
1

Improving QoE with Genetic Algorithm-based Path
Selection for MPTCP

Shadi Bikas, Müge Sayıt, Member, IEEE

Abstract—Multipath TCP (MPTCP) is a protocol that enables
the use of more than one subflow under the same TCP connection,
which provides increased throughput due to the aggregated
bandwidth. Therefore, the use of MPTCP can be very beneficial to
video streaming applications since bandwidth is the most crucial
parameter that improves the performance of such applications.
However, the characteristics of the subflow paths might have a
significant impact on application performance. In this study, we
propose a path selection approach for MPTCP subflows in order
to maximize the Quality of Experience (QoE) for adaptive HTTP
streaming systems, which is currently one of the most popular
video streaming application techniques. The paths are selected on
the network layer by taking the bandwidth and delay differences
into account. The disjointness of the paths is also considered in
the proposed path selection approach. A genetic algorithm-based
approach is utilized for the selection of the paths. Furthermore,
we indicate how the characteristics of the paths affect QoE.
The experimental results indicate that considering bandwidth
and delay difference parameters jointly helps increase all QoE
metrics, compared to the approaches that select paths considering
either bandwidth or delay difference.

Index Terms—Adaptive streaming, SDN, Routing, Genetic
algorithm.

I. INTRODUCTION

V IDEO streaming applications are one of the most pop-
ular applications running over the Internet. The latest

Global Internet Phenomena Report 1 states that the traffic
produced by video streaming services dominates the Internet,
accounting for 65.93% of total traffic in 2022. With the recent
developments in video codec standards and the increasing
demand of Internet users to play a video with low latency
and high quality and resolution, the bandwidth requirements of
video streaming applications tend to increase. One of the most
well-known video streaming techniques is HTTP adaptive
streaming (HAS). In such applications, there is more than one
encoded video file with various qualities, where each file is
partitioned into small and fixed-sized segments. The clients
send a request for the segments in different qualities over
time to adapt the video quality based on the observed network
conditions and internal parameters. Clearly, bandwidth is the
most important criterion that affects the Quality of Experience
(QoE) in HAS applications.

S Bikas is with the International Computer Institute, Ege University, Izmir,
Turkey. Email: shadi.bikas90@gmail.com.
M Sayıt is with Computer Science and Electronic Engineering, University of
Essex, UK, and the International Computer Institute, Ege University, Izmir,
Turkey. Email: muge.sayit@essex.ac.uk, muge.sayit@ege.edu.tr.
This work is funded by the Scientific and Technological Research Council
of Turkey (TUBITAK) Electric, Electronic and Informatics Research Group
(EEEAG) under grant 121E033.

1https://www.sandvine.com/phenomena

Multipath communication between a video server and
clients is a promising technique to provide higher throughput
to streaming applications, which can be useful for meeting
the requirements. Multipath TCP (MPTCP) as an extension of
TCP, enables clients to open more than one subflow within
the same TCP connection [1]. The redundancy offered by
MPTCP utilizes the aggregation of bandwidth. Therefore,
while this protocol has all the advantages of TCP, such as
reliable transmission, flow, and congestion control, it provides
an increase in throughput with the use of more than one
subflow belonging to one particular MPTCP connection.

However, if the delay difference among the subflows is high,
then goodput may be affected negatively due to the Head-of-
Line (HoL) blocking problem [2]. Therefore, the path selection
for the MPTCP subflows is an important problem that has
gained attention. The subflow paths can be selected at the
network layer by using Software Defined Networking (SDN)
technology [3]. With SDN, the controller that is responsible
for managing the SDN domain, can select a set of paths for the
MPTCP subflows and assign the related forwarding rules to the
switches by using a southbound protocol such as OpenFlow.

The performance of MPTCP is affected by the charac-
teristics of the subflow paths on the network layer, such
as bandwidth, delay, hop count, congestion level, and delay
differences of the paths. Therefore, there are many proposals
for the path selection on the network layer, where MPTCP
subflows are transferred over those paths. QoE is mainly
affected by the bandwidth of the paths. However, the delay
difference of the paths is also another criterion that has a vital
impact on QoE. In the tests that we conducted for our previous
work [3], [4], we observed that if the delay difference between
paths is over 100 ms, there is a 2-second duration of outage in
9 seconds of video, which corresponds to more than 20% of
the total video duration. These observations align with those
made in [5]. The duration of outage equals zero when there
is no delay difference for the same bandwidth values. This
observation shows that both bandwidth and delay differences
should be considered in the path selection problem for the
MPTCP subflows.

In this study, we focus on the path selection problem for
enhancing the performance of video streaming applications.
This work integrates emerging network technologies and pro-
tocols with one of the most widely used Internet applications.
We explore a scenario in which HAS clients are connected to
an SDN-based edge network, and a video server (i.e., a CDN
server) is located within the network. Alternative scenarios are
also possible. Our path selection approach is applicable within
an SDN-based data center employing MPTCP [6], where a

2

group of HAS clients connects to the servers of a video
streaming or on-demand service.

The paths are selected by the SDN controller, which is
responsible for the management of the domain. Paths are
determined by a genetic algorithm and the path selection
criteria which differs from the literature. The contributions of
our work can be listed as follows:

• We select the MPTCP subflow paths on the network
layer by jointly considering bandwidth and the delay
differences among the paths. There is no study in the
literature that jointly considers these criteria. We also take
into account the disjointness of the paths.

• We propose a novel genetic algorithm to solve the
problem which finds solutions within a small amount
of time for complex optimization problems. Hence, the
performance of the video streaming application does not
deteriorate.

• We run experiments comparatively to evaluate the per-
formance of the proposed approach. The experimental
results not only show the performance of the proposed
approach but also present how video streaming applica-
tions are affected by the MPTCP path characteristics.

• We also evaluate the performance of the proposed path
selection algorithm, along with several other algorithms,
by measuring their performance across different sched-
ulers and buffer sizes.

The rest of the paper is organized as follows. Section
II provides background studies on MPTCP path selection
methods and the related work on genetic algorithms. Section
III introduces the proposed solution for the path selection
problem in detail. The results of the comparative performance
evaluation are presented in section IV. We end the paper with
a conclusion in section V, followed by the references.

II. BACKGROUND AND RELATED WORK

A. MPTCP Characteristics and Path Selection for MPTCP
Subflows

With MPTCP, the client and the server can communicate by
using more than one subflow. This feature of MPTCP provides
higher throughput thanks to the multiple path transmission,
and higher connectivity (i) with the use of an effective sched-
uler, and/or (ii) with the subflows using different paths on the
network layer.

1) MPTCP Schedulers and Subflow Selection on the Trans-
port Layer: The MPTCP scheduler is responsible for selecting
subflows for the packets that are being sent, to achieve efficient
and fair resource utilization across multiple paths. This selec-
tion is based on factors such as available bandwidth, latency,
and congestion. Numerous studies have proposed remarkable
MPTCP schedulers. One of them is minRTT, which takes into
account Round-Trip Time (RTT) when distributing packets.
The MPTCP scheduler sends packets over the subflow with
the lowest RTT until its congestion window is filled. Subse-
quently, packets are sent over the next faster subflow. While
this approach maximizes throughput when using symmetric
network paths, it suffers from HoL blocking when network
paths are heterogeneous [7].

Several schedulers have been proposed to address the HoL
blocking problem when MPTCP is running over heteroge-
neous paths. Among them, the Delay Aware Packet Scheduler
(DAPS) scheduler [8] is designed to ensure that the data
segments are received in the correct order. In addition, it
utilizes the MPTCP receiving buffer by avoiding delay caused
by congestion of the packets in the receiver buffer. DAPS
mainly focuses on organizing how the packets are received
rather than how fast they are transmitted.

In contrast, the Blocking-prediction Enabled Scheduling
Technique (BLEST) scheduler proposed in [9] aims to re-
duce the risk of HoL-blocking by selectively disregarding
some subflows during packet distribution. Another proposed
scheduler is the Earliest Completion First (ECF) scheduler
[5]. ECF estimates the completion time for each subflow
based on factors such as data amount and transmission rate. It
prioritizes the subflow with the earliest expected completion
time, thereby reducing transfer time and enhancing respon-
siveness. In [10], a scheduler, called MP-DASH, considering
DASH characteristics is proposed. The MP-DASH scheduler
takes user interface preferences, video chunk size, and delivery
deadlines as input and determines the best strategy for fetching
video chunks over multipath connections. In conclusion, path
selection at the network layer and MPTCP schedulers can
collaborate to optimize the utilization of multiple paths, where
the path selection approach determines the available paths and
schedulers manage traffic distribution and transmission. For
more information on MPTCP schedulers, a comprehensive
survey can be found in [11].

Another influential factor on throughput at the transport
layer is the network buffer size. The network buffer size on
the client side plays a crucial role in managing the flow
of data between the client and the network. The optimal
buffer size depends on factors such as network conditions,
traffic patterns, and system capabilities. In [12], the authors
investigate the effect of buffer size on the performance of
the original MPTCP and MPTCP with Constraint-Based (CP)
scheduling, regarding both symmetric and asymmetric paths.
Overall, the paper presents that CP scheduling, especially
with the radical method, can improve the performance of
MPTCP by effectively managing buffer limitations, preventing
throughput degradation, and maintaining better RTT balance
between paths. It provides insights into how different buffer
sizes and scheduling strategies impact MPTCP’s performance
over multiple paths with varying characteristics.

In this study, we focus on the path selection problem at the
network layer. Hence, our proposed approach can work with
any proposals related to schedulers and various buffer sizes.

2) Path Selection on the Network Layer for MPTCP sub-
flows: The enhancement of throughput provided by MPTCP
does not only depend on the scheduler but also on the
characteristics of the paths on the network layer, used by
the subflows. Indeed, if the bandwidth available on the paths
used by MPTCP subflows is notably restricted, the overall
throughput remains constrained, regardless of the effectiveness
of the scheduler employed at the transport layer. Consequently,
numerous strategies have been introduced in the literature to
address the path selection issue for MPTCP subflows, with a

3

primary focus on the path selection problem on the network
layer.

Several metrics can be considered for the path selection
of MPTCP subflows. Hop count, bandwidth, congestion level,
delay, path disjointness, and delay differences of the paths
are among the factors considered in path selection. In [13],
the path selection for MPTCP subflows is performed based
on hop count. In [14], the authors propose to select as many
as necessary paths starting from the shortest path so that the
bandwidth of the selected paths exceeds the desired value.
These studies haven’t considered further metrics including
path disjointness, delay difference, and path congestion.

The bandwidth values of the selected paths are one of
the most important criteria that affect throughput. In [15],
MPTCP subflow path selection is done based on the available
bandwidth values of the paths. Bandwidth values of the paths
are also considered in the selection of the paths for MPTCP
subflows in a data center in the studies [16] and [17]. In [18],
authors focused on the efficiency of MPTCP in optical net-
works, and the paths with the highest bandwidth are selected in
their approach. The general approach used in bandwidth-based
path selection is preferring paths with maximum available
bandwidth values. In order to improve the performance of
MPTCP transmission between the nodes in the Mobile AdHoc
Networks (MANET), the signal quality between the nodes is
considered in [19]. In some scenarios, HAS clients could be
mobile users within a 4G/5G/5G+ network. In this case, the
path characteristics on the last hop, i.e., in the wireless part,
should also be considered. In [20], the overall performance
of wireless networks is improved by tracking the MPTCP
path capacity and selecting the most fitting paths to lower
the number of out-of-order packets in an SDN network. This
approach can be combined with our proposal by considering
the characteristics of end-to-end paths.

Using more than one path in an MPTCP connection pro-
vides higher throughput due to the aggregation of bandwidth
capacity of each path. However, the delay differences between
the path pairs used by the MPTCP may cause the Head of
Line (HoL) blocking problem, and as mentioned earlier, the
performance of applications using MPTCP is affected nega-
tively in terms of increased delay and decreased goodput [2],
[4], [21]. Therefore, the delay differences between different
subflow paths should be taken into account as well as path
capacities in the path selection problem. The delay difference
between the paths is not taken into account in any of these
studies. However, it significantly affects the throughput, hence,
it should be considered in the selection of the paths, especially
for video streaming applications [22].

In [23], an algorithm is proposed to assign subflows re-
quested by the MPTCP client, by selecting paths among fully
disjoint paths. Then, the paths with limited bandwidth are
eliminated from the selected paths. In [24], the authors propose
an approach that selects the shortest and fully disjoint paths
for MPTCP subflows in an SDN-based data center. In this
study, the bandwidth and delay criteria are not considered.
In [25], path selection is done by selecting the paths with
maximum available bandwidth among fully disjoint paths.
The SDN controller compares the delay of each path to the

average delay and does not use the paths with high end-to-end
delay. In [26], an optimization model is proposed to select
fully disjoint paths and decide on the number of subflows by
considering the delay difference of the paths. However, this
study does not take into account the bandwidth of the paths.
These studies consider important factors, such as bandwidth,
delay differences, and path disjointness that affect QoE in
video streaming applications, but assigning fully disjoint paths
may not always be possible due to the topology constraints.

If there are not enough disjoint paths in the topology,
then partially disjoint paths can be used for the MPTCP
subflows. In our previous work [3], we proposed an approach
for selecting paths for MPTCP subflows by using partially
disjoint paths and by considering the bandwidth values of
the paths. However, delay differences in the paths were not
considered in the study.

To enhance the performance of video streaming applica-
tions, it is essential to consider both the bandwidth and delay
differences of the paths utilized for MPTCP subflows. None
of the mentioned studies above concurrently addresses these
criteria. In this study, we present an approach for MPTCP sub-
flow path selection that takes into account both bandwidth and
delay differences. Moreover, the proposed algorithm selects
partially disjoint paths, considering the congestion level of the
shared links on these paths. As a result, there is no requirement
for the paths to be completely disjoint in the topology.

In this work, we implemented our path selection approach
in an SDN domain. Nevertheless, it’s worth emphasizing that
our approach remains applicable as long as there exists a
technology permitting path selection at the network or link
layer. Multi-Protocol Label Switching (MPLS) and optical
networks can be given as such examples [26]. Another protocol
that holds the potential for this purpose is the Locator/Identifier
Separation Protocol (LISP). In [27], the selection of paths for
MPTCP subflows is accomplished through the utilization of
LISP. The study demonstrates the routing of subflows across
diverse Internet Service Providers (ISPs).

B. Genetic Algorithm (GA) and GA Based Approaches for
Multipath Transmission

The genetic algorithm is a search algorithm that takes the
principles of natural selection and genetics into account. This
algorithm is capable of finding the most optimal or near-
optimal solutions to difficult problems that can take a long time
to be solved by other methods [28]. This algorithm is mostly
used to solve optimization problems and uses a completely
different method compared to brute force algorithms.

Initially, the algorithm creates a random population that
contains a series of possible solutions to the problems. Each
solution in the population is called a chromosome and each bit
in a chromosome is a gene. To evaluate the accuracy of each
solution, a fitness function is defined by taking into account
problem characteristics. This function considers the solution
of the problem and assesses the values of the chromosomes,
which shows how good they are for solving the given problem.

To form the next generation of the population, particular
parents are selected and combined which results in creat-
ing new solutions called off-springs. This process is called

4

crossover. Parent selection is a very crucial process that leads
to producing better and fitter off-springs. The final stage in the
genetic algorithm is mutation. In this stage, several off-springs
are randomly selected and the values of one or more of their
genes are randomly changed based on a certain probability.
The genetic algorithm is a powerful tool to solve large and
complex problems. It has been used to find solutions for
various networking problems such as network traffic predic-
tion [29] and routing problems [30].

In [31], the genetic algorithm is utilized in multi-path
heterogeneous wireless systems. The goal of the algorithm
is to minimize the delay differences of MPTCP subflows by
using a genetic algorithm-based congestion control algorithm.
Therefore, the genetic algorithm is used on the client side,
rather than for the path selection problem on the network,
which is the focus of our study. The authors used the genetic
algorithm for the placement of SDN devices to minimize the
routing and deployment cost. They showed that a genetic
algorithm-based approach is more scalable and powerful than
a Mixed-Integer Linear Program (MILP) model in [32]. The
selection of paths between peer-to-peer (P2P) overlay nodes is
done by a genetic algorithm in [33]. In the study, the authors
use P2P video characteristics within the genetic algorithm to
select the optimal nodes in the overlay network. None of these
studies focuses on the network path selection problem and uses
network metrics such as available bandwidth and delay.

Several proposals use genetic algorithm-based network path
selection for various purposes. In [34], the authors used the
genetic algorithm to select the multiple paths in a data center.
Their algorithm minimizes path length and maximizes link
usage diversity to increase transmission rate. In [35], a genetic
algorithm is developed to solve the Multi-constrained routing
(MCR) problem which is NP-complete. The main objective
of MCR is to determine the feasible path in the network
that satisfies transmission delay and transmission success ratio
constraints. A genetic algorithm-based approach is proposed
for selecting the shortest path in terms of delay between the
source and destination in [36]. None of these studies addresses
the path selection problem for multiple path transmission by
considering the delay difference and bandwidth of the paths.
Hence, these solutions do not apply to the problem we focus
on in this study.

III. PROPOSED APPROACH

In this section, we give the details of the proposed genetic
algorithm-based path selection and explain the framework that
is used in this study.

A. Implementation of MPTCP Path Selection in an SDN
Domain

In this study, the MPTCP-enabled server and clients reside
in an SDN domain. The selection of the MPTCP subflow paths
is done by the SDN controller which manages the domain.
For this purpose, it periodically measures traffic statistics and
calculates the available bandwidth values of each path. It also
keeps track of the clients in its domain. An illustration of
the system is given in Fig. 1. The figure illustrates a scenario

in which the client has three subflows. The network paths
assigned by the controller are disjoint in the first and second
hops from the client side, while two of them utilize a common
link on the third hop. Additionally, the figure illustrates the
application of the genetic algorithm, running as a third-party
application.

SDN
controller

M
PT

C
P-
En

ab
le
d

 S
er
ve

r
Client

MPTCP
subflow
paths

Sending out forwarding
rules for the subflow

 paths for the newly
 joined client

The set of selected
paths for the sublows
of the newly joined
client

Genetic algorithm
based path selection

application
Communication over
Southbound API

Communication over
Northbound API

Collection
of network

statistics

Sending network-
related data to the
genetic algorithm

Fig. 1: Illustration of the System

When a client starts the video streaming application, it
establishes an MPTCP connection with the server. Suppose
the clients have N IP numbers, where N ≥ 1. This can either
be provided with multiple physical or virtual interfaces. We
assume the network operator and video streaming company
are in cooperation and the controller knows the number of N .

When the controller gets the first packet of the connection
from the first-hop switch, it detects that the client is initiating
an MPTCP connection by examining the TCP header and the
MP_CAPABLE option. Subsequently, the controller runs the
path selection algorithm for selecting up to N paths for the
subflows of the newly joined client. At this stage, the controller
only has information about the first subflow (IP, port number)
pair. Therefore, it only sends forwarding rules about the path
of the first subflow.

During the initial handshake process of MPTCP connection
establishment, both the client and the server generate a 64-
bit random key. These keys are added to the MP_CAPABLE
option. A new key is generated by utilizing the initially
generated keys, serving the purpose of authentication for
subsequent subflows [37].

To establish an additional subflow, a new SYN exchange
is performed, which includes the IP address and port that
will be used. During this stage, the MP_JOIN option, con-
taining the Message Authentication Code (MAC) of the key
generated during the connection establishment, is added to the
SYN packet [38]. The first-hop switch to which the client is
connected sends each packet with the MP_JOIN option to the
controller. This is because there is no flow information in the
forwarding table of the switch related to this (IP, port number)

5

pair. The controller can detect which MPTCP connection the
additional subflow belongs to. Consequently, it can utilize the
previously determined path information for each subflow of
the client without the need to rerun the genetic algorithm. This
mechanism ensures that the genetic algorithm is executed only
once to determine the paths for all subflows of a client.

This process continues until N requests are sent to the server
to establish all subflows. The first hop switch sends a packet
for each time it gets an MPTCP subflow establishment packet
from the client. Hence, the controller has the information
about (IP, port number) for other subflows and sends the
forwarding rules related to the paths of those subflows. The
genetic algorithm that is used for the selection of the paths
may select less than N subflow for the client. In that case,
the controller does not send forwarding rules for non-selected
subflows. Hence, the client cannot establish connections for
those subflows and the number of its subflows is limited. If
the selected path becomes suboptimal, the genetic algorithm
can be rerun.

The SDN controller continuously monitors the network
state, which involves collecting statistics and status infor-
mation from network devices. The Southbound APIs, like
OpenFlow, are used for this purpose. These APIs allow the
controller to ask devices for their status and other relevant
data. The controller also receives real-time updates regarding
link failure or newly added network devices. Therefore, the
controller has an accurate and up-to-date view of the network.
The controller transfers network-related information to the
genetic algorithm application through its northbound API.

In this study, the genetic algorithm is rerun each time a new
client joins the system. Once the genetic algorithm determines
the optimal paths, the controller updates the routing tables of
the network devices using the southbound APIs, which are
associated with the flow rules defined for the newly joined
client. While routing paths for existing clients are not rerouted
in this study, it is possible to do so by triggering the execution
of the genetic algorithm. In this scenario, the genetic algorithm
can be executed to determine new paths for a subset of
clients, selected based on a threshold for changes in aggregated
bandwidth.

In the next sections, we define the path selection problem as
an optimization model and then provide our proposed solution
which is based on a genetic algorithm.

B. On the MPTCP Path Selection Problem

We define the MPTCP path selection problem as a multi-
objective optimization model that considers the aggregated
bandwidth of the paths and the delay differences between
them. The optimization model is given in formulas 1-6. In
the model, C and P represent the set of clients and the set of
paths in the network topology, respectively. xc,p is the binary
variable that shows if client c uses path p. The first objective
equation aims to minimize the delay differences (dd) of each
pair of the selected paths for a client in the system. The
second objective equation maximizes the aggregated available
bandwidth value (bw) of the selected paths. In the equation,
abwp represents the available bandwidth of path p. The paths

chosen for each subflow are partially disjoint, which means
if the links of the path chosen for the initial subflow have a
bandwidth capacity of more than the predefined value, they can
be used in the other subflows as well. If the paths are partially
disjoint, then the congestion level of the common links of
different paths should be less than a threshold. Equation
3 provides this constraint, where cong_level represents the
maximum congestion level that is measured in the common
links of the paths and thrcong represents the threshold. Even
if the delay difference between two paths is small, paths with
delays higher than an acceptable value are not selected. This
is provided by the 4th constraint, which imposes a threshold,
thrdelay, to limit the delay of the paths. Constraint 5 limits
the selected number of paths so that this number is less than
the total number of different IPs used by the client.

min
dd

∑
c∈C

|P |−1∑
p=1

|P |∑
r=p+1

xc,p.xc,r.|dp − dr| (1)

max
bw

∑
c∈C

|P |∑
p=1

xc,p.
abwp∑
h∈C xh,p

(2)

subject to:

xc,p.cong_level ≤ thrcong, ∀p ∈ P,∀c ∈ C (3)

dp, dr ≤ thrdelay ∀p, r ∈ P (4)

∑
c∈C

xc,p ≤ N (5)

xc,p ∈ {0, 1} (6)

We note that optimization models or multiple constraint
optimal path selection approaches have been proposed earlier
for multipath communication [3], [26], [39]. In none of these
studies, bandwidth, delay differences, and congested links are
jointly considered in the models and the provided solutions.
Using all of these factors increases the computational com-
plexity of the models. The optimization model given in the
formulas between 1-6 includes binary variables. The optimal
path assignment for the clients is an instance of the generalized
bin packing problem [40], which is an NP-complete problem.
Therefore, the solution of the model is not suitable for using
it in our system due to the time limitation. In our system, the
SDN controller should assign paths to the clients after they
start a video streaming application. To find a suitable set of
MPTCP paths for the clients, we utilize a genetic algorithm.
Genetic algorithm-based solutions can provide a good balance
in the computational time and solution quality trade-off when
the problem is NP-hard [32]. The details of the proposed
genetic algorithm-based solution are given in the next section.

6

C. Genetic Algorithm-based Path Selection
In the environment established in this study, as the client

joins the network, the communication between the client and
the controller starts by exchanging packets. The client initiates
the MPTCP connection by sending a SYN packet including
the MP_CAPABLE option.

When the Floodlight controller receives the initial packet,
it executes a genetic algorithm to determine the paths for the
subflows of the client. As described in the previous chapter,
the first path is assigned for the first subflow of a client upon
receiving a TCP_SYN message.

Each client is designed to have three MPTCP subflows
in this study. However, the genetic algorithm can result in
choosing one, two, or three subflows for the clients. Although
the client sends a SYN packet to the controller requesting
three subflows, the controller can decide to assign only one,
two, or all three subflows based on the outcome of the
genetic algorithm. Based on the result received by the genetic
algorithm, the controller establishes the paths and the client
starts sending data packets.

As stated previously, the genetic algorithm must be designed
so that the MPTCP subflows’ paths with the highest bandwidth
and the lowest delay difference would be selected. Also, if
there exist common links among the selected paths, then the
congestion level of those common links should be considered.
We have developed a genetic algorithm that selects the paths
with these characteristics by considering the constraints given
in the optimization model in the previous section.

The main steps of the genetic algorithm are given in Algo-
rithm 1. The algorithm starts by creating an initial population
of chromosomes. In this study, a chromosome is defined as a
1xm sized vector, where m is the maximum number of the
subflows. This number depends on the number of physical
or virtual interfaces of the client. The elements of the vector
are the IDs of the paths. ith element of the vector shows the
selected path ID for the ith subflow. The number of subflows
opened for an MPTCP connection can be equal to or less
than m. The element of the vector is set to 0 for the unused
subflows.

The SDN controller has a list of all possible paths between
the client and the server. Before the generation of the initial
population, the controller sorts all paths regarding their de-
lay values. Paths with delay values exceeding the threshold
are eliminated and cannot be included as members of the
population. After this process, the controller generates the
initial population by selecting the chromosomes randomly.
Therefore, the population is the subset of all possible path set
combinations that can be selected for the MPTCP subflows of
the new client. The generation of the initial population is given
in Algorithm 2. The algorithm creates chromosomes until the
population reaches the population size. In the 5th line of the
algorithm, a new chromosome is created and the common
links of the paths of the chromosome are checked whether
the congestion level is less than the predefined threshold in
the 6th line. If this condition is held, the new chromosome is
added to the initial population.

After the population is set, the fitness values of the chromo-
somes in the current population are calculated. The algorithm

Algorithm 1: Genetic Algorithm Steps
Input: Mi: ith parent

Oi : i
th offspring

n: Population size
P ′ : the set of temporary population
Pnew : the generated new population
fp[1..n]: an array whose elements are fitness values of the

chromosomes
µ : Mutation probability

1 Pnew = generate_initial_population(n);
2 while no of generations ≤ MaxGenerationCount do
3 Pcurrent ← Pnew

4 fp, Pnew ← calculate_fitness(Pcurrent)
5 // Tournament selection:
6 while |P ′| ≤ n do
7 P ′ ← ∅
8 Mi,Mj = Randomly select two chromosomes in Pcurrent

9 if fp[Mi] ≥ fp[Mj] then
10 P ′ = P ′ ∪ Mi

11 end
12 else if fp[Mi] < fp[Mj] then
13 P ′ = P ′ ∪ Mj

14 end
15 end
16 // Two-point crossover:
17 while |Pnew| ≤ n do
18 foreach Mi ∈ P ′ & Mj ∈ P ′ do
19 Oi , Oj = twoPointCrossover(Mi, Mj);
20 Pnew = Pnew ∪ {Oi, Oj}
21 end
22 end
23 // Mutation:
24 foreach Oi ∈ Pnew do
25 Oi = Mutate (Oi) with probability µ;
26 end
27 no of generations++;
28 end

Algorithm 2: Generation of the Initial Population:
generate_initial_population

Input: n: Population size
m: max no of MPTCP subflows

Output: Pnew: new population
1 Pnew ← ∅
2 inPopCount = 0
3 while inPopCount < n do
4 //a new chromosome is created
5 c ← randomly select paths up to m
6 if checkCongestionLevelonCommonLinks(c) then
7 Pnew ← Pnew ∪ {c}
8 inPopCount++
9 end

10 end
11 Return Pnew;

used for fitness value calculation is given in Algorithm 3. The
fitness of each chromosome is calculated by using equation 7.
In the equation, ζ(.) and ξ(.) functions are given in formulas
8 and 9, respectively, which are modified versions of the
equations given in 1 and 2. In the formulas, Pc represents the
set of paths that are assigned to the client and Hp represents
the set of clients whose packets are transferred over the path p.
To align the ranges of bandwidth and delay values, the values
calculated by these functions are first normalized between 0
and 1 before they are given as the inputs for equation 7. The
fitness value is set to 0 if the congestion level of the common
links of the selected paths is higher than the threshold, which

7

Algorithm 3: Calculation of fitness values and selec-
tion of elitist members: calculate_fitness

Input: Pcurrent

Output: fp[1..n]: fitness values of the chromosomes in Pcurrent

Pnew : next population
Data: α, β : normalization values

ne: no of elitist members
P ∗ : set of elite members

1 n = |Pcurrent| \\population size
2 Pnew ← ∅
3 foreach i ∈ Pcurrent do
4 fp[i]= α.ζ(.) + β.ξ(.);
5 if checkCongestionLevelonCommonLinks(i) then
6 fp[i]= 0;
7 end
8 end
9 Psorted = Sort members ∈ Pcurrent based on fitness values

10 P ∗ ← First ne members ∈ Psorted

11 Pnew ← Pnew ∪ P ∗;
12 Return fp, Pnew;

is done between the 5th and 7th lines of Algorithm 3. The
algorithm does not only calculate the fitness values of the
chromosomes in the current population, it also selects the best
chromosomes based on the fitness value and directly adds
these best chromosomes to the next generation. This set of
chromosomes is called elitist members. The number of elitist
members is a parameter that is predefined.

α.ζ(.) + β.ξ(.) (7)

|Pc|−1∑
p=1

|Pc|∑
r=p+1

|dp − dr| (8)

|Pc|∑
p=1

abwp∑
h∈Hp

+1
(9)

Algorithm 3 calculates the fitness values of the chromo-
somes in the current population and returns to the next
population that is initially filled with elitist members.

The next generation construction process continues with the
Tournament selection method in Algorithm 1. In this method,
a subset of the chromosomes is selected randomly, and the
members of that set compete with each other by comparing
the fitness values. This method is run between the 6th and 14th

lines in the algorithm. The ones with better fitness values will
become parents of the next generation.

3 4 8

12 1 9

3 1 8

12 4 9

Parents Children

Chromosome 1

Chromosome 2

Fig. 2: Two Point Crossover Method

After selecting the parents with the Tournament selection
method, a crossover operation is implemented over the selected

pair of chromosomes. For crossover operation, the Two-point
crossover method is applied. In this method, two points
are selected from the parent chromosomes and the genes in
between these two points are swapped. This operation is shown
in Fig. 2. In the scenario given in the figure, the second
genes of both parents are swapped and two different offspring,
i.e. children, are obtained. Two-point crossover method is run
between the 16th and 22nd lines in Algorithm 1.

3 1 8 3 0 8Offspring 1
Offspring 1

after
Mutation

Fig. 3: Mutation Operation

The next stage is mutation. Finding good chromosomes is
the most important purpose in the whole process and the muta-
tion operation helps expand the search area by generating new
chromosomes. At this stage, the genes of the chromosomes
are modified with a probability value. In the scenario given
in Fig. 3, the second gene of the first offspring is mutated.
The fitness function values are calculated for the mutated
chromosomes. At the end of this stage, the chromosomes
having the highest fitness values are selected as the members
of the new generation.

The genetic algorithm continues to run and executes these
stages in each round until it reaches the generation number
limit.

The entire framework developed for this study has been
shared for public access on Zenodo.1 All software developed
and utilized in this study, including the genetic algorithm code,
tools for constructing the SDN environment and Industrial
DASH, and Mininet Python scripts, are available on the
project’s Zenodo page.

IV. PERFORMANCE EVALUATION

In this section, we provide the performance evaluation of
the proposed approach. First, we describe the emulation setup
and then analyze the evaluation results.

A. Evaluation Setup

1) Path Selection Algorithms: To evaluate the performance,
we have conducted various experiments over the Mininet envi-
ronment [41]. Mininet is an emulation platform that provides
the infrastructure to emulate topologies and physical network
components and to implement SDN-based approaches. The
Floodlight SDN controller2, which is an open-source con-
troller, was deployed to manage the network and provides
routing of the packets based on rules of the selected paths
by programming OpenFlow-enabled switches.

A HAS application is selected as the video streaming
application to evaluate the performance. Industry DASH has
been used as the HAS client to stream the video3. The server
sends Big Buck Bunny as the video content which has four

1https://zenodo.org/records/11205757
2https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
3https://github.com/Dash-Industry-Forum/dash.js

8

different qualities with an average bitrate of 1500 Kbps, 2000
Kbps, 2500 Kbps, and 2600 Kbps. The duration of the video
is 9 minutes.

The experiments are conducted over three different topolo-
gies. The first topology is from the Internet Topology Zoo 4, in
which real-world topologies can be found. The CompuServe
network topology is mainly used by ISPs. This topology
consists of 11 switches representing the states of the United
States of America and 14 links to connect them. As the second
topology, we used the topology given in [25], which is also
implemented as a comparison study. This custom topology
contains 12 switches and 19 links to connect them. As the
last topology, we deployed a well-known data-center topology,
Jellyfish [42]. This topology is a combination of 20 switches
with four degrees, which are connected randomly. In the
topologies, all switches are OpenFlow-enabled and connected
to the SDN controller. Servers and clients in these setups have
three interfaces for Internet connectivity. In the real world,
these connections can be wired or wireless, utilizing LTE and
WiFi, or employing dual-stacked WiFi supporting IPv4/IPv6.
Additionally, multiple SIM cards on a mobile phone can facili-
tate connectivity. Furthermore, opening more than one MPTCP
connection is achievable by utilizing virtualized interfaces
within a virtual machine.

In the conducted experiments, four sets of bandwidth values
were employed across three distinct topologies to evaluate
the performance of path selection algorithms under varying
conditions. It is noteworthy that bandwidth values underwent
dynamic fluctuations throughout the experiments due to the
inherent dynamism of DASH traffic and the presence of
competing flows on shared links. In the initial test scenario, the
bandwidth values of the paths are theoretically enough to send
the video with the highest bitrate to each client. Five MPTCP
clients joined the network every 4 seconds. In the second test
scenario, the number of MPTCP clients was increased to ten,
with a slight reduction in path bandwidth, thereby prompting
clients to contend for packets transmitting the video with the
highest bitrate. The third test environment accommodated 20
MPTCP clients, alongside intentionally constrained bandwidth
values on links to foster network congestion and heterogeneity.
Finally, in the fourth test scenario, the number of MPTCP
clients increased to 30 while bandwidth values were drastically
limited, with a larger standard deviation. This was done to
observe the path selection algorithms’ behavior in a signifi-
cantly congested and heterogeneous network. The average of
the bandwidth value of the CompuServe, Custom, and Jellyfish
for all client groups is given in Table I. Note that, these values
represent the bandwidth of the links in the topologies. The
bandwidth of end-to-end paths for subflows may deviate based
on the bandwidth of selected paths. The Standard Deviation
of the links of all three topologies and the client groups are
given in Table II. In all test environments, the delay value of
the links varies between 10 ms to 100 ms. Both delay and
bandwidth values are distributed using a Poisson distribution.

To provide comparable performance results, four different
path selection approaches were implemented, and experiments

4http://www.topology-zoo.org/dataset.html

TABLE I: Average Bandwidth Values of the Links in Three
Topologies (in Mbps)

Average CompuServe Custom JellyFish

5 Clients 7.33 6.7 6.91

10 Clients 13.06 14.09 13.7

20 Clients 21.64 20.38 19.38

30 Clients 23.21 20.12 21.16

TABLE II: Standard Deviation Values of the Link Bandwidth
in Three Topologies

Average CompuServe Custom JellyFish

5 Clients 2.46 2.5 2.16

10 Clients 6.42 6.12 5.98

20 Clients 7.76 6.87 7.77

30 Clients 12.99 10.35 13.03

were conducted over the same network topologies and condi-
tions. Since three path selection features were considered in
the proposed approach, studies considering a combination of
those features were implemented for comparison:

• Partially Disjoint Bandwidth-based: As proposed in
[15], the algorithm assigns paths to a client by taking
into account the maximum available bandwidth in this
study. Another goal addressed in this approach is the use
of partially disjoint paths, which is also applied in the
proposed genetic algorithm. Once a path is assigned to
one of the subflows of a client, the other subflows do
not use the links of the same path unless the bandwidth
capacity of the links of the selected path is greater than
a predefined value.

• Partially Disjoint Delay-based: In this comparison
study [14], the algorithm calculates the total end-to-end
delay of all paths. When a client connects to the network,
the algorithm assigns a path with the lowest latency. The
algorithm uses links from the initially selected path for
the other paths only if the links have a latency lower than
the predefined value.

• Fully Disjoint Bandwidth-based: In [25], the algorithm
selects paths for the client subflows based on the max-
imum available bandwidth. However, to select paths, it
uses a fully disjoint strategy. Consequently, once the
algorithm specifies a path for a particular client, links
used in that path cannot be used for other subflows of
that client. Since this approach prioritizes the bandwidth,
paths with high bandwidth but also high delay could lead
to performance degradation. To overcome this issue, the
algorithm determines the paths with high delay values by
comparing the delay of each path with the average delay.
The paths with high values are then deleted from the list
of available paths to be assigned.

• Fully Disjoint Delay-based: Delay differences of the
paths are taken into account in this comparison
study [26]. The main purpose of this approach is to
choose fully disjoint paths while minimizing the end-to-
end delay difference. The major concern with this ap-
proach is choosing paths with high end-to-end delays, as

9

only the difference in latency of the paths is considered.
To avoid this situation, an upper bound is assumed for
the end-to-end delay of the paths.

In the experiments, the mutation rate is set to 0.25 in the
genetic algorithm. The number of generations is 30.

2) MPTCP Scheduler and Buffer Size: There are additional
criteria that have an impact on QoE, such as the type of
scheduler and the buffer size value on the client side. Although
these criteria fall outside the scope of this study, we have
conducted several tests to enhance the comprehensiveness
of the research. The primary goal is to illustrate that the
performance enhancement provided by the proposed path
selection algorithm remains consistent regardless of the setting
on the client side. To validate this claim, we have performed
tests with three different buffer sizes as lower, default, and
higher values which are 125 KB, 256 KB, and 512 KB
respectively. The default MPTCP scheduler, implemented by
using Linux kernel version 5.15.0-105-generic in the Ubuntu
20.04 operating system is based on RTT measurements of the
subflows and is called minRTT. It schedules the segment to
be sent over the subflow with the lowest RTT. The subflow
having the lowest RTT can change over time due to the
change of available spaces in their congestion windows. The
other scheduler used in the experiments is DAPS, which, as
mentioned in the previous sections, aims to maximize in-order
segment reception at the destination. It focuses on the efficient
use of the MPTCP receive buffer to minimize HoL blocking,
rather than reducing latency.

B. Evaluation Results
1) Experiments with default scheduler and buffer size:

To evaluate the performance of each approach, the QoE
metrics that are collected from each experiment are the average
received bitrate, the average number of quality switches, and
the average duration of the outages. The average received
bitrate is the average bitrate of the video played by the clients.
The number of quality switches is calculated by summing the
quality differences between consecutive requests. Experiments
were repeated ten times for each network configuration. Aver-
aged values are presented in the graphs, where the confidence
interval is 0.95. The minRTT scheduler was used as the default
scheduler while the default value of the buffer size was 256
KB. To highlight the impact of path selection on throughput,
we conducted tests using MPTCP without implementing any
path selection mechanism at first.

In these initial experiments, tests were executed with 5
clients on the CompuServe topology, with paths having the
average bandwidth and standard deviation given in Table I
and II. In the experiments, the clients played the video with
the lowest quality, where the average received bitrate was
1728 Kbps. The average number of video quality switches
experienced by the clients was 7, while clients experienced
4 seconds of outage duration on average. Subsequent tests
employing various path selection approaches highlight the
significance of an appropriate path selection algorithm in
enhancing received throughput.

After observing the performance of MPTCP without using
any path selection on the network layer, we conducted tests

1400

1600

1800

2000

2200

2400

2600

2800

5 Clients 10 Clients 20 Clients 30 ClientsA
ve

ra
ge

 R
ec

e
iv

e
d

 V
id

eo
 B

it
ra

te

(K
b

p
s)

Genetic Algorithm Based Partially Disjoint Bandwidth Based

Partially Disjoint Delay Based Fully Disjoint Bandwidth Based

Fully Disjoint Delay Based

(a) CompuServe Topology

1400

1600

1800

2000

2200

2400

2600

2800

5 Clients 10 Clients 20 Clients 30 ClientsA
ve

ra
ge

 R
ec

ei
ve

d
 V

id
eo

 B
it

ra
te

(K

b
p

s)

Genetic Algorithm Based Partially Disjoint Bandwidth Based

Partially Disjoint Delay Based Fully Disjoint Bandwidth Based

Fully Disjoint Delay Based

(b) Custom Topology

1400

1600

1800

2000

2200

2400

2600

2800

5 Clients 10 Clients 20 Clients 30 ClientsA
ve

ra
ge

 R
ec

e
iv

e
d

 V
id

eo
 B

it
ra

te

(K
b

p
s)

Genetic Algorithm Based Partially Disjoint Bandwidth Based

Partially Disjoint Delay Based Fully Disjoint Bandwidth Based

Fully Disjoint Delay Based

(c) Jellyfish Topology

Fig. 4: Average Received Video Bitrate

with various path selection algorithms and multiple clients.
Fig. 4a, 4b, and 4c show the average received video bitrate
of five, ten, twenty, and thirty clients where the network
conditions change in each setting as previously described.

As depicted in the figures, our proposed approach consis-
tently provides clients with higher bitrates across all scenarios.
The clients utilizing our approach can play the video at a
moderate rate even under the most adverse network conditions
among the tested scenarios. Upon closer examination of per-
formance, it becomes evident that path selection approaches
considering delay values or differences are less adversely

10

impacted by deteriorating network conditions, particularly
notable in the CompuServe and Jellyfish topologies. Another
observation that we got from these experiments is that the
path approaches have the second-best performance in terms
of received bitrate changes as the topology and/or the number
of clients change.

As the number of clients increases, network conditions be-
come increasingly constrained, posing challenges in delivering
video packets. Despite variations in the performance of dif-
ferent path selection algorithms arising from diverse network
conditions and topology characteristics, the genetic algorithm
consistently outperforms other approaches across all client
sets and topologies. Clients utilizing the genetic algorithm-
based path selection stream the video at rates ranging from
2200 Kbps to 2600 Kbps. This observation highlights the
importance of considering all three path selection criteria to
obtain higher quality in terms of received video bitrate.

Fig. 5a, 5b, and 5c represents the average number of quality
switches observed in the experiments done with different
numbers of clients. The figures clearly illustrate that the
clients experience a lower number of quality changes with the
proposed approach using the genetic algorithm in comparison
to other approaches.

The clients adjust the quality to either reduce the duration
of outages or to enhance video quality when sufficient data is
available in their buffer. Across all three topologies, clients uti-
lizing fully disjoint bandwidth-based and fully disjoint delay-
based approaches experience more than 35 quality switches to
minimize outage duration or enhance quality. Meanwhile, the
clients using the genetic algorithm-based approach experience
29 quality switches at most in all topologies. This demon-
strates that clients can decrease the duration of outages and
optimize video quality with fewer quality switches, thanks to
our path selection approach. In the CompuServe and Jellyfish
topologies, we note a declining trend for most applications
as the number of clients increases. This trend indicates that
clients predominantly stream video content at lower quality
levels, with fewer attempts to enhance quality slightly. In other
words, in congested networks where the number of quality
switches is reduced, clients may become stuck at the lowest
quality level. However, this pattern does not hold for our
approach. As evidenced by the bitrate graphs, our approach
enables clients to stream video content at higher quality levels
despite experiencing fewer quality switches.

The duration of outages observed for all client sets are given
in Figures 6a, 6b, and 6c. The duration of outage is a critical
factor that affects user experience and primarily impacts
perceived quality negatively. Our proposed genetic algorithm
approach consistently outperformed the other path selection
approaches in all three network topologies. The duration of
outages observed in comparative studies has increased up to
four times the value observed in the proposed approach in
some scenarios as seen in the test results conducted on the
CompuServe topology, where there were 5 clients. Conversely,
the performance of comparative approaches varies across
different topologies. Clients utilizing the partially disjoint
bandwidth-based approach encounter the longest duration of
outages in CompuServe and Jellyfish topologies, whereas

0

5

10

15

20

25

30

35

40

45

50

5 Clients 10 Clients 20 Clients 30 Clients

N
u

m
b

er
 o

f
Q

u
al

it
y

Sw
it

ch
es

Genetic Algorithm
Based

Partially Disjoint
Bandwidth Based

Partially Disjoint Delay
Based

Fully Disjoint
Bandwidth Based

Fully Disjoint Delay
Based

(a) CompuServe Topology

0

5

10

15

20

25

30

35

40

45

50

5 Clients 10 Clients 20 Clients 30 Clients

N
u

m
b

er
 o

f
Q

u
al

it
y

Sw
it

ch
es

Genetic Algorithm
Based

Partially Disjoint
Bandwidth Based

Partially Disjoint
Delay Based

Fully Disjoint
Bandwidth Based

Fully Disjoint Delay
Based

(b) Custom Topology

0

5

10

15

20

25

30

35

40

45

50

5 Clients 10 Clients 20 Clients 30 Clients

N
u

m
b

er
 o

f
Q

u
al

it
y

Sw
it

ch
es Genetic Algorithm

Based

Partially Disjoint
Bandwidth Based

Partially Disjoint
Delay Based

Fully Disjoint
Bandwidth Based

Fully Disjoint Delay
Based

(c) Jellyfish Topology

Fig. 5: Average Number of Quality Switches

those employing the partially disjoint delay-based approach
experience the longest outages in the Custom topology.

The main reason is that these two approaches consider one
parameter solely, bandwidth or delay, and this might cause the
selected paths to be good in terms of bandwidth (delay) and
bad in terms of delay (bandwidth). The fully disjoint delay-
based approach does not consider the bandwidth values of the
paths. However, this approach focuses on delay differences
among the paths rather than end-to-end delay values of the
paths. In addition, the fully disjoint bandwidth-based approach
eliminates the paths with a delay higher than a threshold. Even

11

0

5

10

15

20

25

30

35

40

45

5 Clients 10 Clients 20 Clients 30 Clients

D
u

ra
ti

o
n

 o
f

O
u

ta
ge

s
(s

e
c)

Genetic Algorithm Based Partially Disjoint Bandwidth Based

Partially Disjoint Delay Based Fully Disjoint Bandwidth Based

Fully Disjoint Delay Based

(a) CompuServe Topology

0

5

10

15

20

25

30

35

40

45

5 Clients 10 Clients 20 Clients 30 Clients

D
u

ra
ti

o
n

 o
f

O
u

ta
ge

s
(s

e
c)

Genetic Algorithm Based Partially Disjoint Bandwidth Based

Partially Disjoint Delay Based Fully Disjoint Bandwidth Based

Fully Disjoint Delay Based

(b) Custom Topology

0

5

10

15

20

25

30

35

40

45

5 Clients 10 Clients 20 Clients 30 Clients

D
u

ra
ti

o
n

 o
f

O
u

ta
ge

s
(s

ec
)

Genetic Algorithm Based Partially Disjoint Bandwidth Based

Partially Disjoint Delay Based Fully Disjoint Bandwidth Based

Fully Disjoint Delay Based

(c) Jellyfish Topology

Fig. 6: Average Duration of Outages

this simple approach helps reduce the duration of outages.
The fully disjoint bandwidth-based approach has performed
better in terms of the duration of outages where the network
conditions are good. However, the limitation in the bandwidth
negatively affects the performance of this approach due to the
restriction on the use of common links. These results verify
that (i) delay differences have more impact compared to delay
values of the paths, (ii) Considering more than one parameter
has a positive impact on minimization of the duration of
outages, (iii) if common links are not used in the set of paths,
the outage of duration might increase when the bandwidth is

limited, due to the inefficient utilization of the resources.
We also conducted tests considering a scenario where the

bandwidth increases as the number of clients in the system
increases. The obtained results were similar to those observed
in the scenario with 5 clients. We omitted the graphs related to
these experiments here to increase readability. However, inter-
ested readers can access the results of the related experiments
on the Zenodo page of the study. 5

2) Experiments with Different Schedulers and Buffer Sizes:
Another set of experiments was conducted to assess the impact
of different schedulers and buffer sizes on the performance of
the path selection algorithms. The objective of this section
is to provide a more insightful conclusion regarding the
performance of the proposed path selection algorithm. We aim
to determine whether the achieved performance gain can be
replicated through the utilization of an improved scheduler.
Consequently, we can gain a deeper understanding of the
contributions of the path selection algorithms at the network
layer.

To accomplish this, we conducted experiments, comparing
results with both the DAPS scheduler and the default sched-
uler. The experiments were carried out using buffer sizes set
to 125 KB, 256 KB, and 512 KB within the CompuServe
topology. The bandwidth values are distributed so that if two
paths are assigned to a client, it enables the client to download
the video at approximately the highest quality available.

Fig. 7a and 7b show the average received video bitrate for
30 clients in the CompuServe topology. In the given network
setting, the average received video bitrate with the DAPS
scheduler is slightly better than with the default scheduler. The
positive impact of the DAPS scheduler on the bitrates is similar
across different path selection algorithms. DAPS effectively
addresses the HoL blocking problem compared to the default
scheduler. However, the average received video bitrate alone
does not fully capture the significance of this positive impact.
The reason is the greedy nature of HAS client software that
leads the clients to download the highest possible quality under
throughput constraints on the client side. Therefore, clients
maximize video quality with both schedulers, with slightly
higher values observed with DAPS due to its throughput
improvement.

Fig. 8a, 8b represent the average number of quality switches
observed at the clients with the given setting. The number
of quality switches is a QoE parameter, which is primarily
influenced by changes in network conditions. Our observations
reveal that the DAPS scheduler significantly reduces these
switches by prioritizing in-order reception, particularly ben-
efiting path selection algorithms focused solely on delay, such
as the partially disjoint delay-based approach. On average,
we observed a 27.6% decrease in quality switches with this
approach, compared to a 12% decrease with other strategies.
This result highlights the persistence of HoL blocking issues,
even when paths with low delay are selected. The lowest
quality switching values are observed with the partially dis-
joint bandwidth based on the default scheduler. This can be
attributed to its overall limited performance in terms of video

5https://zenodo.org/records/11209566

12

1400

1600

1800

2000

2200

2400

2600

2800

125 KB 256 KB 512 KBA
ve

ra
ge

 R
ec

e
iv

ed
V

id
eo

 B
it

ra
te

(K
b

p
s)

Genetic Algorithm Based Partially Disjoint Bandwidth Based

Partially Disjoint Delay Based Fully Disjoint Bandwidth Based

Fully Disjoint Delay Based

(a) CompuServe Topology, Default Scheduler

1400

1600

1800

2000

2200

2400

2600

2800

125 KB 256 KB 512 KB

A
ve

ra
ge

 R
ec

ei
ve

d
 V

id
eo

 B
it

ra
te

(K
b

p
s)

Genetic Algorithm Based Partially Disjoint Bandwidth Based

Partially Disjoint Delay Based Fully Disjoint Bandwidth Based

Fully Disjoint Delay Based

(b) CompuServe Topology, DAPS Scheduler

Fig. 7: Average Received Video Bitrate

quality and duration of outages, resulting in fewer quality
switches due to consistently low-quality video delivery.

The average duration of outage for the clients for all network
settings is given in Fig. 9a, 9b. Because the DAPS scheduler
focuses on the in-order reception of segments, its effectiveness
is enhanced when coupled with path selection algorithms that
consider delay values. We observed a significant performance
improvement in partially disjoint delay-based and fully disjoint
delay-based approaches, with an average decrease of 11%. On
the other hand, the use of the DAPS schedule does not improve
the performance in terms of the duration of outage for the
bandwidth-based applications.

The graphs clearly illustrate that the genetic algorithm-based
path selection algorithm outperforms other path selection
approaches in the experiments conducted with both the default
and DAPS schedulers across different buffer sizes. However,
these experiments provide additional insights by demonstrating
how different schedulers can impact various QoE parameters
differently. Several innovative schedulers proposed in the liter-
ature aim to mitigate the HoL blocking issue on heterogeneous
paths and improve goodput.

We anticipate that incorporating these various schedulers
could enhance the performance of our path selection algorithm.
For instance, BLEST reduces the number of retransmissions
compared to the default scheduler, thanks to its unique block-
ing prediction mechanism. Another consideration is the use

0

5

10

15

20

25

30

35

40

45

125 KB 256 KB 512 KB

N
u

m
b

er
 o

f
Q

u
al

it
y

Sw
it

ch
es

Genetic Algorithm Based Partially Disjoint Bandwidth Based

Partially Disjoint Delay Based Fully Disjoint Bandwidth Based

Fully Disjoint Delay Based

(a) CompuServe Topology, Default Scheduler

0

5

10

15

20

25

30

35

40

45

125 KB 256 KB 512 KB
N

u
m

b
er

 o
f

Q
u

al
it

y
Sw

it
ch

es

Genetic Algorithm Based Partially Disjoint Bandwidth Based

Partially Disjoint Delay Based Fully Disjoint Bandwidth Based

Fully Disjoint Delay Based

(b) CompuServe Topology, DAPS Scheduler

Fig. 8: Average Number of Quality Switches

of ECF. With its notable approach prioritizing the earliest
expected completion, ECF facilitates faster data transmission.
We expect that the incorporation of BLEST, ECF, or a similar
scheduler would contribute to a decrease in the number of
quality switches and duration of outages, given their antici-
pated ability to provide faster transmission and higher goodput.
This expectation holds, especially for path approaches that
consider the delay differences of the paths. The examination
of the comparative test results leads us to the following
conclusion: While recognizing the impact of the scheduler and
buffer size on QoE parameters, the correlation between the
performances of different path selection algorithms remains
unaffected.

In this study, the whole network setup including the genetic
algorithm, SDN network, Mininet, and video clients was
implemented on a machine with the Intel® Core™ i7-10750H
processor and 16.0 GB Random Access Memory (RAM).
The total number of paths varies in the topologies used in
the experiments. Therefore, the running time of the genetic
algorithm differs for each topology.

In the experiments, we utilized different population sizes,
taking into account the scale of the respective network topol-
ogy. Specifically, the population sizes for the Custom, Com-
puServe, and Jellyfish topologies were set to 28, 150, and 300,
respectively.

We evaluated the impact of different population sizes on

13

0

2

4

6

8

10

12

125 KB 256 KB 512 KB

D
u

ra
ti

o
n

 o
f

O
u

ta
ge

s
(s

ec
)

Genetic Algorithm Based Partially Disjoint Bandwidth Based

Partially Disjoint Delay Based Fully Disjoint Bandwidth Based

Fully Disjoint Delay Based

(a) CompuServe Topology, Default Scheduler

0

2

4

6

8

10

12

125 KB 256 KB 512 KB

D
u

ra
ti

o
n

 o
f

O
u

ta
ge

s
(s

e
c)

Genetic Algorithm Based Partially Disjoint Bandwidth Based

Partially Disjoint Delay Based Fully Disjoint Bandwidth Based

Fully Disjoint Delay Based

(b) CompuServe Topology, DAPS Scheduler

Fig. 9: Average Duration of Outages

execution time by running the genetic algorithm and recording
the corresponding running times. Fig. 10 illustrates the execu-
tion time of the proposed genetic algorithm across various
population sizes. The graph illustrates that the algorithm’s
running time varied from 0.5 seconds to 2.46 seconds across
the different network topologies used in the experiments.

The observed running time of the genetic algorithm proved
sufficient for conducting the experiments within our hardware
limitations. These findings demonstrate that the proposed
approach can yield results even under time constraints im-
posed by real-time system requirements, particularly when
more powerful servers are employed to execute the genetic
algorithm.

V. CONCLUSION

MPTCP is a promising protocol for increasing the per-
formance of the video streaming application via extended
throughput thanks to the use of multiple paths. However,
selecting paths for MPTCP subflows is crucial, as the QoE
significantly depends on path characteristics.

In this study, we proposed a path selection algorithm for
MPTCP subflows by utilizing SDN. The criteria that were
considered in the selection of the paths are the bandwidth
of the paths, delay differences among the subflows, and the
congestion level of the common links used by the subflows.
The SDN controller uses a genetic algorithm to select paths.

0.73

1.13

1.67

2.46
2.72

2.97
3.12

3.34
3.55

3.73

4.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

50 100 200 300 400 500 600 700 800 900 1000

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
)

Population Size

Fig. 10: The run-time performance with various population
sizes

As mentioned in previous sections, the experiments con-
ducted in this study were performed using the Mininet net-
work emulator on a system with limited processor and RAM
capacity. Although Mininet offers a scalable and flexible
environment, the capabilities of the host machine influence
the performance of the emulator. Therefore, we conducted
tests with a maximum of 30 nodes, considering the hardware
limitations.

The evaluation of the proposed approach is done by compar-
ing various path selection approaches that consider different
criteria. To evaluate, we measure the QoE of the HAS ap-
plication. The observed QoE parameters show that the delay
differences among the MPTCP subflows might be as crucial
as the bandwidth values of those paths. We observe that delay
differences of the paths have a more negative impact than delay
to the outage of durations and average received video bitrate.
The main reason is that the video streaming applications that
implement adaptive quality changes are highly sensitive to the
jitter of the packets that arrive at the client. Different observed
latency values lead to fluctuations in throughput calculations,
which is critical in the determination of the selected qualities.
The wrong decisions about selected qualities might increase
the duration of outages.

Although considering the delay differences of the paths
provided to enhance the several QoE metrics as the fully
disjoint delay-based approach, we observe that the number
of quality changes was the highest with that approach. This
is another observation that emphasizes the importance of
considering bandwidth and the use of partially disjoint paths,
to provide improvement in all QoE metrics.

The proposed genetic algorithm-based approach considers
two important path selection criteria, bandwidth and delay
differences as well as congestion level of common links.
It returns the output without affecting negatively any QoE
parameters. The experimental results show that the proposed
algorithm provides an improvement in all QoE parameters.

It is worth mentioning that there are factors on the client
side that are effective on the overall throughput. The network
scheduler and the buffer size are two crucial criteria on the
client side that we have considered in further evaluations. The
preliminary results observed by using two different schedulers

14

and three different buffer sizes indicate that even with good
network conditions, there is still room to enhance overall QoE
with an improved scheduler. These results also show that,
even with the use of a scheduler focusing on diminishing the
HoL blocking effect, our proposed path selection algorithm’s
performance improvement remains consistent compared to
other path selection algorithms. However, this work introduces
a new research direction, evaluating path selection algorithms
alongside various schedulers and considering scheduler design
in path selection algorithms. We leave this as a future work.

In future work, we plan to consider the effects of MPTCP
schedulers on QoE. This will involve enhancing our genetic
algorithm to jointly consider path and scheduler characteristics
in path selection at the network layer. Another interesting
problem that we plan to work on in the future is the effects
of the delay between the switches and the controller for
various path selection algorithms. We also plan to enhance
our work by considering different types of devices such as
TV, desktop, and mobile to select the paths concerning the
rendering capabilities of different devices. To evaluate the
performance of the proposed approach, we plan to expand
our research to encompass various network architectures and
conditions, including scenarios with multiple servers, dynamic
client patterns, and heterogeneous access networks. Such high
dynamism necessitates the rerouting of subflow paths, which
presents a distinct and intriguing challenge. While event-based
or periodic execution of the genetic algorithm is feasible,
determining the optimal frequency requires careful considera-
tion of the communication overhead on both northbound and
southbound APIs. To ensure scalability for a large number of
clients and a highly dynamic network, we also aim to develop
a distributed implementation of the proposed path selection
algorithm, enabling it to operate across multiple servers.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to
the anonymous reviewers and editor in chief for the construc-
tive review process that has helped improve the quality of the
manuscript. The authors would also like to thank Dr. Chi-Dung
Phung from Cnam and Dr. Stuart Clayman from University
College London (UCL) for their valuable discussions.

REFERENCES

[1] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “Tcp extensions
for multipath operation with multiple addresses,” Tech. Rep., 2013.

[2] P. Hurtig, K.-J. Grinnemo, A. Brunstrom, S. Ferlin, Ö. Alay, and
N. Kuhn, “Low-latency scheduling in mptcp,” IEEE/ACM Transactions
on Networking, vol. 27, no. 1, pp. 302–315, 2019.

[3] K. Herguner, R. S. Kalan, C. Cetinkaya, and M. Sayit, “Towards
qos-aware routing for dash utilizing mptcp over sdn,” in 2017 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2017, pp. 1–6.

[4] M. Sayit, E. Karayer, C.-D. Phung, S. Secci, and S. Boumerdassi,
“Numerical evaluation of mptcp schedulers in terms of throughput and
reliability,” in 2019 11th International Workshop on Resilient Networks
Design and Modeling (RNDM), 2019, pp. 1–6.

[5] Y.-s. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “Ecf: An mptcp
path scheduler to manage heterogeneous paths,” in Proceedings of the
13th international conference on emerging networking experiments and
technologies, 2017, pp. 147–159.

[6] M. Noormohammadpour and C. S. Raghavendra, “Datacenter traffic
control: Understanding techniques and tradeoffs,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 2, pp. 1492–1525, 2018.

[7] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath tcp schedulers,” in Proceedings of the 2014 ACM
SIGCOMM workshop on Capacity sharing workshop, 2014, pp. 27–32.

[8] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith, “Mitigating
receiver’s buffer blocking by delay aware packet scheduling in multipath
data transfer,” in 2013 27th international conference on advanced
information networking and applications workshops. IEEE, 2013, pp.
1119–1124.

[9] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “Blest: Blocking
estimation-based mptcp scheduler for heterogeneous networks,” in 2016
IFIP networking conference (IFIP networking) and workshops. IEEE,
2016, pp. 431–439.

[10] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan, “Mp-dash: Adaptive video
streaming over preference-aware multipath,” in Proceedings of the 12th
International on Conference on emerging Networking EXperiments and
Technologies, 2016, pp. 129–143.

[11] B. Y. L. Kimura, D. C. S. F. Lima, and A. A. F. Loureiro, “Packet
scheduling in multipath tcp: Fundamentals, lessons, and opportunities,”
IEEE Systems Journal, vol. 15, no. 1, pp. 1445–1457, 2021.

[12] B.-H. Oh and J. Lee, “Constraint-based proactive scheduling for mptcp
in wireless networks,” Computer Networks, vol. 91, pp. 548–563, 2015.

[13] M. Sandri, A. Silva, L. A. Rocha, and F. L. Verdi, “On the benefits of
using multipath tcp and openflow in shared bottlenecks,” in 2015 IEEE
29th International Conference on Advanced Information Networking and
Applications. IEEE, 2015, pp. 9–16.

[14] A. A. Barakabitze, L. Sun, I.-H. Mkwawa, and E. Ifeachor, “A novel
qoe-centric sdn-based multipath routing approach for multimedia ser-
vices over 5g networks,” in 2018 IEEE International Conference on
Communications (ICC). IEEE, 2018, pp. 1–7.

[15] Z. Jiang, Q. Wu, H. Li, and J. Wu, “scmptcp: Sdn cooperated multipath
transfer for satellite network with load awareness,” IEEE Access, vol. 6,
pp. 19 823–19 832, 2018.

[16] J. Duan, Z. Wang, and C. Wu, “Responsive multipath tcp in sdn-based
datacenters,” in 2015 IEEE International Conference on Communica-
tions (ICC). IEEE, 2015, pp. 5296–5301.

[17] A. Hussein, I. H. Elhajj, A. Chehab, and A. Kayssi, “Sdn for mptcp: An
enhanced architecture for large data transfers in datacenters,” in 2017
IEEE International Conference on Communications (ICC). IEEE, 2017,
pp. 1–7.

[18] S. Tariq and M. Bassiouni, “Qamo-sdn: Qos aware multipath tcp for
software defined optical networks,” in 2015 12th Annual IEEE Consumer
Communications and Networking Conference (CCNC). IEEE, 2015, pp.
485–491.

[19] T. Zhang, S. Zhao, and B. Cheng, “Multipath routing and mptcp-based
data delivery over manets,” IEEE Access, vol. 8, pp. 32 652–32 673,
2020.

[20] H. Nam, D. Calin, and H. Schulzrinne, “Towards dynamic mptcp path
control using sdn,” in 2016 IEEE NetSoft Conference and Workshops
(NetSoft). IEEE, 2016, pp. 286–294.

[21] M. Morawski and P. Ignaciuk, “A price to pay for increased throughput
in mptcp transmission of video streams,” in 2020 24th International
Conference on System Theory, Control and Computing (ICSTCC), 2020,
pp. 673–678.

[22] N. Kukreja, G. Maier, R. Alvizu, and A. Pattavina, “Sdn based auto-
mated testbed for evaluating multipath tcp,” in 2016 IEEE International
Conference on Communications Workshops (ICC). IEEE, 2016, pp.
718–723.

[23] K. D. Joshi and K. Kataoka, “Sfo: Subflow optimizer for mptcp in
sdn,” in 2016 26th International Telecommunication Networks and
Applications Conference (ITNAC). IEEE, 2016, pp. 173–178.

[24] S. Zannettou, M. Sirivianos, and F. Papadopoulos, “Exploiting path
diversity in datacenters using mptcp-aware sdn,” in IEEE Symposium
on Computers and Communication (ISCC). IEEE, 2016, pp. 539–546.

[25] K. Gao, C. Xu, J. Qin, S. Yang, L. Zhong, and G.-M. Muntean, “Qos-
driven path selection for mptcp: A scalable sdn-assisted approach,”
in 2019 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2019, pp. 1–6.

[26] R. Alvizu, G. Maier, M. Tornatore, and M. Pióro, “Differential delay
constrained multipath routing for sdn and optical networks,” Electronic
Notes in Discrete Mathematics, vol. 52, pp. 277–284, 2016.

[27] C.-D. Phung, M. Coudron, and S. Secci, “Internet acceleration with
lisp traffic engineering and multipath tcp,” in 2018 21st Conference on
Innovation in Clouds, Internet and Networks and Workshops (ICIN),
2018, pp. 1–8.

15

[28] O. Abdoun and J. Abouchabaka, “A comparative study of adaptive
crossover operators for genetic algorithms to resolve the traveling
salesman problem,” arXiv preprint arXiv:1203.3097, 2012.

[29] C. H. Benet, A. Kassler, and E. Zola, “Predicting expected tcp through-
put using genetic algorithm,” Computer Networks, vol. 108, pp. 307–322,
2016.

[30] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm:
past, present, and future,” Multimedia Tools and Applications, vol. 80,
no. 5, pp. 8091–8126, 2021.

[31] H. Li, Y. Wang, R. Sun, S. Guo, and H. Wang, “Delay-based congestion
control for multipath tcp in heterogeneous wireless networks,” in 2019
IEEE Wireless Communications and Networking Conference Workshop
(WCNCW). IEEE, 2019, pp. 1–6.

[32] P. Cespedes-Sanchez, B. Maluff, D. P. Pinto-Roa, and H. Legal-Ayala,
“Hybrid incremental deployment of hsdn devices,” IEEE Transactions
on Network and Service Management, pp. 1–1, 2021.

[33] E. Karayer and M. Sayit, “A path selection approach with genetic
algorithm for p2p video streaming systems,” Multimedia Tools and
Applications, vol. 75, no. 23, pp. 16 039–16 057, 2016.

[34] L. H. G. Ferraz, D. M. F. Mattos, and O. C. M. B. Duarte, “A two-
phase multipathing scheme based on genetic algorithm for data center
networking,” in 2014 IEEE Global Communications Conference. IEEE,
2014, pp. 2270–2275.

[35] T. Lu and J. Zhu, “A genetic algorithm for finding a path subject to two
constraints,” Applied Soft Computing, vol. 13, no. 2, pp. 891–898, 2013.

[36] N. Thamaraikannan and S. Kamalraj, “Utilization of compact genetic
algorithm for optimal shortest path selection to improve the throughput
in mobile ad-hoc networks,” Cluster Computing, vol. 22, no. 2, pp.
3715–3726, 2019.

[37] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing
and implementing a deployable multipath {TCP},” in 9th USENIX
symposium on networked systems design and implementation (NSDI 12),
2012, pp. 399–412.

[38] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “Tcp extensions
for multipath operation with multiple addresses,” Tech. Rep., 2013.

[39] S. Kamath, A. Srivastava, P. Kamath, S. Singh, and M. S. Kumar, “Ap-
plication aware multiple constraint optimal paths for transport network
using sdn,” IEEE Transactions on Network and Service Management,
vol. 18, no. 4, pp. 4376–4390, 2021.

[40] M. M. Baldi, T. G. Crainic, G. Perboli, and R. Tadei, “The generalized
bin packing problem,” Transportation Research Part E: Logistics and
Transportation Review, vol. 48, no. 6, pp. 1205–1220, 2012.

[41] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX,
2010.

[42] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly,” in 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2012, pp. 225–238.

Shadi Bikas received her B.S. in Computer Science
from Orumiyeh Payamnour University, and M.S.
degrees in information technology in 2013 and 2019
respectively. Moreover, she is a Ph.D. candidate
in Information Technology at Ege University. Her
research interests mainly include Software Defined
Networking and Multipath TCP as well as Rein-
forcement Learning and Deep Learning.

Müge Sayıt received her M.Sc. degree in 2005
and a Ph.D. degree in 2011 in Information Tech-
nologies from the International Computer Institute
at Ege University in Turkiye. After working as an
assistant professor at the same institute, she started
serving as an associate professor in 2017. Currently,
she works at the School of Computer Science and
Electronic Engineering at the University of Essex,
UK. Her research interests include Software Defined
Networking, Network Function Virtualization, future
networks, video streaming, and video codecs. She

has been working as the principal investigator or as a researcher in various
R&D projects.

