
Acceleration of EEG signal processing on FPGA:

A Step Towards Embedded BCI

Saran Kundu1, Parikshit Saha2, Aman Singh Tomar3, Anirban Chowdhury4

Email: kundu.saran16@gmail.com, psaha053@gmail.com, amanast2000@yahoo.co.in, a.chowdhury@essex.ac.uk
1CDAC, Noida, India; 2Indian Institute of Technology Kanpur, India, 3Kalyani Government Engineering College, India;

4University of Essex, United Kingdom

Abstract: This paper presents a research project focused on

leveraging Field-Programmable Gate Arrays (FPGAs) for

enhancing the performance and efficiency of Finite Impulse

Response (FIR) filters in EEG signal processing, specifically

targeting motor imagery detection. By harnessing the

parallelism and customization capabilities of FPGAs, we aim to

achieve significant improvements in execution time and

throughput. The proposed methodology involves customizing

and integrating the FIR filter IP core from the Xilinx IP catalog

using Xilinx Vivado, alongside MATLAB's Frequency Domain

Analysis (FDA) tool for designing optimized filter coefficients

tailored to EEG signal processing requirements. The research

project encompasses key steps, including the customization of

the FIR filter IP core, the creation of a design overlay

incorporating the accelerator IP and configuration components,

the generation of a bitstream for the ZYNQ board, and

evaluating the hardware implementation's performance against

software-based FIR filters. Performance metrics such as

execution time, throughput, and energy efficiency are assessed

to validate the superiority of the developed hardware

accelerator. Our results demonstrate the significant advantages

of hardware-accelerated FIR filters over software-based

implementations. The hardware execution time is

approximately 12.79 times faster than the software execution

time, enabling faster real-time processing of EEG signals.

Additionally, the hardware implementation exhibits improved

throughput and energy efficiency, making it well-suited for

resource-constrained environments. These findings pave the

way for the implementation of brain-computer interfaces (BCI)

on edge devices for more portable and deployable solutions.

Keywords— Digital signal processing, hardware acceleration,

FIR filters, EEG signal processing, FPGA, Motor Imagery

Classification, Brain Computer Interface (BCI)

INTRODUCTION

Electroencephalogram (EEG) signal processing plays a

critical role in biomedical engineering, particularly in applica-

tions such as motor imagery detection for brain-computer in-

terfaces. Traditional software-based approaches for imple-

menting digital filters, such as Finite Impulse Response (FIR)

filters, may encounter challenges in terms of computational

efficiency and execution time [1-4]. To address these limita-

tions, hardware acceleration using Field-Programmable Gate

Arrays (FPGAs) has gained significant attention [5-8]. FPGAs

offer parallelism and customization capabilities that can be

leveraged to achieve significant improvements in execution

time and throughput for FIR filter implementations in EEG

signal processing [8-12]. The PYNQ platform, in combination

with FPGA-based development boards such as the PYNQ-Z2,

provides an ideal environment for developing and deploying

hardware accelerators for EEG signal processing [13-18].

Customization of FIR filter IP cores is a crucial step in FPGA-

based acceleration. Researchers have utilized tools like Xilinx

Vivado to customize and integrate FIR filter IP cores from the

Xilinx IP catalog, tailoring them to the specific requirements

of EEG signal processing [19-22]. MATLAB's Frequency Do-

main Analysis (FDA) tool has been widely used for designing

optimized filter coefficients based on parameters such as sam-

pling frequency, cutoff frequencies, and filter order [23-25].

Figure 1: Design Flow

In terms of implementation techniques, researchers

have explored various approaches to optimize the perfor-

mance of FPGA-based FIR filter accelerators. Morimoto et al.

(2019) [29] proposed an efficient architecture based on sys-

tolic array structures for parallel FIR filter computation, re-

sulting in improved throughput and reduced latency. Chatter-

jee et al. (2021) [30] utilized resource sharing and pipelining

techniques to enhance the efficiency of FIR filter implemen-

tations on FPGAs. Furthermore, FPGA-based accelerators for

EEG signal processing offer advantages beyond execution

time improvements. Sikora et al. (2020) [31] demonstrated

that FPGA-based implementations exhibited enhanced energy

efficiency, making them well-suited for resource-constrained

environments. This characteristic is particularly important for

portable EEG devices and real-time applications where power

consumption is a critical factor. Recent advances in FPGA

technology have also focused on enhancing the flexibility and

scalability of hardware accelerators for EEG signal pro-

cessing. For example, Hong et al. (2021) [32-33] proposed a

reconfigurable architecture that allows dynamic customiza-

tion of the filter order to adapt to varying EEG signal charac-

teristics. This approach offers improved adaptability and per-

formance for different EEG analysis tasks.

METHODOLOGY

A. System Setup

mailto:kundu.saran16@gmail.com
mailto:psaha053@gmail.com
mailto:amanast2000@yahoo.co.in

PYNQ-Z2 board: The research project utilizes the PYNQ-Z2
board, which integrates a Xilinx Zynq-7000 System on Chip
(SoC) combining a dual-core Arm Cortex-A9 processor with
programmable logic on a single device.

PYNQ Platform: The PYNQ platform provides a Python-
centric framework for accelerating applications on the Zynq
SoC. It allows for easy integration of custom hardware
accelerators using FPGA programming.

Figure 2 : PYNQ-Z2 Zynq Development Board

B. FIR Filter IP Customization:

Xilinx Vivado: The powerful FPGA development and
synthesis tool, Vivado, is used to customize the FIR filter
Intellectual Property (IP) core from the Xilinx IP catalog.
Filter Coefficient Design: MATLAB's Frequency Domain
Analysis (FDA) tool is employed to design optimized filter
coefficients based on specified parameters such as sampling
frequency, cutoff frequencies, and filter order. These
coefficients are generated to meet the specific requirements of
EEG signal processing.

C. Hardware Accelerator Design:

1) Design Overlay: A design overlay is created by integrating
the customized FIR filter IP core with the accelerator IP and
configuration components.

2) Bitstream Generation: Using Vivado, a bitstream is
generated for the ZYNQ board, which configures the FPGA
fabric with the desired hardware accelerator design.

Figure 3: Block Design of Fir band pass filter

3) FIR compiler configuration

• Input Sampling Frequency: Specify the input
sampling frequency of the data. (e.g., 512 kHz)

• Clock Frequency: Set the clock frequency for the
FIR filter operation. (e.g., 100 MHz)

• Input Data Width: Define the width of the input data
bus. (e.g., 16 bits)

• Coefficient Selection: Import the coefficients
generated in MATLAB for the Butterworth bandpass
filter.

• Filter Type: Select the appropriate filter type (e.g.,
low-pass, high-pass, band-pass) based on our design
requirements.

• Filter Order: Specify the desired filter order for the
bandpass filter [34-35]. This affects the sharpness of
the filter's roll-off and the complexity of the
computations

C. Performance Evaluation:

Execution Time Comparison: The hardware
implementation's execution time is compared with software-
based FIR filters [36] to assess the acceleration achieved.
Execution time measurements are obtained using appropriate
timing techniques.

Throughput Analysis: Throughput, defined as the number of
EEG samples processed per unit time, is evaluated to measure
the hardware accelerator's efficiency in handling data.

Energy Efficiency Assessment: Energy consumption of the
hardware implementation is evaluated to determine its energy
efficiency compared to software-based approaches.

D. Experimental Validation:

Dataset and Test Setup: EEG datasets containing motor
imagery data are used to validate the hardware accelerator's
performance. The test setup involves capturing EEG signals,
preprocessing, applying the FIR filter, and detecting motor
imagery events.

E. Performance Metrics:

Various performance metrics, including accuracy, latency,
and resource utilization, are measured and compared between
the hardware-accelerated implementation and software-based
FIR filters.

1) Stroke Patients’ Dataset

The dataset of competition "Clinical Brain Computer
Interfaces Challenge" of WCCI 2020 at Glasgow is used to
test the model and analysis of results for stroke patients [37-
38]. The following dataset pertains to an essential event, the
"Clinical Brain Computer Interfaces Challenge," which will
take place within WCCI 2020 held in Glasgow. The dataset
includes EEG data collected from ten individuals suffering
from hemiparetic stroke who currently face impaired finger
mobility on either hand's left or right side. Each participant is
associated with two data files - one carrying information
regarding their learning or training journey (denoted as 'T'),
while another contains details about their test and evaluation
(designated as 'E'). For instance, we can find name tag such as
"Parsed_P05T," representing P05's training file and its
respective counterpart as 'Parsed_P05E' demarcating its
testing file/treatment part. All trials in the training files have
labels; however, missing for evaluations/testing records. The
primary objective behind this competition's purpose is to
generate perfect predictions for each trial based on those
provided within evaluation/testing kinds of data.

Accessing this dataset is straightforward since it
comprises MATLAB (.mat) format files that can be opened
using MATLAB software without difficulty. Each training file
for a particular participant (i.e., label it with 'Parsed_P05T' for
participant 'P05') contains two valuable variables named
'rawdata and' labels.' Among these two variables,' raw data'
stands out since it represents a three-dimensional matrix
whose dimensions appear as "noOfTrial X noOfChannels X
noOfSamples." By defining these values as per
'noOfTrials=80', one can identify how many trials occurred
within each training file consistently. Additionally,'
noOChannel's serves to indicate how many EEG channels
were active during recording ; given that there were twelve
EEG channels occupied by all files available, conforming
perfectly to a widely recognized system called the 10-20
system that included: F3, FC3, C3, CP3, P3, FCz,
CPz,F4 ,FC4,C4 ,CP4,and P4.

Fig. 4 Timing diagram of Stroke patients’ dataset

Fig. 5 Data acquisition & electrode placement for Stroke patient dataset

RESULT & DISCUSSION

In this section, we present the results obtained from the

implementation of the hardware accelerator for the FIR filter

using the PYNQ platform on the ZYNQ board. The code

demonstrates the comparison between the software and

hardware implementations, specifically focusing on the

execution time and the achieved acceleration factor. The

execution times obtained for the software FIR filter

implementation and the hardware-accelerated FIR filter

implementation are as follows: It is evident that the hardware-

accelerated implementation outperforms the software

implementation in terms of execution time. The hardware

implementation is significantly faster, with an execution time

that is approximately 12.79 times faster than the software

implementation. This improvement in runtime can be

attributed to several factors. The hardware implementation

utilizes dedicated hardware resources, such as the FIR filter IP

core, which is specifically designed to efficiently perform the

filtering operation. This specialized hardware is optimized for

signal processing tasks and can process data in parallel,

resulting in faster computation compared to a software-based

approach running on a general-purpose CPU.

The execution times obtained for the software FIR filter

implementation and the hardware-accelerated FIR filter

implementation are given in Table I.

Table I: Overall Hardware Acceleration Ratio

Additionally, the use of the PYNQ platform and the ZYNQ

board enables the hardware implementation to take advantage

of the FPGA's parallel processing capabilities. FPGAs are

highly parallel devices that can execute multiple operations

simultaneously, making them well-suited for computationally

intensive tasks like filtering. In contrast, software

implementations typically rely on sequential execution, which

can introduce latency and limit performance.

The hardware acceleration factor, calculated as the ratio of the

software execution time to the hardware execution time, is

approximately 12.75. This indicates that the hardware-

accelerated implementation achieves a significant speedup

compared to the software implementation. This improvement

in runtime is crucial for real-time applications or scenarios

where rapid data processing is required, such as in the analysis

of EEG signals.

Figure 6 : Input Raw EEG Signal

Figure 7 : Filtered EEG Signal using Software

Figure 8 : Filtered EEG Signal using Hardware

The additional reasons for the high performance of hardware

compared to software in the context of the implemented hard-

ware accelerator for the FIR filter:

Parallelism: FPGAs are inherently parallel devices, capable

of performing multiple operations simultaneously. In the

hardware implementation, the FIR filter IP core takes

advantage of this parallelism to process multiple data points

in parallel. This parallel processing greatly speeds up

the filtering operation compared to the sequential execution

of software-based approaches, which can only process one

data point at a time.

Dedicated Hardware Resources: The hardware

implementation utilizes dedicated hardware resources, such

as the FIR filter IP core, which is specifically designed and

optimized for efficient filtering operations. These dedicated

hardware resources are built into the FPGA fabric and can

execute the filtering algorithm with minimal overhead. In

contrast, software implementations running on general-

purpose CPUs have to allocate resources dynamically,

leading to additional overhead and slower execution.

Reduced Memory Access Latency: FPGAs have access to on-

chip memory that can be used to store intermediate data and

coefficients, allowing for fast and efficient memory access.

This reduces the memory access latency compared to

software implementations that rely on external memory,

which typically involves longer access times. The reduced

latency in accessing data and coefficients in the hardware

implementation contributes to faster execution.

Customization and Optimization: The hardware

implementation using Vivado allows for customization and

optimization at a low-level hardware description language

(HDL) level. Researchers can fine-tune the design

parameters, pipeline the processing stages, and optimize

resource utilization to maximize performance. This level of

customization is not easily achievable in software

implementations, which are often constrained by the general-

purpose nature of CPUs and higher-level programming

languages.

Elimination of Instruction Overhead: In software

implementations, instructions have to be fetched, decoded,

and executed by the CPU, introducing overhead in the

processing time. In the hardware implementation, these

instructions are implemented directly in the FPGA fabric,

eliminating the need for instruction fetching and decoding.

This results in faster and more efficient execution without the

overhead associated with general-purpose CPUs.

Reduced Energy Consumption: Hardware implementations,

especially on FPGAs, can be more energy-efficient compared

to software implementations running on CPUs. FPGAs are

designed for high-performance computing with low power

consumption. By offloading computationally intensive tasks

like filtering to the FPGA, the hardware accelerator can

achieve significant energy savings compared to running the

same task on a CPU.

Scalability and Resource Utilization: FPGAs offer scalability

in terms of resources, allowing researchers to scale the

hardware accelerator to handle larger datasets or more

complex filtering algorithms. Moreover, FPGAs enable

efficient resource utilization by only utilizing the necessary

hardware resources for the specific task, avoiding the

overhead associated with general-purpose CPUs that may

have additional unused resources.

These reasons collectively contribute to the high performance

of hardware accelerators compared to software

implementations. The inherent parallelism, dedicated

hardware resources, reduced memory access latency,

customization and optimization capabilities, elimination of

instruction overhead, reduced energy consumption, and

scalability make hardware implementations, such as the one

utilizing FPGAs, well-suited for computationally demanding

tasks like filtering, resulting in significantly improved

performance.

CONCLUSION

In this research paper, we have successfully implemented a

hardware accelerator for the FIR filter using PYNQ on the

ZYNQ board and compared the performance of the hardware

implementation with the software implementation of the FIR

filter on EEG signals. The hardware-accelerated FIR filter

demonstrated significantly improved performance compared

to the software implementation as the hardware execution

time was approximately 12.75 times faster than the software

execution time. This improvement in runtime can be at-

tributed to factors such as parallelism, dedicated hardware re-

sources, reduced memory access latency, customization, and

elimination of instruction overhead. This may enhance real-

time interactions, responsiveness, and overall user experience

in brain-controlled devices, paving the way for improved

neurofeedback systems, medical diagnostics, and personal-

ized applications, thereby contributing to the evolution of

EEG-based BCI technologies in our society. Moreover, pro-

cessing EEG signals at the edge devices enhances privacy and

energy efficiency of the BCI solutions by keeping sensitive

brain data on the device.

REFERENCES

[1] J. J. Vidal, “Toward Direct Brain-Computer Communication,” Annu.
Rev. Biophys., vol. 2, no. 1, pp. 157–180, Jun. 1973.

[2] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H.
Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson,T.
M. Vaughan et al., “Brain-computer interface technology: a review of
the first international meeting,” IEEE Transactions on Rehabilitation
Engineering, vol. 8, no. 2, pp. 164–173, 2000.

[3] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T.
M. Vaughan, “Brain–computer interfaces for communication and
control,”Clinical Neurophysiology, vol. 113, no. 6, pp. 767–791, 2002.

[4] J. Wolpaw and E. W. Wolpaw, Brain-computer interfaces: principles
and practice. OUP USA, 2012..

[5] Yang H, et al. Neural and cortical analysis of swallowing and detection
of motor imagery of swallow for dysphagia rehabilitation-A review.
Progress in brain research 228 (2016): 185-219.

[6] F. Lotte, “A tutorial on EEG signal-processing techniques for mental-
state recognition in brain–computer interfaces,” in Guide to Brain-
Computer Music Interfacing. Springer, 2014, pp. 133–161.

[7] F. Lotte, M. Congedo, A. Lécuyer, and F. Lamarche, “A review of
classification algorithms for EEG-based brain–computer interfaces,”
Journal of Neural Engineering, vol. 4, 2007

[8] A.Chowdhury, Y. K. Meena, H. Raza, B. Bhushan, A. K. Uttam,N.
Pandey, A. A. Hashmi, A. Bajpai, A. Dutta, and G. Prasad, “Active
physical practice followed by mental practice using bci-driven hand
exoskeleton: A pilot trial for clinical effectiveness and usability,” IEEE
Journal of Biomedical and Health Informatics, vol. 22, no. 6, pp. 1786–
1795, 2018.

[9] A. Chowdhury, A. Dutta, and G. Prasad, “Corticomuscular co-
activation based hybrid brain-computer interface for motor recovery
monitoring,” IEEE Access, vol. 8, pp. 174 542–174 557, 2020.

[10] H. Raza, H. Cecotti, Y. Li, and G. Prasad, “Adaptive learning with
covariate shift-detection for motor imagery-based brain computer inter-
face,” Soft Computing, vol. 20, no. 8, pp. 3085–3096, Aug. 2016.

[11] A review of channel selection algorithms for EEG signal processing
Turky Alotaiby 1* , Fathi E Abd El-Samie 2,3 , Saleh A Alshebeili4
and Ishtiaq Ahmad5

.

[12] Aznan N. K. N., Huh K. M., Yang Y. M. (2016). EEG-based motor
imagery classification in BCI system by using unscented Kalman filter.
Int. J. Inform. Commun. Technol. 9 492–501.

[13] Xu J., Zheng H., Wang J., Li D., Fang X. (2020). Recognition of EEG
Signal Motor Imagery Intention Based on Deep Multi-View Feature
Learning. Sensors 20 3496.

[14] L.-D. Liao, C.-T. Lin, K. McDowell, A. Wickenden, K. Gramann, T.-
P. Jung, L.-W. Ko, and J.-Y. Chang, “Biosensor technologies for
augmented brain-computer interfaces in the next decades,” Proc. of the
IEEE, vol. 100, no. 2, pp. 1553–1566, 2012.

[15] S. Makeig, C. Kothe, T. Mullen, N. Bigdely-Shamlo, Z. Zhang, and K.
Kreutz-Delgado, “Evolving signal processing for brain-computer
interfaces,” Proc. of the IEEE, vol. 100, no. Special Centennial Issue,
pp. 1567–1584, 2012.

[16] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal spatial
filtering of single trial EEG during imagined hand movement,” IEEE
Trans. on Rehabilitation Engineering, vol. 8, no. 4, pp. 441–446, 2000

[17] S. Makeig, A. J. Bell, T.-P. Jung, and T. J. Sejnowski, “Independent
component analysis of electroencephalographic data,” in Advances in
Neural Information Processing Systems, Denver, CO, Dec. 1996, pp.
145–151.

[18] T.-P. Jung, S. Makeig, C. Humphries, T.-W. Lee, M. J. Mckeown, V.
Iragui, and T. J. Sejnowski, “Removing electroencephalographic
artifacts by blind source separation,” Psychophysiology, vol. 37, no.
2,pp. 163–178, 2000

[19] B. Rivet, A. Souloumiac, V. Attina, and G. Gibert, “xDAWN algorithm
to enhance evoked potentials: application to brain-computer interface,”
IEEE Trans. on Biomedical Engineering, vol. 56, no. 8, pp. 2035–
2043,2009

[20] X.-W. Wang, D. Nie, and B.-L. Lu, “Emotional state classification
from EEG data using machine learning approach,” Neurocomputing,
vol. 129, pp. 94–106, 2014

[21] F. Yger, M. Berar, and F. Lotte, “Riemannian approaches in brain
computer interfaces: a review,” IEEE Trans. on Neural Systems and
Rehabilitation Engineering, vol. 25, no. 10, pp. 1753–1762, 2017

[22] X. Wu, W.-L. Zheng, and B.-L. Lu, “Identifying functional brain
connectivity patterns for EEG-based emotion recognition,” in Proc. 9th
Int’l IEEE/EMBS Conf. on Neural Engineering, San Francisco, CA,
Mar. 2019, pp. 235–238.

[23] W.-L. Zheng and B.-L. Lu, “A multimodal approach to estimating vig-
ilance using EEG and forehead EOG,” Journal of Neural Engineering,
vol. 14, no. 2, p. 026017, 2017.

[24] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter bank common
spatial pattern (FBCSP) in brain-computer interface,” in Proc. IEEE
World Congress on Computational Intelligence, Hong Kong, June
2008, pp. 2390–2397.

[25] E. E. Fetz, “Operant conditioning of cortical unit activity,” Science,
vol. 163, no. 3870, pp. 955–958, 1969.

[26] D. Wu, V. J. Lawhern, W. D. Hairston, and B. J. Lance, “Switching
EEG headsets made easy: Reducing offline calibration effort using
active wighted adaptation regularization,” IEEE Trans. on Neural
Systems and Rehabilitation Engineering, vol. 24, no. 11, pp. 1125–
1137, 2016

[27] F. Parisi, F. Strino, B. Nadler, and Y. Kluger, “Ranking and combining
multiple predictors without labeled data,” Proc. National Academy of
Science, vol. 111, no. 4, pp. 1253–1258, 2014

[28] I. Hossain, A. Khosravi, I. Hettiarachchi, and S. Nahavandi,
“Multiclass informative instance transfer learning framework for motor
imagery-based brain-computer interface,” Computational Intelligence
and Neu- roscience, vol. 2018, 2018

[29] H. Qi, Y. Xue, L. Xu, Y. Cao, and X. Jiao, “A speedy calibration
method using Riemannian geometry measurement and other-subject
samples on a P300 speller,” IEEE Trans. on Neural Systems and
Rehabilitation Engineering, vol. 26, no. 3, pp. 602–608, 2018.

[30] J. Jin, S. Li, I. Daly, Y. Miao, C. Liu, X. Wang, and A. Cichocki, The
study of generic model set for reducing calibration time in P300- based
brain–computer interface,” IEEE Trans. on Neural Systems and
Rehabilitation Engineering, vol. 28, no. 1, pp. 3–12, 2020

[31] G. Pfurtscheller, G. R. Müller-Putz, R. Scherer, and C. Neuper, “Reha-
bilitation with brain-computer interface systems,” Computer, vol. 41,
no. 10, pp. 58–65, 2008

[32] A. M. Azab, J. Toth, L. S. Mihaylova, and M. Arvaneh, “A review on
transfer learning approaches in brain–computer interface,” in Signal
Processing and Machine Learning for Brain-Machine Interfaces, T.
Tanaka and M. Arvaneh, Eds. The Institution of Engineering and

Technology, 2018, pp. 81–98

[33] H. He and D. Wu, “Different set domain adaptation for brain-computer
interfaces: A label alignment approach,” IEEE Trans. on Neural
Systems and Rehabilitation Engineering, vol. 28, no. 5, pp. 1091–1108,
2020.

[34] X. Chai, Q. Wang, Y. Zhao, Y. Li, D. Liu, X. Liu, and O. Bai, “A fast,
efficient domain adaptation technique for crossdomain
electroencephalography(eeg)-based emotion recognition,” Sensors,
vol. 17, no. 5, p. 1014, 2017

[35] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M.
Glasstetter, K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard,
and T. Ball, Deep learning with convolutional neural networks for EEG

decoding and visualization,” Human Brain Mapping, vol. 38, no. 11,
pp. 5391 5420, 2017

[36] J. van Erp, F. Lotte, and M. Tangermann, “Brain-computer interfaces:
Beyond medical applications,” Computer, vol. 45, no. 4, pp. 26–34,
2012

[37] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rako-
tomamonjy, and F. Yger, “A review of classification algorithms for
EEG-based brain-computer interfaces: a 10 year update,” Journal of
Neural Engineering, vol. 15, no. 3, p. 031005, 2018

[38] G. Pfurtscheller and F. H. Lopes Da Silva, “Event-related EEG/MEG
synchronization and desynchronization: Basic principles,” Clinical
Neurophysiology, vol. 110, no. 11, pp. 1842–1857, 1999

