ , o f f s e t =0 , c o l o r s =[ ’ #808080 ’

, ’ #A0A0A0 ’ , ’ #C0C0C0 ’ ] , a l p h a = 0 . 4 )

51 # l i m i t s t i c k s and v iew a n g l e

52 axes . s e t z l i m ( − 0 . 5 , 1 . 2 )

53 axes . s e t z t i c k s ( np . l i n s p a c e ( 0 , 1 , 5 ) )

54 axes . v i e w i n i t ( 2 7 , −21)

55

56 def s e n s o r c a l c u l a t i o n ( s e l f , pos , f o o d l o c a t i o n ) :

57 s e n s o r r e s u l t = s e l f . f o o d d e n s i t y ( pos , f o o d l o c a t i o n )

58 s e n s o r r e s u l t = t f . r e s h a p e ( s e n s o r r e s u l t , [ s e l f . b a t c h s i z e , 1 ] ) #

r e s h a p e i t t o a rank −2 t e n s o r

59 re turn s e n s o r r e s u l t
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60 @tf . f u n c t i o n

61 def r u n o n e s t e p o f p h y s i c s m o d e l ( s e l f , s t a t e , a c t i o n , f o o d l o c a t i o n ,

s t a t e s e n s o r p o i n t e r , s t a t e m e m o r y p o i n t e r , s t a t e m e m o r y p o i n t e r h ,

s t a t e m e m o r y p o i n t e r c ) :

62 ’ ’ ’

63 S t a t e

64 ’ ’ ’

65 pos xy = s t a t e [ : , 0 : 2 ]

66 i f s e l f . u s e s e n s o r :

67 s e n s o r = t f . r e s h a p e ( s t a t e [ : , s t a t e s e n s o r p o i n t e r ] , ( s e l f .

b a t c h s i z e , i n t ( s e l f . u s e s e n s o r ) ) )

68 o l d m e m o r y s t a t e = s t a t e [ : , s t a t e m e m o r y p o i n t e r : ]

69 i f s e l f . type mem == ” Full LSTM ” :

70 h = s t a t e [ : , s t a t e m e m o r y p o i n t e r h : s t a t e m e m o r y p o i n t e r c ]

71 c = s t a t e [ : , s t a t e m e m o r y p o i n t e r c : ]

72 ’ ’ ’

73 A c t i o n

74 ’ ’ ’

75 v e l x y = a c t i o n [ : , 0 : 2 ]

76 # Note t h i s assumes t h e r e i s no tanh on t h e f i n a l l a y e r !

77 v e l x y m a g n i t u d e = t f . s q r t ( t f . r educe sum ( t f . s q u a r e ( v e l x y ) , a x i s =1)

)

78 v e l x y m a g n i t u d e = t f . expand d ims ( v e l x y m a g n i t u d e , 1 )

79 v e l x y n o r m a l i s e d = v e l x y / ( v e l x y m a g n i t u d e + 1e −6)

80 v e l x y = v e l x y n o r m a l i s e d * t f . t a n h ( v e l x y m a g n i t u d e )

81 n e x t p o s x y = pos xy + v e l x y * 0 . 2

82 n e x t s t a t e l i s t = [ n e x t p o s x y ]

83 # Note f o r s e n s o r f u n c t i o n a l i t y we have t h e s e n s o r c a l c u l a t i o n

f u n c t i o n above t o c a l l upon .

84 # use n e x t s t a t e l i s t . append ( . . . ) t o add new chunks o f t h e t e n s o r

you are b u i l d i n g up

85 i f s e l f . u s e s e n s o r :

86 n e x t s t a t e l i s t . append ( s e l f . s e n s o r c a l c u l a t i o n ( n e x t p o s x y ,

f o o d l o c a t i o n ) )

87 i f s e l f . num memory nodes > 0 :

88 ac t ion memory = a c t i o n [ : , 2 : ]

89

90 i f s e l f . type mem == ” Minimal GRU ” :

91 # A s i m p l i f i e d v e r s i o n o f t h e GRU
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92 i n p u t g a t e , new va lue = t f . s p l i t ( v a l u e = ac t ion memory ,

93 n u m o r s i z e s p l i t s =2 , a x i s

=1)

94 # o u t p u t g a t e =− i n p u t g a t e

95 # f o r g e t b i a s t e n s o r = 1 . 0

96 i n p u t g a t e = t f . s i gmoid ( i n p u t g a t e )

97 # h i d d e n c = ( ( h i d d e n c * t f . s i g m o i d ( f o r g e t g a t e +

f o r g e t b i a s t e n s o r ) ) +

98 # ( t f . s i g m o i d ( i n p u t g a t e ) * t f . t anh ( n e w v a l u e ) ) )

99 ac t ion memory = ( t f . t a n h ( new va lue ) * i n p u t g a t e +

o l d m e m o r y s t a t e * (1 − i n p u t g a t e ) )

100

101 e l i f s e l f . type mem == ” Full GRU ” :

102 # m a t r i x x , m a t r i x i n n e r = t f . s p l i t ( v a l u e=ac t ion memory ,

n u m o r s i z e s p l i t s =2 , a x i s =1)

103 # x z , x r , x h = t f . s p l i t ( m a t r i x x , 3 , a x i s =1)

104 # r e c u r r e n t z , r e c u r r e n t r , r e c u r r e n t h = t f . s p l i t (

m a t r i x i n n e r , 3 , a x i s =1)

105 # z = t f . s i g m o i d ( x z + r e c u r r e n t z )

106 # r = t f . s i g m o i d ( x r + r e c u r r e n t r )

107 #hh = t f . t anh ( x h + r * r e c u r r e n t h )

108 # ac t ion memory = z * t f . t anh ( o l d m e m o r y s t a t e )+ hh * (1 − z )

109 x z , x r , x h = t f . s p l i t ( v a l u e = ac t ion memory ,

n u m o r s i z e s p l i t s =3 , a x i s =1)

110 z = t f . s i gmoid ( x z )

111 r = t f . s i gmoid ( x r )

112 hh = t f . t a n h ( x h * r )

113 ac t ion memory = (1 − z ) * o l d m e m o r y s t a t e + z *hh

114 e l i f s e l f . type mem == ” Full LSTM ” :

115 # s t a t e v e c t o r act ionmemory , c − > a c t i o n memory i s shown t o

n e u r a l ne twork

116 i n p u t g a t e , f o r g e t g a t e , o u t p u t g a t e , new va lue = t f . s p l i t (

ac t ion memory , n u m o r s i z e s p l i t s =4 , a x i s =1)

117 i = t f . s i gmoid ( i n p u t g a t e )

118 f = t f . s i gmoid ( f o r g e t g a t e )

119 c = f * c + i * t f . t a n h ( new va lue )

120 o = t f . s i gmoid ( o u t p u t g a t e )

121 h = o * t f . t a n h ( c )

122 ac t ion memory = t f . c o n c a t ( [ h , c ] , a x i s =1)
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123 e l i f s e l f . type mem == ”CARU” :

124 x , a , b = t f . s p l i t ( ac t ion memory , n u m o r s i z e s p l i t s =3 , a x i s

=1)

125 n = t f . t a n h ( a )

126 l = t f . s i gmoid ( x ) * t f . s i gmoid ( b )

127 ac t ion memory = (1 − l ) * o l d m e m o r y s t a t e + l *n

128 e l s e :

129 ac t ion memory = t f . t a n h ( ac t ion memory )

130 n e x t s t a t e l i s t . append ( ac t ion memory )

131 # END o f code b l o c k i n which t o i n s e r t l i n e s f o r CHALLENGE 2

132 n e x t s t a t e = t f . c o n c a t ( n e x t s t a t e l i s t ,

133 a x i s =1) # appends t h e rank −2 t e n s o r s i n

n e x t s t a t e l i s t s i d e −by−s i d e i n t o one

rank −2 t e n s o r

134

135 r e w a r d s = s e l f . f o o d d e n s i t y ( n e x t s t a t e [ : , 0 : 2 ] , f o o d l o c a t i o n )

136 re turn [ rewards , n e x t s t a t e ]

137

138 def a d d a r r o w t o l i n e 2 D ( s e l f , axes , l i n e , a r r o w l o c s = [ 0 . 2 , 0 . 4 , 0 . 6 ,

0 . 8 ] , a r r o w s t y l e = ’ −|> ’ , a r r o w s i z e =1 , t r a n s f o r m =None ) :

139 i f not i s i n s t a n c e ( l i n e , m l i n e s . Line2D ) :

140 r a i s e V a l u e E r r o r ( ” e x p e c t e d a m a t p l o t l i b . l i n e s . Line2D o b j e c t ” )

141 x , y = l i n e . g e t x d a t a ( ) , l i n e . g e t y d a t a ( )

142 arrow kw = {

143 ” a r r o w s t y l e ” : a r r o w s t y l e ,

144 ” m u t a t i o n s c a l e ” : 10 * a r r o w s i z e ,

145 }

146 c o l o r = l i n e . g e t c o l o r ( )

147 u s e m u l t i c o l o r l i n e s = i s i n s t a n c e ( c o l o r , np . n d a r r a y )

148 i f u s e m u l t i c o l o r l i n e s :

149 r a i s e N ot I mp l em e n t e dE r ro r ( ” m u l t i c o l o r l i n e s n o t s u p p o r t e d ” )

150 e l s e :

151 arrow kw [ ’ c o l o r ’ ] = c o l o r

152 l i n e w i d t h = l i n e . g e t l i n e w i d t h ( )

153 i f i s i n s t a n c e ( l i n e w i d t h , np . n d a r r a y ) :

154 r a i s e N ot I mp l em e n t e dE r ro r ( ” m u l t i w i d t h l i n e s n o t s u p p o r t e d ” )

155 e l s e :

156 arrow kw [ ’ l i n e w i d t h ’ ] = l i n e w i d t h

157 i f t r a n s f o r m i s None :
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158 t r a n s f o r m = axes . t r a n s D a t a

159 a r ro w s = [ ]

160 f o r l o c in a r r o w l o c s :

161 s = np . cumsum ( np . s q r t ( np . d i f f ( x ) ** 2 + np . d i f f ( y ) ** 2) )

162 n = np . s e a r c h s o r t e d ( s , s [ −1] * l o c )

163 a r r o w t a i l = ( x [ n ] , y [ n ] )

164 a r r o w h e a d = ( np . mean ( x [ n : n + 2 ] ) , np . mean ( y [ n : n + 2 ] ) )

165 p = mpatches . FancyArrowPatch (

166 a r r o w t a i l , a r row head , t r a n s f o r m = t r a n s f o r m ,

167 ** arrow kw )

168 axes . a d d p a t c h ( p )

169 a r ro w s . append ( p )

170 re turn a r r ow s

171

172 def s h o w t r a j e c t o r i e s ( s e l f , t r a j e c t o r i e s , i n i t i a l s t a t e , f o o d l o c a t i o n ,

i t e r a t i o n n u m b e r , reward , f i g 0 ) :

173 bs = s e l f . b a t c h s i z e

174 reward = np . mean ( reward )

175 i f t r a j e c t o r i e s . shape [ 1 ] > 1 0 :

176 bs = 10

177 i f f i g 0 != None :

178 p l t . c l o s e ( f i g 0 )

179 d i s p l a y . c l e a r o u t p u t ( w a i t =True )

180 f i g = p l t . f i g u r e ( f i g s i z e = [ 5 , 5 ] )

181 a x e s 2 d = f i g . a d d s u b p l o t ( 1 , 1 , 1 )

182 a x e s 2 d . a x i s ( [ − 6 , 6 , −6 , 6 ] )

183 c o l c y c l e = [ ’ #1 f77b4 ’ , ’ # f f 7 f 0 e ’ , ’ #2 ca02c ’ , ’ # d62728 ’ , ’ #9467 bd ’ ,

’ #8 c564b ’ , ’ # e377c2 ’ , ’ #7 f 7 f 7 f ’ , ’ # bcbd22 ’ ,

184 ’ #17 b e c f ’ ]

185 f o r t r a j in range ( bs ) :

186 a x e s 2 d . s c a t t e r ( f o o d l o c a t i o n [ t r a j , 0 ] , f o o d l o c a t i o n [ t r a j , 1 ] ,

marker =” x ” ,

187 c= c o l c y c l e [ t r a j % l e n ( c o l c y c l e ) ] )

188 a x e s 2 d . s c a t t e r ( i n i t i a l s t a t e [ t r a j , 0 ] , i n i t i a l s t a t e [ t r a j , 1 ] ,

marker =” o ” ,

189 c= c o l c y c l e [ t r a j % l e n ( c o l c y c l e ) ] )

190 f o r t r a j in range ( bs ) :

191 t r a j e c t o r y x = t r a j e c t o r i e s [ : , t r a j , 0 ]

192 t r a j e c t o r y y = t r a j e c t o r i e s [ : , t r a j , 1 ]
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193 l i n e s , = a x e s 2 d . p l o t ( t r a j e c t o r y x , t r a j e c t o r y y , ’− ’ , l a b e l = ’

T r a j 1 ’ , c= c o l c y c l e [ t r a j % l e n ( c o l c y c l e ) ] )

194

195 s e l f . a d d a r r o w t o l i n e 2 D ( axes 2d , l i n e s , a r r o w l o c s =np . a r r a y

( [ 0 . 5

196 ] ) ,

197 a r r o w s t y l e = ’−> ’ , a r r o w s i z e = 1 . 2 )

198 a x e s 2 d . g r i d ( True )

199 i f s e l f . r a n d o m i s e f o o d l o c a t i o n == 0 :

200 a x e s 2 d . s e t t i t l e ( ’ Top−Down view . Food p i l e f i x e d a t ( 0 , 0 ) . ’ )

201 e l s e :

202 a x e s 2 d . s e t t i t l e ( ’ Top−Down view . Agent s t a r t i n g l o c a t i o n

f i x e d a t ( 0 , 0 ) . ’ )

203 ’ ’ ’

204 i f n o t ( r a n d o m i s e f o o d l o c a t i o n ) :

205 # s i n c e t h e r e i s o n l y one food l o c a t i o n , we can do a 3d p l o t

t o o

206 a x e s 3 d= f i g . a d d s u b p l o t ( 1 , 2 , 2 , p r o j e c t i o n =’3d ’ )

207 p l o t f o o d p i l e ( a x e s 3 d )

208 f o r t r a j i n range ( bs ) :

209 t r a j e c t o r y x = t r a j e c t o r i e s [ : , t r a j , 0]

210 t r a j e c t o r y y = t r a j e c t o r i e s [ : , t r a j , 1]

211 tZ= f o o d d e n s i t y ( t r a j e c t o r i e s [ : , t r a j , 0 : 2 ] , f o o d l o c a t i o n [

t r a j : t r a j +1 , : ] )

212 a x e s 3 d . p l o t ( t r a j e c t o r y x , t r a j e c t o r y x , tZ , c= c o l c y c l e [

t r a j%l e n ( c o l c y c l e ) ] )

213

214 a x e s 3 d . s e t t i t l e ( ’ 3 d v iew ’ )

215 ’ ’ ’

216 i f f i g 0 != None :

217 d i s p l a y . d i s p l a y ( p l t . g c f ( ) )

218 re turn f i g

219 def r e r a n d o m i s e s t a r t ( s e l f ) :

220

221 s e l f . f o o d l o c a t i o n = t f . c o n s t a n t ( ( np . random . rand ( s e l f . b a t c h s i z e

, 3 ) −0 .5 ) * ( np . a r r a y ( [ 8 , 8 , s e l f . r a n d o m i s e f o o d h e i g h t s ] ) i f s e l f .

r a n d o m i s e f o o d l o c a t i o n e l s e np . a r r a y ( [ 0 , 0 , 0 ] ) ) , t f . f l o a t 3 2 )

Experiment of the Simulated 2D Navigational Agent
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Listing 7.5: Experimental setup for the Simulated 2D Navigational Agent implemented in

Python.

1 import s y s

2

3 import numpy as np

4 import t e n s o r f l o w as t f

5 import m a t p l o t l i b . p y p l o t a s p l t

6 from m a t p l o t l i b import cm

7 from m p l t o o l k i t s . mplot3d import Axes3D

8 from t e n s o r f l o w import k e r a s

9 from t e n s o r f l o w . k e r a s import l a y e r s

10 from I P y t h o n import d i s p l a y

11 import a r g p a r s e

12 import p r o g r e s s b a r

13 recordwandb = True

14 i f recordwandb :

15 import wandb

16 from m a t p l o t l i b . l i n e s import Line2D

17 from Gauss i anAntEnv i ronmen t import Envi ronment

18 from B r a i n import AntBra in

19 import random

20 import m a t p l o t l i b . l i n e s a s m l i n e s

21 import m a t p l o t l i b . p a t c h e s as mpatches

22 # e x p e r i m e n t

23 p a r s e r = a r g p a r s e . Argumen tPa r se r ( )

24 p a r s e r . add a rgumen t ( ’−− s e n s o r i s d i r e c t a b l e ’ , type = i n t , d e f a u l t =0) # use

f o r ne twork t o c o n t r o l t h e s e n s o r s

25 p a r s e r . add a rgumen t ( ’−− a c t i o n n e t w o r k s e e s x y p o s i t i o n ’ , type = i n t , d e f a u l t

=0) #add x , y c o r d i n a t e s t o t h e i n p u t

26 p a r s e r . add a rgumen t ( ’−− s e e s h i g h e s t p o i n t s ’ , type = i n t , d e f a u l t =0) #add

h g i h e s t c o o r d i n a t e t o t h e i n p u t

27 p a r s e r . add a rgumen t ( ’−− s e e s d i r e c t i o n t o h i g h e s t ’ , type = i n t , d e f a u l t =0) #

compass method

28 p a r s e r . add a rgumen t ( ’−− s e e s t i m e s t e p ’ , type = i n t , d e f a u l t =0) #add

t i m e s t e p t o t h e i n p u t

29 p a r s e r . add a rgumen t ( ’−− s e n s o r d i s t a n c e ’ , type = i n t , d e f a u l t =0) # s e n s o r

w i l l have a d i s t a n c e from t h e a g e n t

30 p a r s e r . add a rgumen t ( ’−− s l o w s t a r t ’ , type = i n t , d e f a u l t =0) #add random
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u n i f o r m w i t h f i x e d v a l u e a t t h e i n t i a l i s a t i o n o f ne twork

31

32 p a r s e r . add a rgumen t ( ’−− n s e n s o r s ’ , type = i n t , d e f a u l t =1) # number o f

s e n s o r s used 1 i s s u g g e s t e d

33 p a r s e r . add a rgumen t ( ’−−num food ’ , type = i n t , d e f a u l t =1) # number o f g o a l s i n

t h e same map

34 p a r s e r . add a rgumen t ( ’−− r a n d o m i s e d h e i g h t ’ , type = i n t , d e f a u l t = 1 ) #

randomise t h e h e i g h t o f t h e food f o r each b a t c h

35 p a r s e r . add a rgumen t ( ’−−num memory nodes ’ , type = i n t , d e f a u l t = 20) #

number o f memory nodes used t o i n p u t

36 p a r s e r . add a rgumen t ( ’−− r a n d o m i s e d f o o d l o c a t i o n ’ , type = i n t , d e f a u l t =1) # 1:

a g e n t s t a r t s a t ( 0 , 0 ) 0 : a g e n t s s c a t t e r e d around 0 ,0

37 p a r s e r . add a rgumen t ( ’−−memory mod ’ , type = s t r , d e f a u l t =” i d e n t i t y ” ) #

Minimal GRU , CARU, Full LSTM

38 p a r s e r . add a rgumen t ( ’−− r a n d o m i s e s t a r t t r a j e c t o r y ’ , type = i n t , d e f a u l t =1) #

randomise food or t h e s t a r t i n g pos a t t h e s t a r t o f each i t e r a t i o n .

39 p a r s e r . add a rgumen t ( ’−− b a t c h s i z e ’ , type = i n t , d e f a u l t =100)

40 p a r s e r . add a rgumen t ( ’−− n u m l a y e r s ’ , type = i n t , d e f a u l t =20)

41 p a r s e r . add a rgumen t ( ’−− t r a j e c t o r y l e n g t h ’ , type = i n t , d e f a u l t =30)

42 p a r s e r . add a rgumen t ( ’−− m a x i t e r a t i o n ’ , type = i n t , d e f a u l t =100000)

43 p a r s e r . add a rgumen t ( ’−− l e a r n i n g r a t e ’ , type = f l o a t , d e f a u l t = 0 . 0 0 1 )

44 p a r s e r . add a rgumen t ( ’−− r e n d e r ’ , type =bool , d e f a u l t = F a l s e )

45 p a r s e r . add a rgumen t ( ’−− p r i n t i t ’ , type =bool , d e f a u l t = F a l s e )

46 p a r s e r . add a rgumen t ( ’−− r e c o r d ’ , type =bool , d e f a u l t =True )

47 p a r s e r . add a rgumen t ( ’−− a lgo name ’ , type = s t r , d e f a u l t =”BPTT” )

48 p a r s e r . add a rgumen t ( ’−− t r i a l ’ , type = i n t , d e f a u l t =1)

49

50 a r g s = p a r s e r . p a r s e a r g s ( )

51 n u m l a y e r s = i n t ( a r g s . n u m l a y e r s )

52 m a x i t e r a t i o n = i n t ( a r g s . m a x i t e r a t i o n )

53 l e a r n i n g r a t e = f l o a t ( a r g s . l e a r n i n g r a t e )

54 r a n d o m i s e s t a r t t r a j e c t o r y = bool ( a r g s . r a n d o m i s e s t a r t t r a j e c t o r y )

55 memory mod = s t r ( a r g s . memory mod )

56 num memory nodes = i n t ( a r g s . num memory nodes )

57 r a n d o m i s e d f o o d l o c a t i o n = bool ( a r g s . r a n d o m i s e d f o o d l o c a t i o n )

58 s e e s t i m e s t e p = bool ( a r g s . s e e s t i m e s t e p )

59 t r a j e c t o r y l e n g t h = i n t ( a r g s . t r a j e c t o r y l e n g t h )

60 r a n d o m i s e d h e i g h t = bool ( a r g s . r a n d o m i s e d h e i g h t )

61 num food = i n t ( a r g s . num food )
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62 b a t c h s i z e = i n t ( a r g s . b a t c h s i z e )

63 s e n s o r i s d i r e c t a b l e = bool ( a r g s . s e n s o r i s d i r e c t a b l e )

64 a c t i o n n e t w o r k s e e s x y p o s i t i o n = bool ( a r g s . a c t i o n n e t w o r k s e e s x y p o s i t i o n

)

65 s e e s h i g h e s t p o i n t s = bool ( a r g s . s e e s h i g h e s t p o i n t s )

66 a lgo name = s t r ( a r g s . a lgo name )

67 s e e s d i r e c t i o n t o h i g h e s t = bool ( a r g s . s e e s d i r e c t i o n t o h i g h e s t )

68 s l o w s t a r t = bool ( a r g s . s l o w s t a r t )

69 s e n s o r d i s t a n c e = i n t ( a r g s . s e n s o r d i s t a n c e )

70 n u m b e r o f s e n s o r s = i n t ( a r g s . n s e n s o r s )

71 r e n d e r = bool ( a r g s . r e n d e r )

72 p r i n t i t = bool ( a r g s . p r i n t i t )

73 r e c o r d = bool ( a r g s . r e c o r d )

74 t r i a l = i n t ( a r g s . t r i a l )

75 s t a t e d i m e n s i o n = 2 + (1 i f n u m b e r o f s e n s o r s >0 e l s e 0)

76 s i m p g r u = 0

77 f u l l g r u = 0

78 f u l l l s t m = 0

79 CARU = 0

80 o r i g i n a l n m e m o r i e s = num memory nodes

81 i f memory mod == ” Minimal GRU ” :

82 s i m p g r u = 1

83 num memory nodes = num memory nodes * 2 # vx , vy

84 e l i f memory mod == ” Full GRU ” :

85 f u l l g r u =1

86 num memory nodes = num memory nodes * 3

87 e l i f memory mod == ” Full LSTM ” :

88 f u l l l s t m = 1

89 num memory nodes = num memory nodes *4

90 e l i f memory mod == ”CARU” :

91 CARU = 1

92 num memory nodes = num memory nodes *3

93 e l s e :

94 num memory nodes = num memory nodes

95 a c t i o n n e t w o r k n u m o u t p u t s = 2 + (2 i f s e n s o r i s d i r e c t a b l e e l s e 0) +

num memory nodes #x , y , sx , sy , num mem

96 a c t i o n n e t w o r k n u m i n p u t s = (2 i f a c t i o n n e t w o r k s e e s x y p o s i t i o n e l s e 0) +

n u m b e r o f s e n s o r s +num memory nodes # x , y

97 # p o i n t e r s #
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98 # s t a t e d i m e n t i o n 0x , 1 y , 2 sensor , memory , 3 t i m e s t e p

99 # a c t i o n 0 v e l x , 1 v e l y , 2 memory

100 u s e s e n s o r = F a l s e

101 use memory = F a l s e

102 i f n u m b e r o f s e n s o r s >=1:

103 u s e s e n s o r = True

104 i f num memory nodes >=1:

105 use memory = True

106 s t a t e m e m o r y p o i n t e r = 1 + (1 i f u s e s e n s o r e l s e 0) + (1 i f use memory e l s e

0)

107 s t a t e m e m o r y p o i n t e r h = s t a t e m e m o r y p o i n t e r

108 s t a t e m e m o r y p o i n t e r c = s t a t e m e m o r y p o i n t e r + o r i g i n a l n m e m o r i e s

109 s t a t e s e n s o r p o i n t e r = 1+ (1 i f u s e s e n s o r e l s e 0)

110 a c t i o n m e m o r y p o i n t e r = 2

111 s t a t e d i m e n s i o n += o r i g i n a l n m e m o r i e s + ( o r i g i n a l n m e m o r i e s i f

memory mod == ” Full LSTM ” e l s e 0) # x , y , t i m e s t e p , h id de n v e c t o r memory

112

113 p r i n t ( ” a c t i o n n e t w o r k n u m i n p u t s ” , a c t i o n n e t w o r k n u m i n p u t s )

114 p r i n t ( ” a c t i o n n e t w o r k n u m o u t p u t s ” , a c t i o n n e t w o r k n u m o u t p u t s )

115 p r i n t ( ” s t a t e m e m o r y p o i n t e r ” , s t a t e m e m o r y p o i n t e r )

116 p r i n t ( ” s t a t e m e m o r y p o i n t e r h ” , s t a t e m e m o r y p o i n t e r h )

117 p r i n t ( ” s t a t e m e m o r y p o i n t e r c ” , s t a t e m e m o r y p o i n t e r c )

118 p r i n t ( ” s t a t e s e n s o r p o i n t e r ” , s t a t e s e n s o r p o i n t e r )

119 p r i n t ( ” a c t i o n m e m o r y p o i n t e r ” , a c t i o n m e m o r y p o i n t e r )

120 p r i n t ( ” s t a t e d i m e n s i o n ” , s t a t e d i m e n s i o n )

121

122 f i l e n a m e = ” T r i a l ”+ s t r ( t r i a l ) +” S e n s o r s ”+ s t r ( n u m b e r o f s e n s o r s ) +”

Memor ies ”+ s t r ( num memory nodes ) +” TypeMemory ”+memory mod+”

r a n d o m i s e d f o o d ”+ s t r ( r a n d o m i s e d f o o d l o c a t i o n ) +” r a n d o m i s e d h e i g h t ”+ s t r

( r a n d o m i s e d h e i g h t ) +” ”+”BPTTrunANT”+” ”

123 i f recordwandb :

124 wandb . i n i t ( name=algo name , p r o j e c t =” m e m o r y m o d i f i c a t i o n e x p e r i m e n t ” ,

group =algo name ,

125 c o n f i g ={

126 ” r a n d o m i s e d h e i g h t s ” : r a n d o m i s e d h e i g h t ,

127 ” m e m o r y m o d i f i c a t i o n t y p e ” : memory mod ,

128 ” s e n s o r d i s t a n c e ” : 0 ,

129 ” d i m e n s t i o n a l i n f o r m a t i o n ” : s t a t e d i m e n s i o n ,

130 ” n u m b e r o f s e n s o r s ” : n u m b e r o f s e n s o r s ,
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131 ” num memory nodes ” : num memory nodes ,

132 ” s e n s o r i s d i r e c t a b l e ” : s e n s o r i s d i r e c t a b l e ,

133 ” a c t i o n n e t w o r k s e e s x y p o s i t i o n ” :

a c t i o n n e t w o r k s e e s x y p o s i t i o n ,

134 ” r a n d o m i s e d f o o d l o c a t i o n ” : r a n d o m i s e d f o o d l o c a t i o n ,

135 ” s e e s h i g h e s t p o i n t s ” : s e e s h i g h e s t p o i n t s ,

136 ” s e e s d i r e c t i o n t o h i g h e s t ” : s e e s d i r e c t i o n t o h i g h e s t ,

137 ” n e u r a l l a y e r s ” : [ 1 2 , 1 2 ] ,

138 ” num food ” : num food ,

139 ” b a t c h s i z e ” : b a t c h s i z e ,

140 ” t r a j e c t o r y l e n g t h ” : t r a j e c t o r y l e n g t h ,

141 ” m a x i t e r a t i o n ” : m a x i t e r a t i o n ,

142 ” s l o w s t a r t ” : s l o w s t a r t ,

143 ” l e a r n i n g r a t e ” : l e a r n i n g r a t e ,

144 ” r a n d o m i s e s t a r t o f i t e r a t i o n s ” :

r a n d o m i s e s t a r t t r a j e c t o r y ,

145 ” s h o r t c u t s ” : F a l s e

146 }

147 )

148

149 f i g = p l t . f i g u r e ( )

150 axes = f i g . a d d s u b p l o t ( 1 , 1 , 1 , p r o j e c t i o n = ’ 3d ’ )

151

152

153

154 e n v i r o n m e n t = Envi ronment ( b a t c h s i z e , r a n d o m i s e d h e i g h t ,

r a n d o m i s e d f o o d l o c a t i o n , s t a t e d i m e n s i o n , n u m b e r o f s e n s o r s ,

num memory nodes , memory mod )

155 k e r a s a n t b r a i n = AntBra in ( num laye r s , a c t i o n n e t w o r k n u m o u t p u t s )

156

157 def c o n v e r t s t a t e ( s t a t e ) :

158 pos xy = s t a t e [ : , 0 : 2 ]

159 s e n s o r = t f . r e s h a p e ( s t a t e [ : , s t a t e s e n s o r p o i n t e r ] , ( b a t c h s i z e ,

n u m b e r o f s e n s o r s ) )

160 o l d m e m o r y s t a t e = s t a t e [ : , s t a t e m e m o r y p o i n t e r : ]

161 h = s t a t e [ : , s t a t e m e m o r y p o i n t e r h : s t a t e m e m o r y p o i n t e r c ]

162 # i n p u t g a t e , f o r g e t g a t e , o u t p u t g a t e , h = t f . s p l i t ( h ,

n u m o r s i z e s p l i t s =4 , a x i s =1)

163 c = s t a t e [ : , s t a t e m e m o r y p o i n t e r c : ]
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164 c o n v e r t e d s t a t e = t f . c o n c a t ( [ s e n s o r , h ] , a x i s =1)

165 re turn c o n v e r t e d s t a t e

166 @tf . f u n c t i o n

167 def e x p a n d f u l l t r a j e c t o r y ( s t a r t s t a t e s , f o o d l o c a t i o n ) :

168 t o t a l r e w a r d s = t f . c o n s t a n t ( 0 . 0 , d t y p e = t f . f l o a t 3 2 , shape =[ b a t c h s i z e ] )

169 s t a t e = s t a r t s t a t e s # t h i s i s shape [ b a t c h s i z e , s t a t e d i m e n s i o n ]

170 t r a j e c t o r y l i s t =[ s t a r t s t a t e s ]

171 # b u i l d main graph . T h i s i s a long graph w i t h u n r o l l e d i n t i m e f o r

t r a j e c t o r y l e n g t h s t e p s . Each s t e p i n c l u d e s one n e u r a l ne twork

f o l l o w e d by one p h y s i c s −model

172 f o r t i m e s t e p in range ( t r a j e c t o r y l e n g t h ) :

173 a c t i o n = k e r a s a n t b r a i n ( c o n v e r t s t a t e ( s t a t e ) )

174 [ rewards , s t a t e ]= e n v i r o n m e n t . r u n o n e s t e p o f p h y s i c s m o d e l ( s t a t e ,

a c t i o n , f o o d l o c a t i o n , s t a t e s e n s o r p o i n t e r , s t a t e m e m o r y p o i n t e r ,

s t a t e m e m o r y p o i n t e r h , s t a t e m e m o r y p o i n t e r c )

175 t o t a l r e w a r d s += r e w a r d s # T h i s i s shape [ b a t c h s i z e ]

176 t r a j e c t o r y l i s t . append ( s t a t e )

177

178 t r a j e c t o r i e s = t f . s t a c k ( t r a j e c t o r y l i s t ) # T h i s w i l l be shape [ b a t c h s i z e

, t r a j e c t o r y l e n g t h +1 , s t a t e d i m e n s i o n ]

179 a v e r a g e t o t a l r e w a r d = t f . r educe mean ( t o t a l r e w a r d s ) # t h i s i s a s c a l a r

180 re turn [ a v e r a g e t o t a l r e w a r d , t r a j e c t o r i e s ]

181

182 [ a v e r a g e t o t a l r e w a r d , t r a j e c t o r i e s ] = e x p a n d f u l l t r a j e c t o r y ( e n v i r o n m e n t .

i n i t i a l s t a t e , e n v i r o n m e n t . f o o d l o c a t i o n )

183 f i g =None

184 f i g = e n v i r o n m e n t . s h o w t r a j e c t o r i e s ( t r a j e c t o r i e s , e n v i r o n m e n t . i n i t i a l s t a t e ,

e n v i r o n m e n t . f o o d l o c a t i o n , 0 , a v e r a g e t o t a l r e w a r d . numpy ( ) , f i g )

185 r e w a r d h i s t o r y = [ ] # Keep a l o g f o r p l o t t i n g t r a i n i n g h i s t o r y

186 r e w a r d h i s t o r y v a l i d a t i o n = [ ] # Keep a l o g f o r p l o t t i n g t r a i n i n g h i s t o r y

187 r e w a r d h i s t o r y i t e r s = [ ] # Keep a l o g f o r p l o t t i n g t r a i n i n g h i s t o r y

188 r e w a r d h i s t o r y i t e r s v a l i d a t i o n = [ ] # Keep a l o g f o r p l o t t i n g t r a i n i n g

h i s t o r y

189

190 o p t i m i z e r = k e r a s . o p t i m i z e r s . Adam( l e a r n i n g r a t e )

191

192 @tf . f u n c t i o n

193 def r u n e x p ( i n i t i a l s t a t e , f o o d l o c a t i o n ) :

194 wi th t f . G r a d i e n t T a p e ( ) a s t a p e :
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195 # Run t h e forward pas s o f t h e l a y e r .

196 # The o p e r a t i o n s t h a t t h e l a y e r a p p l i e s

197 # t o i t s i n p u t s are go ing t o be r e c o r d e d

198 # on t h e Grad ien tTape .

199 [ a v e r a g e t o t a l r e w a r d , t r a j e c t o r i e s ] = e x p a n d f u l l t r a j e c t o r y (

i n i t i a l s t a t e , f o o d l o c a t i o n )

200 l o s s =− a v e r a g e t o t a l r e w a r d

201 g r a d s = t a p e . g r a d i e n t ( l o s s , k e r a s a n t b r a i n . t r a i n a b l e w e i g h t s ) # The ”

back −p r o p a g a t i o n t h r o u g h t i m e ” c a l c u l a t i o n i s t h e c o m p u t a t i o n o f

t h i s g r a d i e n t

202 re turn l o s s , a v e r a g e t o t a l r e w a r d , t r a j e c t o r i e s , g r a d s

203

204 i f p r i n t i t :

205 w i d g e t s = [ p r o g r e s s b a r . P e r c e n t a g e ( ) , ’ ’ , p r o g r e s s b a r . Bar ( ’= ’ , ’ [ ’ , ’ ] ’

) , ’ ’ , p r o g r e s s b a r . Timer ( ) , ’ ’ , p r o g r e s s b a r . Forma tLabe l ( ’ ’ ) ]

206 b a r = p r o g r e s s b a r . P r o g r e s s B a r ( maxval= m a x i t e r a t i o n , w i d g e t s = w i d g e t s )

207 b a r . s t a r t ( )

208 f o r i in range ( 1 , m a x i t e r a t i o n ) :

209 i t e r a t i o n = l e n ( r e w a r d h i s t o r y )

210 i f r a n d o m i s e s t a r t t r a j e c t o r y :

211 e n v i r o n m e n t . r e r a n d o m i s e s t a r t ( )

212 l o s s , a v e r a g e t o t a l r e w a r d , t r a j e c t o r i e s , g r a d s = r u n e x p ( e n v i r o n m e n t .

i n i t i a l s t a t e , e n v i r o n m e n t . f o o d l o c a t i o n )

213 # Use t h e g r a d i e n t t a p e t o a u t o m a t i c a l l y r e t r i e v e

214 # t h e g r a d i e n t s o f t h e t r a i n a b l e v a r i a b l e s w i t h r e s p e c t t o t h e l o s s .

215 # Run one s t e p o f g r a d i e n t d e s c e n t by u p d a t i n g

216 # t h e v a l u e o f t h e v a r i a b l e s t o m i n i m i z e t h e l o s s .

217 o p t i m i z e r . a p p l y g r a d i e n t s ( z i p ( g rads , k e r a s a n t b r a i n . t r a i n a b l e w e i g h t s )

)

218 i f np . any ( np . i s n a n ( t r a j e c t o r i e s . numpy ( ) ) ) :

219 p r i n t ( ” t r a j e c t o r y ” , t r a j e c t o r i e s )

220 r a i s e E x c e p t i o n ( ” T r a j e c t o r i e s i s Nan” )

221 a v e r a g e t o t a l r e w a r d = a v e r a g e t o t a l r e w a r d . numpy ( )

222 r e w a r d h i s t o r y . append ( a v e r a g e t o t a l r e w a r d )

223 r e w a r d h i s t o r y i t e r s . append ( i t e r a t i o n )

224 i f recordwandb :

225 wandb . l o g ({ ” g l o b a l s t e p ” : i , ” T r a i n i n g mean T r a j e c t o r y Reward ” :

a v e r a g e t o t a l r e w a r d } )

226
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227 i f i %100==0:

228 [ a v e r a g e t o t a l r e w a r d v a l i d a t i o n , v a l i d a t i o n t r a j e c t o r y ] =

e x p a n d f u l l t r a j e c t o r y ( e n v i r o n m e n t . i n i t i a l s t a t e v a l i d a t i o n ,

e n v i r o n m e n t . f o o d l o c a t i o n v a l i d a t i o n )

229 r e w a r d h i s t o r y v a l i d a t i o n . append ( a v e r a g e t o t a l r e w a r d v a l i d a t i o n )

230 r e w a r d h i s t o r y i t e r s v a l i d a t i o n . append ( i t e r a t i o n )

231 i f p r i n t i t :

232 p = ” g l o b a l s t e p : ” + s t r ( i ) + ” e v a l / mean reward : ” + s t r (

a v e r a g e t o t a l r e w a r d v a l i d a t i o n . numpy ( ) )

233 w i d g e t s [ −1] = p r o g r e s s b a r . FormatLabe l ( p . format ( i ) )

234 b a r . u p d a t e ( i )

235 # p r i n t ( )

236 i f recordwandb :

237 wandb . l o g ({ ” g l o b a l s t e p ” : i , ” e v a l / mean reward ” :

a v e r a g e t o t a l r e w a r d v a l i d a t i o n } )

238 i f r e n d e r :

239 i f ( l e n ( r e w a r d h i s t o r y ) %40) ==0:

240 f i g = e n v i r o n m e n t . s h o w t r a j e c t o r i e s ( t r a j e c t o r i e s , e n v i r o n m e n t .

i n i t i a l s t a t e , e n v i r o n m e n t . f o o d l o c a t i o n , l e n ( r e w a r d h i s t o r y

) , a v e r a g e t o t a l r e w a r d , f i g )

241

242

243 i f r e c o r d :

244 f i g = e n v i r o n m e n t . s h o w t r a j e c t o r i e s ( t r a j e c t o r i e s , e n v i r o n m e n t .

i n i t i a l s t a t e , e n v i r o n m e n t . f o o d l o c a t i o n , l e n ( r e w a r d h i s t o r y ) ,

a v e r a g e t o t a l r e w a r d , f i g )

245 p l t . s a v e f i g ( f i l e n a m e +” w a n d b u p l o a d t r a i n . j p g ” )

246 i f recordwandb :

247 im = p l t . imread ( f i l e n a m e +” w a n d b u p l o a d t r a i n . j p g ” )

248 wandb . l o g ({ ” t r a i n ” : [ wandb . Image ( im , c a p t i o n =” L a s t i t e r a t i o n

r e s u l t s ” ) ] } )

249 np . s ave ( f i l e n a m e +” t r a j e c t o r i e s . npy ” , v a l i d a t i o n t r a j e c t o r y )

250 f i g = e n v i r o n m e n t . s h o w t r a j e c t o r i e s ( v a l i d a t i o n t r a j e c t o r y , e n v i r o n m e n t .

i n i t i a l s t a t e v a l i d a t i o n , e n v i r o n m e n t . f o o d l o c a t i o n v a l i d a t i o n , l e n (

r e w a r d h i s t o r y v a l i d a t i o n ) , a v e r a g e t o t a l r e w a r d v a l i d a t i o n , f i g )

251 p l t . s a v e f i g ( f i l e n a m e +” w a n d b u p l o a d v a l i d . j p g ” )

252 p l t . s a v e f i g ( f i l e n a m e +” save1 . pdf ” )

253 i f recordwandb :

254 im = p l t . imread ( f i l e n a m e +” w a n d b u p l o a d v a l i d . j p g ” )
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255 wandb . l o g ({ ” v a l i d a t i o n ” : [ wandb . Image ( im , c a p t i o n =” L a s t i t e r a t i o n

r e s u l t s ” ) ] } )

256 f i g , ax = p l t . s u b p l o t s ( )

257 ax . s e t ( x l a b e l = ’ T r a i n i n g I t e r a t i o n ’ , y l a b e l = ’ Reward ’ , t i t l e = ’ Reward

H i s t o r y ’ )

258 ax . g r i d ( True )

259 ax . p l o t ( r e w a r d h i s t o r y i t e r s , r e w a r d h i s t o r y , l a b e l =” t r a i n ” )

260 p l t . s a v e f i g ( f i l e n a m e + ” t r a i n r e w a r d ” )

261 ax . p l o t ( r e w a r d h i s t o r y i t e r s v a l i d a t i o n , r e w a r d h i s t o r y v a l i d a t i o n , l a b e l

=” v a l i d a t i o n ” )

262 f i g . l e g e n d ( )

263 p l t . s a v e f i g ( f i l e n a m e + ” v a l i d r e w a r d ” )

264 np . s ave ( f i l e n a m e +” r e w a r d h i s o t r y i t e r s ” , np . a r r a y ( r e w a r d h i s t o r y i t e r s ) )

265 np . s ave ( f i l e n a m e +” r e w a r d h i s o t r y ” , np . a r r a y ( r e w a r d h i s t o r y ) )

266 np . s ave ( f i l e n a m e +” r e w a r d h i s o t r y i t e r s v a l i d ” , np . a r r a y (

r e w a r d h i s t o r y i t e r s v a l i d a t i o n ) )

267 np . s ave ( f i l e n a m e +” r e w a r d h i s o t r y i t e r s v a l i d ” , np . a r r a y (

r e w a r d h i s t o r y v a l i d a t i o n ) )

268 i f recordwandb :

269 wandb . l o g ({ ” p l o t ” : p l t } )

270

271

272

273 b a r . f i n i s h ( )
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Lingheng Meng, Rob Gorbet, and Dana Kulić. Partial Observability during DRL for Robot

Control. arXiv e-prints, art. arXiv:2209.04999, September 2022. doi: 10.48550/arXiv.2209.

04999.



Page 197

Hyman P. Minsky, Arthur M. Okun, and Clark Warburton. Comments on friedman’s and schwartz’

money and the business cycles. The Review of Economics and Statistics, 45(1):64–78, 1963.

ISSN 00346535, 15309142. URL http://www.jstor.org/stable/1927149.

Volodymyr Mnih. Machine learning for aerial image labeling. University of Toronto (Canada),

2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,

abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.

Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,

Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-

ment learning. In International conference on machine learning, pages 1928–1937. PMLR,

2016.
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