
Lie symmetry analysis

on pricing power options under
the Heston dynamic

and some fractional financial
models

Kam Yoon Chong

A thesis submitted for the degree of

Doctor of Philosophy

Centre of Computational Finance and Economic Agents

University of Essex

October, 2023



2



Abstract

The rise of computational mathematics in financial markets has accelerated

the bloom of various financial models. For instance, the Black-Scholes-Merton

model, the Vasicek model, the Cox-Ingersoll-Ross model, the Heston model,

etc. Each of these models often produces challenging partial differential equa-

tions. The Lie symmetry method appears to be a powerful tool to solve these

types of equations. In this study, we apply Lie’s method to the power options

model under the Heston dynamic. The infinitesimal operators, the optimal

systems, the invariant solutions, and the conservation laws are presented.

Lie analysis is also an efficient tool to solve the fractional differential equa-

tions which involve the differentiation of a function with respect to its inde-

pendent variable(s) to a non-integer order. Fractional differential equations

are well known for their ability to describe the memory effect in various nat-

ural phenomena. We apply the Lie symmetry analysis to a time-fractional

Black-Scholes-Merton model, as well as an arbitrage-free stock price model.

The results of the analysis which include the infinitesimal operators or genera-

tors, the optimal systems, and the invariant solutions of the above models are

presented. The visual representations of the invariant solutions are provided

alongside discussions and comparisons with the solutions from their corre-

sponding non-fractional models.
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Chapter 1

Introduction

1.1 Background

The publication of Smith’s “The Wealth of Nations” [87] in the 18th century

marked the birth of modern economics. The three main ideas proposed by

Smith: the pursuit of self-interest, division of labour, and freedom of trade,

were known as the trinity of individual prerogatives. This blueprint of free

markets and free trade had eventually become the hallmarks of modern cap-

italism today. Since then, modern economics embarked on its long journey

toward the utopia imagined by Smith 250 years ago.

Modern economics come a long way, giving birth to many modern economic

and financial models that keep inspiring us today. Stokey et al. [90] used

calculus to model economic phenomena such as supply and demand, market

equilibrium, and optimization. Black and Scholes, Merton [12, 61] developed

the well-known Black-Scholes-Merton model which introduced a partial dif-

ferential equation to govern the risk, pricing, and optimization of a portfolio.
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Using the Black-Scholes-Merton (BSM) model as the basic ingredient, many

financial instruments were introduced to deduce the pricing models for differ-

ent needs [10, 19, 35, 43, 94]. Most of these financial models derived from

the BSM model often ended with partial differential equations. The purpose

of this work is to expand on these ideas. We will apply the methods of Lie

to help solve the differential equations associated with the pricing of financial

derivatives.

Lie symmetry analysis, being a very powerful tool to solve differential equa-

tions, is widely used to analyze various financial equations [55, 54]. Ibragimov

and Gazizov [28] first introduced the Lie symmetry analysis to the BSM equa-

tion. Goard [31] used Lie’s method to find new solutions for zero-coupon

bonds, assuming a realistic time-dependent, mean-reverting drift form and

power-law volatility. Rosa et al. [79] used Lie’s method to give some solutions

and conservation laws for a generalized Fisher Equation with variable coeffi-

cients. Kaibe and O’Hara [49] deduced the pricing models for the zero-coupon

bond PDE model derived from the functional interest rate model. Tang et

al. [91] gave the invariant solutions of the Heston model with stock dividends.

These are just a few examples of this method.

Recently, the idea of applying the same treatment done to physical sci-

ence to economics and finance has gained a lot of attention. Econophysics,

as the name of this treatment, use the concepts and methods from physics to

understand economic and financial systems. Mantegna and Stanley [58] use
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statistical physics to describe financial systems and present a stochastic model

that captures statistical properties in real data, providing a global understand-

ing of economic systems using concepts like stochastic dynamics and scaling,

without needing a detailed microscopic description. However, the problem

with using science to describe financial behaviour is that it assumes markets

are efficient and prices move in a predictable manner. In reality, financial

markets are often driven by irrational behaviour and dramatic changes [84].

Fractional calculus, as a branch of calculus, is rising as a new tool to de-

scribe the behaviours of the financial market. This old branch of mathematics,

which can be traced back to the 17th century, is proven to be useful to describe

natural phenomena with memory [6, 34, 64]. A new perspective of finance in

describing realistic financial behaviour with memory with fractional calculus

is forming. Fallahgoul [25] replaced the geometric Brownian motion in some

financial models with the Lèvy process and obtained fractional partial differen-

tial equations. Tarasov [92] pointed out that the current “Memory revolution”

is filling up the missing pieces of modern economics that are caused by the

theory that uses differential and integral operators of integer orders instead of

using fractional calculus. Gazizov et al. [28, 29, 30] used the Lie symmetry

method to analyze various financial models in fractional time frames. Habibi

et al. [33] studied the time-fractional Fokker-Planck equation using the Lie

symmetry method and graphically compared the numerical solutions driven

by Chebyshev wavelets’s method with the exact solutions. Yue and Shen [97]

showed that the fractal dimension bond-pricing formula can better explain
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price changes in the capital market than the classical bond-pricing models.

Chong and O’Hara [17] deduced an invariant solution of a time-fractional

Black-Scholes-Merton equation. 1

1.2 Research purpose

In 1973, Black and Scholes [12], and Merton [61] introduced the Black-Scholes-

Merton model to describe the pricing of European options with some assump-

tions, which include that the stock price process follows the stochastic process

that is represented by

dS = rSdt+ σSdz,

where S, r, and σ are the price, the risk-free interest rate, and the volatility

of the underlying stock at time t respectively and z is a standard Brownian

motion. This will finally lead to the famous Black-Scholes-Merton (BSM)

equation

∂u

∂t
+ rS

∂u

∂S
+

1

2
σ2S2 ∂

2u

∂S2
= ru,

where u = u(S, t) is the price of a derivative. In 2000, Wyss [96] replaced the

first derivative of u with respect to time in a transformed BSM equation with

a fractional derivative of order α, 0 < α ≤ 1, and used Green’s function to

solve the time-fractional BSM equation. In this work, we use Lie symmetry

1This part of the research is the original contribution by the author of the thesis to the
study of fractional calculus in computational finance.
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to analyze the time-fractional version of the BSM equation above, given by

∂αu

∂tα
+ rS

∂u

∂S
+

1

2
σ2S2 ∂

2u

∂S2
= ru.

The Lie point symmetries, Lie brackets, and the optimal system of the time-

fractional BSM equation above are found as well as the corresponding invariant

solutions.

In 2009, Bell and Stelljes [10] described a method of constructing a class of

solvable arbitrage-free models, G(S̃t, t), for the stock price using the stochastic

Bernoulli equation of Stratonovich type

dS̃t = µS̃tdt+ σS̃pt ◦ dwt,

where 1/2 ≤ p < 1, µ and σ are the drift and volatility of the stock with price

S̃t, and wt is a standard Wiener process. The construction of the model results

in a second-degree partial differential equation

∂G

∂t
+

(
rs+

pσ2s2p−1

2

)
∂G

∂S
+
σ2s2p

2

∂2G

∂S2
− rG = 0,

with some conditions. Bell and Stelljes [10] and Sinkala [86] then gave the

solutions of the above equation. Our purpose is to extend the work done by

them to a time-fractional arbitrage-free stock price model using Lie’s approach.

We deduce the Lie point symmetries, the infinitesimal generators, the Lie’s

brackets, and the optimal system. Finally, we propose some invariant solutions
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to the time-fractional arbitrage-free stock price model.

In 2013, Ibrahim et al. [43] introduced a pricing model for power options

using Heston dynamics, assuming the asset price is to follow the log-normal

process governed by a single Brownian motion. Their model eventually led to

the formation of a partial differential equation

∂u

∂t
+

(
r − 1

2
β2y

)
∂u

∂x
+

1

2
β2y

∂2u

∂x2
+

1

2
σ2β2y

∂2u

∂y2

+ρσβ2y
∂2u

∂x∂y
+ κ(θ − β2y)

∂u

∂y
− ru = 0,

where u is the value of an option, r is the risk-free rate, β is a constant factor,

y is the ratio of the variance to the square of β, x ≡ lnZ where Z ≡ Sβt is

an artificial asset with Sβt a geometric Brownian motion, σ is the volatility

of volatility, ρ is the correlation coefficient between the Brownian motions in

the model, κ = κ∗ + λ for κ∗ is the speed of the mean reversion and λ is

the volatility risk premium, and θ = κ∗θ∗

κ∗+λ
with θ∗ is the average level of the

volatility.

Using Lie’s method, we obtain three infinitesimal operators of the above

equation. With the operators, we compute the commutators, the adjoint rep-

resentations, the optimal system, as well as the invariant solutions. Finally,

we give the conservation laws.
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1.3 Structure of the thesis

This thesis is organized as follows: In Chapter 2, we give a comprehensive re-

view of Lie symmetry analysis and fractional calculus. In Chapter 3, Lie sym-

metry analysis is applied to a time-fractional Black-Scholes-Merton model. We

propose a few invariant solutions as well as the optimal systems for the frac-

tional model. Chapter 4 focuses on a time-fractional arbitrage-free stock price

model. The invariant solution obtained is then graphically compared with the

non-time-fractional model. The study of power options under the Heston dy-

namic using Lie’s method is listed in Chapter 5, which ended with invariant

solutions, optimal systems, and conservation laws. Finally, we conclude our

study and include some suggestions for future work in Chapter 6.
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Chapter 2

Literature Review

2.1 Differential equations

The history of differential equations comes a long way since the invention

of calculus back in the 17th century. It was then becoming a major branch

of mathematics. The development of differential equations [4, 68, 81] is a

hundreds-years-long bedtime story to tell and it is still being written by schol-

ars around the world nowadays. The application of differential equations has

showered almost every field of study.

In the 17th century, when the branch was newly born, scientists found

its application in geometry and classical mechanics. After decades of devel-

opment, many applications were made to astronomy, continuous media, heat

theory, optics, electricity, magnetism, etc. Recently, with the introduction of

set theory in mathematical analysis and the consequences for theorization, dif-
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ferential equations continue to find their placement in quantum mathematics,

dynamical systems, and relativity theory in the 20th century [4].

The story of differential equations unfolded when Leibniz wrote the equa-

tion
∫
xdx =

1

2
x2 in 1675 [44]. Newton, on the other hand, started to in-

vestigate the general methods to integrate the differential equation with the

classification of first-order differential equations into three general classes [68]:

(1)
dy

dx
= f(x),

(2)
dy

dx
= f(x, y),

(3) x
∂u

∂x
+ y

∂u

∂y
= u.

The first two classes are known as ordinary differential equations (ODE)

while the third class, which involves partial derivatives, is known as partial

differential equations (PDE). The study of differential equations is focusing

on finding the solution to the equations above. Naturally, ODEs are relatively

easier to solve compared to PDEs.

The birth of differential equations undoubtedly became one of the biggest

things in the 17th century. The most brilliant minds by that time had no

hesitation to contribute to the field in succession. Mind of Bernoullis, Riccati,

Euler, Lagrange, and Laplace had joined the feast and the result was the birth
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of numerous well-known differential equations. For instance, the equation

dy

dx
+ P (x)y = f(x)yn,

which is known as the Bernoulli differential equation, where n is a real number

not equal to 0 or 1, is named after James Bernoulli in 1695. Leibniz was

believed to be the first who offered a solution to the Bernoulli differential

equation [74]. The equations are nonlinear with known exact solutions which

do not have singular solutions.

Riccati [78], in his discussion about special cases of curves whose radii

of curvature were dependent on the corresponding ordinates, introduced the

Riccati equation

dy

dx
= P (x) +Q(x)y +R(x)y2.

Daniel Bernoulli [11] later proposed the solution of the Riccati equation.

Euler [24] completed the treatment of the homogeneous linear differential

equation with constant coefficients using repeated quadratic factors. With

integrating factors and the method of integrating by series, he reduced the

order of the differential equations until it was integrable.

In the 18th century, the nature of the series solutions to differential equa-

tions was posed [4]. Mathematicians started to view series as tools to approx-

imate solutions of differential equations. At the same time, they were aware
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that many simple functions could not be integrated by means of elementary

functions. This problem of non-elementary integrable functions drove them to

compare integration with inverse arithmetical operations [51].

In the late 18th century and early 19th century, Peano [75] and Gramegna

[32] posted their findings on the systems of ordinary linear differential equa-

tions. Peano applied the method of successive integrations to deal with the

homogeneous linear differential equations system

dxi
dt

= αi1x1 + αi2x2 + · · ·+ αinxn

where i = 1, 2, 3, . . . , n and the coefficients of αij are functions of t. Gramegna,

later in 1910, generalized the work of Peano’s to systems of infinite differential

equations and to integrodifferential equations by using the method of succes-

sive integrations.

Lie Symmetries and Differential Equations

Solving differential equations can be tough and tedious. Different kinds of

differential equations, either ordinary or partial, usually require different ap-

proaches and techniques. Direct integration, integration by parts, separable

equations, integrating factors, Euler’s method, homogeneous equations, nu-

merical methods, etc, are among the most frequently used formulae to solve

differential equations with different kinds and dimensions.
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This chaotic world of differential equations is just like cooking soups that

require specific steps and ingredients. To make things worse, most ingredients

only work for very limited types of soups. How can one cook soups of an

unfamiliar type? Indeed, this was the dilemma of the “cooks” around the

middle of the 19th century. An ingredient that fitted in all kinds, if not, most

kinds of soups, was desperately sought.

An ingredient for all kinds of soups

Sophus Lie, who lived most of his life in Norway, found the recipe to cook all

kinds of soups in the 1880s. He revealed the fact that the most well-known

techniques to solve differential equations were based on the invariance of the

differential equations under a continuous group of symmetries. The symmetry

group, was the ingredient.

This discovery at once unified and extended the available integration tech-

niques. This continuous group of symmetries, now universally known as Lie

groups, have reached their influence far beyond all areas of mathematics, both

pure and applied, to physics, engineering, finance, economics, quantum me-

chanics, relativity, continuum mechanics, etc [71].

Sahoo and Saha Ray [80] used Lie symmetry to solve the (3+1) dimensional

Yu-Toda-Sasa-Fukuyama equation in physics. Sheftel et al. [82] established

12



the relations between the separation of variables and superintegrable systems

in quantum mechanics using the structure of the higher order Lie symmetries

of the Schrödinger equation in the Euclidean plane. Basquerotto et al. [8]

presented the application of the Lie symmetries analysis to obtain the solution

of a classical nonlinear problem of the dynamics of mechanical systems: the

bead on a rotating wire hoop.

In biology, Mechee and Haitham [60] used Lie symmetry to evaluate the

uninfected CD+
4 T cells in the human body and gave approximated solutions of

the mathematical model of HIV infection. Zheng [98] performed Lie symmetry

analysis on a nonlinear Fokker-Planck equation that described cell population

growth.

The application of the Lie symmetry does not stop at science and en-

gineering. In finance and economics, Paliathanasis et al. [73] performed a

classification of the Lie point symmetries for the Black-Scholes-Merton model

for European options with stochastic volatility. Gazizov et al. [28] completed

symmetry analysis of the one-dimensional Black-Scholes-Merton model fol-

lowed by classification of the two-dimensional Jacobs-Jones model equations.

Liu and Wang [56] continued the study on the Black-Scholes-Merton model

with dividend yield using the same tool.

In fact, Lie symmetry analysis has become a favourite tool for academics

in solving different types of differential equations in their respective fields of

13



study. The reputation of Lie symmetry as an ingredient to cook “almost” all

kinds of soups is well established.

A new soup to cook

Fractional calculus, on the other hand, is a newfangled soup to cook. For

hundreds of years, academics had been chasing the footprints of fractional

calculus since it was first brought up in a letter between Leibniz and L’Hôpital

in 1695. In a letter, they debated the possibility to generalize the meaning

of integer derivatives to non-integer derivatives, for example a derivative of

n = 1/2. The discussion ended with the quote from Leibnitz “It will lead to

a paradox. From this apparent paradox, one day useful consequences will be

drawn”.

The birth of fractional calculus certainly evoked the interest of researchers

around the world. Lacroix [50], being the first to discuss derivatives of non-

integer orders, proposed the αth derivative of y = xn as

dαy

dxα
=

n!

(n− α)!
xn−α.

The above derivative can be used to write the derivative of order 1/2 by

replacing α by 1/2

d1/2y

dx1/2
=

Γ(n+ 1)

Γ(n+ 1/2)
xn−1/2.

Here, Γ(a) is an Euler’s Gamma function.
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The development of fractional calculus has come a long way. Numerous

operators and definitions [76] were introduced to suit different conditions and

situations. Bernhard Riemann and Joseph Liouville proposed the derivative

of a function u(t, x) of independent variables x and t with respect to t of order

α, which was later known as the Riemann-Liouville (RL) integral, as

∂αu

∂tα
=

1

Γ(m− α)

∂m

∂tm

∫ t

0

u(ξ, x)

(t− ξ)α+1−mdξ, (2.1)

where 0 < m − 1 < α ≤ m,m ∈ N. Caputo then redefined the fractional

derivative as

∂αu

∂tα
=

1

Γ(m− α)

∫ t

0

1

(t− ξ)α+1−m
∂mu(ξ, x)

∂ξm
dξ. (2.2)

The application of fractional calculus has been proven to be related to

many fields. Metzler and Klafter [64] demonstrated that fractional equations

describe anomalous transport processes. Axtell and Bise [6] explored the im-

plications of non-integer order systems in the s-domain of control systems by

using fractional calculus and Laplace transformed differintegrals. Henriques et

al. [34] implemented the algorithms, one of them being the fractional deriva-

tive algorithm, of six fractional detectors for colour images and illustrated their

performances. Bioengineering and biomedical applications, thermal modeling

of engineering systems, wave and diffusion phenomenon, and many more stud-

ies continue to reveal the significance of fractional calculus in redefining the

classic integer models into brand new non-integer models.
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Academics started to apply different methods to seek solutions to fractional

differential equations. Wyss [96] proposed a fractional generalization of the

Black-Scholes-Merton equation by using Green’s function. Li and He [52] used

fractional complex transform to convert fractional differential equations into

ordinary differential equations. Many more textbooks were published to pro-

vide comprehensive reading and study about fractional differential equations

[22, 25, 40, 59].

Gazizov et al. [29] were among the first to cook this soup with Lie algebras.

A prolongation formulae for fractional derivatives was proposed. Huang and

Zhdanov [36] later gave an explicit form of the prolongation formulae. Jefferson

and Carminati [46] built an algorithmic package FracSym using the Maple

software to obtain the determining equations.

As a result, research articles exploiting Lie symmetry in solving fractional

differential equations grew exponentially recently. Akbulut and Taşcan [3] use

Lie symmetry to solve a time-fractional modified Korteweg-de Vries equation.

Chen et al. [16] extended the KdV equations to a time-fractional generalized

equation. Gazizov et al. [30] presented the Lie point symmetries and exact

solutions of fractional diffusion equations of the orders of 0-2. Jafari et al. [45]

proposed the Lie point symmetries and exact solutions of a time-fractional

Boussinesq equation.
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Lie symmetry analysis continues to play its role as a capable tool to solve

differential equations, ordinary, partial, or fractional, to this day. In this thesis,

Lie symmetry analysis is used to study several time-fractional financial models,

as well as power options under the Heston dynamic.

2.2 Lie symmetry analysis

Lie symmetry analysis is an algorithmic procedure that often involves lengthy

and tedious calculations. The core of this procedure is the invariance of dif-

ferential equations. Many books are published to provide substantial reading

on this subject [5, 13, 14, 71, 72]. In this section, the fundamental concepts of

Lie symmetry analysis are discussed. One may refer to the mentioned books

for more comprehensive reading.

2.2.1 Lie group properties, definitions, Lie point sym-

metries, and Lie algebra

A transformation is the change of the position, size, orientation, or even struc-

ture of an object. For instance, a rotation about the center of a unit cir-

cle, x2 + y2 = 1, leaves the circle unchanged. The rotated image, (x̃, ỹ) =

(cos(θ + ε), sin(θ + ε)), with an infinitesimal transformation parameter ε, is

a symmetry of the unit circle as it preserves the structure of the original unit

circle, x̃2 + ỹ2 = 1. In fact, the unit circle has an infinite set of rotational

symmetries.
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In general, a transformation is a symmetry if it preserves the structure of

the object, is a diffeomorphism (the inverse of the transformation is smooth),

and maps the object to it itself. A symmetry of a differential equation is a

transformation that leaves the differential equation invariant. For example,

the Riccati equation

dy

dx
=
y + 1

x
+
y2

x3

has a one-parameter Lie group of inversions as one of its symmetries sounds

(x̃, ỹ) =
( x

1− εx
,

y

1− εx

)
.

One may verify that this transformation finally leads to

dỹ

dx̃
=
ỹ + 1

x̃
+
ỹ2

x̃3
.

The continuous Lie point symmetries satisfy the properties of a group. We

start with some basic definitions of a group.

Definition 2.2.1 A set G with a law of composition φ(a, b) is a group if the

following properties hold:

1. Closure: For a, b ∈ G, φ(a, b) ∈ G.

2. Associative: For a, b and c ∈ G, φ(a, φ(b, c)) = φ(φ(a, b), c).

3. Identity: For any a ∈ G, there exist an identity element e ∈ G such that

φ(a, e) = φ(e, a) = a.
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4. Inverse: For any a ∈ G, there exist a unique element a−1 ∈ G such that

φ(a, a−1) = φ(a−1, a) = e.

Definition 2.2.2 A group is abelian if φ(a, b) = φ(b, a) for all the elements

in the group.

Definition 2.2.3 If a set H ⊂ G forms a group, the set H is a subgroup of

G.

Definition 2.2.4 A subgroup H of G is normal if and only if gH = Hg for

any g ∈ G.

Definition 2.2.5 The transformations set

ũ = U(u, t, x; ε)

t̃ = T (u, t, x; ε)

x̃ = χ(u, t, x; ε)

(2.3)

defined for each (u, t, x) in a region D and parameter ε in a set S ⊂ N, with a

law of composition φ(ε, δ), forms a one-parameter Lie group of transformations

on D, for ε, δ ∈ S, if the following hold:

1. The transformations are one-to-one and onto D.

2. The set S forms a group G with the law of composition φ.

3. For each point in D there exists an identity element e ∈ S such that

ũ = U(u, t, x, e) = u, t̃ = T (u, t, x, e) = t and x̃ = χ(u, t, x, e) = x.
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4. For the above transformations set, if ˜̃x = χ(ũ, t̃, x̃, δ), then

˜̃x = χ(u, t, x, φ(ε, δ)).

5. The parameter ε is continuous. ε = 0 is taken as the identity element e.

6. The function χ, which is an analytic function of ε ∈ S, is infinitely

differentiable with respect to x in D.

7. The above law of composition φ(ε, δ) is an analytic function, for ε and

δ ∈ S.

Note that if only properties (1-4) are satisfied, the set of transformations is

referred to as a group of transformations.

Infinitesimal transformations

Consider the transformations (2.3) where ε = 0 represents the identity element

make u = U(u, t, x; 0), t = T (u, t, x; 0) and x = χ(u, t, x; 0). The Taylor series

of the transformations (2.3) about the identity are

ũ = u+ εη(u, t, x) +O(ε2),

t̃ = t+ ετ(u, t, x) +O(ε2),

x̃ = x+ εξ(u, t, x) +O(ε2),

(2.4)

where η(u, t, x), τ(x, t, u) and ξ(u, t, x) are defined by

η(u, t, x) =
∂U

∂ε

∣∣∣
ε=0

, τ(u, t, x) =
∂T

∂ε

∣∣∣
ε=0

, ξ(u, t, x) =
∂χ

∂ε

∣∣∣
ε=0

.
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When the transformation is infinitesimal, that is when ε ≈ 0, the terms of

second and higher order in ε are negligible, hence the transformations (2.4)

are simplified and known as infinitesimal transformations

ũ = u+ εη(u, t, x),

t̃ = t+ ετ(u, t, x),

x̃ = x+ εξ(u, t, x).

(2.5)

The partial differential operator

X = η(u, t, x)
∂

∂u
+ τ(u, t, x)

∂

∂t
+ ξ(u, t, x)

∂

∂x
(2.6)

is known as the infinitesimal generator of the Lie group. The one-parameter

Lie group of transformation (2.3) is equivalent to the infinitesimal generator

(2.6). They both can be found by solving the Lie equations

dũ

dε
= η(ũ, t̃, x̃),

dt̃

dε
= τ(ũ, t̃, x̃),

dx̃

dε
= ξ(ũ, t̃, x̃). (2.7)

The Lie equations (2.7) should satisfy the initial conditions

ũ
∣∣
ε=0

= u, t̃
∣∣
ε=0

= t, x̃
∣∣
ε=0

= x.

Lie Point Symmetries

Generally, an infinitely differentiable function, φ(u, t, x), is an invariant func-
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tion of the Lie group transformations (2.3) if the function satisfies

φ(ũ, t̃, x̃) = φ(u, t, x). (2.8)

Using the infinitesimal transformations (2.5), the Taylor series (for ε ≈ 0) of

φ(ũ, t̃, x̃) may be written

φ(ũ, t̃, x̃) = φ(u+ εη, t+ ετ, x+ εξ)

= φ(u, t, x) + ε
(
η
∂φ

∂u
+ τ

∂φ

∂t
+ ξ

∂φ

∂x

)
= (1 + εX)φ(u, t, x),

(2.9)

where X is the generator (2.6). Combining equations (2.8) and (2.9) yields

φ(u, t, x) = (1 + εX)φ(u, t, x), which will then lead to Xφ = 0:

η
∂φ

∂u
+ τ

∂φ

∂t
+ ξ

∂φ

∂x
= 0. (2.10)

Equation (2.10) can be solved using the method of characteristics:

du

η(u, t, x)
=

dt

τ(u, t, x)
=

dx

ξ(u, t, x)
. (2.11)

Now, consider a partial differential equation (PDE) with k-th order

F (u, t, x, ∂u, ∂2u, . . . , ∂ku) = 0, (2.12)

where u is a dependent variable and (t, x) are two independent variables. The

Lie group transformations in equation (2.4) are the Lie point symmetry group
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of the PDE (2.12) if they leave the PDE invariant, that is

F (ũ, t̃, x̃, ∂ũ, ∂2ũ, . . . , ∂kũ) = 0, (2.13)

where ∂iũ are known as the extended derivatives of u, or the prolongations, are

vital in finding the one-parameter Lie groups of point transformations admit-

ted by differential equations in terms of infinitesimal generators. Many books

[5, 13, 14, 76, 89] explain in detail how the prolongations are formulated. Here

we just give a brief introduction. Suppose we have an infinitesimal generator

X =
∑
i

ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u
, (2.14)

with u = u(x1, . . . , un) then its kth-prolongations [13] is

X(k) = ξ
∂

∂x
+ η

∂

∂u
+ η

(1)
i

∂

∂ui
+ · · ·+ η

(k)
i1...ik

∂

∂ui1...ik
, (2.15)

where k = 1, 2, . . . and η(k) are given by

η
(1)
i = Diη − (Diξ)uj,

η
(k)
i1...ik

= Dikη
(k−1)
i1...ik−1

− (Dikξ)ui1...ik−1j,

(2.16)

for i = 1, 2, . . . , n and im = 1, 2, . . . n for m = 1, 2, . . . k with k = 2, 3, . . . .

Here, Di is the total derivative

Di =
∂

∂x
+ ui

∂

∂u
+ uii1

∂

∂ui1
+ uii1i2

∂

∂ui1i2
+ . . . . (2.17)
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Note that we use the notation ui =
∂u

∂xi
, uij =

∂2u

∂xi∂xj
, etc. The generator in

(2.6) is a special case of the generator in (2.14) with one independent variable,

says u = u(x ), and two independent variables x = (t, x). The PDE in (2.12),

F , is said to admit a symmetry X if and only if the infinitesimal criterion for

the invariance of the PDE F hold

X(k)F |F=0 = 0. (2.18)

In fulfilling the criterion (2.18), the equation (2.12) is taken into account while

zeroing the kth extension of X on it. The condition (2.18) is commonly leading

to a complicated and algorithmic calculation.

Now, let us consider the famous heat equation

∂u

∂t
=
∂2u

∂x2
, (2.19)

which has one dependent variable u = u(t, x) and two independents variables

(t, x). Let the symmetry (2.6)

X = η(u, t, x)
∂

∂u
+ τ(u, t, x)

∂

∂t
+ ξ(u, t, x)

∂

∂x

be admitted by the heat equation (2.19). To determine the coefficients η, τ

and ξ, the second prolongation of X, which is extended as

X(2) = η∂u + τ∂t + ξ∂x + ηx∂ux + ηt∂ut + ηxx∂uxx + ηxt∂uxt + ηtt∂utt , (2.20)
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where ηx ≡ η
(1)
1 , . . . , ηxt ≡ η

(2)
12 and ∂u =

∂

∂u
, ∂t =

∂

∂t
, etc, is to act on the

equation (2.19) to fit the criterion (2.18), that is

X(2)(ut − uxx)|ut−uxx=0 = 0.

Here ut =
∂u

∂t
and uxx =

∂2u

∂x2
. This will finally lead to

ηt = ηxx. (2.21)

The extended coefficients in (2.20) are given [13] as

ηx = ηx + (ηu − ξx)ux − τxut − ξuu2
x − τuuxut, (2.22a)

ηt = ηt − ξtux + (ηu − τt)ut − ξuuxut − τuu2
t , (2.22b)

ηxx = ηxx + (2ηxu − ξxx)ux − τxxut + (ηuu − 2ξxu)u
2
x

− 2τxuuxut − ξuuu3
x − τuuu2

xut + (ηu − 2ξx)uxx

− 2τxuxt − 3ξuuxuxx − τuutuxx − 2τuuxuxt, (2.22c)

ηtt = ηtt − ξttux + (2ηtu − τtt)ut − 2ξtuuxut

+ (ηuu − 2τtu)u
2
t − ξuuuxu2

t − τuuu3
t − 2ξtuxt

− 2ξuutuxt + (ηu − 2τt)utt − ξuuxutt − 3τuututt, (2.22d)

ηxt = ηxt + (ηtu − ξxt)ux + (ηxu − τxt)ut − ξtuu2
x

+ (ηuu − ξxu − τtu)uxut − τuxu2
t − ξuuu2

xut − τuuuxu2
t

− ξtuxx − ξuutuxx + (ηu − ξx − τt)uxt − 2ξuuxuxt

− 2τuutuxt − τxutt − τuuxutt. (2.22e)
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Substituting ηt and ηxx from equations (2.22b) and (2.22c) to equation (2.21),

eliminating uxx using the heat equations and finally zeroing the coefficients,

will lead to the following solutions:

ξ = c1 + c4x+ 2c5t+ 4c6xt, (2.23a)

τ = c2 + 2c4t+ 4c6t
2, (2.23b)

η = (c3 − c5x− 2c6t− c6x
2)u+ α(t, x), (2.23c)

where ci are arbitrary constants and α(t, x) is a arbitrary solution of the heat

equation. The symmetry generator, hence, is given by

X =(c1 + c4x+ 2c5t+ 4c6xt)∂x + (c2 + 2c4t+ 4c6t
2)∂t

+ ((c3 − c5x− 2c6t− c6x
2)u+ α(t, x))∂u.

(2.24)

Choosing ci = 1 while zeroing the other c′s gives the following generators:

X1 =
∂

∂x
,

X2 =
∂

∂t
,

X3 = u
∂

∂u
,

X4 = x
∂

∂x
+ 2t

∂

∂t
,

X5 = 2t
∂

∂x
− xu ∂

∂u
,

X6 = 4tx
∂

∂x
+ 4t2

∂

∂t
− (x2 + 2t)u

∂

∂u
,

X∞ = α(t, x)
∂

∂u
.

(2.25)
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The existence of X∞ shows that the heat equation has infinite-dimensional Lie

symmetry algebra.

Lie Algebra

Consider two generators X1 and X2, the commutator, also known as the Lie

Bracket of them, [X1, X2] is defined as

[X1, X2] = X1X2 −X2X1. (2.26)

For example, if X1 and X2 are two generators defined by

X1 = x∂x, X2 = y∂x + x∂y,

then

[X1, X2] = x∂x(y∂x + x∂y)− (y∂x + x∂y)x∂x = x∂y − y∂x.

Definition 2.2.6 A vector space of infinitesimal generators, L, is a Lie alge-

bra if for all Xi ∈ L, a, b ∈ <, the following properties hold:

1. Closure: [X1, X2] ∈ L,

2. Bilinearity: [X1, aX2 + bX3] = a[X1, X2] + b[X1, X3],

3. Anticommutativity: [X1, X2] = −[X2, X1],

4. Jacobi Identity: [X1, [X2, X3]] + [X2, [X3, X1]] + [X3, [X1, X2]] = 0.
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A commutator table is a tabular form to display the structure of a Lie algebra.

A n-dimensional Lie algebra produces a n× n table, with the (i, j)th entry of

the table expressing the Lie Bracket [Xi, Xj]. In Table (2.1), the commutators

of the heat equation are given.

Table 2.1: The commutator table of the infinitesimal generators of the Heat
equation (2.19)

[Xi, Xj] X1 X2 X3 X4 X5 X6

X1 0 0 0 X1 −X3 2X5

X2 0 0 0 2X2 2X1 4X4 − 2X3

X3 0 0 0 0 0 0
X4 −X1 −2X2 0 0 X5 2X6

X5 X3 −2X1 0 −X5 0 0
X6 −2X5 2X3 − 4X4 0 −2X6 0 0

2.2.2 Group invariant solutions

Most partial differential equations are challenging to solve due to the existence

of multiple independent variables in the equations. Using Lie symmetries, this

trouble is lifted as the number of variables in the equations is reduced by one,

or more. The reduced differential equations, on some occasions reduced to

ordinary differential equations that consist of only one independent variable,

are much easier to solve.

Group invariant solutions, also known as similarity solutions, are the solu-

tions of differential equations that are characterized by their invariance under

some symmetry group of the differential equations.
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Definition 2.2.7 u = θ(x) is an invariant solution of the PDE resulting from

the point symmetry X if and only if

1. u = θ(x) is an invariant surface of the point symmetry X,

2. u = θ(x) is a solution of the PDE.

The heat equation, which has one dependent variable and two independent

variables, has the generators of the form of equation (2.6)

X = η(u, t, x)∂u + τ(u, t, x)∂t + ξ(u, t, x)∂x.

Solving the characteristic system (2.11), given by

du

η(u, t, x)
=

dt

τ(u, t, x)
=

dx

ξ(u, t, x)
,

to obtain a general invariant of X will first produce two similarity solutions in

the general forms of

θ1(u, t, x) = I1 and θ2(u, t, x) = I2, (2.27)

where Ii are constants of integration. X is then found as an arbitrary function

of I1 and I2.

2.2.3 Optimal systems

In general, it is not practical to list all possible group invariant solutions of

a certain differential equation because almost every symmetry group admits
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an infinite number of subgroups that correspond to a family of group invari-

ant solutions. The need to effectively classify these solutions leads to the

construction of an optimal system, a small (minimum) set of one-dimensional

subalgebras that contains all the one-dimensional subalgebras of the differen-

tial equation.

In this thesis, the direct method used in Olver [71] is adopted. First, the

adjoint representations for each Xi of the basis symmetry group are used to

determine the adjoint representation as follows:

Ad(exp(εXi))Xj = Xj − ε[Xi, Xj] +
1

2
ε2[Xi, [Xi, Xj]]− . . . , (2.28)

where [Xi, Xj] is the commutator of the generators Xi and Xj. The adjoint

representations are then used to identify the optimal system by simplifying a

given arbitrary element of the Lie algebra

X =
∑
i

aiXi, (2.29)

where ai are constants. Chou and Li [18] gave detailed work to obtain the

optimal system of the heat equation.

2.2.4 Law of conservation

Neother’s theorem [69] shows that there is a connection between conservation

laws for variational problems with the symmetries of differential equations or

Euler-Lagrange equations particularly. Ibragimov [41, 42] later redefined the
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conservation theorem by eliminating the need for the existence of a Lagrangian.

It is proved that the adjoint equation inherits all symmetries of the original

equation. As a result, we are now free to associate a conservation law with

any Lie group to find conservation laws for differential equations without the

need to classify its Lagrangians. Ibragimov [42] provided that any Lie point,

Lie-Bäcklund or non-local symmetry

X = ξi(x, u, u(1), . . . )
∂

∂xi
+ η(x, u, u(1), . . . )

∂

∂u
(2.30)

of equation

F (u, t, x, ∂u, ∂2u, · · · , ∂ku) = 0 (2.31)

provides a conservation law Di(C
i) = 0 for the simultaneous system for equa-

tion (2.31) and its adjoint equation with a new dependent variable v

F ∗(u, v, t, x, y, ∂u, ∂v, ∂2u, ∂2v, . . . , ∂ku, ∂kv) =
δ(vF )

δu
= 0 (2.32)

where

δ

δu
=

δ

δu
+
∞∑
s=1

(−1)sDi1 . . . Dis

∂

∂ui1...is
. (2.33)

The conserved vector is given by

Ci =ξiL+W

[
∂L
∂ui
−Dj

(
∂L
∂uij

)
+DjDk

(
∂L
∂uijk

)
− . . .

]

+DjW

[
∂L
∂uij

−Dk

(
∂L
∂uijk

)
+ . . .

]
+DjDkW

[
∂L
∂uijk

− . . .

]
+ . . .

(2.34)
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where W and L are defined as

W = η − ξjuj, L = vF. (2.35)

For more details about conservation laws, one may refer to the above-recommended

references.

2.3 Fractional derivatives and integrals

The theory of fractional derivatives was mainly developed as pure theoretical

knowledge since the first discussion between Leibniz and L’Hôpital. Liouville,

Grünwald, Letnikov, and Riemann were among the pioneers who gave differ-

ent definitions to the fractional derivatives. Advanced modern sciences and

technologies have slowly revealed the roles played by fractional derivatives in

various fields, especially in describing the memory and hereditary properties of

materials and natural processes, which have been neglected in classical integer-

order models. The study of fractional calculus always involves some special

functions, including the functions discussed in 2.3.1.

2.3.1 Special functions

2.3.1.1 Gamma function

The Euler’s gamma function Γ(z), which gives the generalization of the facto-

rial of any real number, is no doubt one of the most important basic functions

in describing fractional calculus. Here we give the definition and some basic
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properties of the gamma function.

Definition 2.3.1 The gamma function Γ(z), for z ∈ C, is defined by the

integral

Γ(z) =

∫ ∞
0

e−ttz−1dt. (2.36)

The gamma function satisfies the functional equation

Γ(z + 1) = zΓ(z), (2.37)

which if z = 1, 2, 3 . . . , leads to

Γ(z + 1) = z!. (2.38)

2.3.1.2 Beta function

Definition 2.3.2 The beta function B(x, y), for x, y ∈ R+, is defined as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt. (2.39)

The beta function can be represented in gamma functions:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (2.40)

We will use beta function in the later discussion.
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2.3.1.3 Mittag-Leffler function

Introduced by Mittag-Leffler [65, 66, 67], the Mittag-Leffler function which is

an exponential function, ez, with its one-parameter general definition is given

by

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
. (2.41)

The two-parameter Mittag-Leffler function, on the other hand, was introduced

by Agarwal [2]:

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, (α > 0, β > 0). (2.42)

Equations (2.38) and (2.42) give

E1,1 =
∞∑
k=0

zk

Γ(k + 1)
=
∞∑
k=0

zk

k!
= ez,

E1,2 =
1

z
(ez − 1),

E1,3 =
1

z2
(ez − 1− z).

2.3.2 Riemann-Liouville fractional derivatives

Fractional derivatives (or integrals) are the derivatives (or integrals) of an

arbitrary real order α, namely,

Dα
t f(t) or D−αt f(t).
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A couple of definitions of fractional derivatives were proposed differently by

various mathematicians to suit different conditions.

Among all, the most famous are the Riemann-Liouville fractional deriva-

tives (2.1) and the Caputo’s fractional derivative (2.2). Each of these def-

initions has its own advantages and disadvantages. The Riemann-Liouville

always leads to initial conditions which is the result of the limit values of

the definition itself at the origin of time, t = 0. The solutions of the initial

conditions, which can be solved mathematically, have unknown physical inter-

pretations to this day. On the hand, Caputo’s fractional derivatives have the

same initial conditions in the fractional form as its integer-order differential

equations. There exist different links and connections between these fractional

derivatives. For more details, one may refer to Podlubny [76].

In this thesis, the focus is given to the Riemann-Liouville fractional deriva-

tive (2.1). The Riemann-Liouville fractional derivative with one independent

variable is defined as:

Dα
t f(t) =

1

Γ(m− α)

(
∂

∂t

)m ∫ t

0

(t− τ)m−α−1f(τ)dτ, (2.43)

where 0 < m− 1 < α ≤ m,m ∈ N. On the other hand, a fractional integral is

defined as:

D−βt f(t) =
1

Γ(β)

∫ t

0

(t− τ)β−1f(τ)dτ, (2.44)
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where 0 < β < 1. Consider the fractional integral of a simple function tµ:

D−βt tµ =
1

Γ(β)

∫ t

0

(t− τ)β−1τµdτ

=
1

Γ(β)

∫ t

0

(1− τ/t)β−1tβ−1τµdτ

=
1

Γ(β)

∫ t

0

(1− u)β−1tβ−1(ut)µtdu, (letting u = τ/t)

=
1

Γ(β)
tβ+µ

∫ 1

0

(1− u)β−1uµdu

=
1

Γ(β)
tβ+µB(µ+ 1, β)

=
Γ(µ+ 1)

Γ(µ+ β + 1)
tβ+µ, (from equation (2.40)).

The above example gives the fractional integral of a simple function, tµ:

D−βt tµ =
Γ(µ+ 1)

Γ(µ+ β + 1)
tβ+µ. (2.45)

Now, letting α = n − β and n be the smallest integer that is greater than α,

the fractional derivative of f(t) of order α is given by

Dαf(t) = Dn[D−βf(t)]. (2.46)
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Using the example above, the fractional derivative of the function tµ gives

Dαtµ = D1[D−(1−α)tµ], (here, n = 1 and β = 1− α)

= D1
( Γ(µ+ 1)

Γ((µ+ 1− α) + 1)
tµ+1−α

)
, (from equation (2.45))

= (µ+ 1− α)
Γ(µ+ 1)

(µ+ 1− α)Γ(µ+ 1− α)
tµ−α, (from equation(2.37))

=
Γ(µ+ 1)

Γ(µ+ 1− α)
tµ−α.

Hence, we have the fractional derivative rule for power

Dαtµ =
Γ(µ+ 1)

Γ(µ+ 1− α)
tµ−α, µ ≥ 0, 0 < α < 1. (2.47)

Putting µ = 0 and α = 1/2 in equation (2.47) reveals the fact that the half-

derivative of a constant in Riemann-Liouville approach is a non-zero value,

which sometimes is considered as one of the shortcomings of the Riemann-

Liouville definition:

D1/2t0 =
Γ(1)

Γ(1/2)
t−1/2 =

1√
πt
.

These two examples demonstrate the complexity of the direct fractional

derivatives and integrals, even the simple power functions. In many cases,

different approaches or transformations are applied to simplify the tedious

calculation.
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2.3.2.1 Laplace transforms

The Laplace transforms play a very important role in simplifying the frac-

tional derivatives. We will use them to solve some basic fractional differential

equations later. Here we briefly discuss the basic definitions and properties of

the Laplace transform.

Definition 2.3.3 The Laplace transform of the function f(t) (or the original)

is a function F (s), for s ∈ C, defined by

F (s) = L{f(t); s} =

∫ ∞
0

e−stf(t)dt. (2.48)

There exist positive constants M and T such that e−αt|f(t)| ≤M for all t > T ,

for the function f(t) must grow slower than an exponential function when

t→∞.

Definition 2.3.4 The inverse Laplace transform to restore the original f(t)

is defined by

f(t) = L−1{F (s); t} =

∫ c+i∞

c−i∞
estF (s)ds, c = <(s). (2.49)

The Laplace transform is linear, that is, for an arbitrary constant a,

L(f(t) + g(t)) = F (s) +G(s) and L(af(t)) = aF (s). (2.50)

The product of the Laplace transforms of two functions f(t) and g(t), if
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exist, is the Laplace transform of the convolution of them, f(t)∗ g(t). That is

f(t) ∗ g(t) =

∫ t

0

f(t− τ)g(τ)dτ =

∫ t

0

f(τ)g(t− τ)dτ, (2.51)

gives

L{f(t) ∗ g(t); s} = F (s)G(s). (2.52)

Equations (2.51) and (2.52) are crucial to evaluate the Laplace transform of

the Riemann-Liouville fractional integral. Recall the fractional integral of the

function f(t) of order β, equation (2.44),

D−βt f(t) =
1

Γ(β)

∫ t

0

(t− τ)β−1f(τ)dτ,

which the integral in fact is a convolution of two functions:

∫ t

0

(t− τ)β−1f(τ)dτ = tβ−1 ∗ f(t). (2.53)

Using equation (2.52), the Laplace transform of the Riemann-Liouville frac-

tional integral can be written as

L{D−βt f(t); s} =
1

Γ(β)

(
L{tβ−1; s} · L{f(t); s}

)
=

1

Γ(β)

(
Γ(β)s−β · F (s)

)
= s−βF (s).

(2.54)

The Laplace transform of the derivative of an integer order n of a function
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f(t) is given by

L{f (n)(t); s} = snF (s)−
n−1∑
k=0

sn−k−1f (k)(0) = snF (s)−
n−1∑
k=0

skf (n−k−1)(0).

(2.55)

To extend the Laplace transform to the Riemann-Liouville fractional deriva-

tive, we write the fractional derivative in the form of

Dα
t f(t) = g(n)(t), and (2.56)

g(t) = D−(n−α)f(t), (2.57)

for n− 1 ≤ α < n. Using equation (2.55) on equation (2.56) gives

L{Dα
t f(t); s} = snG(s)−

n−1∑
k=0

skg(n−k−1)(0), (2.58)

with G(s) = s−(n−α)F (s) from equation (2.54) and g(n−k−1)(0) = Dα−k−1f(0)

from equation (2.56). Hence, equation (2.58) is finally written as

L{Dα
t f(t); s} = sαF (s)−

n−1∑
k=0

sk[Dα−k−1f(0)], (2.59)

for n−1 ≤ α < n. Here we give some useful Laplace transforms in Table (2.2)

[83].
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f(t) F (s)

tα−1Eα,α(rtα)
1

sα − r

Eα(−rtα)
sα−1

sα + r

1− Eα(−rtα)
r

s(sα + r)

tβ−1Eα,β(rtα)
sα−β

sα − r

Table 2.2: Laplace transforms

2.3.2.2 The Cauchy problem

The Cauchy problem is an integro-differential equation that sounds

Dαf(t) + λD−βf(t) = h(t), (2.60)

for λ, α, β ∈ C with <(α) > 0,<(β) > 0 and h(t) is an arbitrary integrable

function. The Cauchy problem comes with the condition

Dα−k−1f(0) = ak, k = 0, 1, . . . , [<(α)], (2.61)
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where [<(α)] is the integer part of <(α). Taking Laplace transform on equation

(2.60), we have

L{Dαf(t) + λD−β; s} = L{h(t); s}

sαF (s)−
n−1∑
k=0

skak + λs−βF (s) = H(s)

F (s)(sα + λs−β) =
n−1∑
k=0

skak +H(s)

F (s) =
n−1∑
k=0

ak ·
sk+β

sα+β + λ
+H(s) · sβ

sα+β + λ

Note that from Table (2.2),

L−1
{ sk+β

sα+β + λ
; s
}

= tα−k−1Eα+β,α−k(−λtα+β),

and

L−1
{ sβ

sα+β + λ
; s
}

= tα−1Eα+β,α(−λtα+β).

Hence, we have

L−1{F (s); s} = L−1

{
n−1∑
k=0

ak ·
sk+β

sα+β + λ
+H(s) · sβ

sα+β + λ
; s

}

=
n−1∑
k=0

akt
α−k−1Eα+β,α−k(−λtα+β)

+

∫ t

0

(t− τ)α−1Eα+β,α(−λ(t− τ)α+β)h(τ)dτ.

(2.62)
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That is the solution of the Cauchy problem (2.60) is in the form of equation

(2.62). By taking α = 1/2, β = 0 and h(t) = 0, the Cauchy problem sounds

D
1
2f(t) + λf(t) = 0, (2.63)

for the fractional integral of f(t) is invariant and no integral is involved [59].

With the condition D−
1
2f(t)|t=0 = c, the solution of equation (2.63), by ap-

plying solution (2.62), is given by

f(t) = ct−
1
2E 1

2
, 1
2
(−λt

1
2 ).

2.3.3 Lie symmetry analysis of fractional derivative

Solving fractional differential equations in a conventional way can be very

challenging. The example in equation (2.63) has shown that for the simplest

form of a fractional differential equation, a massive transformation is actually

taking place behind the scenes. The calculation will only get uglier when a

fractional differential equation gets more complicated.

With more and more attention paid to the fractional differential equations

in the past decades due to their impressive applications in natural sciences,

the secret ingredient to cooking all kinds of soup finally joined the feast in

2007 when Gazizov et al. [29] presented an approach to use the Lie symmetry

analysis to solve fractional differential equations (FDEs).
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Consider a time-fractional differential equation of the form

∂α

∂tα
u(t, x) = F (u, t, x, ux, uxx), (0 < α < 1). (2.64)

Similar to the Lie symmetry analysis of the integer order differential equations,

the FDE (2.64) is to admit a symmetry X if and only if the infinitesimal

criterion

X(α,2)∆|∆=0 = 0, ∆ =
∂αu

∂tα
− F, (2.65)

is fulfilled, where the prolongation of X(α,2) is extended (similar to equa-

tion(2.20)) as

X(α,2) = X + ηα,t∂∂αt u + ηx∂ux + ηxx∂uxx , (2.66)

with ηx and ηxx are as given in equations (2.22a) and (2.22c), and

ηα,t =Dα
t (η) + ξDα

t (ux)−Dα
t (ξux) +Dα

t (uDt(τ))

−Dα+1
t (τu) + τDα+1

t (u).

(2.67)

Equation (2.67) is not convenient to use for the lengthy total derivatives in it.

To write the equation (2.67) in an explicit form [36], we start with the Leibniz

rule for fractional differentiation:

Dα
t (f(t)g(t)) =

∞∑
n=0

(
α

n

)
f (n)(t)Dα−n

t g(t), (2.68)
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where (
α

n

)
=

Γ(α + 1)

Γ(n+ 1)Γ(α + 1− n)
.

Leibniz rule gives

ξDα
t (ux)−Dα

t (ξux) = −
∞∑
n=1

(
α

n

)
ξ(n)(t)Dα−n

t (ux), (2.69)

and

Dα
t (uDt(τ))−Dα+1

t (τu) + τDα+1
t (u) =− αDt(τ)Dα

t u

−
∞∑
n=1

(
α

n+ 1

)
Dn+1
t (τ)Dα−n

t (u).

(2.70)

With the generalized chain rule [70] of the form

dαf(g(t))

dtα
=
∞∑
n=0

Un
n!

dnf(g(t))

d(g(t))n
, Un =

n∑
k=0

(−1)k
(
n

k

)
gk(t)∂αt (g(n−k)(t)),

and the Leibniz rule (2.68), we obtain

Dα
t (η) = ∂αt η + ηu∂

α
t u− u∂αt ηu +

∞∑
n=1

(
α

n

)
∂nt ηu∂

α−n
t u+ ζ, (2.71)

where

ζ =
∞∑
n=2

n∑
m=2

m∑
k=2

(
α

n

)(
n

m

)
tn−αUk

k!Γ(n+ 1− α)

∂n−m+kη

∂tn−m∂uk
.

When η is a function in the form η = f(t, x)u, its the second derivative of

η (and above) with respect to u gives ζ = 0. Finally, combining equations
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(2.69), (2.70) and (2.71), we have the explicit form of ηα,t

ηα,t =
∞∑
n=1

[(
α

n

)
∂nt ηu −

(
α

n+ 1

)
Dn+1
t (τ)

]
∂α−nt u

−
∞∑
n=1

(
α

n

)
Dn
t (ξ)∂α−nt (ux) + ∂αt η + (ηu − αDt(τ))∂αt u− u∂αt ηu + ζ.

(2.72)

The explicit form of ηα,t reveals the fact that since α is a fraction, the first

two terms of equation (2.72) with fractional integrals ∂α−nt u and ∂α−nt (ux)

will not coincide with any of the other differential quantities that present, we

actually “earn” the following conditions

(
α

n

)
∂nt ηu −

(
α

n+ 1

)
Dn+1
t (τ) = 0 and

(
α

n

)
Dn
t (ξ) = 0,

for n = 1, 2, . . . , which in most cases (at least in ours), can be simplified to

ηut −
1

2
τtt = 0, (2.73a)

ξt = 0. (2.73b)

However, it is recommended to expand the conditions by at least two terms

to avoid unnecessary loss. Jefferson and Carminati [46] in 2013 presented an

algorithmic package FracSym to solve the Lie equations of fractional differ-

ential equations. In our study, the package is used to verify the solutions of

the determining equations found. Henceforth, the process to obtain optimal

systems and invariant solutions of fractional differential equations are similar
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to the process we discussed in sections (2.2.2) and (2.2.3) earlier.

47



Chapter 3

Time-fractional

Black-Scholes-Merton model

3.1 Preliminaries of financial mathematics

The financial market, like most traditional markets, is a place where all kinds

of products are traded. Instead of selling dairy products, the merchants are

selling financial products or contracts, which are commonly known as deriva-

tives nowadays. The derivatives market is big, much bigger than the stock

market when measured in terms of underlying assets. By hedging or specula-

tion, derivatives are able to transfer the risks in the economy from one entity

to another.

The value of a derivative, as a financial instrument, depends on the values

of the underlying assets. Currently the most frequently traded derivatives are
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forward contracts, futures contracts, options, bonds, and swaps.

Forward contracts

The forward contract is an agreement to buy or sell an asset at a certain future

for a certain price. One of the contract holders agrees to buy the underlying

asset on a certain date in the future (the long position) while the other contract

holder agrees to sell that asset on the same date for the same price (the short

position).

This is very common and popular in foreign exchange markets to hedge

foreign currency risk. If the delivery price (the price set in advance in the

contract) and the spot price (the current market price) of the asset are K and

ST respectively at maturity, in general, the payoff from a long position in a

forward contract is

ST −K

while the payoff of a short position is

K − ST .

The payoff from the contract is the trader’s total gain or loss from the contract

since it costs nothing to enter the contract. The good side (and also the bad)

of forward contracts is the gain (or the loss) is theoretically indefinite.
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Futures contracts

Similar to a forward contract, a futures contract entangle two parties in agree-

ing to trade an asset at a certain time in the future for a certain price. The

futures contracts are normally traded on an exchange, between a wide range

of commodities such as gold, old, sugar, etc, and financial assets.

Options

A call option gives the holder the right, but not the obligation, to buy the

underlying asset by a certain date for a certain price. A put option, on the

other hand, gives the right to the holder to sell the underlying asset by a

certain date for a certain price. European options can only be exercised on the

expiration date while American options can be exercised at any time up to the

expiration date. Unlike futures and forwards contracts, option contracts come

with prices and the payoff of an option depends only on the price at maturity.

If the price of an asset at maturity, ST , exceeds the strike price (or exercise

price), K, that is when ST > K, a call option should always be exercised and

gain a payoff of ST −K. The opposite of this situation, if ST ≤ K, the holder

of a call option should not exercise the option because the asset can be bought

with a cost less than or equal to the exercise price, K.
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There are four types of option positions with their respective payoffs:

1. A long position (i.e., has bought the option) in a call option, payoff =

max(ST −K, 0).

2. A long position in a put option, payoff = max(K − ST , 0).

3. A short position (i.e., has sold the option) in a call option, payoff =

min(K − ST , 0).

4. A short position in a put option, payoff = min(ST −K, 0).

Figure 3.1 illustrates these payoffs.

Figure 3.1: Payoffs from positions in European options: (a) long call; (b)
short call; (c) long put; (d) short put. Strike price = K; price of the asset at
maturity = ST .
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Bonds and Swaps

Bonds and swaps are not our study focus. We briefly introduce them here

for fundamental financial knowledge. A bond is a contract written by a big

party to raise capital where the up-front premium is regarded as a loan to the

bond writer. Upon maturity, the bond writer is to reclaim the bond from the

holders with an amount agreed upon by both parties. A swap is a contract

between two parties to agree on exchanging assets, says cash flows or stocks,

in the future.

One important thing when dealing with financial derivatives is pricing

them. Determining a fair price of a derivative always starts with the con-

struction of a model to simulate the movement of the asset. In this context,

the geometric Brownian motion is commonly used to simulate the asset price

in many financial models. The stock price, S, is assumed to be governed by

the stochastic differential equation

dS = rSdt+ σSdBt, (3.1)

where r is the expected rate of return of the asset, σ is the volatility and Bt

is a standard Brownian motion. A further type of stochastic process can be

defined as

dx = a(x, t)dt+ b(x, t)dz, (3.2)
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where dz is a Wiener process, is known as an Itô process. This process is

Markov since the change in x at time t depends only on the value of x at time

t, not on its history.

Itô lemma

Suppose a variable x follows the Itô process (3.2), then it has a drift rate

of a and a variance rate of b2. Itô’s lemma shows that a function G(x, t)

follows the process

dG =

(
∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2

)
dt+

∂G

∂x
b · dz, (3.3)

also follows an Itô process. The drift rate and variance rate of the process

G(x, t) are

∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2

and (
∂G

∂x
b

)2

respectively. It is well recognized that equation (3.1) is a reasonable model

of stock price movements [37]. On top of this, the Itô lemma (3.3) can be

extended to the fact that the process followed by a function G(S, t) is

dG =

(
∂G

∂S
rS +

∂G

∂t
+

1

2

∂2G

∂S2
σ2S2

)
dt+

∂G

∂S
σS · dz. (3.4)

The functions S and G are affected by the same underlying source of uncer-
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tainty, dz. Equation (3.4) is proven to be the key in the derivation of the

famous Black-Scholes-Merton results.

3.2 The Black-Scholes-Merton equation

The Black-Scholes-Merton model is undoubtedly one of the most important

models in finance. Established and presented by Fischer Black and Myron

Scholes [12], and Robert Merton [61] in 1973, the model hugely inspired the

way that traders price and hedge derivatives. The discovery was later given the

highest recognition from the Nobel Prize committee in 1995 for its magnificent

impact on the economy.

The Black-Scholes-Merton (BSM) model introduces a linear parabolic par-

tial differential equation that gives theoretical values for the European call

and the European put options. This model is derived based on the following

assumptions:

1. The stock price follows the process developed in equation (3.1).

2. The full use of the proceeds is allowed and the short selling of the secu-

rities is not penalized.

3. The transactions cost nothing, nor taxes. The assets are perfectly divis-

ible.

4. The derivative pays no dividends during its life circle.

5. The risk-free arbitrage opportunities do not exist.
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6. Trading in the market is time-continuous.

7. The risk-free interest rate, r, is deterministic and constant over time.

To derive the Black-Scholes-Merton equation, recall the assumption made

earlier that the stock price process follows the stochastic process (3.1) that

sounds

dS = rSdt+ σSdz.

Suppose that u(S, t) is the price of a call option (or other derivatives) at time

t when the price of the underlying stock is S. Equation (3.4) gives

du =

(
∂u

∂S
rS +

∂u

∂t
+

1

2

∂2u

∂S2
σ2S2

)
dt+

∂u

∂S
σS · dz. (3.5)

Define a new portfolio that holds a short one derivative and long an amount

∂u/∂S of share as:

Π =
∂u

∂S
S − u, (3.6)

where Π is the value of the portfolio.

The changes of the value of portfolio (3.6) in time, dt, is

dΠ =
∂u

∂S
dS − du. (3.7)

Combining equations (3.1) and (3.5) into equation (3.7), we have

dΠ =

(
− ∂u

∂t
− 1

2

∂2u

∂S2
σ2S2

)
dt. (3.8)
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The absence of the Wiener process, dz, in equation (3.8) indicates that the

portfolio is riskless during the time dt and earns the same rate of returns

as other riskless securities due to the absence of arbitrage opportunity (in

assumption 5). Hence,

dΠ = rΠdt. (3.9)

Substituting equations (3.6) and (3.8) into equation (3.9) yields

(
∂u

∂t
+

1

2

∂2u

∂S2
σ2S2

)
dt = r

(
u− ∂u

∂S
S

)
dt

which finally lead to the Black-Scholes-Merton equation

∂u

∂t
+ rS

∂u

∂S
+

1

2
σ2S2 ∂

2u

∂S2
= ru. (3.10)

The Black-Scholes-Merton equation has many solutions corresponding with

different boundary conditions: for a European call option, the condition sounds

u = max(S −K, 0) when t = T,

and for a European put option,

u = max(K − S, 0) when t = T,

with K as the exercise price at maturity. Among the solutions obtained from

equation (3.10), the most famous solutions are the Black-Scholes-Merton for-
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mulas for the prices of European call (c) and put (p) options:

c = S0N(d1)−Ke−rTN(d2) (3.11)

and

p = Ke−rTN(−d2)− S0N(−d1), (3.12)

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ
√
T .

Here, S0 is the initial stock price, K is the strike price, r is the riskless rate

of interest, σ is the stock price volatility, and T is the time to maturity of the

option. The function N(·) is the cumulative probability distribution function

of a variable with a standard normal distribution, φ(0, 1). Equations (3.11)

and (3.12) are related with a very important relationship which is known as

the put-call parity :

c+ ke−rT = p+ S0. (3.13)

3.2.1 Lie point symmetries admitted by the Black-Scholes-

Merton equation

Gazizov and Ibragimov [28] in 1998 presented the Lie symmetry analysis on

the Black-Scholes-Merton equation and showed that the equation is included in

Lie’s classification of linear second-order partial differential equation with two
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independent variables. The Black-Scholes-Merton equation was then trans-

formed into the heat equation. Finally, the exact solutions were presented.

The infinite-dimensional vector space of the infinitesimal symmetries of

equation (3.10) spanned by the following operators:

X1 =
∂

∂t
,

X2 = S
∂

∂S
,

X3 = 2t
∂

∂t
+ (lnS +Dt)S

∂

∂S
+ 2rtu

∂

∂u
,

X4 = σ2tS
∂

∂S
+ (lnS −Dt)u ∂

∂u
,

X5 = 2σ2t2
∂

∂t
+ 2σ2tS lnS

∂

∂S
+ ((lnS −Dt)2 + 2σ2rt2 − σ2t)u

∂

∂u
,

X6 = u
∂

∂u
,

X∞ = φ(t, S)
∂

∂u
,

(3.14)

where D = r − σ2/2 and φ(t, S) is any solutions of equation (3.10).

3.2.2 Solutions from the admitted Lie point symmetries

Equation (3.10) is a partial differential equation with many solutions. In fact,

each generator of (3.14), as well as a linear combination of the generators, ad-

mits an invariant solution of (3.10). For instance, consider the one-parameter

subgroup with the generator

X = X1 +X2 +X6 =
∂

∂t
+ S

∂

∂S
+ u

∂

∂u
, (3.15)
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which has the associated characteristics equations as

dt

1
=
dS

S
=
du

u
.

The solution of the above characteristics equations gives the two independent

invariants t− lnS and u/S. Hence, the invariants of the combined generator

(3.15) take the form

u = SG(t− lnS),

which will finally reduce equation (3.10) to a second order ordinary differential

equation

1

2
σ2G′′(z) + AG′(z) = 0,

where z = t− lnS, A = r+ σ2/2− 1 and G′(z) = dG/dz. The solution of the

second-order ordinary differential equation can be easily found

G(z) =
k1σ

2 exp(2Az/σ2)

2A
+ k2

where k1 and k2 are arbitrary constants. Hence, the solution of equation (3.10)

corresponding to the generator (3.15) is obtained:

u(S, t) = S

(
k1σ

2 exp(2A(t− lnS)/σ2)

2A
+ k2

)
.

Apparently constructing the invariant solutions for all possible linear combi-

nations of the operators (3.14) is impractical. The optimal system, which is a

small representative of the set of the symmetries that is possible to generate
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any other solution via a simple transformation, is constructed. For simplicity,

equation (3.10) is written as

ut +
1

2
σ2x2uxx + rxux − ru = 0, (3.16)

where S is replaced by x, ut, ux and uxx are partial derivatives of u respect to

t and x respectively.

3.3 Time-fractional Black-Scholes-Merton equa-

tion

The success of the Black-Scholes-Merton equation in providing the values of

options undoubtedly put it in position as one of the most important discov-

eries in financial mathematics in the past few decades despite the fact that

the equation was established under strict assumptions. To weaken those re-

strictions, various improved models have been proposed. Merton proposed

the stochastic interest model [62] and the jump-diffusion model [63], Hull and

White [38] proposed a stochastic volatility model, Davis et al. [21] and Barles

and Soner [7] proposed models with transactions costs, etc.

Recently, numerous fractional Black-Scholes-Merton models were proposed

as the result of the discovery of the fractal structure of the financial market.

Wang [95] presented a European call option pricing formula of a discrete-time

option pricing by the fractional Black-Scholes-Merton model with transaction
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costs by the mean of the self-financing delta-hedging argument. Liang et al.

[53] established a bi-fractional Black-Merton-Scholes model with the Hurst

exponent H in [1/2,1] and proposed the explicit option pricing formulas for

the model.

In 2000, Wyss [96] presented a solution of a time-fractional Black-Scholes-

Merton equation by using Green’s function. His proof was solely done on the

basis of mathematical content. Cartea and Castillo-Negrete [15] showed that

the prices of the financial derivatives of CGMY, KoBoL, and FMLS mod-

els, which follow a jump process or Lévy process, satisfy a fractional partial

differential equation. Jumarie [47, 48] derived two new families of fractional

Black-Scholes-Merton equations in coarse-grained space and time by modeling

a fractional stochastic differential equation as a fractional dynamics driven by

white noise. Jumarie’s works were done on the modified Riemann-Liouville

fractional derivative, in which the effects of the non-zero initial value of the

respective function are removed. Song and Wang [88] combined Jumarie’s

time-fractional Black-Scholes-Merton equation with the terminal and bound-

ary conditions satisfied by the standard put options and gave the numerical

solutions to the model. Ravi Kanth and Aruna [77] presented the fractional dif-

ferential transform method and modified fractional differential method for the

solution of the time-fractional Black-Scholes-Merton European option pricing

equation.
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3.3.1 Lie point symmetries admitted by a time-fractional

Black-Scholes-Merton equation

In this section, the Lie symmetries analysis is used on a time-fractional

Black-Scholes-Merton equation

∂αu

∂tα
+

1

2
σ2x2uxx + rxux − ru = 0, (3.17)

where
∂αu

∂tα
is the partial derivative of the function u(t, x) respect to t of order

α, defined as the Riemann-Liouville fractional derivative

∂αu

∂tα
=

1

Γ(m− α)

(
∂

∂t

)m ∫ t

0

u(ξ, x)

(t− ξ)α+1−mdξ, (3.18)

where 0 < m − 1 < α ≤ m,m ∈ N, σ and r are two different scalars that

represent volatility and interest rate respectively. The invariance condition of

equation (3.17) that satisfies the infinitesimal criterion of the invariance (2.65),

that is

X(α,2)

(
∂αu

∂tα
+

1

2
σ2x2uxx + rxux − ru

)
= 0,

is given by

ηα,t +
1

2
σ2x2ηxx + σ2xuxxξ + rxηx + ruxξ − rη = 0, (3.19)

where the infinitesimals η, ξ and τ are functions of variables (u, t, x) that define

the infinitesimal generator (2.6).
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Substituting the derivatives ηx, ηxx, as defined in (2.22a, 2.22c), and ηα,t

from (2.72) into equation (3.19) and equating the coefficients of ut, ux, uxx,

uxt, utuxx, uxuxx, u
2
x, ∂

α−n
t u and ∂α−nt ux to zero gives the following system of

determining equations:

1

2
σ2x2τxx + rxτx = 0, (3.20a)

σ2x2ηxu −
1

2
σ2x2ξxx + rαxτt − rxξx + rξ = 0, (3.20b)

1

2
αxτt − xξx + ξ = 0, (3.20c)

τx = τu = ξu = ξt = 0, (3.20d)

1

2
σ2x2ηuu − σ2x2ξxu − rxξu = 0, (3.20e)

for n = 1, 2, 3, · · · ,
(
α

n

)
∂nt ηu −

(
α

n+ 1

)
Dn+1
t (τ) = 0. (3.20f)

Notice that equations (3.20d), which suggest

ξ = ξ(x) and τ = τ(t), (3.21)

show that equation (3.20a) is trivial and equation (3.20e) is equivalent to

ηuu = 0, that is

η = uA(t, x) +B(t, x). (3.22)

Since ξ = ξ(x), differentiating equation (3.20c) with respect to t gives τtt = 0,

or τ = c1t+ci, for c1 and ci being two arbitrary constants. The transformations

of variables should retain the structure of the Riemann-Liouville fractional
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derivative operator, that is τ(u, t, x)|t=0 = 0 Hence, the function τ(t) is found

τ(t) = c1t. (3.23)

Substituting equation (3.23) to equation (3.20c) yields

1

2
c1αx− xξx + ξ = 0,

which gives the solution of the function ξ(x)

ξ(x) =
1

2
c1αx lnx+ c2x, (3.24)

Combining equation (3.23) with the free condition (2.73a) discussed in the

previous section (or with equation (3.20f)) gives ηut = 0, which subsequently

suggests the function A(t, x) in equation (3.22) being A(x). Substituting η =

uA(x) +B(t, x) and equations (3.24, 3.23) into equation (3.20b) gives

A(x) = c1αM lnx+ c3, (3.25)

where M =
1

4
− 1

2

r

σ2
and c3 is an arbitrary constant. Hence, the function

η(u, t, x) is solved:

η(u, t, x) = (c1αM lnx+ c3)u+B(t, x), (3.26)

where B(t, x) is any solution of equation (3.17).
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Hence, the symmetry group of the fractional Black-Scholes-Merton equa-

tion is spanned by the vector fields

X1 = t
∂

∂t
+

1

2
αx lnx

∂

∂x
+ (αM lnx)u

∂

∂u
,

X2 = x
∂

∂x
,

X3 = u
∂

∂u
,

X∞ = B(x, t)
∂

∂u
.

(3.27)

The one-parameter Lie group of transformation (2.3) of the operators (3.27)

is obtained by solving Lie equations (2.7):

X1 : ū = ux2M(eαε/2−1), t̄ = eεt, x̄ = xe
αε/2

X2 : ū = u, t̄ = t, x̄ = xeε

X3 : ū = ueε, t̄ = t, x̄ = x

(3.28)

3.3.2 Optimal system of time-fractional Black-Scholes-

Merton equation

To minimize the group of invariant solutions generated by the infinitesimal

generators (3.27), we construct the optimal system admitted by the generators

(3.27). First, we compute the commutators or the Lie brackets as defined in

(2.26):

[Xi, Xj] = XiXj −XjXi.
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For instance, [X1, X2] is calculated as:

[X1, X2] =

(
t
∂

∂t
+

1

2
αx lnx

∂

∂x
+ (αM lnx)u

∂

∂u

)
· x ∂
∂x

− x ∂
∂x
·
(
t
∂

∂t
+

1

2
αx lnx

∂

∂x
+ (αM lnx)u

∂

∂u

)
=

1

2
αx lnx

∂

∂x
− x
(

1

2
α lnx+

α

2

)
∂

∂x
− xαM

x
u
∂

∂u

= −α
2
x
∂

∂x
− αMu

∂

∂u

= −α
2
X2 − αMX3

using the anticommutativity property of a commutator,

[X2, X1] =
α

2
X2 + αMX3.

Similarly, we obtained the Lie brackets [X1, X3] = [X2, X3] = 0.We listed all

the commutators generated by the operators (3.27) in Table 3.1. The classical

BSM equation emits more generators and hence produces more complicated

Lie brackets [85].

Table 3.1: Lie bracket of the admitted system algebra for the time-fractional
Black-Scholes-Merton model.

[Xi, Xj] X1 X2 X3

X1 0 −α
2
X2 − αMX3 0

X2
α

2
X2 + αMX3 0 0

X3 0 0 0

Using the commutators Table 3.1, the adjoint representations for each Xi

of the basis symmetries group are determined as defined in equation (2.28).
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First, we determined Ad(exp(εX1))X2:

Ad(exp(εX1))X2 = X2 − ε[X1, X2] +
ε2

2
[X1, [X1, X2]]

− ε3

6
[X1, [X1, [X1, X2]]] + · · ·

= X2 − ε
(
− α

2
X2 − αMX3

)
+
ε2

2
[X1,−

α

2
X2 − αMX3]

− ε3

6
[X1, [X1,−

α

2
X2 − αMX3]] + · · ·

= X2 + ε
(α

2
X2 + αMX3

)
− αε2

4
[X1, X2]

+
ε3

6
[X1,

α

2
[X1, X2]] + · · ·

= X2 + ε
(α

2
X2 + αMX3

)
+
αε2

4

(α
2
X2 + αMX3

)
− ε3

6
[X1,

α

2

(α
2
X2 + αMX3

)
] + · · ·

= X2 + ε
(α

2
X2 + αMX3

)
+
αε2

4

(α
2
X2 + αMX3

)
+
ε3

6

α2

4

(α
2
X2 + αMX3

)
+ · · ·

=

(
1 +

αε

2
+
α2ε2

8
+
α3ε3

48
+ · · ·

)
X2

+

(
αε+

α2ε2

4
+
α3ε3

24
+ · · ·

)
MX3

= exp
{αε

2

}
X2 + 2

(
exp

{αε
2

}
− 1
)
MX3

The adjoint representations of other Xi’s are computed similarly and listed

in Table 3.2.

To determine the optimal system, we need to simplify as many of the
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Table 3.2: Adjoint representation of the admitted system algebra for the time-
fractional Black-Scholes-Merton model.

[Xi, Xj] X1 X2 X3

X1 X1 exp
{αε

2

}
X2 + 2

(
exp

{αε
2

}
− 1
)
MX3 X3

X2 X1 −
εα

2
X2 − εαMX3 X2 X3

X3 X1 X2 X3

coefficients ai as possible of the nonzero vector

X = a1X1 + a2X2 + a3X3.

First, suppose a1 6= 0 and assume a1 = 1. Referring to Table 3.2, the coefficient

of X2 will disappear if we act X with Ad
(

exp
(2a2

α

)
X2

)
:

X ′ = Ad
(

exp
(2a2

α

)
X2

)
(X1 + a2X2 + a3X3)

= X1 −
2a2

α

α

2
X2 −

2a2

α
αMX3 + a2X2 + a3X3

= X1 + (a3 − 2a2M)X3

= X1 + ρX3 (let a3 − 2a2M = ρ)

No further simplification is possible on such an X ′. This means every one-

dimensional subalgebra generated by X with a1 6= 0 is equivalent to the sub-

algebra spanned by X1 + ρX3.

Now consider the one-dimensional subalgebras that are spanned by X with
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a1 = 0. Similarly, we suppose a2 6= 0 and scale it to 1, that is

X ′′ = X2 + a3X3.

The coefficient of X3 will disappear if we act on X ′′ with a specific adjoint

representation of X1:

X ′′′ = Ad

(
exp

{
2

α
ln

(
1− a3

2M

)}
X1

)
(X2 + a3X3)

= exp

{ 2
α

ln
(
1− a3

2M

)
α

2

}
X2 +

(
a3 + 2

(
exp

{ 2
α

ln
(
1− a3

2M

)
α

2

}
− 1

)
M

)
X3

=

(
1− a3

2M

)
X2

= ã2X2

Hence, any subalgebra spanned by X with a1 = 0, a2 6= 0 is equivalent to the

subalgebra spanned by X2. Lastly, the remaining cases a1 = a2 = 0 and a3 6= 0

are similarly seen to be equivalent to X3. Hence, the set of one-dimensional

optimal systems for the time-fractional Black-Scholes-Merton model is

{
X1 + ρX3, X2, X3

}
.

3.3.3 Group invariant solutions of time-fractional Black-

Scholes-Merton equation

To obtain the group invariant solutions, the method of characteristics (2.11)

is applied to the infinitesimal generators (or the optimal system). The func-
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tion u = u(t, x) is an invariant solution of a fractional differential equation

corresponding to its infinitesimal operator if and only if it fulfills the invariant

surface condition

τ(u, t, x)ut + ξ(u, t, x)ux = η(u, t, x).

Suppose ξ and τ are not both zero, then the above invariant surface con-

dition can be solved by the method of characteristics:

dx

ξ
=
dt

τ
=
du

η
.

3.3.3.1 Invariant solution generated by X2

Consider the infinitesimal operator X2 = x
∂

∂x
we obtained earlier. The char-

acteristic equations

dt

0
=
dx

x
=
du

0

give the similarity variables t and u. It is more convenient to write it as

u = F (t). Inserting it into the equation (3.17) yields the following fractional

ordinary differential equation

∂α

∂tα
F (t) = rF (t).

Similar to the Cauchy problem (2.63), the solution to the above equation is

u(t, x) = F (t) = k1t
α−1Eα,α(rtα), (3.29)
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where k1 = D−(1−α)F (0) and Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
is a Mittag-Leffler

function.

3.3.3.2 Invariant solution generated by X2 + ρX3

The generator X2 + ρX3, where ρ is an arbitrary constant, gives

X2 + ρX3 = x
∂

∂x
+ ρu

∂

∂u

and leads to the characteristic equations

dt

0
=
dx

x
=
du

ρu
.

Solving the above equations gives the similarity variables t and ux−ρ which is

more conveniently written as u = xρG(t). Substitute this into equation (3.17)

will lead to the following fractional ordinary differential equation

∂α

∂tα
G(t) +

(
(ρ− 1)

(
1

2
σ2ρ+ r

))
G(t) = 0.

Solving the above fractional equation for G(t) eventually give the solution of

equation (3.17) as

u(t, x) = k2x
ρtα−1Eα,α

(
(1− ρ)

(
1

2
σ2ρ+ r

)
tα
)
, (3.30)

where k2 = D−(1−α)G(0). The invariant solution provided by the generator

X1 + ρX3 as listed in the optimal systems is not found for the calculation in-
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volved is unmanageable. Note that X4 = u
∂

∂u
does not provide any invariants.

3.4 Conclusion

Partial differential equations always generate multiple solutions. So do the

corresponding fractional differential equations. Equation (3.29) we suggested

above is a one-variable function in t. This solution is true from the mathemat-

ical perspective. However, the lack of variable x in the solution is somehow

less appealing from the financial point of view. Here we illustrate the newly

obtained equations (3.29) and (3.30) in figures 3.2 and 3.3. The parameters

chosen for illustration are as follows

• risk-free interest rate r = 0.1,

• volatility σ = 0.2,

• constant k1 = k2 = 1,

• constant ρ = 1.5.

Figure 3.2 illustrates the solution (3.29) using the parameters with three

different values of α = 0.5, 0.8, and 0.9 against time. Figure 3.3 shows the

surfaces of equation (3.30).

The solutions of fractional differential equations, in general, differ signif-

icantly from each other when the values of α are small. However, with the
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Figure 3.2: Equation (3.29) with α = 0.5, 0.8, and 0.9, against time using
r = 0.1, σ = 0.2.

increase of α, they appear to be emerging to each other. In Figure 3.2, the

graphs of equation (3.29) have a big difference between the value of α = 0.5

and α = 0.8. The gap between the graphs shrinks when α ranges from 0.8

to 0.9. Furthermore, figure 3.2 shows an obvious discrepancy between graphs

when t is short (less than 0.4).

Figure 3.3 illustrate equation (3.30) with the same values of α which are

0.5, 0.8, and 0.9. Figure 3.3 shows that the value of the option increases

slowly when x increases. Similar to figure 3.2, the values of the option differ

significantly when the value of time is small. The values of the option slowly

decline when time increases.

The cause of the discrepancy between the solutions of fractional differential

equations and non-fractional differential equations is uncertain. Tarasova and

Tarasov [93] pointed out that fractional derivatives describe the memory effect
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Figure 3.3: Equation (3.30) with α = 0.5, 0.8, and 0.9, against time using
r = 0.1, σ = 0.2, ρ = 1.5.

in financial and economic processes.

Figures 3.2 and 3.3 show that the memory effect on the time-fractional

Black-Scholes-Merton equation is prominent for smaller t, that is when the

option just gets started. When time passes by, the effect fades and the graphs

merge. We believe the memory effect on the time-fractional Black-Scholes-

Merton equation is somehow connected to the variable t and the constant

α.

In this chapter, Lie symmetry analysis is used on a time-fractional Black-

Scholes-Merton equation. The time-fractional Black-Scholes-Merton equa-
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tion admits three point symmetries and an infinite dimensional sub-algebra

X∞. With the commutators and adjoint representations obtained, the set of

one-dimensional optimal systems for the time-fractional Black-Scholes-Merton

model is found. Two exact invariant solutions of the time-fractional Black-

Scholes-Merton equation are proposed and presented in the form of graphs.
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Chapter 4

Time-fractional arbitrage-free

stock price model

4.1 Arbitrage-free stock price model

The Black-Scholes-Merton model is based on the assumption that the stock

price follows an Itô process described by the stochastic differential equation

dSt = µStdt+ σStdwt

where µ representing the drift of the stock, σ is the volatility of the stock,

and wt is a standard Wiener process. In fact, the value of St at any time t is

expected to be

EQ[St] = S0e
rt,
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where Q is the risk-neutral measure. In 1976, Cox and Ross [20] proposed an

alternative to the above model, that is

dSt = µStdt+ σ
√
Stdwt.

The above equation has no closed-form solution. Hence, the analogue of the

Black-Scholes-Merton formula for the Cox-Ross model can not be found. Stock

price models depend heavily on the arbitrage-free condition, which is not re-

alistic. Bell and Stelljes [10], in 2009, proposed a method to construct a class

of solvable arbitrage-free models for stock prices by following the stochastic

Bernoulli equation of Stratonovich type

dS̃t = µS̃tdt+ σS̃pt ◦ dwt, (4.1)

where 1/2 ≤ p ≤ 1. The solution to the above model is an integro-differential

equation

S̃t = ert
{

(1− p)σ
∫ t

0

er(p−1)udwu + S̃1−p
0

}1/(1−p)

, (4.2)

which generally contrasts with the arbitrage-free condition. To overcome

this shortage, Bell and Stelljes constructed a function Z so that the process

St ≡ Z(S̃t, t) is arbitrage-free. This yields a second-order partial differential

equation for Z that is similar to the classical Black-Scholes-Merton equation

Zt +

(
rs+

pσ2s2p−1

2

)
Zs +

σ2s2p

2
Zss − rZ = 0, (4.3)
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with the condition that there exists n such that for every future time T > 0,

sup
0≤t≤T

|Zs(s, t)| ≤ C|s|n, ∀s ∈ R.

The solutions of equation (4.3) for p = 1 and p = 1/2 were suggested at

the end of the paper [10]. When p = 1, equation (4.3) emerges to the classical

Black-Scholes-Merton model and admit a solution Z(s, t) = s−σ
2t/2. Similarly,

when p = 1/2, the equation (4.3) emerges to the Cox-Ross model and admits

a solution Z(s, t) = s+ σ2/4r.

Sinkala [86], in 2016, extended this result for all values of p, 1/2 ≤ p ≤ 1,

for which the equation is tractable by using Lie symmetry analysis. Replacing

the variables x and u in place of s and Z, we have

∂u

∂t
+

(
rx+

pσ2x2p−1

2

)
∂u

∂x
+
σ2x2p

2

∂2u

∂x2
− ru = 0. (4.4)

Equation (4.4) admits a rich symmetry group. Sinkala showed that for p 6=

1, the basis of the infinite-dimensional vector space of infinitesimal symmetries
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of equation (4.4) are as follows:

X1 = eDtx1−p
(
σ2x2p−1 ∂

∂x
− 2ru

∂

∂u

)
,

X2 = e−Dtxp
∂

∂x
,

X3 = e2Dt

[
rx

∂

∂x
− ∂

∂t
+

(
D − r − 2r2x2(1−p)

σ2
u
∂

∂u

)]
,

X4 = e−2Dt

(
rx

∂

∂x
+
∂

∂t
+ ru

∂

∂u

)
,

X5 =
∂

∂t
+

(
r − D

2

)
u
∂

∂u
,

X6 = u
∂

∂u
,

Xφ = φ(t, x)
∂

∂u
,

(4.5)

where D = (p − 1)r and φ(t, x) is any solution of (4.4). The corresponding

invariant solutions generated by (4.5) are

X1 : u(t, x) = κ1e
r

[
(2−p)t− x

2(1−p)
(1−p)σ2

]
, (4.6a)

X2 : u(t, x) = κ1 exp

{
rt− e(p−1)rtx1−p

p− 1
− e2(p−1)rtσ2

4(p− 1)r

}
, (4.6b)

X3 : u(t, x) = exp

{
r(2(1− p)t)− x2(1−p)

(1− p)σ2

}(
κ1e

prt + κ2e
rtx1−p) , (4.6c)

X4 : u(t, x) = κ1e
rt + κ2e

prtx1−p. (4.6d)

Note that X5 in equation (4.5) leads to a reduced second-order ordinary dif-

ferential equation which Sinkala did not suggest a solution to it.

79



For p = 1, equation (4.4) reduces to

∂u

∂t
+

(
r +

σ2

2

)
x
∂u

∂x
+
σ2x2

2

∂2u

∂x2
− ru = 0, (4.7)

which admits infinitesimal symmetries that is spanned by the following oper-

ators:

X1 = xσ2 ∂

∂x
− ru ∂

∂u
,

X2 = txσ2 ∂

∂x
+ (lnx− rt)u ∂

∂u
,

X3 =
∂

∂t
+Nru

∂

∂u
,

X4 = x lnx
∂

∂x
+ 2t

∂

∂t
+

(
2Nrt− 1

2
− r

σ2
lnx

)
u
∂

∂u
,

X5 = tx lnx
∂

∂x
+ t2

∂

∂t
+

[
Nrt2 +

1

2σ2
(lnx)2 − t

(
1

2
+

r

σ2
lnx

)]
u
∂

∂u
,

X6 = u
∂

∂u
, Xφ = φ(t, x)

∂

∂u
,

(4.8)

where N = 1+
r

2σ2
and φ(t, x) is any solution of equation (4.7). The respective

invariant solutions generated by (4.8) are

X1 : u(t, x) = κ1e
Nrtx−

r
σ2 , (4.9a)

X2 : u(t, x) = κ1e
Nrtx

ln x
2tσ2
− r
σ2 , (4.9b)

X3 : u(t, x) = eNrtx−
r
σ2 (κ1 + κ2 lnx), (4.9c)

X5 : u(t, x) = eNrtx
−2rt+ln x

2tσ2

(
κ1√
t

+
κ2 lnx

t3/2

)
. (4.9d)

The invariant solution generated by the generator X4 was not suggested.
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Sinkala’s work complemented the work done by Bell and Stelljes who pro-

posed a method for constructing explicitly solvable arbitrage-free models for

the stock price and reported the challenge to finding such solutions for a gen-

eral parameter p, which Bell et al. had only found two simple solutions for

p = 1 and p = 1/2.

In this study, we extend the arbitrage-free model (4.3) to a time-fractional

arbitrage-free stock price model using Lie symmetry analysis. Recall the sec-

ond order partial differential equation (4.4), the time-fractional version of equa-

tion (4.4) becomes

∂αu

∂tα
+

(
rx+

pσ2x2p−1

2

)
∂u

∂x
+
σ2x2p

2

∂2u

∂x2
− ru = 0, (4.10)

where 0 < α < 1, p 6= 1, and
∂αu

∂tα
is the Riemann-Liouville fractional derivative

of u of order α with respect to t . When p = 1, equation (4.10) becomes

∂αu

∂tα
+

(
r +

σ2

2

)
x
∂u

∂x
+
σ2x2

2

∂2u

∂x2
− ru = 0. (4.11)
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4.2 Lie symmetries of a time-fractional arbitrage-

free stock price model

First, we study the time-fractional arbitrage-free stock price model with p 6= 1.

Recall the time fractional arbitrage-free stock price model given in equation

(4.10)

∂αu

∂tα
+

(
rx+

pσ2x2p−1

2

)
∂u

∂x
+
σ2x2p

2

∂2u

∂x2
− ru = 0,

where 0 < α < 1, p 6= 1, and
∂αu

∂tα
is defined as Riemann-Liouville fractional

derivative of u of order α with respect to t. The invariance condition of

equation (4.10) is

ηα,t +

(
rx+

1

2
pσ2x2p−1

)
ηx +

(
rξ +

1

2
(2p− 1)pσ2x2p−2ξ

)
ux

+
1

2
σ2x2pηxx + pσ2x2p−1ξuxx − rη = 0.

(4.12)

The prolongations ηx, ηxx, and ηα,t, which are listed in equations (2.22a, 2.22c,

2.72), are substituted into equation (4.12). The coefficients of ut, ux, uxx,

uxt, utuxx, uxuxx, u
2
x, ∂

α−n
t and ∂α−nt are then set to zero to obtain the following
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non-trivial system of determining equations:

ηuu = ξt = ξu = τx = τu = 0, (4.13a)

−τtα− 2ξx−1p+ 2ξx = 0, (4.13b)

τtt(1− α) + 2ηut = 0, (4.13c)

(ατt − ξx)
(
rx+

1

2
pσ2x2p−1

)
+(

r +
(2p− 1)p

2
σ2x2p−2

)
ξ +

σ2x2p

2
(2ηxu − ξxx) = 0. (4.13d)

From equation (4.13a), we know

η(t, x) = uA(t, x) +B(t, x), ξ = ξ(x), and τ = τ(t).

Differentiating equation (4.13b) with respect to t will eliminate ξ and ξx be-

cause ξ = ξ(x). This will lead to τtt = 0 and hence,

τ = c1t. (4.14)

Here, the constant of integration is dropped to preserve the structure of the

Riemann-Liouville fractional derivative. Equation (4.14) then lends to the

solution of ξ:

ξ = c1
α

2(1− p)
x+ c2x

p. (4.15)

Finally, substitute τ , ξ and their derivatives into equation (4.13d) to obtain

η =

(
c1

Nα

2(p− 1)
x2−2p − c2Mx1−p + c3

)
u+B(t, x). (4.16)
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Here c1, c2, c3 are arbitrary constant, N = r/σ2 and B(t, x) is any solution to

equation (4.10). The arbitrary constants in η, ξ, and τ make up an infinite

dimensional Lie algebra of symmetries as below

X1 = t
∂

∂t
+

α

2(1− p)
x
∂

∂x
+

(
αN

2(p− 1)
x2−2p

)
u
∂

∂u
,

X2 = xp
∂

∂x
−Nx1−pu

∂

∂u
,

X3 = u
∂

∂u
,

X∞ = B(t, x)
∂

∂u
.

(4.17)

For the case when p = 1, equation (4.11)

∂αu

∂tα
+

(
r +

σ2

2

)
x
∂u

∂x
+
σ2x2

2

∂2u

∂x2
− ru = 0

gives the following invariance condition

ηα,t +

(
r +

σ2

2

)
xηx +

(
rξ +

σ2ξ

2

)
ux +

σ2x2

2
ηxx + σ2xξxx − rη = 0. (4.18)

Similar to the above case, the following system of determining equations is
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obtained:

ηuu = ξt = ξu = τx = τu = 0, (4.19a)

−αxτt + 2xξx − 2ξ = 0, (4.19b)

τtt(1− α) + 2ηut = 0, (4.19c)(
r +

σ2

2

)
ξ +

(
r +

σ2

2

)
αxτt

−
(
r +

σ2

2

)
xξx + σ2x2ηux −

1

2
σ2x2ξxx = 0. (4.19d)

Equation (4.19a) provides a similar condition of the function τ(t), ξ(x), and

η(t, x) as in the previous case. Differentiating equation (4.19b) with respect

to t gives us

τ = c1t. (4.20)

Equation (4.20) then leads to the solution of ξ by using equation (4.19c):

ξ = c1
1

2
αx lnx+ c2x. (4.21)

Finally, equation (4.19d) gives

η =
(
−c1

α

2
N lnx+ c3

)
u+ C(t, x), (4.22)

where N = r/σ2 and C(t, x) is any solution to equation (4.11). The admitted

infinite dimensional vector space of infinitesimal symmetries is spanned by the
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following operators:

X1 = t
∂

∂t
+
α

2
x lnx

∂

∂x
−
(α

2
N lnx

)
u
∂

∂u
,

X2 = x
∂

∂x
,

X3 = u
∂

∂u
,

X∞ = C(t, x)
∂

∂u
.

(4.23)

The infinitesimal generators in equations (4.17) and (4.23) give the one-parameter

groups of symmetries by solving Lie equations (2.7). The results correspond-

ing to the infinitesimal generators (4.17) and (4.23) are presented in (4.24)

and (4.25) respectively.

X1 : ū = ue

{
Nx2−2p

p−1 (e
αε
2 −1)

}
, t̄ = eεt, x̄ = e

αε
2(1−p)x

X2 : ū = ue

{
−N

(
(1−p)ε2

2
+x1−pε

)}
, t̄ = t, x̄ = [(1− p)ε+ x1−p]

1
1−p

X3 : ū = ueε, t̄ = t, x̄ = x

X∞ : ū = u+B(t, x)ε, t̄ = t, x̄ = x

(4.24)

X1 : ū = uxN(1−e
αε
2 ), t̄ = eεt, x̄ = xe

αε
2

X2 : ū = u, t̄ = t, x̄ = eεx

X3 : ū = ueε, t̄ = t, x̄ = x

X∞ : ū = u+B(t, x)ε, t̄ = t, x̄ = x

(4.25)
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4.3 Optimal systems and group invariant so-

lutions

Any linear combination of the generators found in the previous section may

construct different group invariant solutions. To minimize the set of reduc-

tions that are not equivalent by any transformation, we construct the optimal

systems [71] for each of the cases when p 6= 1 and p = 1 respectively by us-

ing infinitesimal generators (4.17) and (4.23). First, the commutators of the

admitted symmetries are constructed.

Recall the commutators of operatorsXi andXj as defined in (2.26), [Xi, Xj] =

XiXj −XjXi. For instance,

[X1, X2] =X1X2 −X2X1

=

(
t
∂

∂t
+

α

2(1− p)
x
∂

∂x
+
αNx2−2p

2(p− 1)
u
∂

∂u

)(
xp

∂

∂x
−Nx1−pu

∂

∂u

)
−
(
xp

∂

∂x
−Nx1−pu

∂

∂u

)(
t
∂

∂t
+

α

2(1− p)
x
∂

∂x
+
αNx2−2p

2(p− 1)
u
∂

∂u

)
=

α

2(1− p)
x

[
pxp−1 ∂

∂x
−N(1− p)x−pu ∂

∂u

]
− αNx2−2p

2(p− 1)
u

[
Nx1−p ∂

∂u

]
− xp

[
α

2(1− p)
∂

∂x
− αNx1−2pu

∂

∂u

]
+Nx1−pu

[
αNx2−2p

2(p− 1)

∂

∂u

]
=

α

2(1− p)
pxp

∂

∂x
− α

2
Nx1−pu

∂

∂u
− αN2x3(1−p)

2(p− 1)
u
∂

∂u
− α

2(1− p)
xp

∂

∂x

+ αNx1−pu
∂

∂u
+
αN2x3(1−p)

2(p− 1)
u
∂

∂u

=− α

2
xp

∂

∂x
+
α

2
Nx1−pu

∂

∂u
= −α

2

(
xp

∂

∂x
−Nx1−pu

∂

∂u

)
= −α

2
X2

87



Using the anticommutativity property of a commutator,

[X2, X1] =
α

2
X2.

Similarly, we obtained the Lie brackets [X1, X3] = [X2, X3] = 0. The Lie

brackets (or commutators) admitted when p 6= 1 and p = 1 are listed in Table

4.1 and Table 4.2 respectively.

Table 4.1: Lie bracket of the admitted system algebra for the case p 6= 1.

[Xi, Xj] X1 X2 X3

X1 0 −α
2
X2 0

X2
α
2
X2 0 0

X3 0 0 0

Table 4.2: Lie bracket of the admitted system algebra for the case p = 1.

[Xi, Xj] X1 X2 X3

X1 0 −α
2
X2 + Nα

2
X3 0

X2
α
2
X2 − Nα

2
X3 0 0

X3 0 0 0

Next, we need to construct the adjoint representation by using the formula

Ad(exp(εXi))Xj =
∞∑
n=0

εn

n!
(adXi)

nXj = Xj−ε[Xi, Xj]+
ε2

2!
[Xi, [Xi, Xj]]−· · · .
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To determine Ad(exp(εX1))X2,

Ad(exp(εX1))X2 =X2 − ε[X1, X2] +
ε2

2
[X1, [X1, X2]] + · · ·

=X2 − ε
[
−α

2
X2

]
+
ε2

2
[X1, [−

α

2
X2]] + · · ·

=X2 − ε
[
−α

2
X2

]
− αε2

4
[X1, X2] + · · ·

=X2 +
αε

2
X2 +

α2ε2

8
X2 + · · ·

=

(
1 +

αε

2
+
α2ε2

8
+ · · ·

)
X2

= exp
{αε

2

}
X2

The adjoint representation of other Xi’s for the case when p 6= 1 and p = 1

are computed similarly and listed in Table 4.3 and Table 4.4.

Table 4.3: Adjoint representation of subalgebra for the case p 6= 1.

Ad X1 X2 X3

X1 X1 exp( εα
2

)X2 X3

X2 X1 − εα
2
X2 X2 X3

X3 X1 X2 X3

Table 4.4: Adjoint representation of subalgebra for the case p = 1.

Ad X1 X2 X3

X1 X1 exp( εα
2

)X2 +N(1− exp( εα
2

))X3 X3

X2 X1 − εα
2
X2 +N( εα

2
)X3 X2 X3

X3 X1 X2 X3

For the case when p 6= 1, consider the linear combination of the symmetry

generators:

X = a1X1 + a2X2 + a3X3.
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Suppose first that a1 6= 0, then we can rescale it to 1. If we act on such an

X by exp(2a2
α

)X2, we can make the coefficient of X2 disappears:

X ′ = Ad

(
exp

(
2a2

α
X2

))
X = X1 + a3X3.

No more simplification is possible. Thus the one-dimensional subalgebra spanned

by X with a1 6= 0 is equivalent to the one spanned by X1 + ρX3, where ρ is an

arbitrary constant. The remaining one-dimensional subalgebras are spanned

by the vectors of the above form with a1 = 0. Suppose a2 6= 0 and setting

a2 = 1, acting on X by the group generated by X1:

X ′′ = Ad(exp(εX1))X = exp
(εα

2

)
X2 + a3X3.

This is a scalar multiple of X ′′′ = X2 + a3 exp
(
− εα

2

)
X3 which depends on the

sign of a3. We can make the coefficient of X3 either +1, −1, or 0. In other

words, any one-dimensional subalgebra spanned by X with a1 = 0, a2 6= 0 is

equivalent to one spanned by either X2 +X3, X2 −X3 or X2. Finally, setting

a1 = a2 = 0 and a3 = 1, we have only X3. Hence the set of one-dimensional

optimal systems for the case when p 6= 1 is

{
X1 + ρX3, X2 +X3, X2 −X3, X2, X3

}
.

Similarly, one can check that the optimal system for the case when p = 1 is

{
X1 + ρX3, X2 + ρX3, X3

}
.
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4.3.1 Group invariant solution of time-fractional

arbitrage-free stock price model

As discussed in Chapter 2, the method of characteristics (2.11) is applied

to the infinitesimal generators (or the optimal system) to obtain the group

invariant solutions. Finding the group invariant solutions of fractional differ-

ential equations is equivalent to finding the invariant solutions corresponding

to its infinitesimal operator while keeping the invariant surface condition

τ(u, t, x)ut + ξ(u, t, x)ux = η(u, t, x)

satisfied. The results from solving the characteristic equations are then com-

bined and substituted in the original FDE. This will reduce the FDE to an

“easier” differential equation which will lead to the completion of the whole

process.

Invariant solution for the case p = 1

For the case when p = 1, let’s consider the generator

X2 + ρX3 = x
∂

∂x
+ ρu

∂

∂u
.
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The characteristic equations of the generators are

dx

x
=
du

ρu
, (4.26)

which give the similarity variables t and ux−ρ. The solution of equation (4.11)

has the form u = xρH(t), where H(t) is a function in t, with its derivatives

can be written as ux = ρxp−1H(t) and uxx = ρ(ρ− 1)xρ−2H(t). Substitute the

derivatives into equation (4.11) gives the equation

∂αt H(t) = −
(

1

2
ρ2σ2 + r(ρ− 1)

)
H(t).

Finally, the invariant solution of equation (4.11) is obtained as

u = λ1x
ρtα−1Eα,α

(
−
(

1

2
ρ2σ2 + r(ρ− 1)

)
tα
)

(4.27)

where λ1 = D−(1−α)H(0).

The invariant solutions for the case when p 6= 1 are not found. Equation

(4.10) fails to reduce to a solvable fractional differential equation after the

simplification. Similarly, the invariant solution for the case when p = 1 corre-

sponds to the generator X1 + ρX3 is left unsolved. The generator u ∂
∂u

has no

invariant solution.
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4.4 Conclusion

(a) Equation (4.28) (b) Equation (4.27),α = 0.7

(c) Equation (4.27),α = 0.9
(d) Comparison of equation (4.28) and
equation (4.27) with different α

Figure 4.1: p = 1

Sinkala [86], in his work on the integer version of the model, gave the

respective invariant solutions of the model as

u = c1x
−N exp

{(
1 +

N

2

)
rt

}
(4.28)

for the case when p = 1, where c1 is an arbitrary constant and N = r/σ2.

Having both the solutions of the model in fractional and non-fractional versions

allows us to examine the differences and similarities of the models in detail.

Generally, most researches show that when the value of α approaches 1, the
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fractional version tends to be similar to the integer version. Using λ1 = κ1 =

c1 = 1, r = 0.1, σ = 0.2, ρ = −2.5 and different values of α, the comparison of

equation (4.27) and (4.28) are shown in Figures 4.1. Figure 4.1(d) shows the

combined comparison of figures 4.1(a), 4.1(b) and 4.1(c).

The figures show that when the values of α get closer to 1, the respective

surfaces get closer to Sinkala’s solutions. The disparity of the solutions of

integer differential equations (Figure 4.1(a)) and the solutions of fractional

differential equations (Figure 4.1(b) and Figure 4.1(c)) is due to the presence

of memory in financial agents. The concept of derivative of non-integer order

is widely used to describe the processes with memory in natural sciences and

in financial processes recently [57, 93]. The memory allows that at repeated

changes the agents can react to these changes in a different way than they

did before. Our figures show that when the order of the fractional derivative

equations, α, is low (far from 1) and when the time is short, the disparity is

obvious. The effect of memory is noticeable. When the value of α increases

and approaches 1, the disparity seems to be offset.

The effect of fractional calculus in computational finance is undoubtedly

significant. Before an interpretation of the rule of fractional calculus in com-

putational finance is commonly acknowledged, looking into the differences and

similarities of the existing models and their fractional versions is indispensable.

The figures above show that the differences between a time-fractional model

and an integer model are noticeably huge when the value of α is away from
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1 and when the time is short. When the time fractional model unfolds, as

the values of α and time increase, it convergences to the corresponding integer

model.
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Chapter 5

Power Options under the

Heston dynamic

5.1 Introduction

The Black-Scholes-Merton model introduced by Black and Scholes [12], and

Merton [61] undoubtedly is the most celebrated model for option pricing since

its introduction in 1973. However, the assumptions made by this model, which

include constant volatility, make this model too idealistic. In reality, most

financial assets consider stochastic volatility. The extension of the Black-

Scholes-Merton model to stochastic volatility triggered the blooming of various

stochastic volatility models. Among these models, Heston’s [35] is the most

recognized one with stochastic interest rates being introduced in pricing a

European call option on an asset with stochastic volatility. This model allows

an arbitrary correlation between volatility and spot-asset returns.
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Ibrahim et al. [43] later evaluated the power option prices based on the

Heston dynamics, assuming the asset price is to follow the log-normal process

governed by a single Brownian motion. A second Brownian motion drives the

volatility process. The two processes, the asset price process and the volatil-

ity process, are correlated by a constant correlation coefficient. Assuming the

market is complete [23], a partial differential equation representing the port-

folio is derived.

In a probability space (Ω, F,Q) on two Brownian motions W1,t and W2,t for

t > 0 where Ft, 0 ≤ t ≤ T , is the filtration caused by the Brownian motions

with T being the maturity and Q is a risk-neutral probability, the asset price

St is governed by the model

dSt = rStdt+
√
VtStdW1,t

dVt = κ∗(θ∗ − Vt)dt+ σ
√
VtdW2,t

〈dW1,t, dW2,t〉 = ρdt,

(5.1)

which is a geometric Brownian motion with volatility that follows a stochastic

process where the variance Vt follows a square-root mean reverting process [20],

r is the risk-free rate, κ∗ is the mean reversion speed, θ∗ is the average level

of volatility, σ is the volatility of volatility, and ρ is the correlation coefficient

between the two Brownian motions. Ibrahim et al. [43] proposed a model to
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adapt the stock price for a power option as

dSβt =

(
βr +

1

2
Vtβ(β − 1)

)
Sβt dt+ β

√
VtS

β
t dW1,t

dVt = κ∗(θ∗ − β2Vt)dt+ σβ
√
VtdW2,t,

(5.2)

where β is a positive constant. Inspired by Gatheral [27] , Ibrahim et al.

derived a partial differential equation based on equation (5.2):

∂u

∂t
+

(
r − 1

2
β2y

)
∂u

∂x
+

1

2
β2y

∂2u

∂x2
+

1

2
σ2β2y

∂2u

∂y2

+ρσβ2y
∂2u

∂x∂y
+ κ(θ − β2y)

∂u

∂y
− ru = 0,

(5.3)

where u = u(t, x, y) is the value of the underlying power option with x = lnSβt

and y = Vt for simplicity. Here κ = κ∗ + λ and θ =
κ∗θ∗

κ∗ + λ
are to eliminate

λy, the volatility risk premium. In this study, Lie symmetry analysis is carried

out on equation (5.3). The infinitesimal generators, the symmetry groups, the

optimal systems, the invariant solutions, and the conservation laws emitted by

equation (5.3) are presented.

5.2 Lie symmetry analysis of a (2+1) - dimen-

sional partial differential equation

The Lie symmetry analysis of a (2+1)-dimensional partial differential equation

is similar to the Lie symmetry analysis discussed in section 2.2, with more

tedious and complicated terms. Consider a (2+1) partial differential equation
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of second order of the form

F (t, x, y, ut, ux, uy, uxx, uxy, uyy) = 0, (5.4)

where ut =
∂u

∂t
, ux =

∂u

∂x
, . . . , uyy =

∂2u

∂y2
. The transformations of the points

u, t, x and y in the forms of

ū = u+ εη(u, t, x, y) +O(ε2),

t̄ = t+ ετ(u, t, x, y) +O(ε2),

x̄ = x+ εξ(u, t, x, y) +O(ε2),

ȳ = y + εϕ(u, t, x, y) +O(ε2),

(5.5)

with

η =
dx̄

dε

∣∣
ε=0

, τ =
dt̄

dε

∣∣
ε=0

, ξ =
dx̄

dε

∣∣
ε=0

, ϕ =
dȳ

dε

∣∣
ε=0

,

and ε being the infinitesimal parameter, are the symmetry transformations of

equation (5.4) if the transformation points (5.5) satisfy equation (5.4). The

collection of all such possible symmetry transformations, says the set G, ex-

hibits the characteristics of a continuous group which include the existence of

identity element, inverse and the composition of any two elements in the same

group.

The infinitesimal operators of the group G are presented as

X = η(u, t, x, y)
∂

∂u
+ τ(u, t, x, y)

∂

∂t
+ ξ(u, t, x, y)

∂

∂x
+ ϕ(u, t, x, y)

∂

∂y
. (5.6)
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which when prolonged to derivatives by adding all terms of ηJ∂uJ up to the

necessary order give

X(2) = X + ηt∂ut + ηx∂ux + ηy∂uy + ηxx∂uxx + ηyy∂uyy + ηxy∂uxy . (5.7)

In accordance with [13] ηJ is expressed as

ηx = ηx + (ηu − ξx)ux − utτx − uxutτu − u2
xξu − uyϕx − uxuyϕu, (5.8a)

ηt = ηt + utηu − utτt − u2
t τu − uxξt − uxutξu − uyϕt − utuyϕu, (5.8b)

ηy = ηy + uyηu − utτy − utuyτu − uxξy − uxuyξu − uyϕy − u2
yϕu, (5.8c)

ηxx = ηxx + ux(2ηxu − ξxx) + u2
x(ηuu − 2ξxu) + uxx(ηu − 2ξx)− utτxx

− uxut2τxu − uxt2τx − u2
xutτuu − utuxxτu − uxuxt2τu − u3

xξuu

− uxuxx3ξu − uyϕxx − uxuy2ϕxu − uxy2ϕx − u2
xuyϕuu

− uyuxxϕu − uxuxy2ϕu, (5.8d)

ηxy = ηxy + ux(ηyu − ξxy) + uyηxu + uxuy(ηuu − ξxu − ϕyu)

+ uxy(ηu − ξx − ϕy)− utτxy − uxutτyu − uxtτy − utuyτxu
− uxutuyτuu − utuxyτu − uyuxtτu − utyτx − uxutyτu − u2

xξyu

− uxxξy − u2
xuyξuu − uyuxxξu − uxuxy2ξu − uyuxy2ϕu − uyϕxy

− u2
yϕxu − uxu2

yϕuu − uyyϕx − uxuyyϕu, (5.8e)

ηyy = ηyy + uy(2ηyu − ϕyy) + u2
y(ηuu − 2ϕyu) + uyy(ηu − 2ϕy)− utτyy

− utuy2τyu − uty2τy − utu2
yτuu − utuyyτu − uyuty2τu − uxξyy

− uxuy2ξyu − uxy2ξy − uxu2
yξuu − uxuyyξu − uyuxy2ξu − u3

yϕuu

− uyuyy3ϕu. (5.8f)

The determining equations of equation (5.3) can be found from the invari-

ance condition

X(2)|equation(5.3) = 0.
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The calculation to solve the invariance condition is lengthy and convoluted if

it is done manually. We use the software package MathLie [9] to simplify

the work. The result from the calculation gives the following infinitesimal

operators

X1 =
∂

∂x
, X2 =

∂

∂t
, and X3 = u

∂

∂u
. (5.9)

For simplicity, the infinite generator X∞ is dropped. The corresponding trans-

formations of the generators (5.9) are translation along the x-axis

t̄ = t, x̄ = x+ ε, ȳ = y, ū = u,

translation along the t-axis

t̄ = t+ ε, x̄ = x, ȳ = y, ū = u,

and scaling along the u-axis

t̄ = t, x̄ = x, ȳ = y, ū = ueε.

5.3 Commutators, adjoint representations and

optimal system

An optimal system of generators is a set consisting of exactly one generator

from each class of associated symmetry generators to obtain the invariant so-

lutions. This classification is essential for the equity of the generators caused
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by the characteristics of the symmetry group. Olver [71] provided the com-

mutator or the Lie bracket (2.26) as

[Xi, Xj] = XiXj −XjXi,

which is skew-symmetric, [Xi, Xj] = −[Xj, Xi], and [Xi, Xi] = 0. Using the

operators (5.9),

[X1, X2] = X1X2 −X2X1 =
∂

∂x

(
∂

∂t

)
− ∂

∂t

(
∂

∂x

)
= 0.

Similarly, we found that [Xi, Xj] = 0 for all i and j, as shown in Table 5.1.

[Xi, Xj] X1 X2 X3

X1 0 0 0
X2 0 0 0
X3 0 0 0

Table 5.1: Commutators table

Hence, using the adjoint representations (2.28)

Ad(exp(εXi))Xj = Xj − ε[Xi, Xj] +
ε2

2!
[Xi, [Xi, Xj]]− . . . .,

the adjoint representations of the corresponding commutators are listed in

Table 5.2.

The optimal system is constructed by simplifying the coefficients of the

general infinitesimal generator

X = aX1 + bX2 + cX3
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Adj X1 X2 X3

X1 X1 X2 X3

X2 X1 X2 X3

X3 X1 X2 X3

Table 5.2: Adjoint representation table

as much as possible using the adjoint representation table. First, assuming the

constant c 6= 0, c = 1, the generator now is in the form of X = aX1 +bX2 +X3.

There is no further simplification that can be done base on Table 5.2. Assuming

c = 0, b 6= 0, b = 1, we have X = aX1 +X2 which can be further simplified no

more. Finally, letting b = c = 0, a = 1, we have X = X1. Hence, the optimal

system is presented as

{X1, aX1 +X2, aX1 + bX2 +X3}. (5.10)

For details work to obtain commutators, adjoint representations, and the

optimal system, one may refer to [71].

5.4 Invariant solutions

In this section, the similarity reductions are used to obtain the invariant solu-

tions of the optimal system found in section 5.3. The invariant solutions can

be found by solving the invariant surface condition

η = τut + ξux + ϕuy (5.11)
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through the characteristic method

du

η
=
dt

τ
=
dx

ξ
=
dy

ϕ
. (5.12)

Recall the infinitesimal operators (5.9) obtained in section 5.2:

X1 =
∂

∂x
, X2 =

∂

∂t
, and X3 = u

∂

∂u
.

Let’s consider the possible cases from the optimal system in section 5.3.

5.4.1 Case 1: X1

The generator X1 =
∂

∂x
makes the characteristic equation of dx = 0. Intro-

ducing the similarity variables t = t̃ and y = ỹ, the solution of equation (5.3)

is written as u = F (t̃, ỹ), which gives the derivatives

ut = Ft̃, ux = uxx = uxy = 0, uy = Fỹ, uyy = Fỹỹ. (5.13)

Equations (5.13) reduce equation (5.3) to

Ft̃ +
1

2
σ2β2ỹFỹỹ + [κ(θ − β2ỹ)]Fỹ − rF = 0. (5.14)

The reduced equation (5.14) is still complicated. To reduce it to a sim-

pler differential equation, we run the package MathLie on it one more time,
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resulting in the infinitesimal generators below:

Γ1 = eβ
2κt̃ỹ

∂

∂ỹ
+
eβ

2κt̃

β2κ

∂

∂t̃
+ eβ

2κt̃

(
2β2κ2ỹ − 2θκ2 + rσ2

β2κσ2

)
F
∂

∂F
,

Γ2 = e−β
2κt̃ỹ

∂

∂ỹ
− e−β

2κt̃

β2κ

∂

∂t̃
− e−β

2κt̃r

β2κ
F
∂

∂F
,

Γ3 =
∂

∂t̃
,

Γ4 = F
∂

∂F
.

(5.15)

To serve the purpose to simplify equation (5.14), we consider the combined

generator

Γ3 + Γ4 =
∂

∂t̃
+ F

∂

∂F

which gives the characteristics equation

dt̃

1
=
dF

F
. (5.16)

Equation (5.16) gives the similarity variables ỹ = ŷ and F (t̃, ỹ) = et̃G(ŷ),

which derivatives are given by

Ft̃ = et̃G(ŷ), Fỹ = et̃G′(ŷ), Fỹỹ = et̃G′′(ŷ). (5.17)

Substitute equations (5.17) into equation (5.14) will reduce it to a second

degree differential equation

1

2
σ2β2ŷG′′(ŷ) + [κ(θ − β2ŷ)]G′(ŷ) + (1− r)G(ŷ) = 0, (5.18)
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which has a solution

G(ŷ) = c1ŷ
AU (B, 1 +A, Cŷ) + c2ŷ

ALA−B(Cŷ), (5.19)

where ci are arbitrary constants, U(a, b, x) is confluent hypergeometric func-

tion of second kind, Lαn(x) is the associated Laguerre polynomial L which are

described in more depth in reference [1], A,B and C are constants defined as

A = 1− Cθ
β2
, B = A+

r − 1

β2κ
, C =

2κ

σ2
.

Equation (5.19) gives the solution of equation (5.14) as

F (t̃, ỹ) = et̃ỹA[c1U (B, 1 +A, Cỹ) + c2L
A
−B(Cỹ)]

which finally provides the solution of equation (5.3) as

u1(t, y) = etyA[c1U (B, 1 +A, Cy) + c2L
A
−B(Cy)]. (5.20)

5.4.2 Case 2: aX1 +X2

Now, consider the generator aX1 + X2 = a
∂

∂x
+

∂

∂t
. The characteristics

equation of the generator

dx

a
=
dt

1
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introduces the similarity variables x − at = w̃ and y = ỹ. The solution of

equation (5.3) can be written as u = F (ỹ, w̃) with

ut = −aFw̃, ux = Fw̃, uxx = Fw̃w̃, uy = Fỹ,

uyy = Fỹỹ, uxy = Fw̃ỹ.

(5.21)

Equations (5.21) reduces equation (5.3) to

(
r − a− 1

2
β2ỹ

)
Fw̃ +

1

2
β2ỹFw̃w̃ +

1

2
σ2β2ỹFỹỹ + ρσβ2ỹFw̃ỹ

+[κ(θ − β2ỹ)]Fỹ − rF = 0.

(5.22)

Similar to the case before, equation (5.22) is further analyzed using Lie sym-

metry and the generators below are obtained

Γ1 =
∂

∂w̃
and Γ2 = F

∂

∂F
. (5.23)

Combining the generators (5.23), Γ1 + Γ2 =
∂

∂w̃
+ F

∂

∂F
introduces the simi-

larity variables ỹ = ŷ and F (ỹ, w̃) = ew̃G(ŷ). Hence, we have

Fw̃ = Fw̃w̃ = ew̃G(ŷ), Fỹ = Fỹw̃ = ew̃G′(ŷ), Fỹỹ = ew̃G′′(ŷ). (5.24)

Equations (5.24) reduce equation (5.22) to a second degree differential equation

1

2
σ2β2ŷG′′(ŷ) + [κθ + (ρσ − κ)β2ŷ]G′(ŷ)− aG(ŷ) = 0. (5.25)
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The solution of equation (5.25) will finally reveal the solution of equation (5.3)

as

u2(t, x, y) = ex−atyA[c3U(D, 1 +A, Ey) + c4L
A
−D(Ey)], (5.26)

where D and E are constants defined as

D = A− a

β2(ρσ − κ)
, E = −2(ρσ − κ)

σ2
.

5.4.3 Case 3: aX1 + bX2 +X3

The generator aX1 + bX2 + X3 = a
∂

∂x
+ b

∂

∂t
+ u

∂

∂u
, with the characteristic

equations

dx

a
=
dt

b
=
du

u
,

provides the similarity variables bx−at = w̃ and y = ỹ. Rewriting the solution

of equation (5.3) as u = et/bF (w̃, ỹ) gives the derivatives of u as

ut = et/b
(

1

b
F − aFw̃

)
, ux = bet/bFw̃, uxx = b2et/bFw̃w̃,

uy = et/bFỹ, uyy = et/bFỹỹ, uxy = bet/bFw̃ỹ.

(5.27)

Using equations (5.27), equation (5.3) is reduced to

(
rb− a− 1

2
bβ2ỹ

)
Fw̃ +

1

2
b2β2ỹFw̃w̃ +

1

2
σ2β2ỹFỹỹ + bρσβ2ỹFw̃ỹ

+[κ(θ − β2ỹ)]Fỹ +

(
1

b
− r
)
F = 0.

(5.28)
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Equation (5.28) gives the infinitesimal generators

Γ1 =
∂

∂w̃
and Γ2 = F

∂

∂F
. (5.29)

The combined generator Γ1+Γ2 =
∂

∂w̃
+F

∂

∂F
with the characteristics equation

dw̃

1
=
dF

F

introduces the similarity variables ỹ = ŷ and F (w̃, ỹ) = ew̃G(ŷ), which deriva-

tives are given as

Fw̃ = Fw̃w̃ = ew̃G(ŷ), Fŷ = Fŷw̃ = ew̃G′(ŷ), Fŷŷ = ew̃G′′(ŷ). (5.30)

Equations (5.30) reduce equation (5.3) to a second degree differential equation

1

2
σ2β2ŷG′′(ŷ) + [κ(θ − β2ŷ) + bρσβ2ŷ]G′(ŷ)

+

(
1

b
− a+ r(b− 1) +

1

2
bβ2(b− 1)ŷ

)
G(ŷ) = 0.

(5.31)

Similar to the previous cases, the solution of equation (5.3) is then obtained

as

u3(t, x, y) = eGy+bx+(1/b−a)tyA[c5U(H, 1 +A, Iy) + c6L
A
−H(Iy)], (5.32)
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with

F =
√
κ2 − 2bκρσ + b(b(ρ2 − 1) + 1)σ2,

G = −F − κ+ bρσ

σ2
,

H =
σ(θκρ− rσ)b2 + (σ2(Fβ2 + a+ r)− θκ(κ+ F))b− σ2

bβ2σ2F
,

I =
2F
σ2
,

are constants.

5.5 Conservation Laws

A connection between the symmetries of differential equations and conserva-

tion laws exists if the equations are founded from the variational principle,

according to Noether [69]. Ibragimov [39] defined an adjoint equation for a

non-linear differential equation and constructed a Lagrangian for equations

with the adjoint equation. Conservation laws are useful to check the accuracy

of numerical solutions [26]. One may refer to the above-mentioned references

for more details.

Any Lie point or Lie-Bäcklund of a differential equation (5.4) provides a

conservation law Di(C
i) = 0 for the system of differential equations comprising

equation (5.4). The adjoint equation is given by

F ∗(t, x, y, ux, vx, . . . , uyy, vyy) =
δ(vF )

δu
,

where
δ

δu
is defined as in equation (2.33). The adjoint equation of equation
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(5.3), where in this case, is simplified as

F = ut+

(
r − 1

2
β2y

)
ux+

1

2
β2yuxx+

1

2
σ2β2yuyy+ρσβ

2yuxy+κ(θ−β2y)uy−ru,

is given by

F ∗ =
δ

δu
(vF )

=

(
∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
−Dy

∂

∂uy
+D2

x

∂

∂uxx
+D2

y

∂

∂uyy
+D2

xy

∂

∂uxy

)
(vF )

=−Dt(v)−Dx

[(
r − 1

2
β2y

)
v

]
−Dy[κ(θ − β2y)v] +D2

x

(
1

2
β2yv

)
+D2

y

(
1

2
σ2β2yv

)
+D2

xy[ρσβ
2yv]− rv

=− vt −
(
r − 1

2
β2y

)
vx − κ[(θ − β2y)vy − β2v] +

1

2
β2yvxx

+
1

2
σ2β2(2vy + yvyy) + ρσβ2(vx + yvxy)− rv

=− vt −
(
r − 1

2
β2y − ρσβ2

)
vx − κ(θ − σ2β2 − β2y)vy +

1

2
β2yvxx

+
1

2
σ2β2yvyy + ρσβ2yvxy + (κβ2 − r)v.

(5.33)
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The conserved vectors as given by [42] are

Ct =τL+W

(
∂L
∂ut

)
,

Cx =ξL+W

[
∂L
∂ux
−Dx

(
∂L
∂uxx

)
−Dy

(
∂L
∂uxy

)]
+Dx(W )

[
∂L
∂uxx

]
+Dy(W )

[
∂L
∂uxy

]
,

Cy =ϕL+W

[
∂L
∂uy
−Dy

(
∂L
∂uyy

)
−Dx

(
∂L
∂uxy

)]
+Dy(W )

[
∂L
∂uyy

]
+Dx(W )

[
∂L
∂uxy

]
,

(5.34)

where W and L, the Lagrangian form, are defined as

W = η − ξux − τut − ϕuy, L = vF. (5.35)

5.5.1 Case 1: X1 =
∂

∂x

For X1 =
∂

∂x
, where η = τ = ϕ = 0, ξ = 1,W = −ux. Hence, the conserved

vectors

Ct
1 = τL+W

(
∂L
∂ut

)
= −ux

(
∂[vF ]

∂ut

)
= −uxv, (5.36)
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Cx
1 =vF − ux

[
∂vF

∂ux
−Dx

(
∂vF

∂uxx

)
−Dy

(
∂vF

∂uxy

)]
−Dx(ux)

[
∂vF

∂uxx

]
−Dy(ux)

[
∂vF

∂uxy

]
=vF − ux

[(
r − 1

2
β2y

)
v −Dx

(
1

2
β2yv

)
−Dy(ρσβ

2yv)

]
−Dx(ux)

(
1

2
β2yv

)
−Dy(ux)(ρσβ

2yv)

=utv +
1

2
σ2β2yuyyv − ruv + κ(θ − β2y)uyv +

1

2
β2yuxvx + ρσβ2uxv

+ ρσβ2yuxvy.

(5.37)

Similarly,

Cy
1 =

(
1

2
σ2β2 − κ(θ − β2y)

)
uxv +

1

2
σ2β2yuxvy + ρσβ2yuxvx −

1

2
σ2β2yuxyv

− ρσβ2yuxxv.

(5.38)
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5.5.2 Case 2: X2 =
∂

∂t

For the case when X2 =
∂

∂t
, where η = ξ = ϕ = 0, τ = 1, W = −ut. Using

(5.34), we have

Ct
2 =vF − ut

∂(vF )

∂ut
= vF − utv

=

[(
r − 1

2
β2y

)
ux +

1

2
β2yuxx +

1

2
σ2β2yuyy + ρσβ2yuxy

+ κ(θ − β2y)uy − ru

]
v.

(5.39)

Similarly,

Cx
2 =

(
1

2
β2y − r + ρσβ2

)
utv +

1

2
β2yutvx + ρσβ2yutvy

− β2

(
1

2
+ ρσ

)
yuxtv,

(5.40)

and

Cy
2 =

[
κ(β2y − θ) +

1

2
σ2β2

]
utv +

1

2
σ2β2yutvy + ρσβ2yutvx

− σβ2

(
1

2
σ + ρ

)
yuxtv.

(5.41)

5.5.3 Case 3: X3 = u
∂

∂u

For the case X3 = u
∂

∂u
, W = u. Hence,

Ct
3 = u

∂vF

∂ut
= uv. (5.42)
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Similarly, we have

Cx
3 =

(
r − 1

2
β2y − ρσβ2

)
uv − 1

2
β2yuvx − ρσβ2yuvy +

1

2
β2yuxv

+ ρσβ2yuyv,

(5.43)

and

Cy
3 =

(
κ(θ − β2y)− 1

2
σ2β2

)
uv − 1

2
σ2β2yuvy + ρσβ2yuvx +

1

2
σ2β2yuyv

+ ρσβ2yuxv.

(5.44)

5.6 Conclusion

The power option model (5.3) emits the infinitesimal generators (5.9) which

potentially generate infinite numbers of solutions. The optimal system ob-

tained in (5.10) helps to narrow the number down to three. The invariant

solutions of equation (5.3) are then obtained as equations (5.20,5.26,5.32).

To illustrate the invariant solutions obtained, we present the graphical

representation of the solutions with the values of the parameters chosen as

follows

• mean reversion speed, κ = 1.5,

• volatility of volatility, σ = 0.8,

• positive constant, β = 2
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• average level of volatility, θ = 0.15,

• risk-free rate, r = 0.2,

• constant, a = 1,

• constant, b = 2,

• Brownian motions correlation coefficient, ρ = 2.

With the parameters chosen above, the values of the constants involved in the

invariant solutions above are given as

A = 0.8242, B = 0.6906, C = 4.6875, D = −1.6758, E = −0.3125,

F = 1.2689, G = −4.6388, H = 1.0890, I = 3.9652.

With the values of the constants above, the graphical representation of

u1(t, y) in equation (5.20) is illustrated in figure 5.1. The value of u1 rises with

the increase of y but the changes of t have a minimum impact on the value of

u1.

Figure 5.1: u1(t, y)
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(a) u2(1, x, y) (b) u2(t, 1, y) (c) u2(t, x, 1)

Figure 5.2: u2(t, x, y) with different fixed variables

The invariant solution of the generator aX1 + X2, on the other hand,

is a function with three variables t, x, and y. This makes equation (5.26),

u2(t, x, y), impossible to be displayed as a surface unless we fix one of the

variables. In figure 5.2, we illustrate the surface of u2(t, x, y) with different

variables set fixed. Figure 5.2a shows that when t is fixed, the value of u2 rises

with the increase of x and y. Furthermore, it increases at a greater rate when

both x and y grow. Referring to figure 5.2b, the value of the option decreases

with time but increases with y when x is fixed. We see a similar trend in figure

5.2c when we fix y.

In figure 5.3, the surfaces of u3(t, x, y) are displayed with different variables

set fixed. When time is fixed, the value of u3 increases at different rates when x

and y grow, as shown in figure 5.3a. The value of the option turn an interesting

turn when we fix x. Figure 5.3b shows the value of the option increases rapidly

at first but slows down to a lower rate when y grows. When y is fixed, the

value of the option increases at a moderate rate along the x-axis, see figure

5.3c. Both figures 5.3b and 5.3c show that the value of the option fades with
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(a) u3(1, x, y) (b) u3(t, 1, y) (c) u3(t, x, 1)

Figure 5.3: u3(t, x, y) with different fixed variables

time.

Generally, the value of the power option increases with the growth of x

and y. On the other hand, we see the depreciation of the power option value

over time. The value of an option is influenced by the price of the underlying

asset, the strike price, the volatility of the underlying asset’s price, as well

as the time until expiration. The longer the time until expiration, the higher

the value of an option, as it allows more time for the underlying asset’s price

to move in the direction favorable to the option holder. There is a greater

probability for the option to end up in the money.

On the contrary, as the expiration date approaches, the time value of an

option decreases, and it becomes increasingly influenced by intrinsic value.

This is because the likelihood of the option ending up “out of the money”

increases as the expiration date nears, which decreases the option’s overall

value.
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Chapter 6

Conclusion

Since the introduction of the Black-Scholes-Merton model [12, 61], differential

equations were deeply embedded in financial models. The mysterious behav-

iors of the financial market were finally revealed. Various financial models

derived from the BSM models [19, 35, 94] were introduced. With the increas-

ing applications in the financial market, the ability of fractional calculus to

capture complex phenomena, which the traditional models are incapable of,

is getting more prominent [93]. The involvement of calculus in these rising

financial models had called for the need for a tool to decrypt complex partial

or fractional differential equations.

The application of Lie symmetries in computational finance aims to under-

stand the behavior of financial instruments under various market conditions,

which is crucial for risk management and decision-making. In this thesis, fi-

nancial models involving time-fractional differential equations were studied, as
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well as a power options model under Heston dynamic.

Chapter 1 briefly introduced the background of computational finance, in-

cluding the adoption of mathematics in studying the financial and economic

behavior of the stocks and options market. The chapter ended with a discus-

sion of the research purpose of this study as well as the contribution of the

author to the field of computational finance.

The literature review in Chapter 2 discussed the Lie symmetry analysis

in length, including the definitions and applications of Lie points symmetries,

group invariant solutions, optimal systems, the law of conservation, etc. In

view of the involvement of fractional differential equations in this study, the

application of Gamma, Beta, and Mittag-Leffler functions in solving fractional

differential equations was demonstrated using some examples.

Motivated by Fallahgoul et al. [25], a time-fractional Black-Scholes-Merton

model was studied in Chapter 3. Using Lie’s method, three infinitesimal gener-

ators and their corresponding Lie group of transformations were obtained. The

commutators and adjoint representations were then used to present an optimal

system of the Lie group. Finally, two invariant solutions of the time-fractional

Black-Scholes-Merton equation were suggested, with their visual representa-

tions shown and discussed in the final conclusion of Chapter 3.

Chapter 4 started with a discussion of an arbitrage-free stock price model.
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The discussion was then extended to the Lie symmetry analysis of a time-

fractional arbitrage-free stock price model. At the end of Chapter 4, an in-

variant solution of the time-fractional model was suggested. This solution was

graphically compared with a solution of the non-fractional model.

The final chapter of the thesis demonstrated the search for invariant so-

lutions as well as the law of conservation of power options under the Heston

dynamic. The invariant solutions found were illustrated and discussed with

some assumptions.

The thesis shows the application of Lie symmetry analysis in solving com-

plex partial and fractional differential equations. In most cases, multiple so-

lutions of the differential equations will be acquired. However, the search of

the invariant solutions of fractional differential equations is often interrupted

at the final stage. The lack of “basic ingredients” of ordinary fractional dif-

ferential equations has forced stop the search. For instance, the search of the

invariant solutions of a time-fractional Fisher equation, which is

uαt −
σ2

2
uxx + a(u− u2) = 0,

was forced stop for the reduced fractional equation Dα
t F (t) + a(F − F 2) = 0

has no known solution.

Our attempt in solving time-fractional Vasicek and CIR models, which
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sound

∂αu

∂tα
+

1

2
σ2∂

2u

∂x2
+ κ(θ − x)

∂u

∂x
− xu = 0 (6.1)

and

∂αu

∂tα
+

1

2
σ2x

∂2u

∂x2
+ κ(θ − x)

∂u

∂x
− xu = 0 (6.2)

went smoothly at the beginning. The infinitesimal generators of equations

(6.1) and (6.2) were obtained as

X1 = t
∂

∂t
+

1

2
αx

∂

∂x
+

1

2
Kαx(x− θ)u ∂

∂u
,

X2 =
∂

∂x
+Kxu

∂

∂u
,

X3 = u
∂

∂u
,

X∞ = B(x, t)
∂

∂u
,

(6.3)

and

X1 = t
∂

∂t
+ αx

∂

∂x
+Kαxu

∂

∂u
,

X2 =
√
x
∂

∂x
+

(
K√
x

(x− θ) +
1

4
√
x

)
u
∂

∂u
,

X3 = u
∂

∂u
,

X∞ = B(x, t)
∂

∂u
,

(6.4)

respectively, where K = κ/σ2. Unfortunately, the search for invariant solu-

tions ended fruitlessly for the reduced fractional differential equations were

unsolvable.

Future work plans to extend this research to apply Lie symmetry analysis to

time-fractional power options under the Heston dynamic. Furthermore, more
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invariant solutions could be generated based on the infinitesimal generators

obtained in previous chapters. The inclusion of the initial conditions into the

suggested invariant solutions for the financial models in the previous chapters

is part of the future works. Finally, the relationship between financial models

and their fractional versions is worth investigating.
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