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Abstract

This thesis presents a comprehensive analysis of Attended Home Delivery (AHD) sys-

tems within the rapidly expanding e-commerce sector. The research addresses the

need for optimising delivery routes, refining pricing strategies, and enhancing customer

satisfaction while improving profitability margins. It introduces a new approach to last-

mile logistics by incorporating a partially time-windowed dynamic routing method with

forecast orders. This method utilises forecast orders without time constraints, enabling

more efficient time slot allocation for real orders. This approach reduces delivery costs

and increases order acceptance rates, thereby boosting overall profitability.

Building on this concept, the thesis explores the synergy between demand manage-

ment and vehicle routing with time windows. It proposes an enhanced methodology

for estimating opportunity costs and introduces a dynamic slot-combination strategy.

These techniques improve displacement cost assessments, informing better decisions

regarding delivery charges. The practicality and efficacy of these methodologies are

validated through extensive experiments using real-world data, demonstrating that the

proposed solutions outperform current state-of-the-art approaches in profitability and

delivery efficiency.

Furthermore, the research integrates the impact of delivery price changes, resulting

from reduced flexibility in available time slots for future customers, into the opportunity

cost estimation framework. This integration is crucial for revenue management and dy-

namic pricing within AHD, addressing the delivery price as a standalone factor in total
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revenue. The study refines the approximation of opportunity costs and integrates with

existing solution approaches in the AHD problem domain, aligning these approaches

with current demand management strategies. This thesis offers practical solutions that

address the evolving needs of the AHD industry in an increasingly digital marketplace.

In summary, this thesis contributes to last-mile logistics by providing innovative,

cost-effective solutions for the AHD sector. These solutions address trends in online

shopping, offering insights and strategies to navigate the complexities of modern e-

commerce logistics. The research combines theoretical innovation with practical appli-

cation, aiming to optimise delivery systems in the digital age.
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List of Variables

Variable Definition

αis Binary variable, 1 if order i is allocated to time slot s, 0 otherwise

1as One more order will be delivered to area a ∈ A in time slot s ∈ S

A Set of areas

At Set of actual orders at time step t

Ft Set of forecast orders at time step t

bi Service time required at order i location

β0 Base utility

βs Utility parameter associated with slot s

βd Utility parameter associated with delivery price

C(x⃗t) Minimum cost for solving the CVRPTW for feasible delivery schedules

Cij Cost of travel from customer i to customer j

CAPs Maximum order limit for each time slot s

−−−→
CAP Set of CAPs for all the time slots

D Depot

DCt Total delivery cost obtained from the dynamic routing system at time
t

DPRs Delivery price reduction for time slot s

Fa(x⃗t) Set of feasible time slots for area a given accepted orders x⃗t

Q Vehicle capacity

qi Demand of order i

ri Revenue of the order i under consideration
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Variable Definition

S Set of time slots

θt,s′ Monetary value of the consumed time by the new order 1as in time
slot s′

T Cut-off time beyond which customers cannot place further orders

d⃗ Collection of d⃗a for all areas

d⃗a Vector of delivery prices displayed to customers in area a

das Delivery price to area a at time slot s

UB
s Start time of the designated time window s

UE
s End time of the designated time window s

lij Distance between customers i and j

M Large constant

µa Probability of an arrival coming from area a

λt Arrival rate of customers entering the booking system at time t

ni Number of standard time windows in the augmented time window s′i

OCt Estimated opportunity cost at time t

Ps,Fa(x⃗t)(d⃗a) Probability that a customer chooses slot s when offered delivery prices
d⃗a to feasible slots

Φik Calculated delivery time for order i using vehicle k

qi Specific demand of order i

E⃗ Earliest arrival times of all orders

E⃗b Aligned earliest arrival times of all orders

f⃗t Set of remaining forecast orders at time t

f⃗rad Set of forecast orders within a radius of rad miles from the new order

G(xt) Route plan for the system state xt

L⃗ Latest arrival times of all orders
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Variable Definition

x⃗t Reshaped matrix X(t) in column-major order representing the system
state at time t

Vt(x⃗t) Value function representing expected maximum potential profit from
time step t until final time step T

v Vehicle speed

X(t) Matrix at time step t with dimensions |A| × |S|, indicating accepted
order counts for deliveries in areas a ∈ A and time slots s ∈ S.

X Set of all states over the entire time steps leading to feasible delivery
plans

Z Monetary value representing the utility reduction equivalent to in-
creasing a time slot’s price by £1
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1

Introduction

1.1 Background

In recent years, the rapid expansion of Internet and mobile communication networks has

led to significant growth in online retailing. This shift has become an important part of

grocers’ revenue streams, enabling customers to shop for goods online and have them

delivered to their homes. As the e-commerce sector grows, including areas such as e-

retailers, couriers, and parcel carriers, researchers have focused on developing strategies

to address the complex issue of delivery in online businesses, particularly the challenges

associated with last-mile delivery.
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1.2 Online Grocery Sales Surge

The demand for e-grocery services surged during the pandemic and has remained high.

Despite initial predictions of a decline due to COVID-19 control measures, online gro-

cery sales in 2021 increased by 17.1% Mintel (2022). This increase reflects a broader

trend. For example, Mintel (2023) reports that the United Kingdom’s online grocery

market grew by 88% between 2019 and 2021. This trend is also observed in other ma-

jor European markets, including France, Germany, Spain, and Italy, highlighting the

growing importance of e-commerce in retail.

Within this changing landscape, Attended Home Delivery (AHD) has become a

significant area of focus for e-grocers Wang et al. (2014). The importance of AHD is

due to the nature of grocery orders, which often include perishable and frozen goods

that require prompt delivery Agatz et al. (2013).

1.3 The intricacy of Attended Home Delivery (AHD)

The landscape of AHD presents a complex challenge, combining demand management

with a form of the vehicle-routing problem. This combination forms a framework for the

efficient provision of AHD services. Comprehensive surveys by Fleckenstein et al. (2022)

and Waßmuth et al. (2022) highlight how AHD intertwines demand management and

vehicle routing. Essentially, it involves dispatching delivery vehicles to customers within

predefined time slots, requiring effective geographical and time-window management.

Customer satisfaction stands as a paramount concern in the AHD domain, with

delivery wait times directly impacting this critical metric. Consequently, the provision

of narrower time slots has become a significant consideration, echoing the findings of
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Agatz et al. (2011). However, the pursuit of narrower time slots introduces a noteworthy

challenge in optimising delivery routes. Shorter time windows inherently limit the

flexibility available for scheduling deliveries, thereby amplifying the intricacies of the

route optimisation process.

1.4 Complex Decision-Making

The decision-making process in AHD is inherently multi-faceted, involving two fun-

damental dimensions: the Capacitated Vehicle Routing Problem with Time Windows

(CVRPTW) and Demand Management (DM). These two domains are intricately inter-

twined, creating a complex challenge that businesses must navigate.

At its core, this challenge revolves around striking a delicate balance between min-

imising delivery costs for the company and maximising customer convenience. This

dynamic lies at the heart of AHD operations, profoundly influencing the strategies

employed by businesses to thrive in a dynamic marketplace.

1.4.1 Capacitated Vehicle Routing Problem with Time Win-

dows

The CVRPTW dimension focuses on optimising delivery routes. Companies are tasked

with the intricate process of creating routes that are not only cost-efficient in terms of

fuel, time, and labour but also adhere to specific time windows. The strict adherence

to these time windows is of paramount importance as it ensures that customers receive

their orders within the committed time slots. However, this optimisation process is any-

thing but straightforward, particularly when factoring in customers’ strong preference

for shorter time windows to enhance their convenience. The core challenge here revolves
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around the efficient allocation of orders to delivery routes while rigorously adhering to

these stringent time constraints.

1.4.2 Demand Management (DM)

Simultaneously, companies face the intricate task of demand management. This aspect

centres on order acceptance and pricing strategies. To encourage order placement, com-

panies often use competitive delivery fees and various incentives to attract customers.

These incentives can include financial discounts, promotions, or appeals that emphasise

convenience and reliability.

1.4.3 Integration of Demand Management and Vehicle Routing

Problem with Time Windows

The true complexity emerges from the synergy between these two domains. Decisions

made regarding delivery routes directly impact the feasibility of accepting new orders.

For example, accepting an order in a popular time slot without considering potential

routing inefficiencies may lead to a shortage of available slots in the future, affecting

overall order acceptance and profitability. On the other hand, rejecting orders too

frequently can result in customer dissatisfaction and lost revenue. Additionally, the

availability of time slots plays a pivotal role in this dynamic. A greater number of

open time slots not only increases the likelihood of customers finding suitable delivery

times but also reduces pressure on the company to offer steep discounts to incentivise

orders during less popular slots. Managing this slot availability is, therefore, a strategic

element in optimising profits within the AHD framework.

In essence, decision-making in the AHD landscape requires a delicate dance be-
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tween route optimisation, demand management, and slot availability. Achieving the

right balance between these facets is the ultimate challenge, necessitating thoughtful

consideration of cost-efficiency, customer satisfaction, competitive pricing, and envi-

ronmental responsibility. The intricate interplay between these elements shapes the

strategies employed by companies to thrive in the complex world of AHD.

1.5 Research Questions

This thesis aims to optimise real-time, intelligent delivery plans for attended home

delivery (AHD) systems, with a focus on the integration of dynamic pricing, forecasting,

and real-time routing adjustments. The research questions presented here are designed

to address the challenges and opportunities identified in the comprehensive literature

review and the innovative contributions that follow in later chapters. These questions

guide the investigation into enhancing the effectiveness and efficiency of AHD systems:

1. How does the incorporation of forecast orders without time windows

enhance the performance of routing and the accuracy of opportunity

cost calculations in AHD systems? This question explores the benefits of

integrating forecast orders into routing systems, examining how these consider-

ations improve routing efficiency and opportunity cost assessments, contributing

to more effective AHD operations.

2. How can the distribution of forecast orders among time windows im-

prove the displacement cost calculations for each slot, thereby refining

the overall opportunity cost estimations? This question investigates the im-

pact of strategically distributing forecast orders across different time slots, aiming

to enhance the precision of displacement cost calculations and improve the fidelity

of opportunity cost estimations.
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3. In what ways can slot availability during the booking period be en-

hanced by offering discounts to customers in return for accepting ex-

tended delivery time window flexibility? This question delves into the po-

tential of augmented time windows to increase slot availability and provide cus-

tomers with greater flexibility, which could lead to enhanced customer satisfaction

and improved resource utilisation.

4. How can the inclusion of dynamic pricing mechanisms that alter slot

prices enhance opportunity cost calculations by considering the effects

of slot price reductions and customer slot selection? This question focuses

on the role of dynamic pricing strategies in refining opportunity cost calculations,

especially how these pricing adjustments affect customer behaviour and slot se-

lection, thereby optimising AHD system performance.

5. How can the estimation of opportunity cost be enhanced by considering

the effects of slot price alterations/reductions on remaining slots due

to current customer slot selection when using dynamic pricing? This

question examines the influence of dynamic pricing strategies on opportunity cost

estimations in AHD systems. It specifically investigates how adjustments in slot

prices—alterations or reductions—applied to remaining slots after a customer

has made a selection, can improve the accuracy of opportunity cost calculations.

This analysis seeks to determine how such pricing adjustments can optimise the

allocation of delivery slots, thereby influencing future customer behaviour and

enhancing the operational efficiency and attractiveness of delivery options.

These research questions are integral to developing a cohesive and comprehensive

understanding of the theoretical and practical enhancements possible in the field of

last-mile delivery, particularly for attended home deliveries. They lay a foundational
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framework for the subsequent chapters, which provide detailed analyses and contribu-

tions to these areas.

1.6 Thesis Overview

This thesis presents a series of innovative approaches aimed at improving the integrated

demand management and vehicle routing problem inherent in AHD from various per-

spectives. The structure of the thesis comprises the following chapters:

• Chapter 2 provides a comprehensive review of the existing literature on AHD. The

review covers the historical and contemporary landscape of AHD research, as well

as the challenges and complexities that continue to shape this field. The chapter

also identifies the gaps and limitations that persist in current AHD solutions.

• Chapter 3 introduces the concept of Dynamic Routing with Forecast Orders.

The chapter starts by constructing and optimising tentative routes for forecast

orders devoid of time constraints. As actual orders arrive, the forecast orders

are substituted with actual orders to gauge the opportunity cost for each time

slot. Dynamic pricing then takes the reins to influence customer slot selection.

Depending on the customer’s choice, the actual order steps in, and the route map

undergoes re-optimisation. This methodology results in more efficient scheduling

and increased slot availability for incoming customers.

• Chapter 4 focuses on the estimation of Opportunity Cost and Slot Management.

This chapter presents two crucial contributions. Firstly, it proposes an enhanced

method for estimating opportunity cost by leveraging a dynamic routing and dis-

tribution approach integrating forecast orders. This refined approach facilitates

more precise displacement cost assessments, thereby informing decisions on deliv-
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ery charges more effectively. Secondly, it introduces a dynamic slot-combination

strategy aimed at fully harnessing customer flexibility in receiving their deliveries.

This, in turn, elevates overall route efficiency and customer satisfaction.

• Chapter 5 discusses the Integration of Opportunity Cost and Delivery Price Re-

duction. Enhancing the estimation of opportunity cost involves adjusting deliv-

ery prices for future time slots based on the reduction in delivery prices resulting

from slot allocation at the present time. This adjustment aims to optimise pricing

strategies to better reflect customer preferences and route efficiency.

• Chapter 6 concludes the thesis and explores avenues for future research. This

chapter concludes the thesis by summarising the key findings and contributions.

It also discusses the implications of the research for businesses and practitioners

in the field of AHD. Additionally, it identifies and explores potential avenues for

future research, providing a foundation for further exploration and development

in this evolving domain.

This thesis makes a number of notable contributions to the field of AHD. The

proposed approaches have been evaluated using a comprehensive set of computational

experiments. The results of these experiments demonstrate the effectiveness of the

proposed approaches in terms of profitability, delivery efficiency, and customer satisfac-

tion. The research presented in this thesis has the potential to considerably impact the

field of AHD. The proposed approaches can be used by businesses to improve the effi-

ciency, profitability, and customer satisfaction of their AHD operations. The research

also provides valuable insights for researchers and practitioners in the field of last-mile

logistics.
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2

Background

2.1 Introduction

Last-mile delivery involves transporting goods from a distribution centre to an end

user’s location. It is the final step in the delivery of goods, which is usually the most

expensive portion of the process. The goal of last-mile delivery logistics is to ensure

that demands are delivered in a timely, accurate, and cost-effective fashion. There

are two major classes of problems associated with last-mile delivery, namely demand

management and vehicle routing. Therefore, a satisfactory solution to last-mile delivery

will be achieved if the objectives of both problems are taken into account. The following
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sections review the existing e-fulfilment literature, particularly attended home deliveries

(AHD), which fits the direction of our research. For a broader overview of revenue

management, the reader is advised to refer to studies by Agatz et al. (2013), Agatz

et al. (2008) and Klein et al. (2020). Recently, Snoeck et al. (2020), Waßmuth et al.

(2022) review the researches in last-mile delivery.

The structure of this chapter is outlined as follows: Section 2.2 reviews the literature

pertinent to the demand management problem in Automated Home Delivery (AHD).

Section 2.3 is dedicated to examining the development of customer choice models as

presented in various studies. Following this, Section 2.4 discusses different methodolo-

gies for approximating opportunity costs, including insights into marginal delivery cost

estimates, displacement costs, and delivery price reductions. Section 2.5 explores the

management of different time window systems in AHD, as documented in the literature.

Finally, Section 2.6 provides a concise summary of the topics covered in this chapter.

2.2 Demand Management in AHD

Following the standard categorisation of demand management in time-slotted deliv-

eries by Agatz et al. (2008), literature can be grouped into four main groups: static

slotting (e.g. Agatz et al. (2011)), dynamic slotting (e.g. Campbell and Savelsbergh

(2005)), static pricing (e.g. Klein et al. (2017)) and dynamic pricing (e.g. Campbell

and Savelsbergh (2006)). Slotting focuses on time-slot allocation to customer regions.

In contrast, pricing assigns delivery prices to balance demands across time slots and/or

steer customer choices towards the best delivery-time options. Amongst static and dy-

namic approaches, the latter attracts more attention as it reflects the nature of online

booking. Readers are referred to the surveys by Klein et al. (2020) and Snoeck et al.

(2020) on the industrial application of revenue management and advances in choice-
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based models for more information. This thesis concentrates on dynamic approaches

to demand management with pricing.

In attended home delivery, requests appear progressively over time during the book-

ing horizon until a cut-off time when no further requests can be accepted, as in the works

of Yang et al. (2016) and Yang and Strauss (2017). Each request chooses a certain time

of the delivery day if the desired delivery time is available. Various requests arise from

different locations and times, and the goal is to fulfil as many of them as possible. In

other words, the delivery sequence should be operationally feasible while maintaining

a low total delivery cost. Dynamic routing systems play an important role in such a

framework to accommodate stochastic arrival of customers in the chosen time windows

while minimising the total delivery cost. From a demand management perspective, the

number of accepted requests should be maximised by means of pricing policies on the

delivery fees to increase the yield of delivery services. To ensure that the final route

plan is feasible, the dynamic routing system must continuously verify the feasibility of

the route plan for each potential customer.

Another crucial aspect of demand management in AHD is the specification of deliv-

ery fees for the available time slots. Pricing involves assigning delivery prices to balance

demands across time slots and guide customer choices towards optimal delivery time

options. Under a dynamic pricing strategy, the delivery prices offered can exhibit flexi-

bility, spanning a continuous range, as demonstrated by Yang et al. (2016), or they can

be selected from a predetermined set of discrete price points, as showcased in Koch and

Klein (2020). This adaptability in pricing caters to various operational and market cir-

cumstances, further solidifying dynamic pricing as the favoured approach for optimising

attended home delivery processes.

In contrast to static pricing models, which generally assign uniform prices to all

time slots, dynamic pricing distinguishes itself by offering varied prices for different
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slots, aiming to maximise company profits. This method is particularly well-suited to

the nature of online booking systems, where customer delivery requests are placed and

adjusted dynamically throughout the booking horizon, reflecting the fluctuating nature

of demand and availability.

2.3 Customer Choice Model

From the grocer’s point of view, delivering an order in a time slot or another typically

yields different costs, motivating the company to steer customers’ selection of time slots

to increase its profit. One can apply many promoting strategies to achieve this aim,

such as offering discounted delivery prices/discount vouchers for some slots, highlight-

ing the slot in different colours to reflect their pollution/environmental impacts, etc.

In this context, the work of Campbell and Savelsbergh (2006) stands out as an early

pioneer in employing a relatively straightforward customer behaviour model. Their

objective was to grasp how incentives, such as delivery charges, influenced the prob-

ability of customers choosing specific time slots. Their emphasis centred on steering

slot preferences to lower delivery costs, rather than solely optimising anticipated prof-

its, which resonates with the central theme of our study. To gain deeper insights into

customer behaviour, Asdemir et al. (2009) employed a sophisticated approach known

as the multinomial logit (MNL) model, designed to address the complexities of demand

management in attended home deliveries. This model assigns varying levels of util-

ity to each delivery option, reflecting the assumption that customers make choices to

maximise their perceived value. The framework developed by Asdemir et al. (2009)

incorporates a dynamic programming approach with fixed delivery costs, however, it

does not include dynamic pricing considerations essential for addressing fluctuating time

slot demands. Furthermore, the dynamic programming model they propose has a state

space that expands exponentially with the number of delivery slots, rendering it im-
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practical for large-scale applications. Specifically, the model aims to maximise expected

profits without accounting for delivery routing, presenting challenges in real-world sce-

narios where delivery fees significantly impact demand for time slots and thus affect

routing schedules and costs. Additionally, the model assumes geographic independence,

which simplifies its application to smaller areas. For greater practicality, it is necessary

to integrate routing costs and account for demand variations across neighbouring areas

in the routing plans.

In their research, Asdemir et al. (2009) combined the MNL model with a dynamic

pricing framework to refine the incentive scheme for delivery fees. Employing dynamic

programming with predefined delivery costs, their method aimed to solve the dynamic

time slot pricing problem. However, this approach is limited by its assumptions that the

delivery capacity for each time slot within a region is known in advance, which restricts

its utility to smaller, less complex scenarios. As a result, while the MNL model provides

a robust framework for analysing customer choice behaviour, its application in larger

or more dynamic settings is constrained by the rapid growth of the state space in the

dynamic programming model, necessitating simplified operational environments for its

effective use. Mackert et al. (2019) proposed a new choice model based on a finite-

mixture MNL choice model that can simplify the nonlinear optimisation model to a

linear one for solving. A model-based, profit-oriented slotting approach is developed to

accurately approximate customer choice behaviour.

One noteworthy advantage of dynamic pricing is its potential to steer customer

slot choices toward those that benefit the routing system, enabling accommodation

of more orders and ultimately increasing profits by the end of the booking period.

This advantage is contingent on simulating customer responses to the varying prices

of delivery slots throughout the delivery day. Consequently, the incorporation of a

customer choice model becomes pivotal in simulating customer selection behaviour and
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adjusting prices accordingly.

The research conducted by Yang et al. (2016) delves into the realm of dynamic

pricing within the context of an MNL choice model. This model was trained using a

real data-set sourced from previous customer booking data in the UK. The study aimed

to understand customer willingness to pay for various displayed delivery time slots and

to analyse the probability of selecting specific time slots from the available options.

The model, built on simulations, successfully replicated customer choice behaviour.

The parameters used were then employed to shape and guide the dynamic pricing

strategy. They employ insertion heuristics to update a pool of feasible routes as orders

come in over the booking horizon and deploy the marginal delivery cost as estimates

of the opportunity cost of accepting an order into a particular time slot. The proposed

“foresight” approach, which uses previously planned routes to bring in the effects of

forecast orders, is justified as superior to the “hindsight” approach, which only considers

accepted orders. While using forecast orders based on previously planned routes can

help to build better routes, their method is restricted compared to our approach for the

reason that such forecasts are not updated with the acceptance of new orders, and the

routing for actual orders is independent of that for forecast orders.

In this thesis, the benefits of the MNL choice model established by Yang et al.

(2016) are leveraged. Building on this framework, several studies, including Yang and

Strauss (2017) and Strauss et al. (2020), have incorporated the MNL choice model in

conjunction with dynamic pricing. This approach depends on high-quality inputs that

forecast future customer behaviours, enabling price adjustments aimed at increasing the

probability of time slot selection as predicted by the MNL choice model. Opportunity

cost, driven by the potential revenue from future customers, plays a pivotal role in this

dynamic pricing strategy. The next section will discuss various methods for estimating

the opportunity cost.
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2.4 Opportunity Cost Approximation

Opportunity cost, a fundamental concept in economics and decision-making, assumes

a pivotal role when resources are limited. In the context of Attended Home Deliveries

(AHD), the opportunity cost of a delivery slot encompasses both the insertion cost

of a new actual order into the route plan and the potential future order displacement

cost. This displacement cost arises when the current order occupies the limited capacity

for a particular time slot, thereby preventing the accommodation of potential future

orders that may have higher value or priority. Given the large size and stochastic na-

ture of industrial applications in e-fulfilment, the opportunity cost cannot be calculated

precisely. Approaches such as Approximate Dynamic Programming (ADP), Linear Ap-

proximations, and look-ahead heuristics have been deployed to tackle the computational

difficulties.

In detail, Figliozzi et al. (2007) model the carrier-pricing problem in the dynamic

vehicle routing environment as a stochastic dynamic program, which is solved through

a one-step look-ahead heuristic. Since the context is in-freight transportation, the ap-

proaches proposed by Figliozzi et al. (2007) are not readily applicable to AHD problems.

In the AHD context, Klein et al. (2018) present an approximation approach based on a

Mixed-Integer Linear Programming (MILP) reformulation to approximate opportunity

costs. However, the MILP suffers from computational challenges; even with further sim-

plifications and parallel computing, their approach has not proven suitable for scenarios

with more than 15 vans.

Simulation-based approaches and predictive models, as exemplified by studies such

as Yang and Strauss (2017) and Ulmer (2020) are other ways to find the opportunity

cost. To solve the computational difficulty, Yang and Strauss (2017) exploit a continu-

ous approximation of the delivery costs and propose an ADP method that estimates the
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opportunity cost in real-time. Their approach is justified as efficient in industrial-size

implementations; however, the routing approach used omits many practical restrictions

to achieve this aim such as the use of opportunity-cost estimates that depend neither

on time of booking within the booking horizon nor on the level of orders accepted. In

contrast, this thesis proposes an approach that can directly deploy the routing pack-

age a van is currently using, which ensures that all practical restrictions of routing are

accommodated in the online pricing decisions.

The study conducted by Koch and Klein (2020) introduces an innovative approach

that incorporates a tentative route plan to identify feasible time slots and estimate

the two pivotal components of opportunity cost. Their method draws inspiration from

studies like Campbell and Savelsbergh (2006) and Yang et al. (2016), where a route

plan is meticulously constructed based on two distinct route maps. The initial route

commences as an empty slate and evolves incrementally with the arrival of new requests,

employing a myopic approach focused on minimising insertion costs. Additionally, they

employ a tentative route map, often referred to as a skeletal route, populated with

artificial requests that simulate future customers. This forward-looking tentative route

plan is crafted through the simulation of multiple booking periods, with each subsequent

simulation employing the previously created route map as a foundation. Furthermore,

they introduce the concept of a time window time budget to quantify the idle time

within each time window, subsequently utilising this metric to calculate the value of

each time window as an estimate of the displacement cost. A fundamental distinction

between their problem setting and ours lies in their assumption of a known probability

distribution of requests.

Unlike all previous works employing forecast orders, including Koch and Klein (2020)

and Yang et al. (2016), the research presented in Chapter 3 does not employ the “pre-

vious route” for forecasts. This is because the “previous route” was constructed based
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on orders received under a fixed-demand scheduling policy, such as fixed pricing or

fixed order acceptance. These works consider previously allocated time windows when

constructing the forecast route, implicitly assuming that the previously allocated time

window was optimal (or sufficient) and that repeating it (or guiding the system to rein-

force it) will lead to preferable solutions. However, this research avoids using previous

routes and their time-window restrictions imposed on forecast orders. Instead, it starts

with the optimal route (or the best route one can find with a heuristic) without impos-

ing any time windows to mimic the best possible route. This is achieved by adopting

an “excellent” pricing policy in an ideal scenario, where all customers select what turns

out to be the optimal time slot (from the route-optimisation software’s perspective) to

receive their orders. Although this strategy may seem overly optimistic initially, it is

adapted over time, gradually incorporating more actual information as orders arrive,

and re-optimising the routing upon every committed order with a fixed, known time

window. This approach does not require forecasting time windows but only the number

of orders and their locations. As it updates according to actual order arrivals, it re-

mains robust concerning forecast errors. For detailed experiments and results on shifted

forecast levels, please refer to Section 3.4.4.

With regard to dynamic routing with forecast orders, but without pricing to influ-

ence time-slot choices, our approach in Chapter 3 shares certain similarities with Bent

and Van Hentenryck (2004), Ichoua et al. (2006), and Voccia et al. (2019). However,

these works assume known probability distributions of future demands when generating

future delivery requests, which, in our case, is unknown because the distribution is influ-

enced by the dynamically-changing pricing policy our system generates. Recently, So-

effker et al. (2022) comprehensively discuss scenario-based approaches in which infor-

mation models are integrated to tackle stochastic dynamic vehicle routing. Also, Klein

and Steinhardt (2022) extend scenario-based approaches to address same-day deliveries

and incorporate value function approximation approaches as support to include the dy-
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namism over time to accomplish anticipatory decision-making. Likewise, Ulmer (2020)

uses a value function approximation approach to find the best pricing policy in the

same-day delivery problem, which proves effective. However, if these approaches rely

on a lookup table, such as the variant approach in Ulmer (2020), they suffer from the

curse of dimensionality as the size of the vehicle fleet increases.

Additionally, other articles discussing AHD resolutions under different problem set-

tings exist, such as Dayarian and Savelsbergh (2020) exploring the employment of in-

store customers to deliver online orders while they return home, Strauss et al. (2020);

Köhler et al. (2020a) working on the use of flexible time slots and Agatz et al. (2021)

focusing on the effect of green labels. Further, Ojeda Rios et al. (2021) have recently

published a survey on Dynamic Vehicle Routing Problems (DVRP) by providing tax-

onomies of the problems and solution methods. They reported that heuristics and

meta-heuristics provided 66% of solutions to DVRP. In this thesis DVRP will be used

to estimate opportunity costs and guide choices of time slots.

2.4.1 Marginal Delivery Cost Estimation

Estimating the marginal delivery cost through insertion heuristics applied to tentative

routes is an established approach. Pioneers like Campbell and Savelsbergh (2005) inte-

grated dynamic vehicle routing with the scheduling problem for home delivery services.

They conducted feasibility checks on tentative routes and approximated opportunity

costs based on marginal delivery costs using insertion heuristics. When feasible, they

evaluated whether to accept or reject incoming requests based on the associated profit

or cost. Further exploration into diverse applications of insertion heuristics in vehicle

routing problems is provided by Liu et al. (2023).

The estimated marginal delivery cost did not contribute to the decision of e-Retailers
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to incentivise customers by Campbell and Savelsbergh (2005). Customer behaviour

models are used to determine how likely a time slot is to be selected by a customer.

As a result of incorporating this information into the firm’s decision-making process on

delivery prices, they can examine an adaptive incentive scheme to display the price of

slots to the customers. Campbell and Savelsbergh (2006) propose the first simple model

of customer behaviour in a linear format to reduce delivery costs by driving customers

to time slots with lower travel costs. To determine the feasibility of time slots in

these studies, insertion heuristics have been used to estimate marginal delivery costs

by identifying the slot with the lowest insertion costs (e.g., the works by Campbell and

Savelsbergh (2006), Klein et al. (2018), Yang et al. (2016), and Köhler et al. (2020b)).

In addition, Bühler et al. (2016) present another approach for calculating the cost of

delivery for a fixed pool of feasible routes using linear mixed-integer algorithms. In

recent studies, tentative route plans have proven to be even more relevant because they

can effectively contribute to estimating the displacement cost of future demands. In the

literature, different mechanisms for generating and maintaining tentative route plans

have been proposed.

Instead of using marginal delivery costs as estimates of the opportunity costs and

focusing on tentative routes and insertion heuristics, there is a different strategy in

other research. They use alternative modelling approaches to simplify the underlying

VRPTW solutions to emphasise the potential revenue loss by occupying the slot ca-

pacity. Most of these studies investigate the “acceptance scheme” of customer requests,

such as Ehmke and Campbell (2014) and Cleophas and Ehmke (2014), which aims to

maximise the number of requests accepted for delivery.
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2.4.2 Displacement Cost (Revenue Loss)

Displacement cost quantifies the monetary value associated with integrating a new

request into an existing delivery route. In the literature as proposed by Klein and

Steinhardt (2022), two primary methods are identified for calculating this cost:

• Learning-Based Approaches: These methods approximate opportunity cost

through simulations learning from different system states, incorporating factors

like marginal delivery cost. Value Function Approximations (VFAs) are com-

monly used, as shown in studies by Ulmer (2020) and Yang and Strauss (2017).

VFAs tackle the dynamic programming complexities in AHD, addressing the ex-

ponential growth of the state space in vehicle routing problems with uncertain

requests. Yang and Strauss (2017) notably employ an offline methodology with

approximate dynamic programming to optimise request distribution within de-

livery areas. These methods can operate either offline or in real-time during

booking but often face the challenge of the “curse of dimensionality,” particularly

when using look-up tables for state value determination.

• Non-Learning-Based Approaches: This category includes methods that cal-

culate opportunity cost components using current or tentative route plans, derived

from scenarios as by Bent and Van Hentenryck (2004) or historical data, as in

Yang et al. (2016). Recent research like Klein et al. (2018), Mackert et al. (2019),

and Strauss et al. (2020) incorporates future customer behaviour and final delivery

charges into opportunity cost calculations. These methods are particularly useful

in stochastic dynamic VRPs with uncertain requests and are notable for integrat-

ing dynamic pricing and choice models like the MNL, as evidenced in works by

Koch and Klein (2020) and Abdollahi et al. (2023). They focus on the interplay

between demand management and vehicle routing, using forecast route plans for
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estimating opportunity costs, especially in scenarios with unknown future demand

distributions.

In this thesis, displacement cost is addressed using the forecast route plan as a proxy

for the final route. Chapter 3 introduces a heuristic-based method for creating an opti-

mal route plan for forecast orders without time windows, which includes assigning time

windows for feasibility and identifying cost-effective insertion points for new requests.

This approach also involves allocating time windows to forecast orders to reflect the

count of orders per time window when calculating displacement costs.

Moreover, as delineated in Chapter 4, forecast orders are allocated based on a met-

ric that sets the upper limit of orders per time window. This metric, derived from

simulations to determine the maximum feasible orders per window, allows for a more

accurate estimation of displacement costs. This new methodology, which assigns time

windows based on earliest availability and regulates order distribution within each win-

dow, offers a nuanced approach that aligns more closely with customer preferences and

is adaptable to varying pricing policies. Further specifics of this method are discussed

in Section 4.3.3.

The researches conducted by [Yang and Strauss (2017), Klein et al. (2018), Mackert

et al. (2019), and Strauss et al. (2020)] similarly factor in future customers and final

delivery charges when estimating opportunity costs. Yang and Strauss (2017) employ

an offline methodology through approximate dynamic programming to estimate the

opportunity cost. This involves dividing the delivery area served by a single van into

segments and determining the highest count of requests within each sub-area.
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2.4.3 Delivery Price Reduction

The framework for estimating opportunity cost, as outlined by Klein and Steinhardt

(2022), guides the approach to delivery price reduction in Attended Home Deliveries

(AHD). Chapter 5 introduces an novel method for estimating opportunity costs related

to price adjustments for future time slots. This method, grounded in non-learning-

based strategies, accurately quantifies the reduction in slot prices necessitated by the

integration of new orders. It leverages the principles of dynamic pricing and the MNL

model, as discussed in the works of Yang et al. (2016), Koch and Klein (2020), and

Abdollahi et al. (2023), enhancing the precision of opportunity cost calculations in

dynamic pricing scenarios.

The methodology employed in this thesis estimates potential revenue loss from pric-

ing adjustments, factoring in customer utility levels and preferences. This approach

is crucial for dynamic pricing strategies that optimise time slot allocation based on

booking behaviours. By quantifying real-time price reductions for each time slot, the

calculation of marginal insertion and displacement costs is enhanced.

2.5 Time Window Design and Management

In standard Attended Home Deliveries (AHD), customers are typically offered one-

hour time slots, each tailored to individual factors such as location, order size, and

existing bookings. This customisation allows e-retailers to adapt their slotting process

efficiently. However, as Lin and Mahmassani (2002) and Punakivi and Saranen (2001)

highlight, focusing too heavily on reducing waiting times can lead to higher delivery

charges and potential order rejections. This is because it necessitates the use of more

vehicles and staff, mandates narrower delivery windows, and consequently offers less
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flexibility to customers. Conversely, Gevaers et al. (2014) demonstrate that longer time

windows can enhance e-retailer profitability, citing significant cost differences between

one-hour and four-hour delivery windows.

The concept of introducing flexibility into time window management has garnered

attention in the existing literature, from the perspectives of both the firm and the

customer. Strauss et al. (2020) propose a method that offers customers increased flex-

ibility in selecting their preferred time windows, allowing them to choose from a range

of standard time windows that align with their preferences. Once the delivery vehicle

is dispatched, customers are promptly informed of the specific delivery window. This

flexibility could potentially be coupled with reduced delivery charges and a focus on

environmental factors as a form of compensation. In Chapter 4 of this thesis, a novel

approach is introduced to enhance flexibility in time window management by incor-

porating standard and extended time windows with longer durations, while offering

discounts to improve slot availability and motivate customers to place their orders.

The study in Chapter 4 aligns with the strategies wherein e-retailers introduce

flexibility into time window management by offering both extended and standard time

windows. Köhler et al. (2020b) propose a strategy where new customers are presented

with a selection of short and/or long time windows based on factors such as travel

time, current booking horizon, insertion time, and the time span associated with order

insertion. While their approach assumes knowledge of future demands, the context

in this thesis lacks detailed information about customer distribution. Additionally,

their model offers fixed delivery fees for both short and long windows, which may not

align with potential customer preferences for lower charges in exchange for increased

flexibility. In contrast, this research incorporates both types of time windows to cater to

diverse customer needs. The dynamic pricing strategy adopted here, similar to the one

discussed by Strauss et al. (2020), involves tailored delivery prices derived from current
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and anticipated customer preferences, incentivising or emphasising the environmental

benefits of selecting extended time windows. Moreover, the inclusion of varying time

window lengths is intended to enhance the likelihood of bookings, ultimately aiming to

increase acceptance rates by the conclusion of the process.

2.6 Conclusion

In conclusion, the literature review has highlighted the key factors and approaches in

the field of last-mile delivery, particularly in attended home deliveries (AHD). It has

discussed the importance of demand management and dynamic pricing in optimising

AHD operations. Moreover, it has explored various models, including customer choice

models and marginal delivery cost estimation, that are essential in implementing dy-

namic pricing strategies. Additionally, the review has emphasised the significance of

accurate opportunity cost estimation and effective time window design and management

in enhancing the efficiency and profitability of last-mile delivery. The insights gained

from this literature review will provide a solid foundation for the research conducted in

this thesis.

Despite these comprehensive insights, several research gaps remain apparent. Firstly,

there is a need for enhanced models that integrate dynamic pricing with real-time rout-

ing adjustments to better reflect the stochastic nature of customer bookings and demand

fluctuations. Additionally, the existing models often simplify geographical and tempo-

ral dependencies, which can limit their applicability in dense urban environments or

complex logistical networks. Another important gap lies in the opportunity cost es-

timation methods which, while advanced, still struggle with computational efficiency

and scalability in larger operational settings. Further research should also explore the

inter-dependencies between dynamic pricing, customer choice behaviour, and their cu-
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mulative effects on routing efficiency and overall system profitability. Addressing these

gaps will not only refine the theoretical models but also enhance their practical appli-

cability in diverse last-mile delivery contexts.
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3

Demand Management in Time-slotted

Last-mile Delivery via Dynamic

Routing with Forecast Orders

This chapter is reproduced with some changes from Abdollahi, M., Yang, X., Nasri, M.

I., and Fairbank, M. (2023). Demand management in time-slotted last-mile delivery

via dynamic routing with forecast orders. European Journal of Operational Research.
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3.1 Introduction

Nowadays, most online grocers use fixed, one-hour time slots. Naturally, time slots

receive different customer preferences. Suppose nothing is done through the booking

horizon. In that case, the company will likely have to face unbalanced demand for time

slots, which leads to inefficient delivery routes and a potential waste of fleet capacity. To

deal with this issue, researchers developed demand-management strategies in the past

and recent literature aiming to control/incentivise customers to select specific time

slots to ease the routing difficulty, including Agatz et al. (2013); Asdemir et al. (2009);

Campbell and Savelsbergh (2006); Cleophas and Ehmke (2014); Yang et al. (2016); Koch

and Klein (2020). Which slot price vector is the best is the key question to answer in this

context, which has not yet been fully addressed by the existing literature. Difficulties

in answering this question lie in two facts:

1. As shown in Figure 3.1, the best slot for satisfying an order depends on the

insertion cost for placing that order into the final delivery route and the potential

revenue loss of displacing another order. However, the full order list is not known

during the booking horizon when decisions on which slot to promote have to be

made. Therefore, a forecast is needed for the final delivery route so that when

the booking is made, the extra cost caused by the likely route deviation to satisfy

that new order can be estimated reasonably.

2. The likelihood of a customer accepting an order and its time slot depends on

the promotional decisions made during the booking horizon, so the final delivery

route is not entirely predictable from historical information where, essentially, a

different pricing/order-acceptance approach was used.

There is a mutual dependency between the forecast delivery route and the incentive
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decision. This work proposes a methodology that employs dynamic routing to disrupt

this cycle, enabling accurate demand forecasting while preserving the interdependence

between variables to the greatest extent possible.

Past literature in AHD concentrates primarily on how to deal with time win-

dows, both in the demand-management step (via pricing or other incentive means)

and in solving the so-called Capacitated Vehicle Routing Problems with Time Win-

dows (CVRPTW) affirmed by Kumar and Panneerselvam (2012). While Yang et al.

(2016) and Koch and Klein (2020) suggest route-based approaches by which a virtual

route map with time windows is created to predict the final route map to help the

CVRPTW find a more suitable time window for servicing an order, an obvious fact is

that a more appropriate time window can be found by solving the VRP without time

windows. Inspired by this idea, in this study, we propose a novel dynamic routing and

pricing approach based on solving and updating a partially time-windowed CVRP with

a combination of real and forecast orders. Specifically, at any time during the booking

horizon, we maintain a set of already-committed orders, with fixed known time win-

dows, locations and order sizes and a set of forecast orders, with given order sizes and

locations but without any time windows. We make this distinction because the loca-

tions and sizes of forecast orders can be more reliably concluded from historical data

Upon customer request we 

need to optimise and show 

Slot availability and Slot price

* Which slot is feasible?

* What is the marginal cost?

* What is the displacement cost?
* By how much should we incentivise?

Cut-off time: 

Full order list known!

Booking horizon Delivery day

Figure 3.1: Time frame
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(than delivery slots), as they are not meant to be influenced by the incentive policy.

As for the delivery-slot choices of forecast orders, however, we do not impose any time

windows. Instead, we allow the dynamic routing approach to choose its preferred time

slot for each order, which is then offered to customers following the incentive policy.

Essentially, this approach assumes that future customers will generally choose the in-

centivised time slots to receive their deliveries, which aligns with our ultimate aim of

developing and deploying an incentive policy to steer customer choices of time slots.

In detail, at any point in time, we solve a partial CVRPTW (p-CVRPTW) made up

of accepted orders with time windows and forecast orders without time-windows. We

feed back more suitable time window for satisfying the forthcoming customer based on

the solution of the p-CVRPTW. This p-CVRPTW is solved dynamically online and

updated whenever new orders are committed.

The major contributions of this chapter are:

• For the first time, incorporating forecast orders without time windows into the

vehicle-routing system to allow the p-CVRPTW to suggest a more appropriate

time slot to accommodate every forecast order and guide the choice of incoming

orders accordingly;

• Proposing a simple-to-implement dynamic opportunity-cost approximation for

marginal delivery cost and potential revenue loss, based on the dynamically man-

aged routing system with both actually accepted orders and forecast orders with-

out time windows;

• Presenting an order-replacement and routing re-optimisation framework to cap-

ture the influence of new order commitments and facilitate opportunity-cost ap-

proximation, which evolves as more information becomes available;

• Presenting an approach that is capable of incorporating the firm’s specific routing
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method, which may include considerations such as clustering, shifting, traffic

prediction, etc., to the maximum extent;

• Demonstrating the superiority of the developed approach over four benchmark ap-

proaches on real data-sets taken from four typical geographical and demographic

settings;

• Investigating the trade-off between responding time and the online decision pro-

cess accuracy.

The chapter is organised as follows: Section 3.2 explains different aspects of the

AHD problem and its dynamic programming model. Section 3.3, presents our method-

ology and how to incorporate forecast orders, pricing optimisation and the customer-

behaviour model. The experiment settings and results obtained are reported in Sec-

tion 3.4. Finally, we conclude in Section 3.5.

3.2 Problem Specification

For the problem under consideration, the company manages an online booking system

that allows customers to book their delivery a couple of days in advance, which we

refer to as the booking horizon. The orders committed during the booking horizon

have to be delivered to the customer’s front door during the agreed time slot by the

company, using its fleet. Time slots are predefined by the company which may overlap.

A scheme of the slot-booking process is shown in Figure 3.2. To purchase goods and

book for delivery, a customer has to log in to their account with the grocer, which allows

the system to identify their address. We refer to this as a “customer arrival”. Next,

assuming the customer decides to place an order, the customer chooses their delivery

day. This step may happen before or after filling their shopping basket. Note that
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once the truck has been loaded and dispatched, it does not need to come back to the

depot to collect more orders until its planned route has finished. After the customer’s

selection of a delivery day, the company has to identify in real-time all the feasible time

slots which could be used to service this order, together with their incentive scales and

additional cost of delivering the order. Based on this information, the customer chooses

a time slot, finishing the order commitment. Decisions in this problem must be made

in a stochastic dynamic environment, with randomness coming from both customer

arrival and customer selection of delivery slots. The requirement for a fast response

time, between a customer’s click of delivery day and the display of available slots and

prices, adds another layer of difficulty to the problem.

Predict order size and volume using historical 

data

For each delivery slot, compute if inserting the 

order is feasible

Apply pricing strategy for each feasible slot

Display slot availability and prices to customers

Logged-in customer 

selects a delivery day

Time allowed for the system to output available slots Customer decision

Customer makes 

booking decision

Customer decision

Figure 3.2: Slot booking process

3.2.1 Dynamic Programming Model

In this work, we inherit the Markov Decision Process (MDP) model formulated by Yang

et al. (2016). We consider a discretized booking horizon with T periods, by which we
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mean customer arrivals to the website during the booking horizon shown in Figure3.1.

Each booking period is sufficiently small such that the probability of having more than

one arrival of a booking request is negligible. The final time period T denotes the cut-off

time after which no further bookings are taken. The stages of the dynamic program

are the time periods t ∈ {1, 2, . . . , T}. At time step t within the booking horizon, the

system’s state can be described by a matrix X(t), with |A| rows and |S| columns. The

[a, s]th component of X(t) represents the number of orders accepted up to time t (in

the booking horizon), to be delivered to area a ∈ A in time slot s ∈ S. In what follows,

we use x⃗t to denote the matrix X(t) reshaped in column-major order to be stored in a

one-dimensional array.

Let Vt(x⃗t) denote the value function at stage t and state x⃗t; it represents the expected

maximum profit 1 obtainable from the sales process from time t until the cut-off time

T . The dynamic-programming recursion at stage t ∈ {1, 2, . . . , T} is:

Vt(x⃗t) = max
d⃗

[∑
a

λµa

∑
s∈Fa(x⃗t)

Ps,Fa(x⃗t)(d⃗a)
[
ri + das + Vt+1(x⃗t + 1as)

]+

[
1−

∑
a

λµa

∑
s∈Fa(x⃗t)

Ps,Fa(x⃗t)(d⃗a)
]
Vt+1(x⃗t)

]

=

max
d⃗

∑
a

λµa

∑
s∈Fa(x⃗t)

Ps,Fa(x⃗t)(d⃗a)
[
ri + das −

(
Vt+1(x⃗t)− Vt+1(x⃗t + 1as)

)]
+ Vt+1(x⃗t),

∀ x⃗t ∈ X , (3.2.1)

where λ indicates the arrival rate of customer requests; µa denotes the probability that

the arrival comes from area a for a given customer arrival; d⃗a is a vector of length |S|
1In this context, “profit” specifically refers to the total shopping revenue plus delivery charges minus

the cost of delivery, which is described here as the “Net Delivery Margin.” This distinction is important
as the traditional definition of profit generally encompasses a wider range of costs and revenues. The
term "Net Delivery Margin" is used to specifically highlight the financial outcomes directly associated
with delivery operations, distinguishing it from broader profitability measures.
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specific to area a, with components das, where component das represents the delivery

price to area a at time slot s; d⃗ is a collection of d⃗a over all areas; Fa(x⃗t) := {s :

C(x⃗t + 1as) < ∞} denotes all feasible time slots for area a, into which order (a, s)

can be feasibly inserted given orders x⃗t that have been accepted, where 1as is the unit

vector equal to the flattened single-entry matrix with a 1 in position (a, s); Ps,Fa(x⃗t)(d⃗a)

denotes the probability that a customer chooses slot s when the firm offers the vector

of delivery prices d⃗a to feasible slots in Fa(x⃗t); ri denotes the revenue of the order i that

is under consideration. The boundary condition for the MDP model is given by:

VT+1(x⃗T+1) = −C(x⃗T+1) ∀ x⃗T+1 ∈ X , (3.2.2)

where C(x⃗t) represents the minimum cost of servicing all accepted orders during their

agreed time slots, which is the optimal solution of a Capacitated Vehicle-Routing Prob-

lem with Time Windows (CVRPTW); X denotes the set of all states that allow a feasible

delivery schedule. If there is no feasible solution for a given x⃗T+1, C(x⃗T+1) := +∞.

The dynamic program is intractable due to the large state space and the fact that the

optimal solution of large-scale CVRPTW alone is intractable. Nevertheless, the formula

(3.2.1) shows that the time-slot pricing decision is a trade-off between the immediate

income, (ri+das), and the expected opportunity cost (Vt+1(x⃗t)−Vt+1(x⃗t+1as)) arising

from reserving the delivery capacity in (a, s) at time t for a future order. Suppose the

opportunity cost can be estimated, then the problem can be divided into single-stage

decision problems and becomes tractable. There are two major components of the

opportunity cost:

1. the marginal delivery cost of servicing one more order in (a, s), and

2. the potential revenue loss from filling fleet capacity at t with an order in (a, s).

Both of these two terms depend on the final delivery routes.
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This study aims to estimate the opportunity cost via dynamic routing with fore-

cast orders. Both marginal delivery costs and potential revenue loss will be estimated

by solving a CVRPTW dynamically over the booking horizon, with a set of already-

accepted orders with fixed time windows and a set of forecast orders with relaxed time

windows. More details about the approximation are discussed in Section 3.3.2.

3.3 Methodology

This section presents the solution methodology for the stochastic dynamic-pricing prob-

lem (3.2.1), which is intractable via backward induction. In detail, we will address how

forecast orders are generated, integrated and updated in the dynamic setting and used

to estimate opportunity cost in the following sub-sections.

3.3.1 Forecast orders

As explained, we aim to incorporate forecast orders into the dynamic routing process

to enable making better incentive decisions. Full information about an order in AHD

includes arrival time, customer address, order size and delivery time window. In this

work, however, we only forecast the total number of orders over a day, their addresses

and order volumes, but not the delivery time window of each order. The reason is that

while we optimise the incentive decision, we aim to steer customers’ choices of time

windows. Any forecasting model ignoring the impact of the incentive decision will not

do a good job of predicting how many orders would select each time slot in the end. On

the other hand, the incentive decision is optimised dynamically over the entire booking

horizon, changing over time and highly dependent on previously placed orders.

Therefore, we propose simplifying by assuming that all customers will select the time
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window most beneficial for the route planning to receive their orders. We also assume

this is consistent with the company’s goal of providing incentives. How to calculate

more appropriate time window for an upcoming order will be discussed in more detail

in Section 3.3.2. Here we only need an approach to predict the total number of forecast

orders and their locations/sizes and assume that all forecast orders are granted a 24-

hour time window.

For the total number of orders on a specific delivery day, n, we use a Simple Moving-

Average (SMA) model:

n =
1

k

k∑
i=1

n̂i (3.3.1)

where n̂i denotes the number of orders we received i weeks prior on the same weekday;

k indicates the number of samples we consider for the prediction. We argue that this

number n is not influenced significantly by the slot price/incentives we offer, as the

number of customers in a fixed area and their intention to purchase from the e-retailer

is mainly concerned with the demography of the area and the loyalty of customers. We

also note that the moving average might not be the best possible approach that one can

choose to predict the number of orders. More complicated machine-learning methods

could be used to forecast the number of orders based on historical data. However, for

this study, we only aim to demonstrate that incorporating forecast orders without any

time windows into the routing process helps improve delivery efficiency and increases

the total profit, even if a simplified model generates the forecast orders. For every single

forecast order, its address, order size and order revenue are randomly simulated from

historical data. Specifically, to generate one forecast order for a particular day of the

week, we randomly choose (with uniform probability distribution) one order from the

previous k weeks on that weekday and note its address, order size and revenue.
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3.3.2 Opportunity cost approximation

As noted above, model (3.2.1) is not tractable for real implementations. This sec-

tion presents an efficient approximation of it using dynamic routing. Many firms use

dynamic routing to build their fulfilment plan while orders are still collected.

This work calculates approximations of opportunity cost by creatively using the

given dynamic-routing package to make the system (3.2.1) solvable in a practical dy-

namic setting. One key idea here is to distribute the delivery cost in boundary condition

(3.2.2) into stages and calculate the incremental delivery cost of accepting one more

order in a specific area and time window. Similar ideas are effective in works such

as Campbell and Savelsbergh (2006), and Yang et al. (2016); however, the approach

used in this chapter is more advanced since it considers the potential revenue loss and

incremental delivery cost by incorporating a forecast of future accepted orders.

The number of forecast orders and their locations/order sizes can be generated using

the methodology presented in Section 3.3.1. We indicate the list of forecast orders by

a vector f⃗ , with |f⃗ | = n, (| · | indicates the cardinality of a set), where n is given by

(3.3.1). These virtual orders are put into the problem to help predict the final routes.

The time window is the most significant difference between committed and forecast

orders. Committed orders have their own time windows, as selected by customers,

which are not changeable. However, forecast orders can be placed in whichever time

window is most suitable because they have yet to be agreed upon with customers. This

procedure allows the optimisation algorithm to choose an optimised delivery slot for

the forecast orders based on the location and agreed slot of all actual orders collected

so far. The optimised delivery time window for these forecast orders is then used as

the time window to promote when an actual arrival is seen in the same area as that of

the forecast order. In summary, forecast orders serve as dummy orders without time
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windows that guide the booking process.

3.3.2.1 Insertion cost

Let DCt(x⃗t, f⃗t) denote the total delivery cost obtained from the dynamic routing system

at booking-horizon time t, of a list of already-accepted orders x⃗t, and a set of forecast

orders, f⃗t that remains in the system until time t. When it is infeasible to fulfil all orders

(x⃗t, f⃗t) with the given capacity and committed time slots for x⃗t, we define DCt(x⃗t, f⃗t) =

∞. We build a series of incremental delivery-cost approximations in the interim periods

via dynamic routing with forecast orders. In more detail, the insertion cost of having

one more delivery in area a and slot s, ICt(x⃗t, f⃗t,1as), is approximated by

ICt(x⃗t, f⃗t,1as) =


min

js∈f⃗rad

[
DCt+1(x⃗t + 1as, f⃗t − js)−DCt+1(x⃗t, f⃗t)

]
if f⃗t ̸= ∅

DCt+1(x⃗t + 1as, ∅)−DCt+1(x⃗t, ∅) otherwise

(3.3.2)

where f⃗rad ⊆ f⃗t denotes all forecast orders that are not exceeding a radius equal

to rad miles away from the new order, js ∈ f⃗rad indicates the forecast order to be

removed while inserting the new order (a, s), and j∗s ∈ f⃗rad denotes the best forecast

order which is identified to be removed. Note that the location of the removed order

might be different from that of the new order due to the forecast error and the rule of

replacement (explained in detail in Section 3.3.3).

Note further that we did not need to re-run the VRP when computing equations

(3.3.2). Instead, to calculate the extra driving time/cost in reaching order (a, s) and

omitting the order j∗s , we just estimated the extra driving distance and time which would

be required as a deviation from the existing route found by the VRP, to accommodate

these two changes.
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3.3.2.2 Displacement cost (Revenue loss)

The insertion cost (3.3.2) forms one part of the opportunity-cost estimation, whereas the

other part comes from the expected revenue loss by accepting order (a, s), denoted by

RLt(x⃗t, f⃗t,1as). Provided that the current route (consisting of both actual and forecast

orders) is always treated as the optimal route at the end of the booking horizon, we can

construct our displacement cost/revenue loss estimation. According to the state-of-the-

art approach used in attended home delivery literature, such as Koch and Klein (2020),

we interpret the potential revenue loss as the “additive monetary value of the time

window consumption” due to the acceptance of a new order. Let ws′(x⃗t, f⃗t) denote the

idle time of the current route in time slot s′; then, after performing the replacement of

forecast order j∗s by the new order 1as, the idle time is represented by ws′(x⃗t+1as, f⃗t−j∗s ).

The revenue loss, therefore, is formulated as:

RLt(x⃗t, f⃗t,1as) =
∑
s′∈S

θt,s′(ws′(x⃗t, f⃗t)− ws′(x⃗t + 1as, f⃗t − j∗s )) (3.3.3)

where θt,s′ ∈ R denotes the expected future revenue income per unit-time in slot s′,

that is evaluated at booking horizon t. While unlike Koch and Klein (2020) who learn

the θt,s′ values through sample simulation, in this work, we estimate the value of θt,s′

using the current best route from the dynamic vehicle-routing solutions, as:

θt,s′ =

∑
i

{ri|i ∈ f⃗t, us′−1 ≤ τi ≤ us′}

us′ − us′−1

(3.3.4)

where τi indicates the delivery time of order i in the current best route, and us′ denotes

the finishing time of slot s′. The numerator of (3.3.4) represents the total revenue (i.e.
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∑
ri) for all forecast orders i scheduled to be delivered in slot s′; and the denominator

represents the duration of time slot s′. The opportunity-cost estimation is then:

OCt(x⃗t, f⃗t,1as) =ICt(x⃗t, f⃗t,1as) +RLt(x⃗t, f⃗t,1as) (3.3.5)

which can be used to replace the (Vt+1(x⃗t)−Vt+1(x⃗t + 1as)) in equation (3.2.1), so that

the DP program can be reformulated as:

Ṽt(x⃗t) ≈

max
d⃗

∑
a

λµa

∑
s∈Fa(x⃗t,f⃗t)

Ps,Fa(x⃗t,f⃗t)
(d⃗a)

[
ri + das −OCt(x⃗t, f⃗t,1as)

]+ Vt+1(x⃗t),

∀ x⃗t ∈ X , (3.3.6)

with all elements known (except for Vt+1(x⃗t); but this term is not relevant in pricing

optimisation) for every new order arriving at the system. This approximation decom-

poses the MDP into single-stage decision problems, provided that the opportunity cost

OCt(x⃗t, f⃗t,1as) is evaluated dynamically over time. Note that the difference in (3.3.3)

can be negative, indicating that replacing a forecast order with an actual one can help

to travel less. We can interpret the negative value for RL as accepting the incoming

order will not endure revenue loss and lead to higher slot availability for future cus-

tomers. Therefore, the opportunity cost regarding RL, in this case, favours accepting

the incoming order.

In real-world scenarios, determining the probability of selecting a time slot s at

time step t or opting not to select any time slot is typically a challenge. In this con-

text, we build upon the Multinomial Logit (MNL) model, as introduced by McFadden

et al. (1973). This model defines the probability of choosing a time slot (Ps(d⃗)) or not

choosing any time slot (P0(d⃗)) at time step t, based on the available time slots and
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the delivery charge vector d⃗ at each customer’s instance. Since the total probabilities

sum to unity, we can calculate the probability of not making a booking, denoted as

P0(d⃗) = 1 −
∑

s∈F (x⃗t)
Ps(d⃗). The model described above are used, which states that

these probabilities follow the equations below:

Ps(d⃗) =
exp(β0 + βs + βdds)∑

k∈Fa(x⃗t,f⃗t)
exp(β0 + βk + βddk) + 1

, (3.3.7)

where β0 is the base utility on all choices, βs is the utility of slot s itself, and βd holds

the utility sensitivity to delivery charge ds. These β values are found by numerical opti-

misation for the historical data of purchases made and reflect the popularity of different

times of day and the inferred price elasticity of demand. Similarly, the probability of

no-booking under the delivery charge d⃗, P0(d⃗), is given by:

P0(d⃗) =
1∑

k∈Fa(x⃗t,f⃗t)
exp(β0 + βk + βddk) + 1

(3.3.8)

As Dong et al. (2009) show, under this choice model, given OCt(x⃗t, f⃗t,1as), the

optimal solution d∗s to the online pricing problem can be achieved for s ∈ Fa(x⃗t, f⃗t)

with:

d∗s = OCt(x⃗t, f⃗t,1as)− ri −
h

βd

, (3.3.9)

where h is the unique solution to:

(h− 1) exp(h) =
∑

s∈Fa(x⃗t,f⃗t)

exp(β0 + βs + βd(OCt(x⃗t, f⃗t,1as)− ri)) (3.3.10)

In Section 3.3.3 we give more details about how the order to remove, j∗, can be
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identified and how the order replacement is carried out in an online setting.

3.3.3 Insertion-cost evaluation and order replacement

Upon a new arrival in area a, the insertion feasibility and insertion cost have to be

evaluated for fulfilling this order in time slot s, based on what orders have been accepted

so far. As mentioned earlier, in this study, we maintain a delivery plan of all accepted

orders and forecast orders dynamically and assume that at any interim stage, a “current

best route” is available from the company’s CVRPTW solver. As time goes by, we aim

to replace forecast orders with actual incoming orders, one by one. For every potential

replacement in a particular time slot s, we identify the best forecast order to remove,

i.e., j∗s , and calculate the incremental delivery cost involved in the replacement, and

make it an estimate of the insertion cost for this time slot, i.e., ICt(x⃗t, f⃗t,1as). The

methodology is summarised in Algorithm 1.

Algorithm 1 is called when we need to calculate the opportunity cost approximation

to display available slots with the optimised pricing to customers. Let us consider a

customer request i from area a to book a delivery slot. For this request, we can easily

identify a subset of neighbouring forecast orders to replace by measuring their distance

to the customer’s location. To cover different implementation scenarios, we can apply

different rules to calculate the subset, such as radius, road distance and/or postcode

sectors. Let us denote the subset of forecast orders to remove by f⃗rad. In this study,

to find f⃗rad, the algorithm will check available forecast orders within radius rad. If

there are no forecast orders within radius rad, we increase the radius gradually with

pre-set radius bands until forecast orders are found. The algorithm’s performance is

affected by the largest possible radius considered in implementation. If it is too small,

the availability of slots might be restricted; if it is too large, the delivery cost prediction

will require significant processing time to explore all forecast orders in the range. The
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Algorithm 1: Opportunity-Cost Estimation for a Potential New Order i in

Area a.
1 Compute set f⃗rad (set of candidate forecast orders, within radius rad, to be

replaced by the new order) for new order i in area a.

2 for each time slot s ∈ S do

3 Compute insertion cost, ICt(x⃗t, f⃗t,1as), according (3.3.2), denote the best

order to remove as j∗s .

4 if ICt(x⃗t, f⃗t,1as) ̸=∞, i.e., the insertion into slot s is feasible then

5 Record the best forecast order to remove, j∗s , for later use in Alg. 2

6 Calculate the potential revenue loss of accepting one more order for slot

s, RLt(x⃗t, f⃗t,1as), according to (3.3.3)

7 Calculate opportunity cost for slot s, OCt(x⃗t, f⃗t,1as), according to

(3.3.5)

8 else

9 Set unavailable for slot s and area a

10 Solve (3.3.6) with the opportunity costs OCt(x⃗t, f⃗t,1as), and display available

slots with the optimised pricing (3.3.9) to customers.

trade-off between processing time and forecast accuracy is presented in Section 3.4.5

with numerical results.

When all forecast orders are removed already, i.e., f⃗rad = ∅, the algorithm will check

the feasibility of inserting the new order without replacement. This is the same as

the typical insertion heuristics carried out by, for example, Campbell and Savelsbergh

(2006). This helps mitigate forecasting errors. Indeed, forecast orders are particularly

important at the start of the booking horizon in guiding orders to suitable time slots.

They become less important towards the end when the accepted orders with time win-

dows nearly fix the routing plan. When the number of forecast orders is higher, we

remove all remaining forecast orders in the end. Section 3.4.4 focuses on the forecast

order levels and how the number of forecast orders may affect the performance.
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Algorithm 2: Order replacement/insertion upon customer selection

1 Denote the slot which the customer has selected by ŝ; the new order being

made in area a by i; and the forecast order to be replaced by j∗ŝ

2 if j∗ŝ ̸= ∅ then

3 Remove j∗ŝ from the route

4 Update f⃗t ← f⃗t − j∗ŝ

5 Insert order i into slot s of the route, Update x⃗t ← x⃗t + 1aŝ

6 Re-optimise the route for order set (x⃗t, f⃗t)

After the customer selects their preferred slot, Algorithm 2 will perform the actual

replacement/insertion of the new order i in the selected slot ŝ. Note that the resulting

approach is more robust if traffic conditions, schedule tightness, potential lateness, etc.,

are considered in detail in the dynamic routing system. Upon the acceptance of a

new order, the CVRPTW is re-optimised/updated for a better delivery schedule until

the next arrival comes to the system. This means that the routing optimisation could

adjust the delivery time of the remaining forecast orders in the system to re-optimise

the route.

3.4 Numerical results

To investigate how our approach performs in practice, we test the proposed methodology

on four typical delivery areas, each characterised by different customer densities and

distribution patterns. Actual customer locations and historical booking data are used in

the tests, with essential manipulations to protect commercial information and customer

privacy. The selection of customer locations, whether actual or forecast, is performed

using (3.3.1) randomly from the previous seven periods to ensure both recency and

stochasticity.
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3.4.1 Routing Package

As explained in Section 3.3.2, the designed approach can be implemented with any

routing packages for CVRPTW. This includes dynamic-routing packages with auto-

matic updating schemes based on accepting new orders and static routing packages

that allow warm-starting from known solutions obtained from replacing/inserting the

new orders in the current best routes. Such routing packages are understood to be

standard tools currently used by delivery companies. In our experimental tests, how-

ever, we do not rely on any company’s specialised routing package but use a generic

meta-heuristic, i.e., Simulated Annealing (SA), to solve the CVRPTW. The application

of SA to the VRPTW was introduced and proven effective in terms of accuracy and

execution time by Chiang (1996).

Implementing the SA in the dynamic routing can be characterised into offline and

online phases. The offline phase is a Capacitated Vehicle Routing Problem (CVRP)

without time windows that occur entirely before the booking horizon, which consists

of only forecast orders. The best possible route for the forecast orders (and their best

time slots) are found using SA, preliminary to the order acceptance process. The online

phase covers the entire booking horizon when actual orders are collected, and forecast

orders are replaced as time goes by, according to Algorithm 1 and Algorithm 2. SA is

called to re-optimise the current route after each replacement is done until the arrival

of the following order.

3.4.2 Experiment Settings

We test our model on four typical area settings to investigate different scenarios regard-

ing the spread of orders. These areas are a Rural area, which reflects the countryside

and small villages; a Semi-rural area, which represents towns; a Suburb area, which
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represents the outskirts of big cities where people live in disjoint but not far-way satel-

lite communities; and a City area, where people live with the highest density, e.g., in

apartments. Each area has a depot, whose location/distance to the primary service

area is set to capture the business settings. See Figure 3.3.

As what has been used by Yang et al. (2016), we fit a non-homogeneous Poisson

distribution to historical data and use it to generate customer arrival times in sim-

ulation. Order details, including customer addresses and order sizes, are randomly

simulated from real orders in the past. We also borrow the time slot and MNL param-

eters from Yang et al. (2016), i.e., 27 slots per day, one hour each; some overlap with

others. Please refer to (3.3.7) and (3.3.8) for the detailed MNL customer-choice model

parameters.
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Figure 3.3: Different areas with different densities and spread patterns of orders. A detailed
number of forecast orders and vehicles for each area is given as [#forecast orders, #vehicles]
in the subtitles.

Continuous slot prices, in the range £[-10, 10], are considered in the simulation (i.e.

these are the slot prices offered to customers), with negative prices indicating discounts

offered to customers as an incentive to purchase. The commercial partner we are collab-

orating with has approved this pricing scheme for this project. Detailed revenue/profit

and order size information cannot be published due to commercial concerns, but for a

meaningful interpretation of the results, the ratio between order revenue and variable

delivery cost is set to 40.5 to reflect the real situation.
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3.4.3 Experiment Results

This section aims to test the effectiveness of the proposed dynamic-pricing approach by

maintaining a set of forecast orders without time windows in the routing system. The

studied methods are as follows:

1. Static Pricing (SP): Implements a fixed pricing strategy where each slot has a

static price of £3 throughout the booking horizon.

2. Dynamic Pricing with Insertion Cost without Forecast Orders (DP-IC):

This method employs a short-sighted approach in estimating OC by considering

only the marginal insertion cost of the new order into the current route plan based

on orders accepted up to the present time. Consequently, at the beginning of the

booking horizon, the insertion cost is high and gradually decreases as more orders

are accepted. This short-term perspective guides the dynamic pricing strategy

to dynamically adjust slot prices to maximise immediate profit. Studies such as

Yang et al. (2016) and Yang and Strauss (2017) use this approach as a benchmark

method.

3. Dynamic Pricing Fixed Routing Forecast (DP-FR-F): is proposed by Yang

et al. (2016) as a foresight policy that employs marginal insertion costs to estimate

OC. Unlike DP-IC, however, this approach estimates marginal insertion costs

using fixed, time-windowed forecasted orders derived from historical routes. The

forecast route is constructed at the beginning and fixed over the entire booking

horizon, i.e., the forecast route is not updating with new order acceptance. This

approach allows for more effective OC calculations by basing them on a forecast

route plan.

4. Dynamic Pricing with Dynamic Routing of Time-Windowed Forecast
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Orders (DP-DR-TWF): Integrates forecast orders that have predefined time

windows based on historical data, utilising updates in routing based on new order

acceptance.

5. Dynamic Pricing with Dynamic Routing of Forecast Orders without

Time Windows (DP-DR-F): Estimates OC based on both marginal insertion

cost and displacement cost (revenue loss). It considers a forecast route generated

from forecast orders without time windows as well as actual orders. The forecast

route continually updates as new orders are accepted. Consequently, the OC

estimation relies on a dynamic route plan, which incorporates the latest route

changes. This has been proven to be an effective approach.

These methods are tested against each other using the same routing package and cus-

tomer choice model (MNL), ensuring consistency in the experimental conditions. All

other assumptions are the same for the tests, including:

• The same routing package is used for each paired test, i.e., the Simulated An-

nealing (SA) for CVRPTW as described in Section 5.1 with the same tunable

parameters;

• All implement dynamic routing where updating (re-optimisation) of the current

best route is performed after the acceptance of every new order until the next

order arrives;

• All deploy the same MNL customer-choice model estimated from real data for

customer selections;

• All deploy the same approach for insertion cost and revenue loss (where forecast

orders exist) estimation according to 3.3.2 and 3.3.3. The only difference is the

forecast routes (or whether there is a forecast route) used.
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To have a fair test on the performance of the pricing policy alone, the feasibility of

placing an order in a slot under these two benchmark policies is also informed by the

dynamic-routing package.

Experiments are carried out using MATLAB on an Intel Core i9-7940X 3.1GHz

machine. Since we deployed a meta-heuristic approach to solve the CVRPTW, we

conducted 30 independent runs. We reported the average and the standard deviation

(mean(s.d.)) to minimise the influence of the randomness involved in the solution

approach. Performance on crucial indicators for profit and efficiency are presented in

Table 3.1, with the best one in every row highlighted in bold. The results show that the

DP-DR-F outperforms the other approaches in all the measurements, which confirms

the effectiveness of the proposed approach.
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Table 3.1: Results of SP, DP-IC, DP-FR-F, DP-DR-TWF and DP-DR-F methods

SP DP-IC DP-FR-F DP-DR-TWF DP-DR-F

R
u
ra

l

Total mileage 578.93(27.61) 575.65(22.84) 577.45(23.27) 562.46(22.10) 543.08(24.49)

Mileage/Order 9.48(1.08) 7.70(0.89) 7.64(0.68) 7.84(0.84) 6.75(0.49)

Number of orders 60.60(5.25) 74.40(5.97) 75.00(4.69) 71.37(6.41) 79.66(3.71)

Total order size 213.38(21.20) 273.07(23.23) 273.35(19.90) 267.38(23.38) 296.60(15.98)

Accepted price 3.00 -4.13(0.65) -3.86(0.54) -1.47(0.34) -3.15(0.63)

Total Profit 2109.36(206.98) 2168.66(189.12) 2187.86(157.03) 2226.23(208.64) 2433.46(133.50)

Improvement on SP 2.81% 3.72% 5.54% 15.36%

S
em

i-
ru

ra
l

Total mileage 459.41(18.35) 446.16(17.39) 450.14(17.61) 419.76(21.10) 415.79(16.38)

Mileage/Order 3.66(0.36) 3.09(0.26) 3.09(0.22) 2.94(0.26) 2.67(0.14)

Number of orders 125.43(8.83) 144.40(9.84) 145.03(7.04) 142.33(7.89) 152.00(6.22)

Total order size 448.47(30.41) 539.69(34.84) 545.63(28.63) 545.02(27.27) 583.50(20.29)

Accepted price 3.00 -3.79(0.36) -3.41(0.39) -0.90(0.13) -1.11(0.55)

Total Profit 4431.28(300.94) 4341.81(270.34) 4447.90(231.75) 4685.57(239.68) 5108.86(171.81)

Improvement on SP -2.02% 0.38% 5.74% 15.29%

S
u
b
u
rb

Total mileage 640.77(24.33) 622.74(20.18) 622.67(23.20) 613.99(20.11) 577.59(25.82)

Mileage/Order 3.18(0.35) 2.65(0.17) 2.65(0.18) 2.88(0.18) 2.35(0.11)

Number of orders 202.03(15.65) 234.73(9.05) 234.20(8.90) 212.97(9.16) 245.27(5.03)

Total order size 736.01(57.25) 891.57(32.52) 893.51(32.36) 817.10(36.21) 927.40(20.93)

Accepted price 3.00 -3.80(0.26) -3.50(0.30) -0.00(0.34) -0.59(0.50)

Total Profit 7263.83(564.16) 7182.95(291.06) 7273.36(280.74) 7396.60(358.20) 8249.52(230.96)

Improvement on SP -1.11% 0.13% 1.83% 13.57%

C
it
y

Total mileage 453.07(7.63) 449.66(7.74) 449.38(8.63) 432.16(11.60) 407.63(10.15)

Mileage/Order 0.99(0.04) 0.89(0.04) 0.89(0.03) 0.95(0.04) 0.76(0.03)

Number of orders 458.43(14.20) 505.07(14.65) 504.43(13.94) 455.33(13.53) 531.27(13.82)

Total order size 1702.06(57.96) 1966.86(57.56) 1966.51(58.29) 1794.86(72.67) 2060.32(58.49)

Accepted price 3.00 -3.86(0.21) -3.45(0.20) 1.53(0.16) 3.25(0.60)

Total Profit 16777.67(562.93) 15858.71(435.56) 16066.44(463.20) 17676.47(667.65) 20372.63(355.69)

Improvement on SP -5.48% -4.24% 5.36% 21.43%

One important observation here is that dynamic pricing (DP-IC) is not necessar-

ily better than static pricing (SP), mainly when a poor estimation of the opportunity

cost is used. Furthermore, the short-sighted incremental delivery cost based on ac-

cepted orders alone is insufficient for opportunity-cost estimation. This insight is in

line with the conclusions of Yang and Strauss (2017), which emphasise the importance
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of “incorporating the impact of future profit opportunities from orders”.

As this work proposes, incorporating forecast orders (without time windows) pro-

vides an easy method for future-profit estimation. Together with the better marginal

delivery-cost estimation, obtained by maintaining a hybrid route with both forecast

and actual orders, the approach achieves a 13.57-21.43% profit increase over the static-

pricing method, which is better than that of 2.2-2.5% in Yang and Strauss (2017) and

that of 2.6-6.2% in Yang et al. (2016). We also performed paired sample t-tests on the

total profits for all the approaches in the studied areas. The p-values produced were

all less than 0.05, indicating that the differences were statistically significant at a 5%

significance level.
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Figure 3.4: Total number of orders accepted by the methods

We look closely at key-related components to understand where the additional prof-

its come from in the DP-DR-F approach. Figures 3.4 and 3.5 show a graphical compar-

ison of the number of order commitments and the average travelling distance per order
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across all approaches. These elements demonstrate the efficiency of the final routes we

end up with using the DP-DR-F approach so as to justify the capability of DP-DR-F

in recognising the best time slots to offer and promoting them via dynamic pricing.������������ ���������
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Figure 3.5: Average travel distance to satisfy an order

Compared to DP-DR-TWF, which uses time-windowed forecast orders, the DP-

DR-F approach omits the time windows from the forecast orders, which thus allows

the dynamic route planning to adjust the delivery time of a forecast order to the best

possible time slot according to its location and fitness to the current best route. This

feature provides extra flexibility for dynamic route planning to create more feasible

slots over the booking horizon (more information to follow in Figure 3.7) and guide

the overall booking process to a more compact route in the end. Higher profits are

therefore achieved through selling more goods. These are believed as the key reasons

for higher order commitments provided by DP-DR-F with the fixed fleet and time

window capacity.
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Figure 3.6 shows samples of the final routes obtained by the five approaches in

Area 1. Comparing the plots in Figure 3.6, we can see that the DP-DR-F approach

gives the most efficient routes, with noticeably fewer long links than the others. It

performs especially well in the “remote area”, which directs the orders in this area to

adjacent slots, so as to avoid the van coming back to this area multiple times to meet

demands at different times of the day. The improved route plan shows DP-DR-F’s

ability to promote the correct time slot that complies with the optimal route to reduce

unnecessary travel to meet customer needs.

Figure 3.7 is related to how many slots are available on average as the booking

process progresses for all methods. Based on this plot, we can see that all methods begin

with a high slot availability, which decreases as time passes. Decreasing rates for all the

other four approaches are similar, whereas, for DP-DR-F, the slope magnitude is lower.

The higher availability of time slots with the DP-DR-F method stems from the booking

process, where incoming actual orders are allocated to more efficient time slots for

routing. This efficiency is achieved through the use of forecast orders and improved slot

pricing, which is informed by better OC calculations. These factors together enhance

routing efficiency and result in improved slot availability. This outcome justifies that

DP-DR-F works well in reserving resources for later usage to provide more stable slot

availability over the entire booking horizon than the benchmark approaches. The higher

availability leads to a higher selection rate on average and therefore conveys more orders.
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Figure 3.6: Final route for Area 1 using SP, DP-IC, DP-FR-F, DP-DR-TWF and DP-DR-F
methods
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Figure 3.7: Comparison of slots availability over time for Area 1

In addition, by applying DP-DR-F, a significantly higher number of slots are still

available when the booking horizon reaches its end. However, this approach has com-

mitted a notably higher number of orders than others. This upshot shows further profit

growth potentials of this approach suppose a more extensive market can be reached by

the firm, which is not possible with any other approaches.

Another critical term influencing the total profit is slot price, which is the fee cus-

tomers pay for the delivery service. Figure 3.8 shows the average slot prices offered to

the time slots that customers eventually select with every approach. It is not hard to

see that the DP-IC approach outperforms the static approach in the number of accepted

orders (Figure 3.4) and the per-order delivery costs (Figure 3.5). However, there is no

significant improvement in the overall profit due to the low average price it charges.
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Figure 3.8: Average prices for the slots that are booked by customers

Upon the arrival of a new order, there is a trade-off between long-term profit and

immediate gain. This balance explains why the prices offered by the DP-IC and DP-FR-

F approaches are constantly lower than those of DP-DR-TWF and DP-DR-F. Without

considering the expected revenue loss in the opportunity-cost estimation, the DP-IC

and DP-FR-F approaches only focus on the immediate gain brought by the order under

consideration and try very hard to persuade this customer to buy by lowering the

price offered. However, with the DP-DR-TWF and DP-DR-F approach, as they still

expect more future orders, the pressure of conveying an order now is lighter, so the

price offered is higher on average. Comparing DP-DR-TWF and DP-DR-F, however,

the prices charged by DP-DR-F are slightly lower in most cases. This is because, in

DP-DR-F, the best time slot is purely identified through the dynamic routing system

without time windows, which takes no consideration of the original popularity of time

slots. This puts higher pressure on lowering the price to persuade a customer to book
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an undesirable time slot if their location is deemed the best fit for that time slot.

Note that the average prices offered by dynamic approaches are, in most cases,

lower than zero. The finding is consistent with the previous study using the same

choice model, i.e., Yang et al. (2016) and Yang and Strauss (2017). As claimed in both

previous works, the profit from selling an order is much higher than the profit from

making a delivery. The system offers discounts to encourage customers to buy, rather

than highly charging them for delivery.

Figure 3.9 displays the offered prices change over time on a sample run in Area 1.

Prices offered by all dynamic pricing schemes are decreasing over time.
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Figure 3.9: Average slots’ price offered over time for Area 1

Such a trend is understandable, as when slot availability decreases, the pricing
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problem expects a higher no-booking rate, so it tends to lower the price to persuade

customers to buy. Also, as explained in Yang et al. (2016), popular slots are filled in

earlier than unpopular ones in the booking horizon, so lower prices must be offered

further to promote unpopular slots towards the end of booking time.

3.4.4 Analysis of the number of forecast orders

As explained in section 3.3, we use a moving average to estimate the number of forecast

orders in each area, which may lead to, sometimes significant, forecast errors. This

subsection investigates how sensitive the DP-DR-F approach is to forecasting errors. To

this aim, we create scenarios where the number of forecast orders is significantly (20%)

higher or lower than the moving average and test the DP-DR-F on them. Table 3.2

shows the obtained results for 30 independent runs in the format of the average and the

standard deviation (mean(s.d.)) for the four studied areas, based on the same set of

random examples that have been used in Table 3.1 to make results comparable across

tables.
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Table 3.2: Comparison of different forecast order levels for the 4 studied areas

80% Forecast 100% Forecast 120% Forecast
R

u
ra

l

Total mileage 548.04(24.81) 543.08(24.49) 522.15(21.05)

Mileage/Order 6.94(0.53) 6.75(0.49) 6.82(0.61)

Number of orders 78.23(4.34) 79.67(3.71) 76.03(5.90)

Total order size 288.49(17.93) 296.60(15.98) 282.80(19.53)

Accepted price -3.26(0.64) -3.15(0.63) -1.70(0.88)

Total Profit 2356.21(155.07) 2433.47(133.50) 2428.21(151.38)

S
em

i-
ru

ra
l

Total mileage 417.00(18.27) 415.79(16.38) 375.37(14.96)

Mileage/Order 2.70(0.17) 2.67(0.14) 2.59(0.23)

Number of orders 153.77(5.73) 155.00(6.22) 144.67(12.06)

Total order size 577.47(20.33) 583.50(20.29) 540.01(47.61)

Accepted price -2.22(0.49) -1.11(0.55) 1.10(1.03)

Total Profit 4885.20(170.11) 5108.86(171.81) 5040.52(382.49)

S
u
b
u
rb

Total mileage 585.34(26.56) 577.59(25.82) 554.94(23.39)

Mileage/Order 2.40(0.18) 2.35(0.11) 2.45(0.15)

Number of orders 243.43(9.24) 245.27(5.03) 226.13(9.81)

Total order size 921.44(33.65) 927.40(20.93) 847.16(38.49)

Accepted price -1.98(0.46) -0.60(0.50) 2.26(0.74)

Total Profit 7858.11(276.22) 8249.52(230.96) 8175.12(322.48)

C
it
y

Total mileage 413.09(10.44) 407.63(10.15) 389.75(8.86)

Mileage/Order 0.80(0.03) 0.77(0.03) 0.83(0.04)

Number of orders 516.10(12.05) 531.27(13.82) 469.03(19.45)

Total order size 2017.98(41.48) 2060.32(58.45) 1793.04(86.05)

Accepted price 1.85(0.77) 3.35(0.60) 6.58(0.45)

Total Profit 19229.16(391.95) 20372.63(355.70) 19315.16(799.10)

Concerning the results obtained from the simulation in Table 3.2, we can infer that

if the moving average estimate (3.3.1) decides the number of forecast orders, we can
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expect higher performance in total profit. However, if we underestimate or overestimate

the number of forecast orders compared to what the moving average method suggests

(in our study, 20% lower or higher than the moving average estimate), the performance

undergoes a decrease in efficiency. We can notice this point in all studied areas, which

affirms the robustness of the proposed method to the number of order estimations.

Moreover, the results for a higher number of forecast orders are slightly better than

those for a lower number of forecast orders. This fact emphasises the critical role that

forecast orders play in the booking process, even towards the end when actual orders

with time windows become the majority of the group and the routes are relatively fixed.

3.4.5 Impact of radius size on performance and run-time

The proposed approach is online, so the time it takes to find feasible time slots and

optimise their prices is crucial for successful implementation. One way of accelerating

the decision process is limiting the number of forecast orders to replace when evaluating

the insertion cost. This subsection presents how various forecast order radii can affect

the proposed method’s functionality and run-time. More precisely, when the DP-DR-F

method wants to find the forecast orders for replacement with a new arrival, only the

forecast orders located within a specific radius of the new arrival will be considered.

The greater this radius is, the higher the number of neighbouring forecast orders will

be, resulting in more computation time.
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Table 3.3: The effect of different radii on performance and run-time of DP-DR-F method in
Area 3. ADO stands for Average Distance between Orders.

Radius Total mileage Total Order size Number of Orders Total Profit Run-time(sec)

0.01×ADO 580.80 891.90 234.37 8214.05 0.0041

0.10×ADO 577.59 909.20 240.43 8214.47 0.0104

0.50×ADO 581.34 914.99 241.50 8160.30 0.0336

1.00×ADO 573.67 922.15 244.40 8240.20 0.0519

∞ 579.47 923.15 244.90 8251.86 0.0887

In Table 3.3, we define experiments with different radii based on order density, i.e.,

as a ratio to the average distance between orders (ADO). When the method tries to

find the candidate forecast orders, all the forecast orders within a specific radius will be

explored, and replacement feasibility will be conducted for each of them. If no forecast

orders exist in this radius, the method will double the size of the radius to search for

forecast orders. This process will continue until at least one forecast order is found.

The average running time to obtain a list of feasible slots, with their optimised

prices, is reported in the last column of Table 3.3. This measure can be seen as the

average online reaction time upon a customer’s arrival. According to this table, there

is an increasing trend in performance (e.g. profit) when we enlarge the area searched

for a replacement. At the same time, the execution time increases more sharply, which

is in line with our expectations. Compared to the largest possible radius, the reduced

search range, e.g., to 0.01 × ADO, only sacrifices less than 0.5% of the total profit

while reducing the average reaction time by 95.38% compared to the full search. The

obtained results justify the effectiveness of the proposed simplification. In practice, the

online grocer can choose a radius according to the maximum affordable run-time to

have the best achievable results within the time limit.
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3.5 Conclusion and Future Work

This chapter introduces a novel dynamic pricing method for attended home delivery

using forecast orders without time windows. The approach maintains a dynamic route

of actual orders (with time windows) and forecast orders (without time windows). It

estimates opportunity costs online using the most up-to-date information in the dy-

namic route. No extra learning is needed. The approach can be integrated with any

dynamic-routing package a company is using, which allows the company’s specific rout-

ing needs and restrictions to be considered as well. The approach is tested on real data

with an MNL customer-choice model.

This study operates under the assumption that dynamic pricing effectively balances

customer demands, allowing uncommitted orders to be flexibly distributed across dif-

ferent time slots. However, a notable limitation lies in the practical aspect of customer

availability, which can influence demand and is not currently accounted for in our

model. Future research in Chapter 4 aims to address this by incorporating the original

slot popularity into the forecast route planning of orders without specific time windows.

This integration seeks to harness the advantages of both dynamic pricing and customer

preference considerations, offering a more holistic and practical approach to managing

order assignments and delivery efficiency.

By conducting experiments on four different areas, the advantages of employing

forecast orders without time windows are observed in higher-order commitments, lower

delivery costs and higher overall profits compared to all benchmarking approaches.

The improvement of 13.57-21.43% profit on Static Pricing is better than the results

from former approaches in Yang and Strauss (2017) and Yang et al. (2016) and of

an amount likely to be of commercial interest to those managing AHD operations.

The robustness of the DP-DR-F approach is also tested through experiments when the
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number of forecast orders is overestimated or underestimated. Potential accelerations

of the approach through restricting the exploration radius are discussed and tested to

improve running efficiency and suitability for online implementations. As indicated,

Table 3.3 shows that reducing the search radius to 0.01 × ADO cuts reaction time by

95.38% with minimal impact on profit (less than 0.5% loss), underscoring the efficiency

of our approach. Additionally, variations in the ratio between the search radius ri and

delivery charges could affect these outcomes, highlighting the need for adaptable pricing

and slot allocation strategies.
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4

Efficient Forecast-Based Routing and

Dynamic Time Window Management

for Attended Home Deliveries

4.1 Introduction

By using forecast orders without time windows proposed in Chapter 3, the route plan-

ning can be more adaptable to accommodate actual orders as they emerge during the

booking period. The absence of strict time constraints associated with specific time
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windows allows for greater flexibility in adjusting the routes. However, it is important

to acknowledge that this approach may lead to predicted routes that are impractical,

as the distribution of planned delivery times for forecast orders may not align with

historical customer preferences. The routing package, without time-window constraints

for forecast orders, focuses solely on minimising distances between them, leading to

the potential of shuffling them freely around the time-line for delivery. In this study,

the highest committable order numbers for each time slot are determined and used as

realistic upper bounds to guide dynamic routing optimisation. This factor can enhance

the opportunity cost calculation compared to the work in Chapter 3.

The availability of time slots emerges as a critical factor, influencing customer order

placement and system profitability. This chapter also introduces extended-duration

time slots, augmenting the fixed-length time slots in the service offerings. This en-

hancement aims to boost the flexibility of the CVRPTW and enhance slot availability

during dynamic route planning. To encourage the selection of these longer time slots,

customers are offered incentive discounts. When a customer opts for an extended time

slot, they will also receive a notification detailing the expected delivery time on the day

of delivery, specifying a time within the committed time window range.

The subsequent sections of the chapter are summarised as follows: Section 4.2 intro-

duces a model for the AHD problem within the context of integrated demand manage-

ment and dynamic routing. Further, contributions to the problem are proposed from

two aspects in sections 4.3 and 4.4. The sections detail a solution approach to the AHD

problem and present a novel strategy to enhance routing performance, respectively.

Section 4.5 explains the calculation of the optimal delivery charges. The numerical

results obtained from the two suggested approaches are discussed in Section 4.6. These

results are further analysed and summarised in Section 4.6, followed by insights that

were uncovered and future research directions. Additionally, Section 4.7 provides a
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comprehensive summary of the key findings and conclusions of this study.

4.2 Dynamic pricing formulation in attended home

delivery

This chapter builds upon the problem statement outlined in Chapter 3. The problem

context remains consistent, focusing on an e-retailer managing an online booking system

within a discrete and finite booking horizon. However, there are specific variations

for this chapter. Notably, the number of time windows is reduced to 17, and time

windows are non-overlapping, distinguishing this formulation from the previous one.

The core problem and its elements, such as customer arrivals, the state representation,

probability models, and the objective function, remain the same. For detailed context,

readers are referred to Chapter 3.

4.3 Demand model and opportunity-cost approxima-

tion

This section builds upon the methods developed in Chapter 3 and is reproduced with some

changes from Abdollahi, M., Yang, X., Nasri, M. I., and Fairbank, M. (2023). Demand

management in time-slotted last-mile delivery via dynamic routing with forecast orders.

European Journal of Operational Research.

The term “Opportunity Cost” (OC) refers to the potential profit loss that occurs

when a time slot is assigned to the current customer instead of reserving it for future

customers. In Equation (3.2.1), the term
(
Vt+1(x⃗t) − Vt+1(x⃗t + 1as)

)
represents the

difference in profit at time step t + 1 between not allocating slot s in area a to the
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current customer and allocating it. This difference illustrates the potential profit loss,

which is commonly referred to as OC. A substantial challenge in dynamic pricing

problems is accurately approximating the OC, which critically relies on a crucial factor

known as the displacement cost or revenue loss (RL). Much prior research has focused

on addressing the estimation of RL, as seen in works by [Yang and Strauss (2017), Klein

et al. (2018), and Strauss et al. (2020)].

To address the demand challenges inherent in the AHD problem, the methodology

proposed in Chapter 3 was adopted. This method involves the creation of a forecast

delivery route plan using historical data as a warm start at the beginning of the book-

ing period for the dynamic routing system. The dynamic routing system continuously

updates this route plan in the absence of customer arrivals, striving to optimise the

routes in response to new orders. Additionally, this predictive plan serves as an initial

approximation of the final route plan and is subsequently employed to compute the Op-

portunity Cost (OC). The overarching process of this approach encompasses customer

arrivals within the booking window, driving the system to dynamically offer priced time

slots for deliveries, as depicted in Figure 4.1.
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Figure 4.1: Implication of the integrated dynamic routing and demand management problem.

To ensure that the forecast route plan remains unaffected by any fixed pricing pol-

icy, the forecast route plan was built using forecast orders without predefined time

windows, derived from the historical purchasing data. This approach enhances route

planning by enabling the system to focus solely on optimising the delivery sequence,

unencumbered by the constraints imposed by time windows. The use of forecast orders

without predetermined time windows has demonstrated its efficacy in introducing flex-

ibility and capacity to handle a larger volume of orders as shown by Abdollahi et al.

(2023). Furthermore, this approach operates on the assumption that forecast orders

will eventually be replaced with actual customer orders. Additionally, customers sit-

uated in close proximity to the forecast order’s location can be incentivised (through

pricing strategies) to choose the final time slot allocated by the route-planning software
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for each forecast order.

However, due to the ability to freely allocate forecast orders across time windows, the

resulting distribution of orders might significantly deviate from the original popularity

of time slots. This deviation can render the forecast delivery plan unrealistic, especially

when employing dynamic pricing strategies with predetermined price limits. To address

this concern, this section introduces a novel mechanism that integrates the realistic

popularity of time slots into routing considerations while retaining the routing flexibility

provided by employing forecast orders without predefined time windows.

4.3.1 Orders CAP for every time slot

Assuming knowledge of the optimal dynamic pricing policy, predicting the slot choices

made by customers under this policy becomes relatively straightforward, thus enhanc-

ing the accuracy of the final route predictions. However, a significant challenge arises

from the fact that the optimal dynamic pricing policy is not known in advance, and is

inherently uncertain. In practical scenarios, retailers commonly impose specific limita-

tions on the delivery prices they offer. These limitations can take the form of a defined

continuous pricing range, like [dmin
s , dmax

s ], as observed by Koch and Klein (2020). Al-

ternatively, retailers might choose to offer delivery prices from a predetermined set of

discrete levels, such as {d1s, d2s, . . . , dls}, as explored in studies by Dong et al. (2009)

and Yang and Strauss (2017).

The objective of this section is to determine the upper-bound on the number of

orders that can feasibly be accepted for each time slot within the constraints of the

choice model, considering the specified price limits. This is referred to as the “order

cap” for each time slot s, denoted as CAPs in subsequent discussions. Also, the
−−−→
CAP

encompasses all the CAPs values for each time slot (
−−−→
CAP = {CAPs|s ∈ S}). This
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determination allows us to evaluate the degree to which dynamic pricing, operating

within specified upper and lower price limits ([dmin
s , dmax

s ]), can influence customer de-

mand. For each time slot s, computing CAPs involves setting the price of slot s to its

lowest possible value, dmin
s , while assigning the maximum possible price, dmax

s , to all

other slots:

−−−→
Price(s′) =


dmin
s if s′ = s,

dmax
s otherwise.

(4.3.1)

This setup allows for exploring highest potential number of orders for slot s to be

chosen, considering the choice model used (in this study, the MNL model with selection

probabilities defined by Equations (3.3.7) and (3.3.8)).

In essence, within each simulation run (Simi), a complete booking period is emu-

lated using the time-dependent Poisson process to model stochastic customer arrivals.

The previously mentioned fixed pricing policy (4.3.1) is applied to the available slots.

The process of customer selection is determined through Equations (3.3.7) and (3.3.8).

Following this, the number of accepted orders for each time slot s is logged to facilitate

the subsequent calculation of the CAPs value in Algorithm 3.

A series of such simulations, as outlined in Algorithm 3, is performed for every slot

s. The value of CAPs is then calculated as the average number of accepted orders in

slot s, rounded up to the nearest integer, by the conclusion of the booking horizon.

This entire procedure is reiterated for all slots, with multiple simulations conducted

to derive empirical upper-bound for each slot. The vector of resultant upper-bounds

(
−−−→
CAP ) acts as a reference to guide the distribution of forecast orders among time slots.
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Algorithm 3: Calculate upper-bound vector (
−−−→
CAP ) for all slots

Input : Number of runs: nRun;

Available slots: S;

Slot price range: [dmin
s , dmax

s ]

Output: Set of upper bounds:
−−−→
CAP .

1
−−−→
CAP ← [0, 0, . . . , 0] ; // Initialise upper-bound vector of all slots

2 for each time slot s ∈ S do

3 Initialise all slots’ price using (4.3.1)

4
−−−−−−→
#Orders← [0, 0, . . . , 0] ; // Initialise number of accepted orders

for slot s

5 for i← 1 to nRun do

6 Run simulation Simi for a full booking period ; // Offering fixed

prices from
−−−→
Price to all arriving customers, irrespective

of their area a and arrival time t.

7
−−−−−−→
#Orders(i)← final number of accepted orders in slot s during Simi

8 CAPs ← round(avg(
−−−−−−→
#Orders)) ; // Average rounded-up orders for

slot s

4.3.2 Formal statement of CVRPTW with order caps

In Section 4.3.1, the concept of CAPs for each time slot s is introduced, functioning as a

maximum order limit. The objective of incorporating CAPs is to impose an additional

constraint on the maximum allowable number of accepted orders during the solution

of the CVRPTW problem. This adjustment addresses the need for a more realistic

distribution of forecast orders without time windows, following the implementation of

a pricing policy.
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A formal formulation of the mathematical model is now presented which is the focus

of this study. Within the booking horizon, At is defined as the set of actual orders and

Ft as the set of forecast orders at time step t. The cost of travel from order i to j is

represented by Cij. The binary variable Xijk takes a value of 1 when there exists a

direct connection between orders i and j using van k on the proposed delivery route

plan. lij denotes the distance between orders i and j. Each van in the problem has a

specified capacity denoted by Q, and each order i has a specific demand represented by

qi. Additionally, Φik denotes the calculated time at which van k either begins service at

order location i or departs from/arrives at the depot (for i = 0 and i = D respectively).

The problem setting provides a list of pre-defined time windows, each of which has a

designated start time denoted by UB
s and an end time denoted by UE

s . [TWB
i , TWE

i ]

signifies the agreed-upon time window of order i; for forecast orders, this constraint is

relaxed. This modified problem is named as CVRPTW-CAP, and its formulation is as

follows.

Constraints (4.3.3) and (4.3.7) enforce the requirement that each order is visited

only once and that the van’s capacity is not exceeded. The van departs from the depot

at location 0, visits the orders, and returns to the depot at location D, as indicated by

constraints (4.3.4)-(4.3.6). Inequality (4.3.8) is designed to calculate the arrival times

of orders, ensuring that if van k is travelling from location i to location j, it cannot

arrive at j before a certain time. This time is calculated as Φik+ bi+
lij
v
−M(1−Xijk).

Here, M represents a large number. The term bi denotes the service time required

at the order location i, and v is the travel speed of the delivery vehicle. Constraint

(4.3.8) also eliminates possible sub-tours. The binary variables αis and δis ensure order

allocation within a time slot’s start and end limits, respectively. ξis acts as an overall

indicator confirming correct order placement within these time boundaries. Constraint

(4.3.9) guarantees that time windows are respected. Furthermore, constraints (4.3.10),

(4.3.11), and (4.3.12) verify whether order i is serviced within time slot s. Constraint
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(4.3.13) counts the number of orders in slot s and ensures that it does not exceed the

CAPs.

min
∑

i∈At∪Ft∪{0}

∑
j∈At∪Ft∪{D}

∑
k

CijXijk (4.3.2)

s.t.
∑

j∈At,Ft,{D}

∑
k∈V

Xijk = 1, ∀i ∈ At ∪ Ft (4.3.3)

∑
j∈At∪Ft∪{D}

X0jk = 1, ∀k ∈ V (4.3.4)

∑
i∈At∪Ft∪{0}

XiDk = 1, ∀k ∈ V (4.3.5)

∑
i∈At∪Ft∪{0}

Xigk =
∑

j∈At∪Ft∪{D}
Xgjk, ∀g ∈ At ∪ Ft, ∀k ∈ V (4.3.6)

∑
i∈At∪Ft

qi
∑

j∈At∪Ft∪{D}
Xijk ≤ Q, ∀k ∈ V (4.3.7)

Φik + bi +
lij

v
−M(1−Xijk) ≤ Φjk, ∀i ∈ At ∪ Ft ∪ {0}, ∀j ∈ At ∪ Ft ∪ {D}, ∀k ∈ V (4.3.8)

TWB
i ≤ Φik ≤ TWE

i , ∀i ∈ At, ∀k ∈ V (4.3.9)

UB
s ≥ Φik −Mδis, ∀i ∈ At ∪ Ft,∀k ∈ V, ∀s ∈ S (4.3.10)

UE
s ≤ Φik +Mαis, ∀i ∈ At ∪ Ft,∀k ∈ V, ∀s ∈ S (4.3.11)

ξis ≥ αis + δis − 1, ∀i ∈ At ∪ Ft, ∀s ∈ S (4.3.12)∑
i∈At∪Ft

ξis ≤ CAPs, ∀s ∈ S (4.3.13)

Xijk ∈ {0, 1}, ∀i ∈ At ∪ Ft ∪ {0}, ∀j ∈ At ∪ Ft ∪ {D},∀k ∈ V (4.3.14)

αis ∈ {0, 1}, ∀i ∈ At ∪ Ft, ∀s ∈ S (4.3.15)

δis ∈ {0, 1}, ∀i ∈ At ∪ Ft, ∀s ∈ S (4.3.16)

ξis ∈ {0, 1}, ∀i ∈ At ∪ Ft, ∀s ∈ S (4.3.17)

Φik ≥ 0, ∀i ∈ At ∪ Ft ∪ {0} ∪ {D},∀k ∈ V. (4.3.18)

Based on the provided formulation, it becomes apparent that this does not strictly fit

the definition of a CVRPTW problem. This is due to the fact that the study introduces

constraints solely on the maximum order count within each time slot, without directly

assigning time slots to specific forecast orders. Since forecast orders lack specific time

windows, they have the flexibility to be placed in any available slot based on their

respective locations.
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As the formal mathematical model is not computationally tractable due to the large

state space X and the fact that computing minimum cost solution C(X) alone is in-

tractable since it requires solving a large vehicle routing problem with time windows,

it subsequently will be addressed through an approximate solution using a Simulated

Annealing (SA) algorithm. The proposed CVRPTW-CAP is NP-hard due to the ex-

ponential increase in possible routes and schedules with the number of customers, ve-

hicles, and constraints, which are characteristics of NP-hard problems.. Consequently,

the problem must be solved iteratively, upon every update of sets At and Ft with the

acceptance of new orders. Due its computational complexity, heuristic methods will be

employed to find a near-optimal solution for practical purposes.

4.3.3 Simulated annealing (SA) for CVRPTW-CAP

To efficiently solve the CVRPTW-CAP, Simulated Annealing (SA) as a heuristic has

been employed. SA is used to find the initial (sub-)optimal routes with forecast orders,

and is called upon the acceptance of every actual order to re-optimise the route. To

impose the order limit CAPs as specified by constraint (4.3.13), a forecast-order dis-

tribution step is introduced using Algorithm 4 into SA. During the operation of SA,

when generating a random tentative route plan, Algorithm 4 (re-)assigns the earliest

arrival time to each order in the route plan, considering the CAPs values. Note that the

earliest arrival time (E⃗) signifies the earliest moment when a delivery can be made to

a customer, according to the current working route plan, ensuring that it occurs after

this point. On the contrary, the latest arrival time (L⃗) denotes the latest allowable

time by which the delivery must be completed, ensuring it happens no later than this

specified time. For a given set of orders, each order is associated with a designated van

number and defined E⃗ and L⃗.

In case when constraint (4.3.13) cannot be met after (re-)assigning the visiting times,
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penalty terms are added to the objective to push the SA search to feasible directions. In

Section 4.3.3.1, the employed forecast order distribution approach is explained in details.

Figure 4.2 outlines the integrated dynamic routing and demand management problem

as introduced in Chapter 3, along with the integration of distribution mechanisms into

the dynamic routing system to refine the estimation of the opportunity cost (OC).
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Figure 4.2: Incorporation of distribution mechanisms into the dynamic routing system as
detailed in Section 4.3.

4.3.3.1 Forecast order distribution of a route plan

Recall that CAPs represents the maximum number of orders expected in slot s, to be

serviced by multiple delivery vans. Nevertheless, during the distribution of orders across

slots in the SA process, the route of each delivery van is addressed sequentially. To

achieve a more balanced distribution across all delivery vans, a refined CAPs per van,

denoted by CAPpVs(k), is introduced to reflect the slot-specific order limit in the route
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of delivery van k, based on the number of orders currently assigned to that particular

van:

CAPpVs(k) = ⌈CAPs ·
length(

−−−→
order(k))∑

s

CAPs

⌉ (4.3.19)

where length(
−−−→
order(k)) represents the number of orders for van k at time step t. Ceiling

function ⌈·⌉ is applied to ensure that CAPpVs(k) takes integer values. CAPpVs(k) will

not exceed CAPs because the length(
−−−→
order(k)) is never higher than

∑
s

CAPs. To clarify,

CAPs represents the upper-bound for the total orders that can be delivered in slot s,

considering multiple vans. However,
∑
s

CAPs is considerably higher than the actual

number of orders that will be received at the end of booking period. CAPpVs(k) is

introduced, which mirrors the structure of CAPs while tailoring it to van k. This

approach captures the highest expected order count for slot s on van k, adhering to the

same pattern as in CAPs, contingent on the current order count.

Algorithm 4 employs Equation (4.3.19) to guide re-assignment of earliest arrival

time of orders denoted as E⃗b on a given route plan in SA. Delving into further details,

when the current time slot approaches its capacity threshold (CAPpVs), Algorithm 4

assesses the feasibility of shifting the next forecast order to the adjacent time slot. This

process is outlined within lines 9 to 18 of the algorithm.
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Algorithm 4: Distribution of forecast orders in time slots based on
−−−→
CAP

Input : For each van k: order sequence
−−−→
order(k);

Earliest and latest arrival times for each van k and order i: E⃗(k, i) and L⃗(k, i);

Slots upper-bound:
−−−→
CAP ;

Available slots: S;

Start time of all slots: U⃗B

Output: Balanced earliest arrival times E⃗b.

1 Initialise E⃗b ← E⃗

2 for k ← 1 to number of vans do

3 Initialise RS ← [0, 0, . . . , 0] ; // Record number of orders in each slot

4 Calculate refined CAPpVs(k)← ⌈CAPs · length(
−−−→
order(k))∑

s CAPs
⌉ ; // Refined CAPs for van k

5 for i← 1 to length(
−−−→
order(k)) do

6 s← find_slot_number(E⃗b(k, i)) ; // Find the corresponding slot number for

E⃗b(k, i)

7 if i is a forecast order then

8 if RS(s) > CAPpVs(k) then

9 if s is not the last slot in S then

10 for n← i+ 1 to length(
−−−→
order(k)) do

11 Slackn ← L⃗(k, n)− E⃗b(k, n) ; // Calculate slack of subsequent

orders

12 Min_slack← min
i<n≤length(order(k))

Slackn

13 Shift← UB
s+1 − E⃗b(k, i) ; // Calculate required shift size

14 if Shift ≤ Min_slack then

15 RS(s)← RS(s)− 1 ; // Remove order i from slot s

16 RS(s+ 1)← RS(s+ 1) + 1 ; // Add order i to slot s+ 1

17 for h← i+ 1 to length(
−−−→
order(k)) do

18 E⃗b(k, h)← E⃗b(k, h) + Shift ; // Delay following orders by

Shift

The feasibility of this shifting operation hinges on the flexibility of subsequent actual

or forecast orders, which is determined by the range between their earliest and latest
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arrival times. In line 13, the required shift size is calculated by determining the time

difference between the beginning of the next time slot and the earliest time at which

the forecast order in consideration could be accommodated.

Subsequently, the algorithm evaluates the flexibility of all subsequent orders. If it

is feasible to shift these orders by at least the calculated the required shift size, as

indicated in lines 14 to 18, then the current shifting of the forecast order is deemed

valid. However, if the shifting is infeasible due to the presence of actual orders, the

earliest arrival time of the forecast order remains unaltered.

Towards the end of the algorithm, after examining all delivery vans for order dis-

tribution, if the total number of orders in a specific time slot violates the pre-defined

CAPs constraint, a penalty is introduced into the objective function. The assumption

is that the index ordering used for labelling time slots s aligns with the actual delivery

times over the day.

4.4 Augmented Time Window

The study in the previous chapter presented a partially time-windowed dynamic routing

technique using forecast orders to assist the dynamic routing system in recommending

more lucrative time slots for new actual orders. This method involves generating pre-

liminary routes based on forecast orders, which are initially devoid of specific time

windows. As the booking horizon progresses, these forecast orders play a pivotal role in

guiding the system towards identifying favourable time slots for the inclusion of new,

actual orders.

The process unfolds as follows: when a new actual order is received, the system

evaluates the forecast orders and selects one for removal. Subsequently, the dynamic
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routing algorithm is invoked to reconfigure the delivery plan. With this replacement, the

system transitions from having a forecast order without a predetermined time window

to gaining an actual order with a fixed, one-hour time window. However, it is important

to recognise that an order without a designated time window offers more flexibility in

route optimisation, whereas fixed time windows tend to constrain this flexibility.

To address this diminishing flexibility concern, the present study proposes a solution

aimed at encouraging customers to choose extended-duration time windows. By incen-

tivising customers to opt for these broader time slots, the system can maintain and even

enhance its ability to accommodate actual orders within flexible routing plans. This ap-

proach attempts to strike a balance between customer preferences and the operational

efficiency of the dynamic routing system.

The existing literature on variable or extended-duration time windows in the context

of the AHD problem has mainly explored two strategies: static short and long time slots

(as shown by Klein et al. (2020)), and the combination of less popular slots with more

popular ones to improve slot utility (as discussed by Strauss et al. (2020)). Differing

from these methods, this study introduces a dynamic approach to slot combination,

building upon the foundation laid in Chapter 3. This approach leverages the flexibility

inherent in forecast orders without fixed time windows.

In this approach, optimal extensions for the existing set of Standard Time Windows

(STW ) is determined every time a new customer places an order. These extensions,

termed Augmented Time Windows (ATW ), are tailored to optimise the tentative route

by considering both actual and forecast orders. This dynamic integration of ATW

stands apart from the traditional static approach of merging time windows. Figure 4.3

depicts the integration of dynamic routing and demand management, including forecast

order distribution into the dynamic routing system (left oval) and ATW calculation,

alongside the existing STW to calculate OC (right oval). This integration results in
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an improved effectiveness of the routing process.
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Figure 4.3: Creation of ATW using the existing STW to enhance the efficiency of the routing
process as shown in the right oval and discussed in Section 4.4).

Furthermore, Figure 4.4 provides a clear example of how ATW s are formed from

adjacent STW s. Let us consider a scenario where a new actual order j is inserted into

the tentative route during the dynamic routing process. In Figure 4.4, j∗s represents

the index of the most appropriate forecast order to remove when inserting order j into

slot s. Here, i and i + 1 represent the indices of the preceding and succeeding orders

on the route, respectively, between which order j is being inserted. The marginal

cost of replacing j∗s with j is denoted as ICs. For further clarification on the values

in Figure 4.4, let us consider that for slots 1 to 3, removing forecast order number

39—currently the second order in van 1—is optimal. The most suitable position for the

incoming actual order is between orders 3 and 4 in van 2, which are indexed 45 and 58,

respectively, with an insertion cost of 13.42.

It is evident that if the new order j is aimed to be serviced in slots 1, 2, or 3, the

best forecast order to remove and the optimal insertion position on the route remain
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the same. This implies that even after this replacement and insertion, actual order

j retains the flexibility to move across these three slots. However, if only STW s are

available and the customer later selects slot 2, for instance, order j becomes constrained

by the start and end time of slot 2 (i.e., [7 am, 8 am]). Consequently, this reduces the

route’s flexibility as any future new orders to be serviced in slot 3 cannot be inserted

into gaps before order j, even if travel time allows both orders to be accommodated

within a one-hour slot.

To maintain routing flexibility, slots 1, 2, and 3 are consolidated into an ATW that

spans from 6 am to 9 am, as highlighted in green in Figure 4.4. If selected, order j can

be fit into any time between [6am, 9am], making the tentative route more adaptable

for absorbing a higher number of future orders. This strategy helps enhance the overall

efficiency and responsiveness of the routing system.

slot 1 2 3 4 5 6 7 8 9 10 11 12 13

j* 39 39 39 20 48 48 11 6 6 6 39 48 6

i 45 45 45 5 24 24 20 44 44 44 45 24 44

i+1 58 58 58 61 22 22 41 29 29 29 58 22 29

IC 13.42 13.42 13.42 12.49 6.80 6.80 4.51 -3.03 -3.03 -3.03 13.42 6.80 -3.03

begins 6 am 7 am 8 am 9 am 10 am 11 am 12 pm 1 pm 2 pm 3 pm 6 am 10 am 1 pm

ends 7 am 8 am 9 am 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm 9 am 12 pm 4 pm

STW ATW

Figure 4.4: Constructing augmented time windows from standard time windows.

To generate the ATW set from neighbouring slots in the STW set, the indices of

preceding and succeeding orders (i and i+1) are examined during the order insertion or

replacement process. The time slots in STW that have matching values for i and i+1

are identified as the desired time slots to combine and form a new extended time window

to be added to ATW . Notably, since ATW are generated from adjacent time slots,
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their inclusion in subsequent routing (re-)optimisation does not burden the dynamic

routing package with maintaining disconnected aggregated time windows. Instead, an

order selecting ATW simply becomes a standard order in the follow-up routing (re-

)optimisation with a longer time window.

One final note concerns the utility of ATW . It was initially assumed that no utility

decrement would occur when combining slots; that is, the utility of ATW is equal to the

average utility of all individual slots involved. However, in Section 4.6.4, the updated

MNL model that incorporates ATW is extensively explored, evaluating different utility

decrement bands and their impact on the performance of the method.

4.5 Calculate Optimal Delivery Charges

Building upon the dynamic routing methodology discussed in Chapter 3, optimal de-

livery charges will be calculated in this chapter. After aligning the earliest arrival times

of all orders (E⃗b) using Algorithm 4 from Section 4.3, we calculate the revenue loss

(RL). It is crucial to note that the number of time slots now encompasses both sched-

uled time windows (STW) and actual time windows (ATW), a key distinction from the

methodologies described in Chapter 3.

4.5.1 Extending Revenue Loss Calculations

Introduced in Chapter 3, the concept of calculating RL is enhanced in this chapter to

include both actual and forecast orders remaining in the system at any given time t.

This extension is important for assessing the monetary value of time consumed by new

orders in various time slots.



Page | 83

eRLt(x⃗t, f⃗t,1as) =
∑

s′∈S={STW∪ATW}

θt,s′
(
ws′(x⃗t, f⃗t)− ws′(x⃗t + 1as, f⃗t − j∗s )

)
(4.5.1)

Here, θt,s′ ∈ R denotes the monetary value associated with the time consumed by the

new order 1as in time slot s′.

θt,s′ is computed using the best route data generated by the dynamic routing package

at time t:

θt,s′ =

∑
i

{ri|i ∈ (x⃗t ∪ f⃗t), U
B
s′ ≤ Φi ≤ UE

s′ }

UE
s′ − UB

s′
(4.5.2)

This calculation reflects a more comprehensive scenario than previously modelled, con-

sidering both actual and forecast orders.

4.5.2 Calculation of Insertion Costs

Following Equation (3.3.2) from Chapter 3, we calculate insertion costs (IC) for adding

a new delivery. If it becomes infeasible to fulfil all orders (x⃗t, f⃗t) due to capacity and

time constraints, the delivery cost DCt(x⃗t, f⃗t) is considered infinite.

4.5.3 Opportunity Cost Estimation

The extended revenue loss eRL and insertion cost IC are combined to estimate the

opportunity cost:

OCt(x⃗t, f⃗t,1as) = ICt(x⃗t, f⃗t,1as) + eRLt(x⃗t, f⃗t,1as) (4.5.3)

This metric approximates the term (Vt+1(x⃗t) − Vt+1(x⃗t + 1as)) from Equation (3.2.1),

essential for determining the optimal slot pricing.
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Using the derived opportunity cost, we calculate the optimal slot price d∗s in ac-

cordance with the dynamic pricing model advocated by Dong et al. (2009), previously

applied in Chapter 3 and delineated in Equations (3.3.9) and (3.3.10).

4.6 Experimental Results

In the forthcoming section, an outline of the study areas and the methodologies used to

compare the proposed method with several benchmarks will be provided. Results ob-

tained from diverse experiments will be presented, evaluated against various measures.

Additionally, a detailed explanation concerning the implementation aspects related to

the distribution of forecast orders will be given. The potential of augmented time win-

dows to enhance the effectiveness of the methods will also be explored. Performance

improvements achieved through this approach will be illustrated and compared to sce-

narios exclusively using standard time windows.

4.6.1 Data Specification

To examine the impact of forecast order distribution and augmented time windows, ex-

periments were conducted across seven distinct delivery areas. These areas were chosen

to represent different customer densities and distribution patterns. The experiments

were carried out using actual customer locations and historical booking data, while

ensuring the protection of commercial information and customer privacy through ap-

propriate measures. Table 4.1 provides a comprehensive overview of the selected areas,

including their specific characteristics and the number of vans deployed to fulfil the

final accepted delivery orders.
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Table 4.1: Features of seven areas under study

Area 1 2 3 4 5 6 7

Geographical spread Rural Suburb Semi-Rural Semi-Rural Suburb City City

Average number of customers per day 63 130 206 308 398 502 611

Average distance between customers (mile) 11.78 5.87 13.43 11.98 8.81 2.67 2.32

Number of delivery vehicles 2 4 6 9 11 14 16

Type of vehicle Van Van Van Van Van Van Van

Chapter 4 builds upon the dynamic pricing methods introduced in Chapter 3 which

are Static Pricing method (SP), Dynamic Pricing with Insertion Cost without employing

forecast order (DP-IC), Dynamic Pricing with Fixed routing of Forecast order with time

window (DP-FR-F), and Dynamic Pricing with Fixed routing of Forecast order with

time window (DP-FR-F) extending them with two new approaches introduced in this

chapter:

• Dynamic Pricing with Dynamic Routing of Distributed Forecast orders

without time window (DP-DR-DF): This method considers dynamically ad-

justing the pricing based on forecast route plan entailing distributed forecast or-

ders; forecast route is updated upon new order acceptance. This is the approach

proposed in Section 4.3.

• Dynamic Pricing with Dynamic Routing of Distributed Forecast or-

ders without time windows entailing Augmented Time Windows (DP-

DR-DF-ATW): This approach is same as DP-DR-F, but with the inclusion of

augmented time windows as proposed in Section 4.4.

For a detailed breakdown of the components of each method, please refer to Table

4.2.
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Table 4.2: Comparison of different methods based on key features

Method Pricing policy OC Route planning Forecast order type Time window type

SP Static - - - standard

DP-IC Dynamic IC - - standard

DP-FR-F Dynamic IC Fixed forecast orders With TW standard

DP-DR-F Dynamic IC + RL Dynamic forecast orders Without TW standard

DP-DR-DF Dynamic IC + RL Distributed dynamic forecast orders Without TW standard

DP-DR-DF-ATW Dynamic IC + eRL Distributed dynamic forecast orders Without TW standard & augmented

Lastly, the experiments were conducted using MATLAB on a high-performance

computing system equipped with an Intel Core i9-7940X 3.1GHz processor. To ensure

reliable results, a total of 30 independent runs of the experiments is performed and the

average is reported.

4.6.2 Comparative analysis of the methods based on various

metrics

To evaluate the effectiveness of the new approaches introduced earlier, namely the em-

ployment of distributed forecast order and dynamically extending feasible time windows

through the implementation of augmented time windows, various measures have been

considered. Among these metrics, profit growth stands out as a crucial benchmark to

assess the performance of the methods. Figure 4.5 presents the achieved profit for all

the methods across different areas, along with the percentage improvement in profit

compared to the static pricing method used as the baseline. This visualisation provides

a comprehensive overview of how each method performs in terms of generating profit

and highlights the extent to which they outperform the static pricing approach.
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Figure 4.5: Comparison of the profit growth of the studied methods. Fleet sizes in Areas 1
to 7 correspond to 2 to 16, as depicted in the figure.

Analysing Figure 4.5, it is evident that DP-DR-DF outperforms DP-DR-F, high-

lighting the significance of distributing forecast orders. This observation emphasises

the importance of accurately estimating revenue loss, as it enables a more realistic cal-

culation of opportunity costs. By considering and accurately estimating revenue loss,

businesses can make more informed decisions and achieve better financial outcomes by

optimising their pricing policies. For a more detailed investigation into the distribution

of forecast orders and the estimation of time budget as a component of revenue loss

calculation, please refer to Section 4.6.3.

The integration of augmented time windows into DP-DR-DF to create DP-DR-

DF-ATW leads to even more promising results, with a notable profit improvement

ranging from 22% up to 27% compared to the static pricing method. This outcome

underscores the effectiveness of augmented time windows in guiding customers towards

time slots that have a higher potential to generate increased overall profit throughout

the entire booking period. By offering customers more versatile choices in terms of time
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window length along with discounted delivery charges, the routing package can more

efficiently manage accepted orders. This helps to mitigate the biased random selection of

customers towards popular time windows. As a result, there is a higher slot availability

throughout the booking period, increasing the chances of customers successfully booking

a desired time slot. Note that the results as displayed in Figure 4.5 for DP-DR-DF-ATW

assumes no utility decrement when combining slots, i.e., utility of augmented slots is

equal to the average utility of all individual slots involved. It is acknowledged that this

assumption may not always hold true in practice. In Section 4.6.4, the updated MNL

model that incorporates augmented time windows is extensively explored, evaluating

different utility decrement bands and their impact on the performance of the DP-DR-

DF-ATW method.

Another advantage of the methodology proposed in Section 4.4 for augmented time

windows (ATW ) is its compatibility with various methods and approaches in dynamic

pricing. This approach can seamlessly function as an add-on to any insertion-based dy-

namic routing system, facilitating profit improvement without requiring modifications

to the specific method for dynamic pricing. This flexibility allows for easy integration

into different methods with diverse approaches. Furthermore, the inclusion of ATW

does not impose significant computational burdens on the methods. Instead, it sim-

ply redefines the standard time window based on the inherent characteristics of each

method. Consequently, the integration of augmented time windows contributes to im-

proved performance without introducing excessive computational complexities, as it

involves working with and combining pre-calculated standard time windows.



Page | 89��������������	
� ���������

���	����	������������� !����"�� ������#�$��%��&�!�'�$(�)��*��*��
�+),�-),�+�$�*$(�����***���������� 
�


. / 0 1 2 3 456789�:.;4<=.==
/==0==
1==2==
3==4==

5>768?7�@ABC76�DE�D6F76
9

GHIJKLI�MNOPIJ�QR�QJSIJT�KUJQTT�KVV�KJIKTWXYX;Z[YX;\];\YX;Y];\YX;Y];Y\YX;Y];Y\;5̂_

/ 1 3 ` .= ./ .1 .3\a77b�9cd7=e2e
.=e.2e
/=e/2e
0=e

ZBf6D>7B7@b�DE�8>768?7�
@ABC76�DE�D6F769

gOhJQHIOIMi�QR�MNOPIJ�QR�QJSIJT�iQ�jkWXYX;Z[YX;\];\YX;Y];\YX;Y];Y\;5̂_

Figure 4.6: Comparison of the acceptance rate of the studied methods on the number of
accepted orders. Fleet sizes in Areas 1 to 7 correspond to 2 to 16, as depicted in the figure.

Figures 4.6 and 4.7 highlight the improved efficiency the method brings to the dy-

namic routing system. Figure 4.6 showcases the average number of accepted orders

across all areas. This figure highlights the effectiveness of new approaches in accom-

modating a greater number of orders within the same problem setting. By optimising

the routing process, the DP-DR-DF-ATW excels in incorporating more orders into the

routes, thereby maximising resource employment and meeting customer demand ef-

fectively. In addition, the DP-DR-DF approach achieves a slight increase in accepted

orders while generating more profit through enhanced pricing of time slots and more

accurate RL estimation.

In Figure 4.7, a graphical comparison is presented, focusing on the average travel-

ling cost required to serve an order and the average profit gain per mile in all areas.

These metrics directly reflect the efficiency of the final routes generated by the meth-

ods and their impact on the overall performance of the dynamic routing system. The

figure underscores the effectiveness of new approaches in achieving cost-minimisation
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objectives while maximising profit gains per mile. This emphasises the importance

of an efficient forecast route plan, enabling intelligent and strategic travel decisions,

ultimately contributing to enhanced profitability.��������������	
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Figure 4.7: Performance of the studied methods with regards to travelling cost and profit
gain

The availability of time slots and their corresponding prices over the booking period

significantly impact the total profit. Figure 4.8 provides insights into the number of

available time slots and the average advised price for representative areas (1 and 7).

When a new order arrives, there exists a trade-off between immediate gain and long-

term profit. This trade-off explains why the prices offered by DP-IC and DP-FR-F

approaches are consistently lower than those of DP-DR-F, DP-DR-DF, and DP-DR-

DF-ATW. Note that the DP-IC and DP-FR-F approaches, lacking consideration for

expected revenue loss in the opportunity-cost estimation, primarily focus on the im-

mediate gain associated with the order under consideration. To entice the customer

to make a purchase, these approaches lower the price offered significantly. However, in

the case of DP-DR-F, DP-DR-DF, and DP-DR-DF-ATW approaches, which anticipate

future orders, there is less pressure to secure an immediate order. Consequently, the
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prices offered tend to be higher on average. The variation in prices across different

approaches underscores the significance of incorporating an accurate assessment of rev-

enue loss in the opportunity-cost estimation. This consideration enables approaches to

strike a balance between immediate gains and long-term profitability, resulting in more

strategic pricing decisions and ultimately maximising the total profit.
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Figure 4.8: Comparison of time slot availability and pricing: areas 1 and 7

When comparing DP-DR-DF and DP-DR-DF-ATW with DP-DR-F, it is evident
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that the prices charged by DP-DR-F are generally lower. This is because in DP-DR-F,

the best time slot is determined solely based on the dynamic routing system without

considering time windows or the original popularity of time slots. Consequently, there

is a higher pressure to lower the price in order to persuade a customer to book an

undesirable time slot if their location is deemed the best fit for that particular slot.

On the other hand, DP-DR-DF and DP-DR-DF-ATW offer more stable delivery prices

compared to DP-DR-F by leveraging the benefits of forecast order distribution. Ideally,

the pricing policy towards the end of the booking horizon should aim to treat customers

fairly by providing consistent prices across all time slots. This equitable approach is

particularly evident in low-density areas with lower complexity, where the demand

system is less intricate. However, in areas with higher demand, this advantage may

be somewhat diminished due to factors such as increased order volume, more delivery

vehicles, and greater pressure on the dynamic routing system. Nevertheless, in real-

world scenarios, it is common for prices in dynamic pricing schemes to decrease over

time as slot availability dwindles. Typically, popular slots tend to be reserved earlier

than less popular ones, resulting in lower prices being offered towards the end of the

booking period to stimulate bookings for the less popular slots.

4.6.3 The Impact of Forecast Order Distribution on Time Bud-

get

This section aims to demonstrate the impact of distributing forecast orders based on

the CAP. Figure 4.9 serves as a visual representation, highlighting how the distribution

of forecast orders contributes to aligning the time budget of each slot with the slot

popularity predicted by the MNL model. This comparison provides valuable insights

into how effectively the CAP-based distribution approach can optimise time slot em-

ployment and improve the overall match between customer demand and available time
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Figure 4.9: Estimated slot popularity based on slots’ time budget during booking horizon of
Area 1 compared to scaled slot popularity of the MNL choice model. The first column is for
DP-DR-F and the second column is for DP-DR-DF.

The left heatmap represents the DP-DR-F method, which does not consider forecast

order distribution. It shows that the time budgets for the first half of the time slots have

higher values across all customer arrivals. In contrast, the right heatmap, corresponding

to the DP-DR-DF method, which integrates forecast order distribution, reveals two

distinct peaks in the time slot values. This pattern corresponds to slot popularity

as observed in the MNL model. The upper heatmaps, which display the number of

customer arrivals over time on the y-axis and the number of time slots (17) on the

x-axis, illustrate which time slots received more customers. A hotter colour indicates
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higher customer acceptance. The top left heatmap shows customer acceptance that is

incongruous with the observed slot popularity, whereas the top right heatmap displays

a pattern more aligned with slot popularity, indicating higher acceptance in popular

slots as represented by hotter colours.

The left heatmap corresponds to the DP-DR-F method, where forecast order dis-

tribution is not considered. It reveals that the time budgets for the first half of the

time slots exhibit higher values across all customer arrivals. In contrast, the right

heatmap representing the DP-DR-DF method, which integrates forecast order distri-

bution, demonstrates two distinct peaks in the time slot values. This pattern aligns

with the slot popularity observed in the Multinomial Logit (MNL) model. The top

heatmaps which show the number of customer arrivals over time on y axis and the

number of time slots (17) on the x axis, illustrate that which time slots received more

customers. The hotter the colour the more customer acceptance. The top left heatmap

shows incongruous customer acceptance compared to the shown slot popularity while

the top right heatmap show more resemblance to slot popularity as it shows higher

acceptance in popular slots shown be hotter colours.

The line graph positioned below each heatmap illustrates the average time budget

across all customer arrivals, juxtaposed with the scaled slot popularity. Notably, the

incorporation of forecast order distribution in the DP-DR-DF method leads to a more

pronounced alignment between the slot popularity and the time budget, highlighting

the impact of this approach on achieving a closer match between predicted popularity

and actual time allocations.
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4.6.4 Incentives on the ATW by calculation of new MNL pa-

rameters corresponding to ATW

This section focuses on adjusting the MNL choice model by incorporating the ATW

parameters in addition to the previously known STW parameters. As mentioned in

Section 4.2, the probability Equations of selecting (Ps(d⃗)) and not-selecting (P0(d⃗)) an

offered time slot s under the delivery charge vector d⃗ upon each customer’s arrival are

governed by Equations (3.3.7) and (3.3.8), respectively. The βs parameter in these

Equations represents slot utility capturing customer preferences when selecting a time

slot. Since augmented time windows have not been implemented before, there is no

direct historical data available to recover their βs values. Therefore, the MNL param-

eters need to be drawn, specifically the βs parameter originally defined for STW , for

ATW . This involves using Equation (4.6.1) to calculate the βs values for the ATW

slot s′. It averages all the βs values for the constituent slots that form s′ and then

decreases this value by a factor related to the length of s′. More specifically, if s′i rep-

resents the augmented time window which is a combination of standard time windows,

{stw1, stw2, . . . , stwni
}, the following formula is used to calculate the β value for s′i:

βs′i
=

ni∑
j=1

βstwj

ni

− ((ni − 1)× γ) (4.6.1)

Since an augmented time window has a broader time range and requires customers to

wait longer at the delivery location compared to a standard time window, its popularity

among customers is expected to decline. Equation (4.6.1) is constructed based on the

assumption that the utility of an augmented slot decreases linearly with its length, and

the rate of reduction is captured by the parameter γ. During experiments, different
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values of γ are tested to examine the influence of combining time slots.

To determine suitable scales for γ values, γ can be interpreted in terms of monetary

units. Recall that βd represents the utility parameter associated with delivery price.

Consequently, as the price per unit increases, the utility will decrease by an amount

proportional to |βd| (where βd is a negative value). For example, if extending a time

slot by one hour leads to a utility reduction equivalent to increasing its price by £Z,

then γ can be set as Z · βd.

In this research, a range of γ values spanning from 0 to 0.2 is considered, approxi-

mately corresponding to a price increment of £0 to £2.6. The summary of profit gains

is visualised in Figure 4.10, which highlights the performance of the DP-DR-DF-ATW

method across various γ bands in comparison to other approaches.

Analysing Figure 4.10, it is observed that areas with lower customer density exhibit

higher profit gains when using the DP-DR-DF-ATW method; areas with a higher vol-

ume of customer requests show a lower profit gain. Nevertheless, the improvement in

profit remains substantial. This indicates the efficacy of applying ATW in exploring

and exploiting customers’ flexibility in time slots.
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Figure 4.10: Impact of γ values on profit in all areas

A more comprehensive display of the impact of γ values is presented in Table 4.3,

which focuses on representative areas 1, 3, and 6. This table provides a comparison of

the performance metrics between DP-DR-DF and DP-DR-DF-ATW variants using dif-

ferent γ values. As explained before, higher γ values means lower preference of ATW s

and therefore lower selection rates of these slots. As a result this leads to increased

mileage per order and a decrease in the number of orders, which justifies ATW s’ ability

of maintaining routing flexibility and conveying more orders. As γ increases, the total

profit decreases. However, even with the largest γ value, the DP-DR-DF-ATW vari-

ants outperform DP-DR-DF. This is particularly evident when considering the profit

improvement, which indicates a larger deviation from the maximum profit for DP-DR-

DF.
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Table 4.3: Sensitivity analysis on γ for DP-DR-Df-ATW with comparison to DP-DR-DF

γ values Total mileage Mileage/Order Number of orders Total order size Accepted price Total profit profit improvement(%)

A
re

a
1

0 510.74 6.62 76.27 284.63 1.80 2712.81 6.22

0.05 517.50 6.62 75.7 285.79 1.67 2681.05 4.98

0.10 507.21 6.70 75.1 282.067 1.51 2648.33 3.70

0.15 516.42 6.88 74.26 276.80 1.37 2624.93 2.78

0.20 513.90 6.86 74.03 276.43 1.39 2608.71 2.74

DP-DR-DF 507.32 6.89 72.93 274.46 0.95 2553.96

γ values Total mileage Mileage/Order Number of orders Total order size Accepted price Total profit Profit improvement(%)

A
re

a
3

0 545.32 2.23 239.20 914.05 2.39 8847.95 4.70

0.05 553.63 2.33 237.20 909.17 2.26 8768.50 3.76

0.10 549.51 2.30 237.93 907.25 2.18 8731.50 3.32

0.15 552.19 2.33 236.13 906.33 2.20 8724.89 3.24

0.20 540.03 2.28 239.39 900.57 2.12 8653.31 2.40

DP-DR-DF 537.05 2.28 236.60 899.25 1.32 8450.85

γ values Total mileage Mileage/Order Number of orders Total order size Accepted price Total profit Profit improvement(%)

A
re

a
6

0 391.22 0.72 543.30 2141.70 1.11 19996.41 3.66

0.05 391.92 0.72 539.63 2135.04 1.06 19904.82 3.18

0.10 390.73 0.72 540.67 2140.20 0.90 19866.18 2.98

0.15 391.18 0.73 538.23 2134.21 0.89 19806.22 2.67

0.20 392.70 0.73 538.73 2139.41 0.69 19746.09 2.36

DP-DR-DF 392.58 0.73 535.37 2122.49 0.13 19291.04

In the final analysis, the selection rate comparison between ATW and STW is

considered. Figure 4.11 shows that a considerable proportion of customers, ranging

from 8.5% to 13.2%, exhibited potential behavioural changes by opting for ATW instead

of STW in the experiment conducted. This finding strongly suggests that a notable

segment of customers offer their flexibility and potential cost savings offered by choosing
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from ATW , which typically have a lower delivery charge, as opposed to selecting specific

predefined time slots with a higher delivery charge associated with STW .��������������	�
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Figure 4.11: Percentage distribution: selection of STW versus ATW in all areas

4.7 Conclusion

In conclusion, this research makes two contributions to address the integrated demand

management and dynamic vehicle routing problem. Firstly, by incorporating the distri-

bution of forecast orders into the dynamic routing system with forecast orders without

time window, the estimation of opportunity cost has been improved, resulting in en-

hanced profitability for the overall demand management system. This improvement

demonstrates the potential for increased financial gains by leveraging forecast orders in

dynamic routing decisions.

Secondly, the introduction of augmented time windows expands the range of time
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slot choices available to customers, leading to higher slot availability throughout the

booking period. This, in turn, improves the overall performance of the dynamic routing

system, resulting in better efficiency and effectiveness. this research outlines the process

of creating augmented time windows and updating the choice model to align with the

offered time slots, providing practical guidance for implementation.

The results obtained from this experiments showcase the promising impact of aug-

mented time windows on profit-making, system simplicity, and integrability. However,

there is still room for further exploration and enhancement. Future research can focus

on managing standard time slots that are not adjacent and developing sophisticated

incentive schemes to make augmented time windows more attractive and appealing to

customers. These extensions have the potential to further optimise the performance

and attractiveness of the proposed approach.

Overall, these findings highlight the potential benefits of integrating forecast orders

and augmented time windows into the demand management and dynamic routing sys-

tem. This research contributes to the advancement of the field and paves the way for

future innovations in improving profitability, efficiency, and customer satisfaction in

attended home deliveries.
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5

Enhancing Opportunity Cost

Approximation through Incorporation

of Delivery Price Reduction

5.1 Introduction

This chapter focuses on improving demand fulfilment by introducing a crucial con-

cept—the cost associated with assigning a current time slot to a customer, and how

this affects the delivery prices for future customers. This approach centres on the idea
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of opportunity cost, which measures the potential revenue lost when one customer order

is selected over another.

The main goal of the delivery model—maximising profit—relies on three factors:

revenue from accepted orders, the prices customers pay for their chosen delivery slots,

and the costs of fulfilling these orders. Understanding the trade-offs between immediate

revenue and potential future gains or losses is critical, especially when considering the

costs involved in accepting new orders. However, there is a gap in research on how

lowering prices for future slots, in response to current customer choices, affects overall

profitability. Addressing this could greatly refine the understanding of opportunity

costs.

Research in this area has used various methods, including simulation and predic-

tive models, as seen in studies by Yang and Strauss (2017) and Ulmer (2020). Other

researchers, like Koch and Klein (2020) and Abdollahi et al. (2023), have explored an-

ticipatory route planning. These studies help us understand components of opportunity

cost such as marginal delivery cost and displacement cost. Yet, there is still much to

learn about how changes in delivery prices for future slots influence overall costs and

decision-making. This aspect is particularly relevant to dynamic pricing strategies and

is further discussed by Koch and Klein (2020), who provide insights into how e-retailers

adjust their strategies to maximise profits by optimising how orders and delivery slots

are allocated.

This study begins to explore how to estimate price reductions for less popular re-

maining time slots using a dynamic pricing model based on customer choices. The

research also aims to incorporate these estimates into broader demand management

strategies, enhancing how delivery services are planned and executed.

The contributions of the work can be summarised as follows:
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• Enhanced Opportunity Cost Approximation: This research introduces an

innovative approach to refine opportunity cost estimation in AHD. By analysing

the effects of accepting one order now on potential delivery price reductions for

future orders, the estimation of opportunity cost becomes more accurate and

comprehensive.

• Integration with Existing Demand Management Strategies: The ap-

proach developed in this research can be integrated with existing methods within

the Automated Home Delivery (AHD) framework. By doing so, it enhances the

calculation of opportunity costs, thereby improving the accuracy of determining

delivery prices for available slots.

The subsequent sections of this chapter are structured as follows: Section 5.2 de-

lineates the contribution, focusing on enhancing the estimation of opportunity cost by

adjusting delivery prices for future time slots based on the reduction in delivery prices

resulting from slot allocation at the present time. Section 5.4 elaborates on the experi-

mental setting, encompassing area characteristics and benchmark approaches. Moving

forward, Section 5.5 presents a detailed analysis of the proposed approach’s perfor-

mance, emphasising its potential for integration with other existing methodologies. The

study culminates in Section 5.6, where a conclusive summary of the accomplishments

and the insights gained throughout this investigation is provided.

5.2 Dynamic pricing formulation in attended home

delivery

Similar to Chapter 4, this chapter extends the problem framework introduced in Chap-

ter 3. The core structure of the problem remains unchanged, focusing on the manage-



Page | 104

ment of a delivery system by an e-retailer within a discrete and finite booking horizon.

However, specific adaptations unique to this chapter need to be highlighted:

• Adjustments to Time Windows: The number of time windows has been

reduced to 17 from a previous count of 27, and these windows are now non-

overlapping. This dual adjustment serves two critical purposes:

– Granular Analysis of Displacement Costs: By treating each time slot

individually with its own specific allocation of forecast orders, the analysis

becomes more granular. This change ensures that each time slot can be anal-

ysed independently, which is crucial for reflecting a more realistic scenario

where each slot is served at the earliest possible time.

– Accurate Representation of Demand: Making the time windows non-

overlapping is essential to prevent the distribution of forecast orders across

overlapping slots. This avoids distortions in displacement cost calculations

that can arise from inaccurately represented time-specific demands and op-

erational constraints.

The central elements of the problem, such as customer arrivals, state representation,

probability models, and the objective function, remain consistent with the prior chap-

ters. For a comprehensive understanding of these foundational components, readers are

directed to Chapter 3.

This study aims to enhance opportunity cost estimation by approximating the re-

duction in delivery prices for subsequent feasible time slots resulting from assigning an

available time slot to the current customer. The dynamic routing will be used to con-

trol the order acceptance system. Moreover, the marginal delivery costs and potential

revenue loss will be approximated by solving a CVRPTW dynamically over the booking

horizon. Depending on the specific design of various methodologies, the calculation of
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opportunity cost may vary. Each approach may emphasise or incorporate different cost

components in its estimation of the overall opportunity cost. Below are some potential

costs typically considered in approximating opportunity cost:

1. Marginal Insertion Cost: This is the immediate cost associated with accepting

an incoming customer request. It arises from the additional mileage required for

delivery due to the inclusion of the new order. The estimation of this cost is a

fundamental part of the opportunity cost calculation.

2. Revenue Loss Due to Time Slot Allocation: Another cost consideration

pertains to the allocation of a time slot to the new arrival. When a time slot

is allocated to a current customer, it becomes unavailable for future customers.

In the existing literature, this cost is known as the “revenue loss due to time slot

allocation”. It is assessed by assigning a monetary value to each time slot, referred

to as the “time budget”, and calculating the amount of time the new arrival will

occupy in the selected time slot. This cost is then reflected in the opportunity

cost.

3. Delivery Price Reduction of Remaining Time Slots: The third factor re-

lates to the prices offered by the company. To incentivise customers to book the

remaining slots, which are, in most cases, less-popular ones, the company may

reduce the delivery-slot prices towards the end of the booking horizon. This re-

duction aims to make the remaining time slots more attractive for selection, thus

increasing overall profit. This cost, associated with reducing the delivery prices

of the remaining time slots due to the allocation of the customer-selected time

slot, is the focus of this study, which is referred to as “Delivery Price Reduction

(DPR)”.

Having delineated the potential costs involved in opportunity cost approximation,
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it becomes imperative to offer a comprehensive exploration of DPR. The subsequent

section provides an in-depth analysis, unveiling the intricacies and nuanced impacts of

DPR on the overall opportunity cost, and by extension, the decision-making processes

in the context of Attended Home Delivery (AHD).

5.3 Delivery Price Reduction (DPR)

This section extends the methods discussed in Chapter 3 and Chapter 4. It is based on

the published work in Abdollahi, M., Yang, X., Nasri, M. I., and Fairbank, M. (2023).

Demand management in time-slotted last-mile delivery via dynamic routing with forecast

orders. European Journal of Operational Research.

Most works in recent AHD context consider first two components in the opportunity

cost approximation, i.e., the marginal insertion cost and the potential revenue loss

due to time slot allocation. The aim is to improve the opportunity cost estimation

by incorporating an approximation of the reduction in delivery prices for subsequent

feasible time slots arisen from allocating an available time slot to the current customer,

as denoted by DPR in this study.
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Figure 5.1: Implication of delivery price reduction (DPR) in the integrated dynamic routing
and demand management problem of the AHD.

An overview of the incorporation of DPR as a new component in the opportunity

cost within the context of integrated demand management and vehicle routing prob-

lem is depicted in the flowchart 5.1. An important point to note is that the DPR

component can operate as an independent term in conjunction with other components

within the opportunity cost. Consequently, its integration to enhance the estimation of

opportunity cost is not restricted by any methodologies classified as non-learning-based

solution approaches by Klein and Steinhardt (2023).
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Section 5.3.1 begins by introducing the Multinomial Logit (MNL) model for cus-

tomer choices and the closed-form solution for optimal pricing in in AHD applications,

and then elucidate the process of estimating DPR in Section 5.3.2.

5.3.1 Multinomial Logit (MNL) Model and Conditions for Op-

timal Pricing

The dynamic pricing strategy outlined in this section leverages the foundational models

and equations introduced in Chapter 3. Utilising the dynamic programming formulation

(3.2.1), this chapter focuses on the application of these principles specifically to the time

slot selection in the context of an online dynamic pricing problem.

As previously discussed, estimating the selection probabilities for each time slot

or opting out entirely at each time step t is complex. For this, the Multinomial Logit

(MNL) model, initially introduced by McFadden et al. (1973) and elaborated in Chapter

3, is employed. The model captures customer choice probabilities, which are crucial for

formulating any effective dynamic pricing strategy.

The MNL model assumes that customers are utility maximisers and that their

choices are influenced by a set of utilities, which include a base utility β0, the utility

specific to each time slot βs, and the sensitivity to delivery charges βd. These utilities,

detailed in Chapter 3, are integrated into the selection probability equations (3.3.7)

and (3.3.8), reflecting the complex interplay of pricing, slot availability, and customer

preferences.

Given the reliable approximation of the expected opportunity cost OCt(x⃗t,1as) — as

defined in Chapter 3 and approximating Vt+1(x⃗t)−Vt+1(x⃗t+1as) — we apply Equations

(3.3.9) and (3.3.10) from Chapter 3 to calculate the optimal pricing d∗s. This approach,

suggested by Dong et al. (2009), integrates both theoretical modelling and empirical
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data to optimise pricing decisions effectively.

5.3.2 DPR formulation

To elucidate DPR, let us consider a system status (state) at time t, denoted as x⃗t,

upon receiving a new order i from a, with the feasible time slots Fa(x⃗t). The goal is to

evaluate the potential price variance for a subsequent order, based on whether the time

slot s is allocated to order i or not. This is denoted by DPR(x⃗t,1as). Note that this

approach primarily centres on evaluating the price reduction of a single future order at

the time point t+ 1. This choice facilitates a focused analysis to ensure manageability

and efficiency, as in Markov Decision Process (MDP) the impact of subsequent states

diminishes with increasing temporal distances. To accomplish this, an artificial order,

i + 1, is created by averaging the longitude and latitude coordinates of the orders

within all potential customers and similarly, its revenue is determined by the average

revenues of these orders. Denote the location and the revenue of order i+ 1 by a′ and

r′, respectively.

To calculate the DPR(x⃗t,1as), two distinct scenarios are considered, relevant to

with whether order i selects slot s at stage t or not. If order i does not select slot s at

stage t, the set of feasible slots for the artificial order i + 1 is denoted by Fa′(x⃗t). The

opportunity cost of inserting the artificial order i+ 1 into slot w in the tentative route

is denoted by OCt+1(x⃗t,1a′w), and the equation (3.3.10) is applied:

(h− 1) exp(h) =
∑

w∈Fa′ (x⃗t)

exp(β0 + βw + βd(OCt+1(x⃗t,1a′w)− r′)) (5.3.1)

On the other hand, suppose order i selected slot s at stage t, the set of feasible slots
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for the artificial order i+1 in stage t+1 becomes Fa′(x⃗t+1as). Note that, slot s might

either remain available or become unavailable, depending on the extent to which order

i occupies slot s. In this context, Fa′(x⃗t + 1as) = Fa′(x⃗t) if s remains available, and

change to Fa′(x⃗t + 1as) = Fa′(x⃗t) \ {s} if it becomes unavailable. The opportunity cost

associated with inserting the artificial order i+1 into the tentative route is denoted by

OCt+1(x⃗t + 1as,1a′w), and accordingly equation (3.3.10) is adapted to this scenario:

(h′ − 1) exp(h′) =
∑

w∈Fa′ (x⃗t+1as)

exp(β0 + βw + βd(OCt+1(x⃗t + 1as,1a′w)− r′)) (5.3.2)

The resulting difference in optimal delivery prices offered to order i+1 in stage t+1

for each slot w ∈ Fa′(x⃗t + 1as) is denoted by DPRw(x⃗t,1as), and defined as:

DPRw(x⃗t,1as) = d∗w − d′
∗
w

= OCt+1(x⃗t,1a′w)−OCt+1(x⃗t + 1as,1a′w)−
h− h′

βd

∀s ∈ Fa(x⃗t),∀w ∈ Fa′(x⃗t + 1as). (5.3.3)

Note that r′ terms have been cancelled from the expression within Equation (5.3.3) due

to their equality. Note further that when a specific slot w̃ ∈ Fa′(x⃗t) but w̃ /∈ Fa′(x⃗t+1as),

the DPR for w̃ is not defined by equation (5.3.3). Nevertheless, the influence of the

different availability of w̃ on the price reduction is captured within the h and h′ values

across all slots w ∈ Fa′(x⃗t+1as), as well as by the other factors of the opportunity cost,

i.e., insertion cost and revenue loss stemming from the introduced unavailability.

Finally, the collective influences of having slot s occupied by order i in stage t, i.e.,

the DPR(x⃗t,1as), is computed as the average of the DPRw(x⃗t,1as) across all feasible
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slots w ∈ Fa′(x⃗t + 1as):

DPR(x⃗t,1as) =
1

|Fa′(x⃗t + 1as)|
∑

w∈Fa′ (x⃗t+1as)

DPRw(x⃗t,1as). (5.3.4)

The same step has to be carried out for all s ∈ Fa(x⃗t), i.e., feasible slots when inserting

order i in the tentative route in stage t. These terms, all together, form the vector
−−−→
DPR = (DPR(x⃗t,1as))s∈Fa(x⃗t). Algorithm 5 provides a summary on how to compute

the
−−−→
DPR at stage t for order i.

Upon execution of Algorithm 5, the computed reduction in delivery prices for all fea-

sible slots is integrated into the opportunity cost calculation. An updated opportunity

cost vector,
−→
OCupdated = (OCupdated(x⃗t,1as))s∈Fa(x⃗t), is formulated according to

OCupdated(x⃗t,1as) = OC(x⃗t,1as) +DPR(x⃗t,1as), ∀s ∈ Fa(x⃗t) (5.3.5)

Here, OC represents the initial opportunity cost calculated by the employed method,

which entails either the marginal insertion cost (OC = IC), or the combination of

insertion cost and displacement cost (OC = IC + RL). The updated opportunity

cost with DPR is instrumental in determining the optimal delivery prices (d⃗∗) as per

Equation (3.3.9).
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Algorithm 5: DPR calculation at stage t with simulation into stage t+ 1

Input : Feasible slots for order i at stage t: Fa(x⃗t),

Route plan Gt(xt),

MNL parameters: β0, βw, βd

Output: Delivery price reduction at stage t:
−−−→
DPR = (DPR(x⃗t,1as))s∈Fa(x⃗t)

1 Create an artificial order i+ 1, denote its location by a′ and revenue r′;

2 Identify the feasible slots Fa′(x⃗t) for order i+ 1 considering Gt+1(x⃗t);

3 Determine OCt+1(x⃗t,1a′w),∀w ∈ Fa′(x⃗t), considering Gt+1(x⃗t) and the

employed method;

4 Calculate h with Fa′(x⃗t) using Eq. (5.3.1);

5 Initialise DPRs = 0,∀s ∈ Fa(x⃗t);

6 for each slot s ∈ Fa(x⃗t) do

7 Identify the feasible slots Fa′(x⃗t + 1as) for order i+ 1, considering

Gt+1(x⃗t + 1as);

8 Determine OCt+1(x⃗t + 1as,1a′w),∀w ∈ Fa′(x⃗t + 1as) considering

Gt+1(x⃗t + 1as), and the employed method;

9 Calculate h′ with Fa′(x⃗t + 1as) using Eq. (5.3.2);

10 for each slot w ∈ Fa′(x⃗t + 1as) do

11 Compute DPRw(x⃗t,1as) = d∗w − d′∗w using Eq. (5.3.3);

12 DPR(x⃗t,1as)← average(DPRw(x⃗t,1as)w∈Fa′ (x⃗t+1as)) according to Eq.

(5.3.4);

5.4 Experimental Setting

To evaluate the impact of DPR on AHD solutions, DPR is integrated into several

commonly used OC approximation approaches and run tests to explore the differences
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brought by it. These include some state-of-the-art approaches found in most recent

AHD literature. The experiments are conducted in MATLAB, using a high-performance

computing system equipped with an Intel Core i9-7940X processor running at 3.1GHz.

To ensure the reliability of these findings, 30 separate experiment runs are performed

for every parameter setting; results presented are based on the resulting averages.

5.4.1 OC approximation methods

In this section, the dynamic pricing methods introduced and employed in Chapters 3

and 4 to enhance opportunity cost (OC) calculations across various scenarios:

1. Dynamic Pricing with Insertion Cost without Forecast Orders (DP-IC)

2. Dynamic Pricing with Fixed Routing of Forecast Orders and Time Windows (DP-

FR-F)

3. Dynamic Pricing with Dynamic Routing of Forecast Orders without Time Win-

dows (DP-DR-F)

4. Dynamic Pricing with Dynamic Routing of Distributed Forecast Orders without

Time Windows (DP-DR-DF)

5. Dynamic Pricing with Dynamic Routing of Distributed Forecast Orders without

Time Windows and Augmented Time Windows (DP-DR-DF-ATW)

These methods are analysed to determine their effectiveness in real-world scenarios,

focusing on their ability to adapt to changing conditions and optimise pricing strategies

dynamically. The specifics of each method are detailed and annotated in Table 4.2

in chapter 4. It is important to note that the type of OC calculation employed in

Algorithm 5 will be determined based on the method selected, as outlined in this table.
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5.4.2 Characteristics of selected geographic areas for experi-

ment

This study presents a comprehensive analysis of results obtained in seven different ge-

ographic areas (Area 1 to Area 7) for the integrated demand management and vehicle

routing problem as explained in Section 3.2. The goal of this experiment was to evalu-

ate the performance of various methods with and without the incorporation of Delivery

Price Reduction (DPR). Key metrics are analysed to assess the impact of DPR on the

efficiency and profitability of the logistics operations in each area. These areas were

chosen to represent a spectrum of customer densities and distribution patterns. Actual

customer locations and historical booking data are employed in these experiments with

necessary anonymisations for data privacy. Table 5.1 furnishes a comprehensive sum-

mary of the selected areas, outlining their specific characteristics and the number of

delivery vans deployed to fulfil the ultimately accepted delivery orders.

Table 5.1: Features of seven areas under study

Area 1 2 3 4 5 6 7

Geographical spread Rural Suburb Semi-Rural Semi-Rural Suburb City City

Average number of customers per day 63 130 206 308 398 502 611

Average distance between customers 11.78 5.87 13.43 11.98 8.81 2.67 2.32

Number of delivery vehicles 2 4 6 9 11 14 16

Type of vehicle Van Van Van Van Van Van Van

5.5 Computational results

This section delves deeper into the results of these experiments. Section 5.5.1 evaluates

the performance of the DPR across various areas. Section 5.5.2 investigates DPR’s

impact on delivery prices, while Section 5.5.3 examines how DPR affects time slot

availability and pricing dynamics.
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5.5.1 Evaluating the impact of DPR across various methods

and geographical areas

Table 5.2 shows detailed results from these experiments. Different methods across

seven areas are tested and results on total profit, mileage per order, order size, number

of orders accepted and mean price are reported. Each method is indicated by its

name (e.g., DP-IC) as listed in Section 5.4, together with a tweaked version after

adding DPR (e.g., DP-IC-DPR). This table provides a detailed comparison of how

each method performs. It highlights the potential improvements achievable by adding

the step of calculating and incorporating DPR into OC estimation, thereby enhancing

our understanding of its impact on the overall methodology.

Methods Total mileage Mileage/Order Order size #Order Mean price Total profit

Area 1

DP-IC 585.52 8.52 248.11 68.23 -3.14 2034.34

DP-IC-DPR 574.71 8.28 251.73 69.27 -2.93 2078.09

DP-FR 571.82 7.99 261.14 71.07 -2.89 2161.34

DP-FR-DPR 564.85 7.79 266.42 71.97 -2.74 2217.05

DP-DR-F 504.12 7.08 265.60 70.50 0.61 2447.53

DP-DR-F-DPR 506.75 6.98 269.88 71.97 0.72 2494.65

DP-DR-DF 507.52 6.93 272.32 72.47 0.76 2521.52

DP-DR-DF-DPR 506.41 6.90 273.20 72.67 1.05 2550.45

DP-DR-DF-ATW 515.71 6.85 278.35 74.60 1.62 2641.51

DP-DR-DF-ATW-DPR 519.36 6.79 284.49 75.77 1.89 2717.52

Area 2

DP-IC 443.55 3.17 522.84 139.90 -2.74 4352.13

DP-IC-DPR 440.85 3.09 532.10 142.23 -2.66 4441.04

DP-FR 446.74 3.18 524.38 139.83 -2.54 4393.27

DP-FR-DPR 436.93 3.04 540.47 143.43 -2.47 4541.15
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Methods Total mileage Mileage/Order Order size #Order Mean price Total profit

DP-DR-F 384.89 2.57 564.12 148.67 1.23 5289.97

DP-DR-F-DPR 392.12 2.59 570.45 150.73 1.36 5369.52

DP-DR-DF 390.49 2.61 565.97 149.03 1.25 5309.40

DP-DR-DF-DPR 383.67 2.50 581.66 152.80 1.35 5472.42

DP-DR-DF-ATW 389.27 2.54 574.05 152.30 2.07 5512.43

DP-DR-DF-ATW-DPR 388.54 2.50 583.63 154.30 2.15 5616.60

Area 3

DP-IC 620.59 2.71 867.14 228.10 -2.80 7213.05

DP-IC-DPR 619.39 2.67 878.79 231.57 -2.71 7331.38

DP-FR 621.42 2.75 862.11 225.70 -2.44 7257.77

DP-FR-DPR 620.05 2.67 885.68 231.63 -2.42 7460.52

DP-DR-F 545.83 2.34 894.59 232.70 1.21 8381.70

DP-DR-F-DPR 538.81 2.28 903.69 235.47 1.29 8486.19

DP-DR-DF 541.27 2.31 897.45 233.20 1.14 8390.63

DP-DR-DF-DPR 534.56 2.28 895.22 233.73 1.40 8430.50

DP-DR-DF-ATW 550.10 2.31 908.29 237.70 2.11 8726.34

DP-DR-DF-ATW-DPR 547.64 2.28 912.74 239.50 2.37 8832.35

Area 4

DP-IC 1184.54 3.72 1196.65 318.73 -3.07 9856.20

DP-IC-DPR 1185.25 3.70 1198.82 319.97 -3.01 9891.16

DP-FR 1178.86 3.69 1203.20 318.87 -2.82 9994.52

DP-FR-DPR 1182.08 3.69 1207.82 319.57 -2.76 10052.80

DP-DR-F 1041.46 3.06 1288.48 339.37 0.96 11990.57

DP-DR-F-DPR 1024.28 2.99 1296.07 342.07 1.09 12104.20

DP-DR-DF 1010.66 2.95 1291.70 342.03 1.06 12057.28

DP-DR-DF-DPR 1017.38 2.96 1299.13 343.60 1.08 12132.72

DP-DR-DF-ATW 1036.77 2.98 1310.21 346.77 1.75 12470.28

DP-DR-DF-ATW-DPR 1033.98 2.96 1318.81 349.07 1.77 12557.99
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Methods Total mileage Mileage/Order Order size #Order Mean price Total profit

Area 5

DP-IC 1544.51 3.66 1579.50 421.23 -2.56 13222.20

DP-IC-DPR 1528.50 3.56 1603.76 429.20 -2.54 13428.10

DP-FR-F 1532.32 3.62 1578.68 423.00 -2.23 13348.19

DP-FR-F-DPR 1526.05 3.57 1595.32 426.47 -2.22 13497.81

DP-DR-F 1328.67 2.95 1677.45 450.07 2.42 16275.05

DP-DR-F-DPR 1327.24 2.95 1682.87 449.70 2.45 16335.30

DP-DR-DF 1325.52 2.93 1690.64 451.57 2.26 16324.28

DP-DR-DF-DPR 1324.28 2.93 1692.01 452.03 2.27 16341.63

DP-DR-DF-ATW 1334.95 2.93 1696.09 455.27 2.93 16687.71

DP-DR-DF-ATW-DPR 1320.54 2.89 1700.60 455.57 3.06 16789.40

Area 6

DP-IC 447.23 0.91 1916.15 488.80 -2.97 15900.52

DP-IC-DPR 443.11 0.90 1922.14 490.87 -2.84 16012.96

DP-FR-F 442.68 0.91 1920.54 488.57 -2.56 16143.92

DP-FR-F-DPR 441.76 0.90 1928.44 490.93 -2.54 16218.92

DP-DR-F 391.83 0.73 2114.95 533.20 0.14 19228.54

DP-DR-F-DPR 388.69 0.73 2118.96 534.53 0.21 19301.92

DP-DR-DF 394.01 0.74 2117.49 534.80 0.19 19274.42

DP-DR-DF-DPR 391.43 0.73 2117.04 533.93 0.23 19296.35

DP-DR-DF-ATW 397.22 0.74 2122.64 538.00 1.06 19790.04

DP-DR-DF-ATW-DPR 390.97 0.72 2131.05 543.00 1.17 19933.24

Area 7

DP-IC 475.53 0.86 2167.89 551.00 -3.45 17733.63

DP-IC-DPR 476.54 0.86 2175.70 553.13 -3.40 17819.05

DP-FR-F 476.38 0.87 2160.45 548.83 -3.04 17897.48

DP-FR-F-DPR 475.85 0.85 2186.28 556.70 -3.02 18119.03

DP-DR-F 418.22 0.66 2467.85 630.27 0.82 22866.20



Page | 118

Methods Total mileage Mileage/Order Order size #Order Mean price Total profit

DP-DR-F-DPR 417.08 0.66 2479.96 629.57 0.86 22997.64

DP-DR-DF 411.34 0.65 2471.75 627.93 0.56 22732.69

DP-DR-DF-DPR 415.25 0.66 2469.69 629.57 0.81 22870.58

DP-DR-DF-ATW 418.59 0.66 2472.38 629.71 1.30 23206.18

DP-DR-DF-ATW-DPR 419.05 0.66 2465.34 632.29 1.53 23290.49

Table 5.2: Obtained results for different methods in each area.

Table 5.2 demonstrates that incorporating DPR into OC calculation leads to mod-

est improvements in key performance metrics across all tested areas. This is most

notably reflected in the increased total profit and increased number of orders. The

operational benefits of DPR are also evident in its indirect improvement of route ef-

ficiency in different approaches. By considering the marginal insertion cost and for

some OC approaches the potential revenue loss associated with the artificial order in

the subsequent time step, DPR calculations contribute to more efficient routing, as

seen in the reduced mileage per order. This is a clear indication of enhanced resource

utilisation and route optimisation.

To clarify the results shown in Table 5.2, where larger orders may correlate with

shorter delivery distances, the improved routing optimisations enabled by DPR are key.

By recalculating opportunity costs with updated delivery prices, DPR allows for strate-

gic routing decisions that accommodate increased order volumes without proportionally

extending delivery routes. This method ensures promoted slots are more likely to be

booked, resulting in more efficient routing. This is particularly effective in densely pop-

ulated or compact areas, where routing decisions have a greater impact. For instance,

in Area 3, the DP-FR method reduced average mileage per order from 2.75 to 2.67 after

implementing DPR, while the number of orders increased from 225.70 to 231.63. This

demonstrates how DPR optimises routing to manage more orders efficiently within
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compact regions, enhancing operational efficiency and customer satisfaction.

Graphical comparison of profit and number of accepted orders are also presented in

Figure 5.2 and Figure 5.3, with paired bars depicting the results both with and without

the inclusion of DPR across different operational terrains. Percentage labels are also

provided to highlight the tangible profit/number-of-orders gains attributable to DPR.
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Figure 5.2: Average Profit Improvement Comparison Across All 7 Areas with and without
DPR



Page | 120

DP-IC DP-FR-F DP-DR-F DP-DR-DF DP-DR-DF-ATW
Methods

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

Ac
ce

pt
ed

 O
rd

er
s

+1.51% +1.27% +2.08% +0.28% +1.56%

+1.67% +2.57% +1.39% +2.53% +1.31%

+1.52% +2.63% +1.19% +0.23% +0.76%

+0.39% +0.22%

+0.80% +0.46% +0.66%

+1.89% +0.82%

-0.08% +0.10% +0.07%

+0.42% +0.48%

+0.25% -0.16%
+0.93%

+0.39% +1.43%

-0.11% +0.26% +0.41%

Number of Accepted Orders of different methods in different areas
Area

Area 1 without DPR
Area 1 with DPR
Area 2 without DPR
Area 2 with DPR
Area 3 without DPR
Area 3 with DPR
Area 4 without DPR

Area 4 with DPR
Area 5 without DPR
Area 5 with DPR
Area 6 without DPR
Area 6 with DPR
Area 7 without DPR
Area 7 with DPR

Figure 5.3: Average Request Improvement Comparison Across All 7 Areas with and without
DPR

In examining the effectiveness of DPR methods across different geographic settings,

a general pattern emerges: regardless of the area’s density, from rural or suburban

to distinctly urban environments, there is a consistent trend of increased number of

acceptances, reduced mileage per order and increased profits. This trend is particularly

evident in less dense areas like Area 1, Area 2 and Area 4.

Figure 5.4 displays the percentage improvement introduced by adding DPR to every

approach. Each line in the plot corresponds to a particular geographical area.
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Figure 5.4: Improvement of Average Profit of the Studied Methods in Different Areas with
DPR

This visualisation underscores the prevailing trend that implementing DPR gener-

ally boosts profit metrics, although the extent of enhancement varies depending on both

the specific method and geographical context. In general, DPR was able to improve

DP-IC and DP-FR-F methods more obviously compared to other methods. This is un-

derstandable as these methods employ a myopic and simple OC calculation mechanisms

so that by including a foresight effect of delivery price variance in their OC calculation,

the methods’ performance witness a considerable increase. While the extent of average

profit improvement is contingent upon the methods employed, this analysis generally

indicates a minimum profit gain of 0.2%, with the potential to achieve increases up to

a significant 3.4%. Notably, even with advanced methods for OC estimation such as

DP-DR-DF-ATW, the inclusion of DPR still consistently demonstrates improvement.

This justifies the necessity of DPR and its distinct focus compared to traditional op-

portunity cost terms such as insertion cost (marginal delivery cost) and revenue loss

(displacement cost).
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Figure 5.5: Improvement of Average Number of Accepted Orders in Different Areas with
DPR

Similar to its impact on profitability, Figure 5.5 depicts a discernible percentage in-

crease in order volumes with the adoption of DPR in the majority of areas and across

various methods. Specifically, Areas 1, 2, and 3 experienced a more pronounced boost

in order acceptance rates due to the incorporation of DPR. Meanwhile, other areas

demonstrated a smaller yet steadier rise in the number of accepted orders. It is note-

worthy, however, that in a few instances, methods such as DP-DR-F and DP-DR-DF

with DPR resulted in a marginal decrease in order volume, ranging from 0.1% to 0.2%,

compared to similar methods without DPR. Despite this, their overall profitability

was higher. This uptick in order volumes highlights DPR’s ability to enhance dynamic

programming solutions for AHD, reinforcing the case for its broader implementation.
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5.5.2 Influences of DPR on prices

There is an increase in the average price with the inclusion of DPR in OC calculation.

The increase in average price is linked to the integration of DPR into the dynamic pric-

ing model, which considers both slot availability and popularity. Figure 5.6 illustrates

a clear relationship between slot pricing and popularity using bars for different slots

(Areas 2, 3, and 6) and a line chart of scaled βs values for DP-IC method.
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Figure 5.6: Comparative Analysis of DPR Values Across Area 2, Area 3, and Area 6 with
Adjustments for Scaled βs Parameters using DP-IC Method

As shown in Figure 5.6, dynamic pricing model, enhanced by DPR, effectively

distinguishes between high-demand (popular) and low-demand (unpopular) slots. For

popular slots, characterised by higher demand and limited availability, DPR leads to

a greater price increase. In contrast, for slots that are typically less popular and more

likely to remain un-booked, the price increment is smaller, making these slots more

attractive to customers. Consider a popular slot s: if a new order is inserted, it often

leads to s becoming unavailable for subsequent orders. Consequently, in such cases,

Equation (5.3.2) contains one less term than Equation (5.3.1), resulting in h > h′. This
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scenario typically yields a positive DPR for popular slots. In contrast, for an unpopular

slot s, it is more probable that the slot remains available post-insertion. Therefore, the

difference between Equations (5.3.1) and (5.3.2) primarily lies in the OC values. With

a more compact route in (5.3.2), the OC tends to be lower, making h < h′ and thus

contributing to a negative DPR for these slots. Such a pricing approach encourages cus-

tomers to opt for less popular slots which are priced more affordably, thereby achieving

a more balanced and effective distribution of bookings across all available slots. Such

a pricing strategy revision not only addresses immediate operational expenses but also

considers the wider impact on future order scheduling and the availability of time slots,

aligning operational efficiency with long-term strategic planning.

The distribution of average slot prices across different areas and methods is illumi-

nated in Figure 5.7. The ‘swarm’ of points distinctly highlights the data’s dispersion

and concentration in various areas, providing a detailed understanding of the intricate

price dynamics. Each method’s and area’s uniqueness is further accentuated by the

dual-tone colour palette. The light blue tones represent methods without DPR inte-

gration, while light coral signifies those with DPR, facilitating an immediate visual

differentiation and insight into the distinct impacts of DPR on pricing.

The implementation of DPR generally leads to higher slot prices. IC-based meth-

ods, specifically DP-IC and DP-FR-F, demonstrate negative average slot prices, con-

trasting with others that present positive values. This discrepancy suggests that marginal

delivery cost alone is not sufficient to capture the whole opportunity cost. Neverthe-

less, the forward-looking feature brought by the DPR drives the prices slightly higher,

leading to a more balanced pricing strategy that positively affects profit in the long

run.

The methods that incorporate both IC and RL in opportunity cost estimation, such

as DP-DR-F, DP-DR-DF, and DP-DR-DF-ATW, perform better to respond to area-
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Figure 5.7: Price Distributions by Area and Method

specific details, resulting in notable variations in slot prices across different areas. These

methods adeptly account for local demand patterns and travel requirements unique to

each geographical area and customer distribution. For instance, Area 5 consistently

has the highest prices among all areas tested. This is attributed to its limited delivery

capacity relative to a high volume of requests and longer average distances between

customers. In scenarios where an anticipatory pricing system predicts a potential ca-

pacity shortfall before the end of the planning horizon, it automatically raises the prices

shown to customers to manage demand. Conversely, Areas 6 and 7, despite experienc-

ing higher traffic, benefit from having customers located closer to each other. This

proximity reduces travel requirements, enabling delivery vans to serve more customers

efficiently, which in turn leads to generally lower prices in these areas compared to Area

5.



Page | 126

5.5.3 Exploring the influence of DPR on time slot availability

and pricing dynamics

The following analysis delves deeper into the influence of DPR on the prices offered

to customers. Dynamic pricing strategies take into account several factors, including

the number of available slots offered for each customer arrival, order revenue, and the

current estimated OC. These components collectively contribute to price adjustments.

Visualising and examining how DPR affects the number of available slots and the

average slot price offered provides a better understanding of the sources of profit im-

provement. Figure 5.8 illustrates the time slot availability and slot price over time for

Area 4, as an example.

As shown in Figure 5.8, the integration of DPR leads to consistent increases in

time slot availability for new arrivals. This translates into more slot options displayed

for customers to choose from, which increases the chance for them to find a desired

one to receive their orders and so as to boost the overall probability. It is worth em-

phasising that a key objective of a well-structured OC approximation is to provide a

realistic estimate of future order values, thereby enhancing present-time pricing strate-

gies. Including anticipated DPR makes the overall dynamic pricing approach more

forward-looking. It leads to better recognition of which slot is the best one to offer

and to promote at the current stage, as opposed to myopic adjustments that might

deplete attractive time slots early in the booking horizon, leaving fewer options for

high-volume, profitable orders in the future. This is considered the key reason for why

higher availability and more efficient routing could be observed after adding DPR.

Another observation is the higher delivery prices offered throughout the entire book-

ing horizon. Notably, this boost in average slot prices did not lead to a drop in the

number of accepted orders. Instead, the number of acceptances increases as well as the
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Figure 5.8: Effect of DPR on the number of available slots and slots’ price over time for
different methods in area 4.

delivery prices as a result of increased availability of slots. This justifies DPR’s ability

of helping identify suitable slots to accommodate the order and generating differenti-

ated costs accordingly. Additionally, it can be observed that offered slot prices over

time exhibit greater resistance to price drops when DPR is integrated. This suggests

that the inclusion of DPR facilitates fairer slot pricing, aligning with the objectives of

ideal AHD demand management.
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In summary, the analysis illuminates the nuanced dynamics of slot pricing across

various areas and methods, emphasising both the significant impact of DPR and the

imperative for context-specific strategies. This tailored approach is essential to optimise

efficiency and maximise profitability effectively.

5.6 Conclusion and Future Work

The analysis of the Delivery Price Reduction (DPR) and their impacts on attended

home delivery (AHD) reveals considerable insights and advancements in optimising e-

commerce delivery systems. These results across various geographic contexts, from rural

to urban areas, consistently indicate an enhancement in total profit and operational

efficiency due to the incorporation of DPR. Moreover, the integration of DPR into the

opportunity cost estimation has proven to be a decent enhancement, supporting better

informed and more optimal pricing decisions.

Each geographic area presented distinct patterns in how DPR affected profitability,

influenced by factors such as customer density and geographical layout. This highlights

the flexibility of DPR in adapting to various operational environments.

Among the various methods employed, those incorporating dynamic and distributed

forecast orders, especially when amalgamated with augmented time windows, showcased

optimal performance with profit increase from 0.2% up to 3.4%. This convergence of

strategies not only maximised total profit but also improved the mean price, establishing

a holistic optimisation of the AHD system.

Graphical illustrations further reinforced the tangible gains attributable to DPR,

offering a visual testament to its efficacy. The visible increments in profit and order

acceptance across all areas and methods validate DPR’s applicability and effective-
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ness. The effectiveness of DPR remained consistent, even in complex urban areas with

challenging logistics, proving its capability to optimise prices to maximise the revenue.

In conclusion, DPR is effective in the complex and changing field of attended home

delivery. It is an important factor for better profit, operational efficiency, and improved

customer satisfaction. The diverse advantages it reveals in different geographic and

operational environments support its widespread integration and adaptation, marking

it as a foundational element for the evolution of e-commerce delivery frameworks. Ex-

pected upcoming research could explore the scalable and adaptable features of DPR

within a wider range of contexts. These in-depth analyses are anticipated to reveal

crucial insights, contributing to the enhancement and expansion of DPR’s utility in

the global optimisation of e-commerce delivery landscapes.

5.6.1 Future Work

Building upon these findings, several promising avenues for further research emerge that

not only refine the theoretical aspects of the DPR system but also pave the way for

practical applications. Firstly, the integration of machine learning such as reinforcement

learning offers a good opportunity to introduce greater sophistication into the DPR

system. By incorporating more stages in the decision-making process, machine learning

can lead to more precise predictions and enable a more dynamic response to market

changes, thereby enhancing the effectiveness of DPR.

Secondly, acknowledging the limitations of using a single artificial order set, fu-

ture research should diversify this approach. Introducing multiple artificial orders from

various segments of the operational area, or developing a more sophisticated random

technique for generating these orders, will provide a richer dataset. This enhancement

is crucial for uncovering intricate patterns and gaining deeper insights into the adapt-
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ability and effectiveness of DPR across different contexts.

Thirdly, it is essential to extend the scope of research to include real-time im-

plementations of DPR in various dynamic pricing structures. Exploring alternative

formulations and testing these in real-world scenarios will not only provide a detailed

understanding of how pricing decisions can be optimised but also validate the opera-

tional changes proposed in the thesis. Such studies could involve pilot implementations

in selected e-commerce delivery contexts to observe the practical impacts of different

DPR strategies and to refine them based on empirical evidence.

Lastly, Another area for future research involves examining the contribution of the

DPR to opportunity costs. Quantifying this impact, potentially in terms of a percent-

age, will enable a more comprehensive understanding of DPR’s importance in strategic

decision-making within dynamic pricing systems. This line of inquiry promises to re-

veal the financial implications of different pricing strategies and their effects on revenue

management

By addressing these facets, future studies will not only reinforce the theoretical un-

derstanding of DPR’s benefits but also demonstrate its practical applications, ensuring

that the research contributes directly to operational improvements and innovations in

the e-commerce delivery domain.
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6

Conclusion

6.1 Academic Contributions

This thesis contributes to the field of AHD in the e-commerce sector through the de-

velopment of novel strategies aimed at enhancing delivery systems. The key academic

contributions include:

• Dynamic Pricing and Route Optimisation: The introduction of a new dy-

namic pricing method using forecast orders without time windows has led to

considerable improvements in order efficiency, cost reduction, and profitability.

This method has been validated through real-world data and experiments across
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diverse geographic areas, demonstrating robustness and adaptability.

• Opportunity Cost Approximation: A simple-to-implement dynamic opportunity-

cost approximation for marginal delivery cost and potential revenue loss was

proposed, based on a dynamically managed routing system that includes both

actually accepted orders and forecast orders without time windows. This approx-

imation was integrated into an order-replacement and routing re-optimisation

framework to capture the influence of new order commitments.

• Forecast Orders Integration: Incorporating forecast orders without time win-

dows into the vehicle-routing system allowed for more appropriate time slot sug-

gestions, guiding the choice of incoming orders accordingly. This approach’s su-

periority was demonstrated over four benchmark approaches using real data-sets

from various geographical and demographic settings.

• Augmented Time Windows: The introduction of augmented time windows

expanded customer time slot choices and improved the dynamic routing system’s

efficiency and effectiveness. This resulted in higher slot availability and improved

overall system performance.

• Enhanced Opportunity Cost Approximation in AHD: This research intro-

duced an novel approach to refine opportunity cost estimation by analysing the

effects of accepting one order now on potential delivery price reductions for future

orders. This integration with existing demand management strategies enhanced

the accuracy of delivery price determinations.

While the methods developed in this thesis offer numerous advantages, they also

present certain limitations and trade-offs that merit discussion:

• Computational Demands: The dynamic pricing and route optimisation meth-

ods introduced require substantial computational resources, particularly as they
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scale to larger datasets and more complex scenarios and at the same time all

forecast orders are expected to be evaluated by selecting a large radius of neigh-

bourhood. The computational time can be excessive, which may not be practical

for all operational contexts. To alleviated this issue selecting a smaller radius

would be beneficial to handle excessive run-time.

• Assumptions and Real-world Applicability: The presumption that dynamic

pricing can adequately balance customer demands across all time slots is an over-

simplification. In reality, customer availability and preferences play a significant

role and can lead to discrepancies between predicted and actual system perfor-

mance.

• Incremental Improvements vs. Computational Cost: Some of the en-

hancements, such as the opportunity cost approximation and forecast orders in-

tegration, offer relatively small improvements at the cost of notable increased

computational demands. This trade-off must be carefully considered when imple-

menting these methods in practice, as the marginal gains may not always justify

the additional resource expenditure.

• Complexity in Implementation: The integration of forecast orders and aug-

mented time windows, while beneficial, adds complexity to the dynamic routing

systems. This complexity could hinder adoption by firms lacking the technological

infrastructure or expertise to implement such systems effectively.

6.2 Implications for Practice/Business

The findings of this research have several practical implications for the e-commerce and

logistics industry, specifically in the domain of Attended Home Delivery (AHD):
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• Commercial Interest in AHD Operations: The dynamic pricing method

developed can be integrated into existing dynamic-routing packages without re-

quiring additional learning or complex modifications, making it a commercially

viable option for enhancing delivery efficiency and profitability.

• Informed Pricing Decisions: The integration of potential delivery price re-

ductions into opportunity cost estimation supports more informed and optimal

pricing decisions, thereby enhancing total profit and operational efficiency across

various contexts.

• Enhanced Customer Experience: The introduction of augmented time win-

dows not only improves the availability of delivery slots but also provides practical

guidance for implementing such systems, potentially leading to increased customer

satisfaction and loyalty.

• Financial Gains and Operational Efficiency: Leveraging forecast orders in

dynamic routing decisions can result in considerable financial gains and improved

system performance. Businesses can achieve better profitability and operational

efficiency by incorporating the innovative strategies proposed in this research.

The integration of these methods into practice can lead to more efficient and prof-

itable AHD systems, addressing both customer needs and operational challenges effec-

tively.

6.3 Future Work

Building upon the findings of this thesis, several promising avenues for further research

are identified:
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1. Integration of Machine Learning in Dynamic Pricing: The current system as de-

scribed in Chapter5 primarily employs a one-step look-ahead forecasting approach

to assess and compute the DPR. This method operates under the assumption

that the simplest yet effective strategy in MDP scenarios—like the one under dis-

cussion—is to predict the immediate future. However, integrating a multi-step

forecasting strategy into the DPR calculations could notably improve the sys-

tem’s ability to anticipate future conditions. By incorporating advanced machine

learning techniques e.g. reinforcement learning, the DPR system’s complexity

and effectiveness could be elevated. This enhancement might include multiple

stages in the decision-making process, enabling a better understanding of cus-

tomer behaviour patterns in slot selection. Such an understanding could then

be leveraged to refine the dynamic pricing algorithm, allowing it to adjust prices

more accurately for each time step.

2. Diversification of Artificial Order Sets: Exploring the diversification of artificial

order sets drawn from various customer segments within a targeted operational

area represents a promising avenue for future research. This approach aims to

enrich the forecasting models by better mirroring the true customer characteristics

of the area under analysis. Accurately reflecting these characteristics is crucial

as it contribute to reducing the risk of underestimating or overestimating DPR

calculations, thereby ensuring more reliable pricing strategies.

One innovative method to achieve this involves developing a sophisticated tech-

nique for generating these artificial orders. This could be implemented by applying

clustering algorithms to categorise the operational area based on order density.

Subsequently, artificial orders can be randomly generated from these segments in

proportions that correspond to the volume of historic orders observed within each

segment. Such a method would not only yield a set of data that is representative

of actual customer behaviour but also enhance the understanding of the DPR
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system’s effectiveness and its adaptability to different market contexts.

3. Exploration of Alternative Dynamic Pricing Structures: The current study utilises

a dynamic pricing system grounded in the MNL choice model, which adeptly pre-

dicts customer choices by evaluating the utility values linked to various pricing

options. Although this method provides a solid foundation, the exploration of

alternative dynamic pricing strategies, such as segmented pricing and time-based

pricing, promises substantial optimisation opportunities within the swiftly evolv-

ing e-commerce delivery industry. Segmented pricing allows for tailored prices

based on distinct customer demographics and purchasing behaviours, while time-

based pricing adjusts rates according to fluctuations in demand during different

times of the day or week, aligning price with anticipated customer activity.

4. Expansion to Varied Geographical and Operational Contexts: To thoroughly as-

sess the effectiveness and scalability of the methodologies discussed in this thesis,

it is essential to test them across a diverse array of geographical and operational

contexts. Expanding the study to include various environments—from densely

populated urban areas to more sparsely populated rural locations—will provide

critical insights into how these methods adapt to different market dynamics and

customer behaviours. Furthermore, exploring a variety of operational scenarios,

such as different delivery infrastructures and local regulations, will help determine

the robustness of the proposed methods. This broadened scope will ensure that

the developed methods are not only versatile but also reliably effective in varied

settings, thus affirming their practical utility in a global marketplace.

5. Longitudinal Studies and Real-Time Implementation: Conducting longitudinal

studies and implementing real-time operations are important steps for assess-

ing the long-term effects and sustainability of proposed methods. Longitudinal

studies allow researchers to observe how these strategies perform over extended
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periods, providing valuable insights into their efficacy, adaptability, and impact

on consumer behaviour. Additionally, real-time implementation of these methods

offers a direct insight into their practical viability, providing immediate feedback

on how they perform under live market conditions. This approach not only helps

in assessing the adaptability of the strategies as market dynamics evolve but also

allows for iterative improvements based on continuous data collection and analy-

sis. Such comprehensive evaluation techniques are essential for developing robust,

sustainable pricing models that can withstand the test of time and fluctuating

market conditions.

By addressing these facets, future research can not only reinforce the current under-

standing of the proposed methods’ benefits but also extend their potential applications

and refinements. This continued exploration is vital for keeping pace with the rapidly

evolving field of e-commerce and the ever-changing demands of the global market.
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