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Abstract: This paper presents a research project focused on 

leveraging Field-Programmable Gate Arrays (FPGAs) for 

enhancing the performance and efficiency of Finite Impulse 

Response (FIR) filters in EEG signal processing, specifically 

targeting motor imagery detection. By harnessing the 

parallelism and customization capabilities of FPGAs, we aim to 

achieve significant improvements in execution time and 

throughput. The proposed methodology involves customizing 

and integrating the FIR filter IP core from the Xilinx IP catalog 

using Xilinx Vivado, alongside MATLAB's Frequency Domain 

Analysis (FDA) tool for designing optimized filter coefficients 

tailored to EEG signal processing requirements. The research 

project encompasses key steps, including the customization of 

the FIR filter IP core, the creation of a design overlay 

incorporating the accelerator IP and configuration components, 

the generation of a bitstream for the ZYNQ board, and 

evaluating the hardware implementation's performance against 

software-based FIR filters. Performance metrics such as 

execution time, throughput, and energy efficiency are assessed 

to validate the superiority of the developed hardware 

accelerator. Our results demonstrate the significant advantages 

of hardware-accelerated FIR filters over software-based 

implementations. The hardware execution time is 

approximately 12.79 times faster than the software execution 

time, enabling faster real-time processing of EEG signals. 

Additionally, the hardware implementation exhibits improved 

throughput and energy efficiency, making it well-suited for 

resource-constrained environments. These findings pave the 

way for the implementation of brain-computer interfaces (BCI)  

on edge devices for more portable and deployable solutions. 
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INTRODUCTION 

Electroencephalogram (EEG) signal processing plays a 

critical role in biomedical engineering, particularly in applica-

tions such as motor imagery detection for brain-computer in-

terfaces. Traditional software-based approaches for imple-

menting digital filters, such as Finite Impulse Response (FIR) 

filters, may encounter challenges in terms of computational 

efficiency and execution time [1-4]. To address these limita-

tions, hardware acceleration using Field-Programmable Gate 

Arrays (FPGAs) has gained significant attention [5-8]. FPGAs 

offer parallelism and customization capabilities that can be 

leveraged to achieve significant improvements in execution 

time and throughput for FIR filter implementations in EEG 

signal processing [8-12]. The PYNQ platform, in combination 

with FPGA-based development boards such as the PYNQ-Z2, 

provides an ideal environment for developing and deploying 

hardware accelerators for EEG signal processing [13-18]. 

Customization of FIR filter IP cores is a crucial step in FPGA-

based acceleration. Researchers have utilized tools like Xilinx 

Vivado to customize and integrate FIR filter IP cores from the 

Xilinx IP catalog, tailoring them to the specific requirements 

of EEG signal processing [19-22]. MATLAB's Frequency Do-

main Analysis (FDA) tool has been widely used for designing 

optimized filter coefficients based on parameters such as sam-

pling frequency, cutoff frequencies, and filter order [23-25]. 

 

Figure 1: Design Flow 

In terms of implementation techniques, researchers 

have explored various approaches to optimize the perfor-

mance of FPGA-based FIR filter accelerators. Morimoto et al. 

(2019) [29] proposed an efficient architecture based on sys-

tolic array structures for parallel FIR filter computation, re-

sulting in improved throughput and reduced latency. Chatter-

jee et al. (2021) [30] utilized resource sharing and pipelining 

techniques to enhance the efficiency of FIR filter implemen-

tations on FPGAs. Furthermore, FPGA-based accelerators for 

EEG signal processing offer advantages beyond execution 

time improvements. Sikora et al. (2020) [31] demonstrated 

that FPGA-based implementations exhibited enhanced energy 

efficiency, making them well-suited for resource-constrained 

environments. This characteristic is particularly important for 

portable EEG devices and real-time applications where power 

consumption is a critical factor. Recent advances in FPGA 

technology have also focused on enhancing the flexibility and 

scalability of hardware accelerators for EEG signal pro-

cessing. For example, Hong et al. (2021) [32-33] proposed a 

reconfigurable architecture that allows dynamic customiza-

tion of the filter order to adapt to varying EEG signal charac-

teristics. This approach offers improved adaptability and per-

formance for different EEG analysis tasks. 

METHODOLOGY 

A.  System Setup 
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PYNQ-Z2 board: The research project utilizes the PYNQ-Z2 
board, which integrates a Xilinx Zynq-7000 System on Chip 
(SoC) combining a dual-core Arm Cortex-A9 processor with 
programmable logic on a single device. 

PYNQ Platform: The PYNQ platform provides a Python-
centric framework for accelerating applications on the Zynq 
SoC. It allows for easy integration of custom hardware 
accelerators using FPGA programming. 

 

Figure 2 : PYNQ-Z2 Zynq Development Board 

 

B. FIR Filter IP Customization: 

Xilinx Vivado: The powerful FPGA development and 
synthesis tool, Vivado, is used to customize the FIR filter 
Intellectual Property (IP) core from the Xilinx IP catalog. 
Filter Coefficient Design: MATLAB's Frequency Domain 
Analysis (FDA) tool is employed to design optimized filter 
coefficients based on specified parameters such as sampling 
frequency, cutoff frequencies, and filter order. These 
coefficients are generated to meet the specific requirements of 
EEG signal processing. 

C. Hardware Accelerator Design: 

1) Design Overlay: A design overlay is created by integrating 
the customized FIR filter IP core with the accelerator IP and 
configuration components. 

2) Bitstream Generation: Using Vivado, a bitstream is 
generated for the ZYNQ board, which configures the FPGA 
fabric with the desired hardware accelerator design. 

 

Figure 3: Block Design of Fir band pass filter 

3) FIR compiler configuration 

• Input Sampling Frequency: Specify the input 
sampling frequency of the data. (e.g., 512 kHz) 

• Clock Frequency: Set the clock frequency for the 
FIR filter operation. (e.g., 100 MHz) 

• Input Data Width: Define the width of the input data 
bus. (e.g., 16 bits) 

• Coefficient Selection: Import the coefficients 
generated in MATLAB for the Butterworth bandpass 
filter. 

• Filter Type: Select the appropriate filter type (e.g., 
low-pass, high-pass, band-pass) based on our design 
requirements. 

• Filter Order: Specify the desired filter order for the 
bandpass filter [34-35]. This affects the sharpness of 
the filter's roll-off and the complexity of the 
computations 

C. Performance Evaluation: 

Execution Time Comparison: The hardware 
implementation's execution time is compared with software-
based FIR filters [36] to assess the acceleration achieved. 
Execution time measurements are obtained using appropriate 
timing techniques. 

Throughput Analysis: Throughput, defined as the number of 
EEG samples processed per unit time, is evaluated to measure 
the hardware accelerator's efficiency in handling data. 

Energy Efficiency Assessment: Energy consumption of the 
hardware implementation is evaluated to determine its energy 
efficiency compared to software-based approaches. 

 

D. Experimental Validation: 

Dataset and Test Setup: EEG datasets containing motor 
imagery data are used to validate the hardware accelerator's 
performance. The test setup involves capturing EEG signals, 
preprocessing, applying the FIR filter, and detecting motor 
imagery events. 

 

E. Performance Metrics:  



Various performance metrics, including accuracy, latency, 
and resource utilization, are measured and compared between 
the hardware-accelerated implementation and software-based 
FIR filters. 

 

1) Stroke Patients’ Dataset 

The dataset of competition "Clinical Brain Computer 
Interfaces Challenge" of WCCI 2020 at Glasgow is used to 
test the model and analysis of results for stroke patients [37-
38].  The following dataset pertains to an essential event, the 
"Clinical Brain Computer Interfaces Challenge," which will 
take place within WCCI 2020 held in Glasgow. The dataset 
includes EEG data collected from ten individuals suffering 
from hemiparetic stroke who currently face impaired finger 
mobility on either hand's left or right side. Each participant is 
associated with two data files - one carrying information 
regarding their learning or training journey (denoted as 'T'), 
while another contains details about their test and evaluation 
(designated as 'E'). For instance, we can find name tag such as 
"Parsed_P05T," representing P05's training file and its 
respective counterpart as 'Parsed_P05E' demarcating its 
testing file/treatment part. All trials in the training files have 
labels; however, missing for evaluations/testing records. The 
primary objective behind this competition's purpose is to 
generate perfect predictions for each trial based on those 
provided within evaluation/testing kinds of data. 

Accessing this dataset is straightforward since it 
comprises MATLAB (.mat) format files that can be opened 
using MATLAB software without difficulty. Each training file 
for a particular participant (i.e., label it with 'Parsed_P05T' for 
participant 'P05') contains two valuable variables named 
'rawdata and' labels.' Among these two variables,' raw data' 
stands out since it represents a three-dimensional matrix 
whose dimensions appear as "noOfTrial X noOfChannels X 
noOfSamples." By defining these values as per 
'noOfTrials=80', one can identify how many trials occurred 
within each training file consistently. Additionally,' 
noOChannel's serves to indicate how many EEG channels 
were active during recording ; given that there were twelve 
EEG channels occupied by all files available, conforming 
perfectly to a widely recognized system called the 10-20 
system that included: F3, FC3, C3, CP3, P3, FCz, 
CPz,F4 ,FC4,C4 ,CP4,and P4. 

 

Fig. 4 Timing diagram of Stroke patients’ dataset 

 

Fig. 5 Data acquisition & electrode placement for Stroke patient dataset 

RESULT & DISCUSSION 

In this section, we present the results obtained from the 

implementation of the hardware accelerator for the FIR filter 

using the PYNQ platform on the ZYNQ board. The code 

demonstrates the comparison between the software and 

hardware implementations, specifically focusing on the 

execution time and the achieved acceleration factor. The 

execution times obtained for the software FIR filter 

implementation and the hardware-accelerated FIR filter 

implementation are as follows: It is evident that the hardware-

accelerated implementation outperforms the software 

implementation in terms of execution time. The hardware 

implementation is significantly faster, with an execution time 

that is approximately 12.79 times faster than the software 

implementation. This improvement in runtime can be 

attributed to several factors. The hardware implementation 

utilizes dedicated hardware resources, such as the FIR filter IP 

core, which is specifically designed to efficiently perform the 

filtering operation. This specialized hardware is optimized for 

signal processing tasks and can process data in parallel, 

resulting in faster computation compared to a software-based 

approach running on a general-purpose CPU. 

The execution times obtained for the software FIR filter 

implementation and the hardware-accelerated FIR filter 

implementation are given in Table I. 



 

Table I: Overall Hardware Acceleration Ratio 

Additionally, the use of the PYNQ platform and the ZYNQ 

board enables the hardware implementation to take advantage 

of the FPGA's parallel processing capabilities. FPGAs are 

highly parallel devices that can execute multiple operations 

simultaneously, making them well-suited for computationally 

intensive tasks like filtering. In contrast, software 

implementations typically rely on sequential execution, which 

can introduce latency and limit performance. 

The hardware acceleration factor, calculated as the ratio of the 

software execution time to the hardware execution time, is 

approximately 12.75. This indicates that the hardware-

accelerated implementation achieves a significant speedup 

compared to the software implementation. This improvement 

in runtime is crucial for real-time applications or scenarios 

where rapid data processing is required, such as in the analysis 

of EEG signals. 

 

Figure 6 : Input Raw EEG Signal 

 

Figure 7 : Filtered EEG Signal using Software 

 

 

Figure 8 : Filtered EEG Signal using Hardware 

The additional reasons for the high performance of hardware 

compared to software in the context of the implemented hard-

ware accelerator for the FIR filter: 

Parallelism: FPGAs are inherently parallel devices, capable 

of performing multiple operations simultaneously. In the 

hardware implementation, the FIR filter IP core takes 

advantage of this parallelism to process multiple data points 

in parallel. This parallel processing greatly speeds up 

the filtering operation compared to the sequential execution 

of software-based approaches, which can only process one 

data point at a time. 

Dedicated Hardware Resources: The hardware 

implementation utilizes dedicated hardware resources, such 

as the FIR filter IP core, which is specifically designed and 

optimized for efficient filtering operations. These dedicated 

hardware resources are built into the FPGA fabric and can 

execute the filtering algorithm with minimal overhead. In 

contrast, software implementations running on general-

purpose CPUs have to allocate resources dynamically, 

leading to additional overhead and slower execution. 

Reduced Memory Access Latency: FPGAs have access to on-

chip memory that can be used to store intermediate data and 

coefficients, allowing for fast and efficient memory access. 

This reduces the memory access latency compared to 

software implementations that rely on external memory, 

which typically involves longer access times. The reduced 

                                                                        

                              

                                  

                                  

                                  

                                  

                                  

                                  

                                  

                                  

                           



latency in accessing data and coefficients in the hardware 

implementation contributes to faster execution. 

Customization and Optimization: The hardware 

implementation using Vivado allows for customization and 

optimization at a low-level hardware description language 

(HDL) level. Researchers can fine-tune the design 

parameters, pipeline the processing stages, and optimize 

resource utilization to maximize performance. This level of 

customization is not easily achievable in software 

implementations, which are often constrained by the general-

purpose nature of CPUs and higher-level programming 

languages. 

Elimination of Instruction Overhead: In software 

implementations, instructions have to be fetched, decoded, 

and executed by the CPU, introducing overhead in the 

processing time. In the hardware implementation, these 

instructions are implemented directly in the FPGA fabric, 

eliminating the need for instruction fetching and decoding. 

This results in faster and more efficient execution without the 

overhead associated with general-purpose CPUs. 

Reduced Energy Consumption: Hardware implementations, 

especially on FPGAs, can be more energy-efficient compared 

to software implementations running on CPUs. FPGAs are 

designed for high-performance computing with low power 

consumption. By offloading computationally intensive tasks 

like filtering to the FPGA, the hardware accelerator can 

achieve significant energy savings compared to running the 

same task on a CPU. 

Scalability and Resource Utilization: FPGAs offer scalability 

in terms of resources, allowing researchers to scale the 

hardware accelerator to handle larger datasets or more 

complex filtering algorithms. Moreover, FPGAs enable 

efficient resource utilization by only utilizing the necessary 

hardware resources for the specific task, avoiding the 

overhead associated with general-purpose CPUs that may 

have additional unused resources. 

These reasons collectively contribute to the high performance 

of hardware accelerators compared to software 

implementations. The inherent parallelism, dedicated 

hardware resources, reduced memory access latency, 

customization and optimization capabilities, elimination of 

instruction overhead, reduced energy consumption, and 

scalability make hardware implementations, such as the one 

utilizing FPGAs, well-suited for computationally demanding 

tasks like filtering, resulting in significantly improved 

performance. 

CONCLUSION 

In this research paper, we have successfully implemented a 

hardware accelerator for the FIR filter using PYNQ on the 

ZYNQ board and compared the performance of the hardware 

implementation with the software implementation of the FIR 

filter on EEG signals. The hardware-accelerated FIR filter 

demonstrated significantly improved performance compared 

to the software implementation as the hardware execution 

time was approximately 12.75 times faster than the software 

execution time. This improvement in runtime can be at-

tributed to factors such as parallelism, dedicated hardware re-

sources, reduced memory access latency, customization, and 

elimination of instruction overhead. This may enhance real-

time interactions, responsiveness, and overall user experience 

in brain-controlled devices, paving the way for improved 

neurofeedback systems, medical diagnostics, and personal-

ized applications, thereby contributing to the evolution of 

EEG-based BCI technologies in our society. Moreover, pro-

cessing EEG signals at the edge devices enhances privacy and 

energy efficiency of the BCI solutions by keeping sensitive 

brain data on the device. 
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