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Abstract— Machine learning and deep learning advance-
ments have boosted Brain-Computer Interface (BCI) per-
formance, but their wide-scale applicability is limited due
to factors like individual health, hardware variations, and
cultural differences affecting neural data. Studies often fo-
cus on uniform single-site experiments in uniform settings,
leading to high performance that may not translate well to
real-world diversity. Deep learning models aim to enhance
BCI classification accuracy, and transfer learning has been
suggested to adapt models to individual neural patterns
using a base model trained on others’ data. This approach
promises better generalizability and reduced overfitting,
yet challenges remain in handling diverse and imbalanced
datasets from different equipment, subjects, multiple cen-
tres in different countries, and both healthy and patient
populations for effective model transfer and tuning.

In a setting characterized by maximal heterogeneity, we
proposed P300 wave detection in BCIs employing a convo-
lutional neural network fitted with adaptive transfer learning
based on Poison Sampling Disk (PDS) called Active Sam-
pling (AS), which flexibly adjusts the transition from source
data to the target domain. Our results reported for subject
adaptive with 40% of adaptive fine-tuning that the averaged
classification accuracy improved by 5.36% and standard
deviation reduced by 12.22% using two distinct, interna-
tionally replicated datasets. These results outperformed in
classification accuracy, computational time, and training
efficiency, mainly due to the proposed Active Sampling (AS)
method for transfer learning.

Index Terms— Adaptive transfer learning, Poison disk
sampling, mini-batch sampling, deep learning, EEG-based
BCI, P300, CNN, ecological validity.

I. INTRODUCTION

ABrain-Computer Interface (BCI) decodes brain signals
for communication between a human and their environ-

ment [1]. EEG signals are preferred for being non-invasive
and capable of recording specific brain activities like motor
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or mental tasks, thereby extracting important information [1].
They offer a balanced spatio-temporal resolution through a
high-density electrode system, improving BCI performance
[1]. The P300 BCI paradigm produces a P300 wave in EEG
signals via the oddball method. This wave, an event-related
potential (ERP), reacts to visual or auditory stimuli [1].

Deep Learning (DL) has been effective in the classifica-
tion stage of BCIs, especially through Convolutional Neural
Networks (CNNs) and their variants, due to their proficiency
in extracting spatial and temporal features from EEG signals.
For example, Yang et al. [2] achieved 86.41% accuracy in
classifying the BCI Competition IV dataset using a multi-
layer CNN. Vega et al. [3] developed EEG-TCFNet, com-
bining EEGNet with temporal convolution layers and fuzzy
blocks, reaching up to 98.6% accuracy for subject-dependent
P300 wave classification. However, DL models require large,
homogeneously distributed datasets for reliable accuracy and
generalization, which is challenging given the laborious nature
of EEG experiments. To address this, some studies have
implemented under-sampling methods to balance datasets,
enhancing classification accuracy [4], [5].

Transfer Learning (TL) schemes in DL models address
data variations from different subjects, sessions, and devices,
enhancing performance. TL involves pre-training DL networks
on large datasets to create generalized models with high
performance on new data [6]–[9]. For example, models like
Residual Neural Network (ResNet) and VGG16 pre-trained on
the ImageNet dataset have been used for mental task signal
classification, reaching accuracies up to 86.85

The fine-tuning aspect of Transfer Learning from source
to target domains presents challenges, including the risk of
negative transfer, which is difficult to manage. This process
necessitates a judicious selection to prevent irrelevant source
data from affecting the target domain mapping. Adaptive
Transfer Learning (ATL), as proposed in [10], addresses this
by adaptively sampling the target domain for mapping. While
ATL mitigates inter-subject variability and manages unbal-
anced datasets, it incurs high computational costs and struggles
with intra-subject variability.

Optimizing Stochastic Gradient Descent (SGD) parameters
is key to enhancing classification accuracy and convergence
speed, primarily by reducing Stochastic Gradient Noise (SGN)
for quicker convergence and larger learning rates. As noted in
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previous studies, Point Processes (PP) can effectively reduce
SGN by creating diverse, non-redundant mini-batches for DL
model training [11]. However, this method might repeatedly
select the same samples. To counter this, we introduced Active
Sampling (AS), which samples the entire dataset to form a
new dataset for DL model training. Active Sampling improves
dataset efficiency and diversity, enhancing SGD accuracy and
convergence, and when combined with ATL, it effectively ad-
dresses data variability for subject-independent classification.

The highlights of this work are:
1) We propose Active Sampling (AS), a new method based

on Poison Disk Sampling (PDS) for Adaptive Transfer
Learning (ATL) to improve adaptive fine-tuning in
deep learning models for P300 BCI decoding tasks. AS
efficiently samples source and target subjects to expedite
training and calibration in the ATL framework.

2) To evaluate the proposed approach, we devised a
new extended experimental scenario. We replicated an
experimental dataset used as a benchmark for P300 but
with different equipment, subjects, and centres to intro-
duce real-world variability. Both datasets were combined
to test the proposed AS-based method’s resilience.

3) The implementation of AS within the P300 BCI
paradigm has resulted in a substantial reduction in per-
formance variability and computational expense. This
approach underwent rigorous testing in various classi-
fication contexts, including subject-dependent, subject-
independent, and subject-adaptive scenarios, yielding

The rest of the paper is organized as follows: Section
II presents related previous works, Section III describes the
state-of-the-art of sampling methods, Section IV introduces
methodology including dataset details and classifying pipeline,
Section V reports the results and Section VI discusses our
results and their importance. We finally conclude the paper in
Section VII.

II. RELATED WORK

This section reviews studies relevant to our proposal. Pan
et al. [12] proposed transfer learning to address the issue of
learning with insufficient labeled data, primarily by leveraging
knowledge from related domains. A sampling strategy based
on distribution difference is developed to select the most
valuable instances for label querying. Liu et al. [13] employed
transfer learning and active sampling methods to tackle im-
balanced data in classification. The proposed transfer learning
model comprises three modules such: an active sampling mod-
ule, a real-time data augmentation module, and a DenseNet
module. Some studies focus on how Stochastic Gradient Noise
(SGN) acts as a regularizer in deep learning and its role in
improving generalization through Stochastic Gradient Descent
(SGD) [14]. Key studies by Kulezka and Taskar [15]–[17]
explore Determinantal Point Processes (DPP) in subset selec-
tion for data diversification in machine learning applications.
Zhdanov [18] proposed an algorithm for creating diverse mini-
batches, emphasizing informativeness and sample spacing,
and incorporating k-means for scalability. Additionally, Point
Processes (PP), like DPP or Repulsive Point Processes (RPP),

are used for uncorrelated feature sampling in mini-batches,
enhancing accuracy and convergence speed [19], [20]. Zhang
et al. [19] utilized DPP to lower the variance in SGD. They ap-
plied a non-uniform DPP-based sampling method to eliminate
redundant data in mini-batches, demonstrating faster DPP-
SGD convergence compared to the standard SGD on CIFAR-
10 and Oxford-102 datasets. Similarly, Zhang et al. [20] pro-
posed using an RPP, specifically Poison Disk Sampling (PDS),
for mini-batch sampling to simplify the RPP’s complexity.
Their studies compared SGD baseline, DPP-SGD, and PDS-
SGD, revealing a significant reduction in convergence time
with PDS across various tests. As discussed, although several
studies have approaches to classify the target action based on
the P300 BCI, some issues need to improve:

• Reduce the calibration time of BCI operation to operate
in real-life conditions.

• Improve the model decoding capabilities to enhance
classification accuracy, reducing the computational costs
during the calibration stage.

These issues are notable hurdles to face, especially in
scenarios where the diversity of electrophysiological signals
across different individuals, experiments conducted at var-
ied locations, and utilizing diverse materials. Thus, Active
Sampling (AS) paves the way for better Adaptive Transfer
Learning (ATL) performance to expedite the calibration time
of BCI operation for new subjects, which is appropriate for
implementing BCIs in real-world scenarios. The proposed
method resulted in enhancements for both subject-dependent
and subject-independent settings, covering both healthy indi-
viduals and patients, and was applied across two experimental
datasets.

III. BACKGROUND

This section summarizes the state-of-the-art of RPP and
PDS as the chosen sampling method. In addition, we also de-
lineated that RPP may reduce the variance of SGD. Therefore,
in the present work, we included RPP to sample the data from
P300 signals to reduce the calibration Process in P300 BCI.

A. Repulsive Point Processes (RPP)

In this section, we provide a formal definition of the RPP.
Considering a point process P in Rd and the nth order product
density ϱ(n) is defined by:

p(x1, ...., xn) = ϱ(n)(x1, x2, ...., xn)dx1....dxn (1)

where p(x1, ...., xn) is the joint probability of having a point
of the Point Process P in each of the infinitesimal spheres
B. For our analysis, we define the first 2 and second 3 order
product density, which are commonly denoted by:

λ(x) := ϱ(1)(x) (2)

ϱ(x, y) := ϱ(2)(x, y) (3)

Furthermore, to denote the gradient of the loss function, it can
be expressed as g(x, θ) = ∇(x, θ) and k = |B|, the mini-batch
size. After mentioning the previous definition, we can define:
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Theorem 1. The variance of the gradient varP (Ĝ) estimate
(Ĝ) in SGD for a general stochastic point process P is given
by:

varP (Ĝ) =
1

k2

∫
ν×ν

λ(x)λ(y)g(x, θ)Tg(y, θ)

[
ϱ(x, y)

λ(x)λ(y)
− 1]dxdy

+
1

k2

∫
ν

∥g(x, θ)∥2 λ(x)dx

(4)

Thereby, the RPP can make the first term in Eq. 4 negative
and reduce the variance.
Proof: For repulsive point processes, the probability of
sampling points that are close to each other is low. Hence,
if x and y are close, then correlations ϱ(x, y) < λ(x)λ(y)

make the cocient
[

ϱ(x,y)
λ(x)λ(y)

]
tend to zero, and as −1, negative.

Furthermore, supposing that the loss function is sufficiently
smooth in its data argument, the gradients are aligned for
close points, i.e., g(x, θ)T , g(y, θ). Thus, close points provide
a negative contribution to the first integral in Eq. 4, so the
negative first term in this equation drives the process to
variance reduction.

B. Poison Disk Sampling (PDS)
PDS is one type of RPP that reported stronger local repul-

sion than DPP. A dart-throwing algorithm is used to implement
a PDS and provides equivalent point arrangements to DPP
but much more efficiently. [21]. This algorithm states that the
smallest distance between each pair of sample points should
be at least to the predefined distance (r). Thus, when the
distance between two points is smaller than the disk radius
∥x− y∥ ≤ r, the second order product density ϱ(x, y) for
PDS is zero, and when the two points are far, the second order
product density converges to ϱ(x, y) = λ(x)λ(y). Moreover,
the complexity of PDS is O(k2), much lower than DPP
complexity O(Nk3) where N is the total amount of points.
Additionally, its simple procedure allowed the proposal of
numerous PDS variants and spread the sampling even more.

IV. METHODOLOGY

In this section, we detail EEG signal preprocessing and data
sampling using PDS. We then describe the process of training
a Deep4Net network for three scenarios: subject-dependent
(SD), subject-independent (SI), and subject-adaptive (SA),
applying ATL to the pre-trained model. This methodology was
replicated in two different countries using distinct equipment
but maintaining the same paradigm.

A. Datasets
We employed two datasets: the public ‘Original Experimen-

tal benchmark dataset clinical P300 dataset’ (OE) and our
own ‘Multi-centre benchmark clinical P300 dataset’ (ME),
created in our lab. ME replicates OE’s P300 recording protocol
but differs in device use, subjects, patients, and locations.
Detailed descriptions of each dataset will follow in subsequent
subsections.

1) Original experimental benchmark clinical P300 dataset
(OE): This dataset comprises P300 recordings from nine
individuals, including four disabled patients (S1 to S4) and
four healthy PhD students (S5 to S9), though data from S5 was
excluded due to communication issues during the experiment.
Demographic details are in Table I. EEG signals were captured
using a Biosemi Active Two amplifier with 32 channels at a
2048 Hz sampling rate, following the 10-20 system. The EEG
recording involved showing six images in random sequences
on a screen, with each image flashing for 100 ms followed
by a 300 ms pause. Each participant completed four sessions,
each containing six runs with 20-25 blocks chosen randomly.
Further procedural details are available in [22].

TABLE I: Demographic information of subjects of OE
Sub. Age Gender Diagnosis

S01 56 Male Cerebral patsy
S02 51 Male Multiple sclerosis
S03 47 Male Late-stage amyotrophic
S04 33 Female Traumatic brain and spinal-cord
S05 43 Male Post-anoxic encephalopathy
S06 Around 30 Male Healthy
S07 Around 30 Male Healthy
S08 Around 30 Male Healthy
S09 Around 30 Male Healthy

2) Multi-centre experimental benchmark clinical P300
dataset (ME): This dataset involved nine participants who
underwent the Speller test. Table II provides additional subject
details, with healthy participants being undergraduate students
serving as the control group for the patient cohort. Notably,
S07 and S08 exhibited mild aphasia, with S08 additionally
experiencing upper limb paresis, while S09 had severe
apraxia. Ethical approval and participants’ written consent
were obtained from the Universidad Peruana Cayetano
Heredia’s ethics committee, ensuring subjects’ awareness of
the academic objectives, procedures, and anonymity. EEG
signals were acquired using a 16-channel g.USBamp amplifier
at a 2400 Hz sampling rate, with bipolar electrodes placed
according to the 10-20 system. Each subject completed four
recording sessions, each comprising six runs with 20-25
randomly selected blocks. For a more detailed procedure
description, refer to [23].

TABLE II: Demographic information of subjects of ME
Sub. Age Gender Diagnosis

S01 33 Male Healthy
S02 21 Male Healthy
S03 20 Male Healthy
S04 21 Male Healthy
S05 24 Male Healthy
S06 29 Male Healthy
S07 20 Male Hemorrhagic post-stroke
S08 52 Female Ischemic post-stroke
S09 55 Male Ischemic post-stroke

B. Data pre-processing

In order to eliminate artifacts and obtain a higher number of
samples, the two datasets were preprocessed. As both followed
the same steps, only one kind of preprocessing task was
designed:
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Fig. 1: In the present work, we validate the efficacy of adding Active Sampling (AS) by testing the EEG-based P300 decoding
task-based using adaptive fine-tuning in deep learning models for subject 1 as the target subject and subjects 2 to 17 as source
subjects, which represent the OE+ME w/ AS experimental scheme. The source and target subject are sampled using the AS to
diversify and reduce the non-redundant data. The subject-independent and subject-adaptive schemes are represented by different
colors in this figure. They and the arrows demonstrate the different blocks considered when computing the adaptive fine-tuning
in deep learning models in a P300 BCI for train and testing

1) It applies a sixth-order Butterworth filter between 1 Hz
and 15 Hz frequencies.

2) Invalid spectral components were eliminated using
Notch filters.

3) Signals are downsampled from 2048 Hz to 32 Hz to
reduce computational cost.

4) Elimination of outlier values followed the winsorization
criteria.

5) Signals are windowed with a length of 1000 ms, which
overlaps 600 ms because the stimulus interval lasts 400
ms.

C. Dense Poison Disk Sampling for Active Sampling
When dealing with highly structured data, there may be

only a few data points near the decision boundary that are
difficult to classify, such as waves labeled P300 and non-P300.
To tackle this issue, we use one PDS variation, namely Dense
PDS, which draws darts based on mingling indices instead
of random selection. This allows us to specify a categorical
distribution called π to refine the decision boundary. The
mingling index measures the ratio of points belonging to
different class labels. For further information on the mingling
index, see [20]. Furthermore, a pseudo-code of the procedure
is presented in Algorithm 1.

In this study, we applied a PDS over the raw data of
each subject for each dataset in order to reduce the number
of samples using a Sampling Factor (SF). This factor was
analyzed experimentally for different k sampling sizes and
selected, which yielded better performance.
D. Deep Network Architecture

We utilised Deep4Net CNN architecture as base architecture
[24]. The accuracy classification and Cross entropy loss value

Algorithm 1 Dense PDS for Active Sampling
Input: k sampling size, r0 rejection radio, M mingling index, π0

parameter for categorical distribution to sample mingling index
Output: B active sampling

count ← 0
while count ̸= k do

Sample a mingling index m ∼ Cat(π)
Randomly sample a point with mingling index m
distance ← Euclidean norm
if distance ≤ r0 then

Reject point
else

Append new point in B
count ← count + 1

end if
end while

were performed using AdamW optimizer, Batch Normaliza-
tion, and Dropout. The training parameters comprehend a
batch size of 16 samples, performing the stage for 200 epochs.

E. Classification scheme for Active Sampling
In this section, we perform the effect of Active Sampling

(AS) on the two datasets in different classification schemes,
such as the subject-dependent, independent, and adaptive clas-
sification, using a Deep4Net [24]. The data for each subject
is composed of four sessions; thus, we sampled each subject
for both datasets using a Dense PDS described in the previous
item.

1) Subject-depended classification: In this type of classifica-
tion, we trained and validated a classification model for each
subject using only his data. Regarding the Active Sampling
(AS), each dataset subject (OE and ME) was sampled for
sessions 1, 2, and 3 to the training and validation stage.
However, session 4 was not sampled since it was used to test.
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Fig. 2: Scheme independent data splitting

2) Subject-independent classification: We used a Leave-
One-Subject-Out Cross-Validation (LOSOCV) to perform this
classification scheme so that all data from an independent, also
called target subject, is held out as the test set. Concerning
the Active Sampling (AS), session 4 of the target subject was
kept from being sampled since it was used in the testing stage.
However, the rest of the subjects, also called source subjects,
either for the OE or the IE dataset, were sampled for all
sessions to the training and validation stage. As depicted in the
figure 1. In subject-independent classification, we randomly
split the data from non-target subjects into 85% for training
and 15% for validation, as we can see in Fig.2

3) Subject-adaptive classification: In this study, we imple-
mented a subject-adaptive classification scheme that did not
initially include data from the target subject, which can impact
accuracy due to variations among subjects. To address this, we
fine-tuned a pre-trained model with a small dataset from the
target subject, specifically by freezing the first convolutional
layer of Deep4Net and adjusting the remaining layers [10],
as shown in 3. This model, initially trained in a subject-

Fig. 3: Adaptive learning schemes contrasted with network
layers

independent manner, then served as the base for each target
subject. We observed performance enhancements as the adap-
tation rate from the target subject increased in 10% increments,
up to 100%. Regarding Active Sampling (AS), we utilized
the first two sessions for training and the third for validation,
while the fourth session was reserved for testing, as depicted
in Figure 1. Moreover, in Fig. 4, we represent the percentage
of data corresponding to the number of sessions for training
(50%), validation (25%), and testing or evaluation (25%).
Fig. 5 provides a flowchart with further explanation to better

Fig. 4: Adaptive scheme of the subject target

illustrate the difference between subject-adaptive and subject-
independent classification.

Fig. 5: Interconnection between subject independent and adap-
tive with inputs of Source subjects (S.S) and Target subject
(T.S)

Therefore, to validate the performance of the Active Sam-
pling (AS) over the three classification schemes, we used a
Deep4Net as described above. Thus, we designed four exper-
imental schemes considering the OE and their performance
over OE and its replicate experiment called IE. The following
are the designs for the experiments:

• Approach from Original experimental benchmark dataset
clinical P300 dataset (OE):

– OE without Active Sampling (OE w/o AS): use the
whole data from the Original Experimental bench-
mark dataset clinical P300 dataset (OE).

– OE with Active Sampling (OE w/ AS): use data from
the Original Experimental benchmark dataset clinical
P300 dataset (OE) after applying Active Sampling
(AS).

• Approach from Original experimental benchmark dataset
clinical P300 dataset (OE) combined with Multi-centre
benchmark clinical P300 dataset (ME):

– OE+ME without Active Sampling (OE+ME w/o
AS): use the whole data from the Original Experi-
mental benchmark dataset clinical P300 dataset (OE)
combined with the Multi-centre benchmark clinical
P300 dataset (ME).

– OE+ME with Active Sampling (OE+ME w/ AS):
use data from the Original Experimental benchmark
dataset clinical P300 dataset (OE) combined with the
Multi-centre benchmark clinical P300 dataset (ME)
after applying Active Sampling (AS).

V. RESULTS

We evaluated Active Sampling (AS) with Dense PDS on
Deep4Net, aiming to reduce computational cost while main-
taining or improving classification accuracy. Our deep neural
network, trained and tested in Google Colab using Python,
underwent a cross-validation process. We experimented with
different Sampling Factor (SF) sizes to find the most effective
one. This evaluation included cross-validation with distinct
training, validation, and testing phases across three subject
strategies: dependent, independent, and adaptive. In the adap-
tive approach, we varied the percentages of data split from the
target subject for model fine-tuning, seeking the optimal value
for comparison.
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A. Samples number selection ( Sampling Factor)
To determine the best sample number, we use Active

Sampling with the Dense PDS to calculate the best classifi-
cation accuracy for subject-independent, varying the sampling
number from 500 to 1200.

We summarize the process for both datasets using a Dense
PDS:

1) Calculate a subject-independent classification using a
Leave- One-Subject-Out Cross-Validation (LOSOCV)
for all subjects and both datasets (OE and ME) using
different sample sizes.

2) The sample size increased from 500 to 1200 in steps of
100 and studied their performance improvements.

3) The best subject-independent classification accuracy test
and its corresponding sample size were chosen.

4) Create a histogram to perform the distribution of the best
sample size.

Table III summarizes the results of selecting the best
subject-independent classification accuracy with its sampled
number. To facilitate the analysis of data from both datasets
(OE and ME), we listed the number of subjects in a correlative
manner. The highest result was achieved in Subject 10, with a
precision of 99.67% to a sample size of 1200. Besides, subjects
with higher values than 90% were subjects 10,12,13,14,15
and 18 belonging to the ME dataset. Performance for the
subjects of the OE dataset was positive but did not surpass
90% classification accuracy, as subjects’ have critical medical
conditions. In general, 1200 samples proved to be the optimal
choice.

TABLE III: Selection of appropriate sample factor

Dataset Subjects Best Sub.Indep
test score Best sample number

OE

S01 79,67% 1200
S02 86,50% 1200
S03 75,67% 1200
S04 83,64% 1100
S06 84,33% 1200
S07 86,89% 900
S08 73,27% 1100
S09 73,83% 1200

ME

S10 99,67% 1200
S11 84,22% 900
S12 90,83% 1200
S13 93,33% 900
S14 94,50% 1200
S15 97,09% 1100
S16 80,80% 1000
S17 85,83% 1200
S18 92,50% 1200

Max.freq sampled 1200

In 6, the violinplot displays the classification test accuracy
distributions for each sample size for all 17 subjects. Hence,
the violin plot for the 1200 sample size reported the highest
median and quartiles, while the 800 sample size reported the
lowest median and the lowest first quartile. Therefore, the
accuracy values reported a non-normal distribution. Thus, a
non-parametric Wilcoxon signed-rank test was performed to
analyze the median of differences between the 1200 sample
size and the other sample sizes. The 1200 sample size reported
p-values (p < 0.05) with all sample sizes except the 1100
and 1300 sample sizes. It is important to note that as the

sample size increases from 500 to 1200, the third quartile also
increases. However, for the 1300 sample size, the third quartile
decreases, indicating that the 1200 sample size is optimal since
it maintains high classification accuracy with fewer samples
than the 1300 sample size or without sampling. After this
thorough analysis, we selected the 1200 sample size.

Fig. 6: Violinplot classification test accuracy distributions with
different sample sizes from OE + ME. The statistical test
using the Wilcoxon signed-rank test with p-values (p < 0.05)
depicted by (∗) means the statistical difference between the
1200 sample size and each of the other sample sizes.

B. Sampling Factor effect over dataset
To create a comprehensive visualization comparison of the

performance of Active Sampling (AS) using a Dense PDS
over the data from each subject and dataset, we performed
a t-distributed stochastic neighbour embedding (t-SNE) plot.
The input data are all P300 and non-P300 samples after being
pre-processed according to IV-B (P300-pre-processing). The
aim is to compare the impact on the data before and after
performing Active Sampling (AS). Thus, the experimental
results are presented in Fig.7, where subject 01 was chosen for
complete visualization of the AS effect. More results can be
found in Section S.I of the supplementary material. Hence, the
first row of Fig 7 depicts the t-SNE of samples before applying
AS, and the second shows a t-SNE of samples after using
AS. Furthermore, orange and blue dots represent the P300
and non-P300 samples, respectively. For all figures, the Active
Sampling (AS) demonstrated data reduction in 1200 samples,
increasing the sampling diversity, thus eliminating redundant
data for better Stochastic Gradient Descent (SGD) convergence
and classification accuracy. For instance, subject 01, after
applying Active Sampling (AS), demonstrated a profound
reduction of non-P300 samples due to their high number and
the decrease of P300 samples. It leads to maintaining the data
structure and precise decision boundary.

C. Classification Accuracy from OE
This section summarizes the classification accuracy results

for the OE experimental scheme, both with and without
Active Sampling (AS). Tables IV and V present the average
classification accuracies for all 8 subjects using OE w/o AS
and OE w/ AS, respectively. Our findings indicate that OE w/
AS consistently surpasses OE w/o AS in subject-dependent,
subject-independent, and subject-adaptive classifications, also
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Fig. 7: tSNE visualization of 2D feature space for S01 of
OE+ME w/AS (1200 samples) and w/o AS

reducing the standard deviation. Figure 8 illustrates these
performance differences and variance among subjects. Figure
8a and Figure 8b highlight the impact of OE w/o AS and OE
w/ AS. The use of AS yields a lower standard deviation across
all adaptation rates and maintains an average classification
accuracy of approximately 83%, outperforming OE w/o AS.
This demonstrates AS’s effectiveness in reducing computa-
tional time and standard deviation. Violin plots in Figure 9a
offer a robust statistical analysis, showing a higher median
and a smaller range for OE w/ AS compared to OE w/o AS
across all classification schemes. This indicates a reduction in
the interquartile range and a compression of the maximum
and minimum values for OE w/ AS. For the best case in
the adaptive scheme with a 10% adaptation rate, using 1200
samples typically improves classification accuracy by 0.1% to
13% for subjects 1,2,4,7,8 and 9, as shown in Figure 10a.
Subject 4 notably exhibited an improvement of about 13%
with the use of AS.

(a) OE w/o AS (b) OE w/ AS (1200 samples)

(c) OE+ME w/o AS (d) OE+ME w/ AS (1200 smpls.)
Fig. 8: Comparison of average test classification accuracy w/
AE and w/o AE across different adaptive percentages. The
shadowed area represents the standard deviation.

D. Classification Accuracy from OE and ME
This section showcases the classification accuracy outcomes

from the experimental approach that combines data from the
Original Experiment (OE) and the Multi-centre Experiment
(ME). It highlights how Active Sampling (AS) excels in
scaling both accuracy and training duration when handling

(a) OE results

(b) OE + ME results
Fig. 9: Classification accuracy for w/o AS and w/ AS (1200
samples)

(a) Best adaptive trial (10%) for
OE

(b) Best adaptive trial (80%) for
OE+ME

Fig. 10: Comparison between w/o AS and w/ AS (1200
samples) for the best adaptive trial

two different datasets. Tables VI and VII tabulate the average
classification accuracy to compare the performances across
all 17 subjects using OE+ME w/o AS and OE+ME w/ AS,
respectively. Our results reported that the average classification
accuracy of OE+ME w/ AS outperformed OE+ME w/o AS for
subject-independent and subject-adaptive except for subject-
dependent. Therefore, subject-adaptive reduced the standard
deviation after applying the AS for all adaptation rates. Our
results reported that the average classification accuracy for a
subject adaptive with 40% of the adaptation rate in OE+ME
w/o AS outperformed OE+ME w/AS with 5.36% and a
standard deviation reduction of 12.22%.

We created Figure 8 to display classification accuracy and
variance among subjects for three classification schemes with
and without AS. Figure 8c and Figure 8d show the OE+ME
w/o AS and OE+ME w/ AS, respectively. The OE +ME w/ AS
results reported a lower standard deviation for subject-adaptive
for all adaptation rates compared to OE+ME w/o AS using less
computational time. The classification accuracy tendency for
subject-adaptive in OE+ME w/o AS starts at 80.71% for 10%
of the adaptation rate, decreasing until 78,13% for 40% of
the adaptation rate after that, it reported a high pick value
at 81,97% for 50%. Therefore, from 60% to 90% of the
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TABLE IV: Classification accuracy of OE w/o AS
Dataset Diagnosis Subjects Subject-dependent Subject-independent Subject-adaptive

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

OE

CP S01 80,41% 80,37% 81,75% 82,12% 81,27% 82,36% 82,85% 82,00% 81,27% 81,27% 82,97% 81,27%
MS S02 81,82% 82,38% 82,52% 82,52% 82,52% 82,52% 82,52% 82,52% 82,52% 82,52% 82,52% 82,52%
Late stage ALS S03 83,09% 82,97% 82,84% 82,84% 82,84% 82,84% 82,84% 82,84% 82,84% 82,84% 82,72% 83,09%
TBI & SCI level C4 S04 82,61% 81,54% 69,66% 82,01% 83,09% 83,45% 83,57% 83,09% 83,09% 83,33% 84,17% 82,85%
Healthy S06 84,18% 82,73% 82,97% 82,25% 82,85% 83,33% 83,21% 83,09% 83,21% 82,97% 83,57% 82,61%
Healthy S07 85,20% 82,21% 82,28% 82,17% 82,40% 82,28% 82,28% 79,25% 82,63% 82,52% 82,52% 82,28%
Healthy S08 82,22% 82,60% 81,98% 82,47% 81,98% 81,98% 82,47% 81,98% 81,98% 81,98% 81,98% 81,98%
Healthy S09 71,74% 83,22% 82,25% 82,73% 83,09% 81,76% 83,09% 83,09% 83,09% 83,09% 82,49% 83,09%

Mean 81,41% 82,25% 80,78% 82,39% 82,50% 82,57% 82,85% 82,23% 82,58% 82,56% 82,87% 82,46%
Std.dev 4,17% 0,92% 4,51% 0,30% 0,62% 0,60% 0,43% 1,29% 0,66% 0,67% 0,70% 0,62%

TABLE V: Classification accuracy of OE w/ AS (1200 samples)
Dataset Diagnosis Subjects Subject-dependent Subject-independent Subject-adaptive

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

OE

CP S01 84,18% 82,49% 82,60% 82,73% 82,36% 83,09% 81,51% 83,21% 81,39% 83,70% 83,09% 82,85%
MS S02 80,30% 82,92% 83,10% 83,10% 82,87% 82,87% 82,87% 83,10% 82,87% 83,10% 83,22% 83,22%
Late stage ALS S03 88,73% 83,21% 82,84% 82,97% 82,97% 83,70% 82,72% 82,97% 83,09% 82,84% 83,09% 83,09%
TBI & SCI level C4 S04 82,73% 83,21% 83,21% 83,21% 82,37% 82,97% 83,09% 82,97% 82,97% 82,85% 82,85% 82,73%
Healthy S06 82,49% 83,09% 82,61% 82,61% 82,61% 83,09% 82,97% 82,97% 82,97% 82,97% 82,97% 82,73%
Healthy S07 82,87% 83,10% 82,52% 82,52% 82,52% 82,52% 82,63% 83,57% 83,57% 82,75% 83,10% 82,52%
Healthy S08 83,33% 83,21% 82,59% 82,59% 82,96% 82,96% 82,96% 82,84% 82,59% 83,21% 82,59% 82,59%
Healthy S09 82,49% 83,16% 83,21% 83,33% 83,21% 83,33% 82,97% 83,09% 82,85% 82,97% 83,21% 83,09%

Mean 83,39% 83,05% 82,84% 82,88% 82,73% 83,07% 82,72% 83,09% 82,79% 83,05% 83,02% 82,85%
Std.dev 2,42% 0,25% 0,30% 0,31% 0,31% 0,35% 0,51% 0,22% 0,63% 0,30% 0,21% 0,25%

adaptation rate increased to 79,55% and 83,71%, respectively.
Finally, it reached 82,36% for 100% of the adaptation rate.
In summary, these results reported a fluctuating classification
accuracy tendency. Conversely, the classification accuracy ten-
dency for Subject Adaptive in OE+ME w/ AS increases to
81.41%, until 85,22%, except for a slight deflection in 90% of
the adaptation rate with 84,83% of classification accuracy. The
classification accuracy increases as adaptation rates increase,
demonstrating that OE+ME w/ AS yields better results after
applying AS for the adaptive scheme.

In order to perform a more robust statistical analysis against
outliers, boxplots were computed, grouping all subjects for
the different classification schemes where the improvement
offered by Active Sampling (AS) could be compared side
by side. Figure 9b shows an increase in the median for
OE+ME w/ AS versus OE+ME w/o AS for subject-dependent
and subject-independent. Otherwise, the medians are slightly
similar among the whole subject-adaptive scheme as well as
the range of the boxes. Although the medians did not increase
after applying Active Sampling (AS), it reported similar results
using only 1200 samples, reducing the computational cost.
Therefore, to assess the impact of active sampling (AS), we
examine the change in classification accuracy between subject-
independent and subject-adaptive approaches after implement-
ing Active Sampling (AS) at various adaptation rates. The
results can be found in Figure S2 in Section S.IV of the
supplementary material.

Therefore, Figure 10b provides additional information by
comparing the classification accuracy results for the best
adaptive trial before and after utilizing the Active Sampling
(AS) method. For 1200 samples and the best adaptation rate
of 80%, the Active Sampling (AS) increases the accuracy in
a range of 0.1% to 49% for subjects 1,2,4,6,7,8,12,13,15,16
and 17 reducing their standard deviation as we described in the
previous lines. It is important to highlight that the classification
accuracy of subject 2 undergoes a considerable improvement
of about 49%.

E. Computation time
Reducing samples with Active Sampling (AS) aims to sig-

nificantly cut the CPU training time (in seconds) for Deep4net.

Table VIII demonstrates this reduction by comparing average
CPU training times with and without AS, using 1200 samples
across both datasets (OE and IE). With AS, the average CPU
time was 22896.44 ± 1292.02 s (Avg. ± SD), while without
AS, it averaged 8889.75 ± 419.14 s (Avg. ± SD), resulting
in a substantial 61.17% reduction. Notably, the average CPU
time did not follow a normal distribution. A nonparametric
Wilcoxon signed-rank test was conducted to analyze the me-
dian differences between w/o AS and w/ AS, yielding highly
significant p-values (p < 0.01), specifically 1.526 × 10−5.
Subject 14 achieved the minimum CPU training time without
AS, while subject 8 had the best reduction, with a remarkable
64.46% reduction in CPU training time (in seconds) with AS.
We used violin plots to visually demonstrate the distribution
of samples before and after applying Active Sampling (AS).
Figure 11 presents a violin plot depicting the median, upper
adjacent value, and lower adjacent value for the average CPU
time (sec) before and after applying AS for all 17 subjects.
The violin plot for the dataset without AS shows higher
median and quartile values. However, upon applying Active
Sampling (AS), the plot displays a downward shift in the
entire distribution, indicating a significant reduction in CPU
time (sec) during the training process. It’s crucial to emphasize
that implementing Active Sampling (AS) on each subject’s
data leads to a substantial reduction in CPU training time (s).

F. Bitrates Analysis
In Fig. 12a, averaged classification accuracy and their

corresponding bitrates are plotted against the time needed
for the number of blocks to make a decision. The bitrates
were calculated using the definition of [25] utilizing the
average accuracy curves. To demonstrate the feasibility of
Active Sampling (AS), we select subject 10, corresponding
to the experimental scheme of OE+ME. If bitrate is used as
a performance measure, differences between OE+ME w/ AS
and OE+ME w/o AS can be observed. For instance, OE+ME
w/ AS outperformed OE+ME w/o AS for the bitrate from the
first block, where w/ AS reported roughly 80 bits/min. As we
can see, there is a close link to maximum bitrate and high
classification accuracy for small numbers of blocks.
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TABLE VI: Classification of accuracy of OE+ME w/o AS
Dataset Diagnosis Subjects Subject-dependent Subject-independent Subject-adaptive

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

OE

CP S01 82,42% 68,94% 68,24% 82,14% 81,93% 82,67% 83,10% 69,30% 69,30% 82,35% 82,25% 82,99%
MS S02 81,83% 81,95% 55,18% 64,89% 28,24% 19,63% 70,56% 81,03% 81,35% 34,57% 58,67% 33,70%
Late stage ALS S03 88,88% 71,15% 82,99% 49,63% 85,13% 82,78% 82,99% 82,99% 85,45% 85,67% 86,63% 84,71%
TBI & SCI level C4 S04 80,00% 76,19% 79,80% 81,56% 82,33% 84,08% 84,30% 83,32% 83,32% 82,44% 83,42% 83,21%
Healthy S06 84,24% 82,36% 83,20% 80,18% 78,28% 82,87% 82,64% 82,42% 82,31% 82,53% 82,31% 82,42%
Healthy S07 83,51% 76,87% 80,52% 81,04% 81,76% 81,24% 81,55% 80,31% 81,35% 81,87% 81,35% 81,55%
Healthy S08 82,61% 68,11% 82,13% 82,24% 82,67% 60,06% 59,96% 18,19% 17,65% 75,24% 81,38% 81,27%
Healthy S09 81,14% 81,13% 82,54% 82,31% 81,98% 81,87% 81,98% 82,09% 82,42% 81,87% 81,20% 82,20%

ME

Healthy S10 96,48% 91,45% 94,70% 93,53% 92,37% 93,01% 93,01% 94,83% 94,83% 93,27% 92,24% 94,18%
Healthy S11 71,36% 84,80% 80,20% 79,83% 81,32% 79,70% 79,70% 81,20% 81,07% 81,94% 81,57% 81,94%
Healthy S12 92,49% 87,78% 79,20% 80,25% 85,01% 90,07% 88,38% 88,81% 89,55% 89,02% 90,50% 88,91%
Healthy S13 90,38% 88,60% 88,80% 88,80% 67,43% 69,49% 82,29% 82,97% 85,26% 85,37% 86,17% 88,34%
Healthy S14 92,14% 89,96% 88,10% 86,43% 87,65% 90,77% 88,99% 89,77% 90,43% 90,99% 91,99% 90,66%
Healthy S15 88,07% 85,96% 84,96% 86,61% 86,39% 86,39% 86,17% 86,28% 86,39% 87,60% 88,04% 86,39%
Hemorrhagic stroke S16 78,71% 80,16% 73,30% 78,50% 66,76% 67,29% 69,16% 70,09% 71,70% 75,83% 74,77% 75,17%
Ischemic stroke S17 94,38% 74,11% 83,44% 84,20% 83,82% 89,63% 90,52% 89,51% 90,90% 91,53% 91,53% 92,29%
Ischemic stroke S18 91,27% 85,70% 84,71% 85,13% 87,59% 86,63% 88,24% 89,30% 89,84% 89,95% 89,09% 90,16%

Mean 85,88% 80,89% 80,71% 80,43% 78,86% 78,13% 81,97% 79,55% 80,18% 81,88% 83,71% 82,36%
Std.dev 6,60% 7,30% 8,80% 9,87% 14,56% 17,44% 8,42% 17,10% 17,38% 13,23% 8,08% 13,44%

TABLE VII: Classification accuracy of OE+ME w/ AS (1200 samples)
Dataset Diagnosis Subjects Subject-dependent Subject-independent Subject-adaptive

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

OE

CP S01 82,73% 73,07% 64,48% 81,02% 76,89% 80,66% 82,97% 82,00% 82,73% 82,97% 82,36% 82,85%
MS S02 77,16% 82,98% 69,70% 82,05% 82,40% 82,87% 82,87% 82,87% 82,87% 82,87% 82,75% 83,33%
Late stage ALS S03 90,69% 81,28% 82,84% 83,09% 82,84% 83,09% 83,33% 82,84% 82,97% 83,58% 82,60% 85,91%
TBI & SCI level C4 S04 83,21% 80,11% 80,94% 81,77% 81,30% 83,21% 82,73% 82,73% 82,49% 82,97% 83,21% 83,69%
Healthy S06 83,82% 79,76% 83,33% 82,61% 83,09% 82,85% 82,97% 82,73% 82,97% 82,61% 82,61% 83,09%
Healthy S07 83,33% 54,21% 82,40% 82,17% 82,52% 82,98% 83,10% 82,40% 82,52% 82,52% 84,27% 84,27%
Healthy S08 83,33% 73,75% 74,69% 82,10% 82,47% 82,84% 82,22% 82,35% 82,35% 83,21% 83,09% 85,56%
Healthy S09 82,25% 79,92% 81,76% 81,88% 79,59% 81,88% 81,76% 80,31% 81,28% 81,04% 79,59% 81,40%

ME

Healthy S10 97,37% 88,47% 92,73% 91,73% 90,48% 92,86% 91,60% 92,98% 92,23% 92,48% 93,61% 92,98%
Healthy S11 79,46% 84,57% 78,81% 78,55% 80,88% 78,04% 80,75% 79,33% 80,23% 79,46% 78,81% 79,97%
Healthy S12 93,94% 88,77% 81,93% 83,10% 85,20% 86,25% 87,65% 88,23% 89,39% 89,16% 91,03% 88,11%
Healthy S13 88,97% 88,64% 89,22% 62,41% 74,06% 80,08% 83,71% 83,58% 83,71% 86,47% 88,22% 88,72%
Healthy S14 93,94% 85,90% 85,73% 85,73% 84,47% 85,73% 84,60% 87,88% 86,62% 85,86% 85,35% 84,72%
Healthy S15 90,80% 86,73% 88,43% 87,81% 87,44% 88,06% 88,43% 88,43% 88,68% 89,05% 89,18% 86,57%
Hemorrhagic stroke S16 78,27% 83,65% 78,93% 78,67% 75,07% 69,60% 71,60% 76,13% 74,00% 81,33% 75,33% 77,20%
Ischemic stroke S17 95,67% 82,89% 83,46% 87,79% 88,68% 90,59% 92,11% 92,75% 92,62% 92,24% 92,37% 90,97%
Ischemic stroke S18 92,72% 83,57% 84,62% 86,15% 87,21% 87,68% 87,56% 88,97% 89,20% 88,50% 87,79% 89,32%

Mean 86,92% 81,07% 81,41% 82,27% 82,62% 83,49% 84,12% 84,50% 84,52% 85,08% 84,83% 85,22%
Std.dev 6,45% 8,30% 6,90% 6,14% 4,54% 5,22% 4,66% 4,63% 4,72% 3,93% 4,95% 4,01%

TABLE VIII: CPU time (sec) comparison between training
with w/o AS and w/ AS in sampling 1200

Training time (s)Dataset Diagnosis Subjects w/o AS w/ AS (1200 samples)
CP S01 23207,00 9112,38
MS S02 22418,51 8991,86

Late stage ALS S03 25683,09 9168,53
TBI & SCI level C4 S04 23781,20 9025,06

Healthy S06 23190,75 8406,21
Healthy S07 24190,93 8337,90
Healthy S08 23405,82 8318,52

OE

Healthy S09 22.819,26 9274,83
Healthy S10 21554,44 9260,78
Healthy S11 23621,02 9387,30
Healthy S12 21907,92 9233,98
Healthy S13 20784,10 8499,96
Healthy S14 20763,63 8495,82
Healthy S15 23935,36 8353,36

Hemorrhagic stroke S16 23847,56 8851,04
Ischemic stroke S17 22315,38 9618,95

ME

Ischemic stroke S18 21813,49 8789,19
Mean 22896,44 8889,75

Std.dev 1292,02 419,14

Fig. 11: Boxplot of training time for different sets of data
with significant statistical differences (p = 1.526e− 05) with
Wilcoxon test and p-value=0.001. Raw data approx has 3000
samples.

Differences between OE+ME w/ AS and OE+ME w/o AS
can also be observed for averaged classification accuracy. The

(a) w/o AS (b) w/ AS (1200 samples)
Fig. 12: Bitrate results of S10 from OE+ME

classification accuracy of OE+ME w/o AS increases more
slowly than OE+ME w/ AS, as we can see before the 10
seconds. Both metrics demonstrate that Active Sampling (AS)
increases the bitrate and averaged classification accuracy using
less computational time.

VI. DISCUSSION

A key challenge in Brain-Computer Interface (BCI) research
is achieving high classification accuracy with minimal calibra-
tion data while ensuring maximum generalizability. Transfer
learning has been a common approach to address this, but
fine-tuning often leads to over-fitting of the target class and
irrelevant feature emphasis, even if the original model is
highly robust. The variability of EEG data across individuals
and experiments further complicates this. Our study, unique
in its multi-subject, multi-country, and multi-hardware scope,
introduces a novel adaptation transfer method. A novel method
of adaptation transfer called ATL using Active Sampling (AS),
based on Dense PDS is proposed and evaluated in such a
scenario. Despite the data diversity, our deep learning model
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showed enhanced classification accuracy and reduced CPU
training time. As detailed in Section V, our approach and
active sampling method achieved 85.22% accuracy in subject-
independent, heterogeneous conditions, surpassing other meth-
ods in real-world scenarios and demonstrating faster training
times.

The stability of dense PDS was confirmed by conducting
multiple repetitions of training and testing the model in
Adaptive Transfer Learning (ATL) for subject-independent
classification using the experimental scheme from OE+ME.
The results are in Table S1 from Section S.II from the
supplementary material. The mean classification accuracy re-
sults of each repetition show that Dense PDS is stable and
consistent, indicating its robustness and reliability. Therefore,
to compare the performance of Dense PDS, we included
additional Active Sampling (AS) techniques based on Vanilla
PDS, Easy PDS, and Anneal PDS [20] in Adaptive Transfer
Learning (ATL) methods using the raw data of each subject
for subject-independent classification using the experimental
scheme from OE+ME. The results can be found in Table
S2 in Section S.III of the supplementary material. The re-
sults show that PDS Dense is the best choice, achieving
the highest classification accuracy. Furthermore, to compare
the performance of Adaptive Transfer Learning (ATL) using
Deep4Net, over the OE+ME with AS for subject-independent
classification, we applied Instance-based Transfer Learning
(ITL) using Weighted k-Nearest Neighbors (Weighted K-NN).
The results can be found in Table S3 in Section S.V of the
supplementary material. The results demonstrate that the mean
classification accuracy of Deep4Net outperformed Weighted
K-NN, showcasing its superiority. Thus, this work offers new
insights into achieving optimal generalization in P300-BCI
systems.

VII. CONCLUSION

This study introduces an adaptive transfer methodology
with sampling selection for P300-BCI, showing notable per-
formance in subject-independent and multi-centre contexts.
The methodology leverages a diverse dataset from various
countries, times, and hardware, enhancing P300 detection
robustness and minimizing overfitting. Notably, it significantly
reduces training time, enabling quick BCI-P300 system cal-
ibration and reactivation within a minute. These findings
advance the generalizability of non-invasive P300 BCI sys-
tems. Future applications of these techniques to other BCI
paradigms are planned, with the possibility of integrating
adaptive transfer learning with generative models for improved
accuracy. This later methodology, however, requires further
meticulous exploration.
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