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ABSTRACT

With the constant development of energy systems, multi-energy networks are be-
coming increasingly popular, which integrates renewable energies and demand-
side management. This presents a significant challenge for developing smart en-
ergy management frameworks. Furthermore, unlike traditional energy systems,
the transaction energy system is dynamic and complex, which is enriched by the
interdependence among multiple energies, the uncertainty of renewable energies
and the complexity of demand-side management. Therefore, advanced modelling
techniques and solution methods are required to be developed to overcome the
difficulties.

This thesis addresses the intricate challenges of developing a smart hierarchical
transactive energy system that seamlessly marries multi-energy sources, renewable
energy integration, and sophisticated demand-side management strategies. The
research unfolds in three pivotal research topics: 1) The formulation and analysis of
a game-theoretic decision-making model for energy retailers’ strategic bidding and
offering in both wholesale and local energy markets while considering customers’
switching behaviour; 2) The introduction of a customised multi-energy pricing
scheme, which is formulated as a bilevel optimisation model. The proposed model
not only maximises the profit of energy retailers but also considers the multi-energy
interdependencies and the diverse characteristics of microgrids; 3) The development
of an innovative forecasting model named Patchformer, based on Transformer-based
architectures and patch embedding method, for the prediction of long-term multi-
energy loads. This model improves forecasting accuracy, which enables a more
reliable and efficient energy system management by predicting energy demands
with high precision.

This work presents a comprehensive approach to improving the effectiveness of
transactive energy systems by merging advanced modelling techniques and machine/
deep learning models. This thesis tackles the current challenges in the field of
transaction energy systems while also providing information for future research that
aims to unlock the full potential of smart energy management in smart grids.
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𝑝
𝐶𝐻𝑃,𝑚𝑖𝑛
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𝐶𝐻𝑃,𝑚𝑎𝑥
𝑚 Minimum and maximum electricity volume generated by the

CHP in microgrid 𝑚.

𝑝
𝐶𝐻𝑃,𝑖𝑛𝑖𝑡
𝑚 , 𝛿𝑖𝑛𝑖𝑡𝑚 Initial electricity volume and status of the CHP in microgrid 𝑚.
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grid 𝑚.

𝑞
𝑝𝑢𝑚𝑝,𝑚𝑖𝑛
𝑚 , 𝑞

𝑝𝑢𝑚𝑝,𝑚𝑎𝑥
𝑚 Minimum and maximum heat volume generated by the heat

pump in microgrid 𝑚.

𝑞
𝑝𝑢𝑚𝑝,𝑖𝑛𝑖𝑡
𝑚 , 𝜃𝑖𝑛𝑖𝑡𝑚 Initial heat volume and status of the heat pump in microgrid 𝑚.

𝑞𝑅𝑈𝑚 , 𝑞𝑅𝐷𝑚 Ramp-up and ramp-down limits of the heat pump in microgrid 𝑚.

𝐸
𝐸𝑆,𝑖𝑛𝑖𝑡
𝑚 Initial energy level of ES in microgrid 𝑚.

𝜂
𝐸𝑆,𝑐
𝑚 , 𝜂

𝐸𝑆,𝑑
𝑚 , 𝜖𝐸𝑆𝑚 ES charging, discharging and self-discharging rate in microgrid

𝑚.

𝐸
𝐸𝑆,𝑚𝑖𝑛
𝑚 , 𝐸

𝐸𝑆,𝑚𝑎𝑥
𝑚 Minimum and maximum of the ES energy level in microgrid 𝑚.
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𝑐,𝑚𝑖𝑛
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𝑐,𝑚𝑎𝑐
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𝑑,𝑚𝑎𝑥
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𝜂
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𝑇𝑆,𝑑
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𝐸
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𝜌𝑚𝑖𝑛
𝑒𝑙𝑒,𝑚

, 𝜌𝑚𝑎𝑥
𝑒𝑙𝑒,𝑚

Minimum and maximum electricity curtailment rate in microgrid
𝑚.

𝜌𝑚𝑖𝑛𝑔𝑎𝑠,𝑚, 𝜌
𝑚𝑎𝑥
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𝑚.

𝜌𝑚𝑖𝑛
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ℎ𝑒𝑎𝑡,𝑚
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𝑇 𝑠𝑡𝑎𝑟𝑡𝑎𝑚
, 𝑇

𝑠𝑡𝑜𝑝
𝑎𝑚 Start and stop time of the load shifting program of the household 𝑎

in microgrid 𝑚.

𝑑𝑚𝑖𝑛𝑎𝑚
, 𝑑𝑚𝑎𝑥𝑎𝑚

Minimum and maximum of the shiftable load of the household 𝑎 in
microgrid 𝑚.

𝐸𝑎𝑚 Total electricity consumption of the household 𝑎 in microgrid 𝑚
during the load shifting program.

𝑝
𝑃𝑉,𝑡,𝑚𝑖𝑛
𝑚 , 𝑝

𝑃𝑉,𝑡,𝑚𝑎𝑥
𝑚 Minimum and maximum of the PV-generated electricity volume

in microgrid 𝑚 at time 𝑡.

𝑝
𝑤𝑖𝑛𝑑,𝑡,𝑚𝑖𝑛
𝑚 , 𝑝

𝑤𝑖𝑛𝑑,𝑡,𝑚𝑎𝑥
𝑚 Minimum and maximum of the wind turbine-generated elec-

tricity volume in microgrid 𝑚 at time 𝑡.

𝜏𝑠𝑝𝑖𝑛 Spinning reserve ratio.

𝑝
𝑚𝑖𝑛,𝑡
𝑚 , 𝑝

𝑚𝑎𝑥,𝑡
𝑚 Minimum and maximum of electricity volume that the microgrid 𝑚

purchased from the retailer at time 𝑡.

𝑝
𝑚𝑖𝑛,𝑡
𝑒𝑥𝑝𝑜𝑟𝑡,𝑚, 𝑝

𝑚𝑎𝑥,𝑡
𝑒𝑥𝑝𝑜𝑟𝑡,𝑚 Minimum and maximum of electricity volume that the micro-

grid 𝑚 sold to the retailer at time 𝑡.
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, 𝑝𝑚𝑎𝑥
𝑡𝑜𝑡𝑎𝑙

, 𝑔𝑚𝑖𝑛
𝑡𝑜𝑡𝑎𝑙

, 𝑔𝑚𝑎𝑥
𝑡𝑜𝑡𝑎𝑙

Total electricity and natural gas volume that the retailer
purchased from the wholesale energy markets.

𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑚𝑖𝑛

𝑒𝑙𝑒,𝑚
, 𝜋

𝑟𝑒𝑡𝑎𝑖𝑙,𝑚𝑎𝑥

𝑒𝑙𝑒,𝑚
Minimum and maximum of retail electricity price for micro-

grid 𝑚.
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𝑟𝑒𝑡𝑎𝑖𝑙,𝑚𝑖𝑛
𝑔𝑎𝑠,𝑚 , 𝜋

𝑟𝑒𝑡𝑎𝑖𝑙,𝑚𝑎𝑥
𝑔𝑎𝑠,𝑚 Minimum and maximum of retail natural gas price for micro-

grid 𝑚.

𝐴𝑉𝐺𝑒𝑙𝑒, 𝐴𝑉𝐺𝑔𝑎𝑠 Average retail electricity and natural gas price over the scheduling
hours.

𝜂𝑐
𝑘
, 𝜂𝑑
𝑘

Charging and discharging efficiencies of the ESS of the retailer 𝑘 .

Variables

𝛾
𝑐,𝑡

𝑘
, 𝛾

𝑑,𝑡

𝑘
Charging and discharging status of the ESS of the retailer 𝑘 .
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𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘
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𝜋
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𝑞
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
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𝑞
𝑏𝑖𝑑,𝑡
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at time 𝑡.

𝑝
𝑐,𝑡

𝑘
, 𝑝

𝑑,𝑡

𝑘
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𝑡.
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time 𝑡.

𝐸 𝑡
𝑘
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𝑞
𝐿𝑃𝐸,𝑡
𝑛 Electricity volume that retailer 𝑛 bought from other retailers (if
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𝑝𝑡𝑚, 𝑔
𝑡
𝑚 Electricity and natural gas volume that the microgrid 𝑚 purchased

from the retailer at time 𝑡.

𝑝
𝑒𝑥𝑝𝑜𝑟𝑡,𝑡
𝑚 Electricity volume that the microgrid 𝑚 exports to the retailer at

time 𝑡.

𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑒𝑙𝑒,𝑚
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𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
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𝑡.

𝑝
𝐶𝐻𝑃,𝑡
𝑚 , 𝑞

𝐶𝐻𝑃,𝑡
𝑚 Electricity and heat volume generated by the CHP in microgrid 𝑚

at time 𝑡.

𝑔
𝐶𝐻𝑃,𝑡
𝑚 Natural gas volume that consumed by the CHP in microgrid 𝑚 at

time 𝑡.
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𝑚 CHP operational, start-up and shut-down status in microgrid 𝑚 at

time 𝑡.
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𝑚 , 𝜃
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𝑚 Heat pump operational, start-up and shut-down status in microgrid
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𝐸
𝐸𝑆,𝑡
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𝑡
ℎ𝑒𝑎𝑡,𝑚

Electricity, natural gas and heat curtailment rate in microgrid
𝑚 at time 𝑡.
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C h a p t e r 1

INTRODUCTION

1.1 Background and Problem Statement
With the increasing penetration of renewable energy sources (RES) and distributed
energy resources (DERs) in electricity markets and systems, a transactive energy
system has been developed to mitigate the pressure on electricity systems and
achieve a more flexible and resilient electricity system and market operations. The
formal definition of transactive energy is stated by GridWise Architecture Council
as follows: “A system of economic and control mechanisms that allows the dynamic
balance of supply and demand across the entire electrical infrastructure using value
as a key operational parameter" [1]. The definition points out the importance of
the economic perspective in the transactive energy system. Therefore, transactive
energy markets have been proposed in the literature in order to provide a platform
for prosumers (e.g., individual consumers with DERs, aggregators and microgrids
(MGs)) to balance their power surplus and demand [2]. It can be understood as a
solution to climate change and carbon emission reductions. [3] states many benefits
of the local power market, such as mitigation of market power, providing flexibility
and security to consumers and supporting medium-sized renewable energy power
plants.

In a transactive energy system, there exist many research problems regarding the
design and operation of the electricity and multi-energy market. For instance, strate-
gic bidding and offering are two important research problems for both wholesale
and local electricity markets where market participants attempt to maximise their
own profits or minimise their costs by choosing optimal strategies. Many existing
studies address the direction but mainly focus on the decision-making problem of
electricity producers (e.g., generators). This is due to the fact that previously only
electricity producers typically act as price-makers in the wholesale electricity mar-
kets [4]–[6]. However, with the development of smart grids and demand response
(DR) management, the role of market players, such as energy retailers, has been
changing. Traditionally, energy retailers act as price-takers in the wholesale market
while offering fixed retail prices to their customers. With the increasing demand-
side flexibility empowered by the penetration of DERs such as electric vehicles,
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energy storage systems (ESS), photovoltaic, and DR programs [7], [8], energy re-
tailers are now better positioned to make strategic bidding in the wholesale and local
electricity markets and offer more flexible retail pricing decisions such as dynamic
pricing to end customers [9], [10].

Moreover, since emerging smart grid technologies in the energy system have in-
troduced new opportunities and challenges to both energy suppliers and customers
[11], local market participants, such as microgrids and local energy communities,
have been accelerating the pace of developing DERs, which has resulted in the in-
creasing trend in developing integrated local energy systems, including electricity,
natural gas and heat energy, and the expanding differences among the microgrids
[12]. In this regard, the traditional retail pricing strategy of energy retailers, which
offers uniform energy tariffs to customers regardless of their differences, cannot
fully unlock the potential benefits of DERs and achieve the potential profit [13].
Therefore, energy retailers would need to consider the interdependence among dif-
ferent energy types from the demand side to make robust and reliable retail pricing
decisions. Furthermore, energy retailers also need to take the differences among
local customers into consideration to offer customised retail prices to each customer.
This calls for a novel customised multi-energy pricing scheme capable of capturing
the multi-energy interdependence and characteristics of differentiated customers to
be developed for the retail energy markets.

In addition, improving the accuracy of energy demand predictions is crucial for
energy suppliers to refine and optimise their strategic bidding, offering, and pricing
decisions. This forecasting capability goes beyond operational utility and has be-
come a strategic tool in the complex landscape of energy market operations. The
importance of long-term energy load forecasting further impacts energy system
operators’ operating decisions, as they aim to improve the overall efficiency and
resilience of the energy system and markets. This investigation into forecasting
approaches not only addresses immediate challenges within the volatile energy mar-
ket but also sets the stage for future innovations in predictive analytics and load
forecasting. By doing so, it bridges operational hurdles with strategic advancements
in energy management, highlighting the significant relationship between accurate
forecasting and strategic energy market participation.

The aforementioned background and research problems show there are many chal-
lenges to developing a full transactive energy system considering multi-energy,
the uncertainty of renewable energies and demand side management. The overall

2
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general challenges in the transactive energy system can be summarised as follows.

1. Most of the existing studies about strategic bidding and offering problems
focus on the energy producers, such as generators, which are considered
price-makers. However, since the development of Smart Grid technologies
and DR management, other energy participants, such as energy retailers and
aggregators, can also contribute significantly to the energy pricing decisions
of energy markets, such as wholesale and local/retail markets. There is a need
to study the strategic bidding and offering behaviours of multiple strategic
energy retailers as price-makers participating in energy markets.

2. With the development of Smart Grid and DR technologies, energy customers
could gain the potential desire to change the energy carriers more frequently
based on the energy price each energy carrier offers. There are only a few
existing research addresses along the direction. Therefore, an advanced study
of customers’ switching behaviours is urgently needed.

3. Since accelerating the development of DERs, the trend of establishing inte-
grated local energy systems, including electricity, natural gas and heat ener-
gies, is growing rapidly. In addition, the differences among energy customers,
such as microgrids, also need to be taken into consideration as the DERs and
DR technologies could differentiate energy customers significantly. There-
fore, energy suppliers, such as energy retailers and aggregators, would need to
develop a novel multi-energy pricing scheme to cope with the interdependence
among different energies and characteristics of different energy customers.

4. With the recent development and popularisation of smart meters, the impor-
tance of developing advanced long-term energy load forecasting models for
energy participants, such as energy retailers, has increased dramatically. In
addition, forecasting models for long-term time-series data (e.g., energy load)
need to be improved based on the latest development of machine/deep learning
techniques, such as the Transformer-based models, adopted extensively in the
field of natural language processing (NLP) and computer vision (CV).

1.2 Research Aims and Objectives
This research aims to develop a smart hierarchical transaction energy system that
considers multi-energy, renewable energies and demand-side management. To
achieve this aim, the following objectives are established below.

3
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• To address Challenge 1, a novel optimisation model needs to be built to
tackle the strategic bidding and offering problems where there are multiple
energy retailers participating in energy markets, such as wholesale and retail
markets. In addition, the retail competition among the energy retailers and
the equilibrium energy price need to be simulated and calculated.

• To cope with Challenge 2, a model that can formulate the customers’ behaviour
of switching to different energy carriers needs to be developed based on the
energy price that each energy carrier offers.

• To address Challenge 3, an innovative multi-energy pricing scheme for energy
retailers is required to be developed to capture the interdependence among
different energies, such as electricity, natural gas and heat energies, and the
differentiated characteristics of different energy customers. Specifically, smart
grid technologies, such as DERs, DR, and renewable energies, should be
considered significant characteristics of energy customers.

• To address Challenge 4, a novel Transformer-based long-term time-series
forecasting (LTTSF) model needs to be developed to outperform other LTTSF
models at predicting multi-energy loads for energy suppliers, such as energy
retailers and aggregators. The model should improve long-term prediction
accuracy significantly by capturing the interrelationship among different en-
ergies and features, such as electricity, natural gas, heat and greenhouse gas
(GHG), and long-range, past energy-related information.

1.3 Contributions
Based on the aforementioned challenges, research aims, and objectives, the thesis
has made three major contributions to developing a smart hierarchical transactive
energy system. The contributions are concluded as follows.

• A novel bilevel optimisation model for formulating strategic behaviours of
multiple retailers as price-makers participating in both day-head wholesale
and local markets is developed. The proposed bilevel model consists of mul-
tiple retailers, multiple electricity markets, and customers’ ability to switch
to different retailers. To the best of our knowledge, this is the first work from
the bilevel game-theoretic perspective to investigate the problem for multi-
ple retailers considering customers’ switching behaviours and market share.
In particular, the single retailer’s bilevel problem is first transformed into

4



1.3. CONTRIBUTIONS CHAPTER 1.

mathematical programming with equilibrium constraints (MPEC) problem
via deriving Karush–Kuhn–Tucker (KKT) conditions from lower-level prob-
lems. The derived bilinear terms and complementarity slackness constraints,
which result in the non-convexity of the MPEC, are solved by linearisation
methods and lead to a tractable mixed-integer quadratic programming (MIQP)
problem. In addition, the Bertrand competition model is used to formulate
the retail competition among strategic retailers. This further forms the equi-
librium problems with equilibrium constraints (EPEC) problem and is solved
by the diagonalisation algorithm.

• An innovative customised multi-energy pricing scheme is proposed and for-
mulated by a single-leader multi-follower bilevel optimisation model. In
particular, the energy retailer’s profit maximisation problem is modelled at
the upper level, while the operational cost minimisation problem for each
microgrid is formulated at the lower level. Furthermore, at the lower level,
the energy management model for each microgrid equipped with energy con-
verters (i.e., combined heat and power (CHP) and heat pump), electrical
and thermal storage, RES (i.e., solar and wind) and DR programs (i.e., load
curtailment and shifting) is formulated as a mixed-integer linear program
(MILP) program. Three hybrid metaheuristic algorithms (i.e., particle swarm
optimisation (PSO), genetic algorithm (GA) and simulated annealing (SA))
combined with the conventional MILP are developed to solve the proposed
bilevel problem to conquer the non-convexity of lower-level problems.

• A novel Transformer-based model architecture, Patchformer, is proposed for
long-term multi-energy load forecasting. It integrates the patch embedding
block and encoder-decoder structure. In particular, the patch embedding block
splits the multivariate time series into various distinct univariate inputs and
segments each of them into subseries-level patches which can capture local
semantic information within each univariate time series. The approach can
also learn inter-channel relationships effectively since each channel shares
the same embedding and Transformer weights. In addition, with the multi-
head attention mechanism, the encoder-decoder structure facilitates capturing
long-range dependencies and understanding the complexity of time-series
data, which potentially improves forecasting accuracy.

5
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1.4 Thesis Outline
The rest of this thesis is organised as follows. Chapter 2 reviews the relevant liter-
ature related to strategic bidding and offering, multi-energy pricing, and long-term
multi-energy load forecasting problems, respectively. Chapter 3 proposes a bilevel
game-theoretic decision-making framework that considers multiple energy suppli-
ers’ (i.e., retailers’) strategic bidding and offering problems in day-ahead wholesale
and local electricity markets while taking customers’ switching behaviour into ac-
count. Chapter 4 develops a customised multi-energy retail pricing scheme consid-
ering the interdependence among different energies, such as electricity, natural gas
and heat energies, and the differences among managed microgrids equipped with
energy converters, storage, RES and DR programs. Chapter 5 proposes a long-term
time series forecasting model named Patchformer for multi-energy load prediction,
which is a significant shift towards adopting predictive analytics to better forecast
future energy demands. Lastly, Chapter 6 concludes this thesis and discusses the
directions of future research.
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C h a p t e r 2

LITERATURE REVIEW

This chapter presents background information and reviews relevant literature related
to all research aims and objectives mentioned in the last chapter. Section 2.1 reviews
the problem of strategic bidding and offering, the related bilevel modelling and its
solutions. Section 2.2 introduces the recent development of retail pricing schemes
for energy suppliers. The solution methods for a bilevel model with integer variables
at the lower level are also discussed in detail. Lastly, the problem of long-term time-
series forecasting for multi-energy datasets is reviewed in Section 2.3.

2.1 Strategic Bidding Among Energy Suppliers
The decision-making of participants in hierarchical systems (e.g., electricity mar-
kets) is often modelled as a bilevel optimisation problem or Stackelberg game
[14][15]. In bilevel models for electricity markets, strategic participants (e.g., elec-
tricity generators and retailers) either maximise their profits or minimise their costs
at the upper level. The lower level usually consists of a market-clearing prob-
lem solved by an independent system operator (ISO) or a customer-side energy
management problem. The standard approach to solving the bilevel models is re-
formulating it as a single-level mixed-integer program by applying KKT conditions
to the lower-level problem. There are numerous existing studies along this direc-
tion. For instance, in [16], a scenario-based bilevel model has been applied to a
large consumer’s profit maximisation problem where the wholesale market-clearing
problem is considered at the lower level, and a heuristic method is introduced to
solve one MPEC problem per scenario. [17] proposes a customised pricing frame-
work for retailers for different residential users. The pricing framework is modelled
as a bilevel program where retailers purchase electricity from wholesale markets
and compete for market share. Although the bilevel models considering retailers,
system operators, or generators are prevailing, there is increasing attention paid to
other market participants, such as DR aggregators and microgrids. For instance,
[18] introduces multi-energy players as aggregators to maximise their profits and
mitigate their operational risks. The problem is modelled as a bilevel problem
and interpreted as an MPEC problem. [19] focuses on the reserve management
problem of the electric vehicles (EVs) aggregator. The upper level of the bilevel
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model is formulated as the profit maximisation problem of the EVs aggregator. The
lower level represents the optimal charging/discharging decisions of EVs owners.
An exact and finite decomposition algorithm is proposed to solve the problem in
an iterative manner. [20] proposes a bilevel program for EVs aggregators from
a different perspective. Instead of maximising profit at the upper level, charging
cost minimisation is formulated. The lower level represents the day-head wholesale
(DAW) market-clearing problem. [21] develops a single-leader multi-follower game
model where the market operator acts as the player at the upper level and smart grid
entities at the lower level aim to optimally schedule their own renewable energy
resources, energy storage, and DR resources. Likewise, [22] develops a bilevel
model for microgrids to achieve optimal bidding strategy, in which the lower level is
the distributed energy market’s clearing problem and the upper level represents the
optimal scheduling problem for a microgrid. [23] constructs a bilevel Stackelberg
competition model to investigate the interaction between regulated and merchant
storage investment. A merchant profit maximisation problem is modelled at the
upper level, while an overall system cost minimisation problem is formulated at the
lower level. [24] proposes a stochastic bilevel framework to model the interactions
between a wind power producer at the upper level, and EVs and DR aggregators
at the lower level. The wind power producer is also formulated to achieve optimal
bidding decisions in the competitive wholesale markets.

From an economics point of view, existing studies on strategic bidding and offering
problems can be classified based on whether the market participants are price-makers
or price-takers [5]. If the market participants have relatively large-scale and flexible
loads or supplies, they can be considered as price-makers. Along this direction,
[9] develops a short-term planning model of a price-maker retailer with flexible
power demand participating in the DAW electricity market. [25] develops a new
scenario-based stochastic optimisation model for price-maker economic bidding in
both day-ahead and real-time markets where a DR program with time-shiftable load
is adopted to create load flexibility. [20] proposes an optimal bidding strategy for
a large-scale plug-in electric vehicle (PEV) aggregator. The upper level represents
the charging cost minimisation of the PEV aggregator, whereas the market-clearing
problem is formulated at the lower level. In contrast, if the market participants are
small-scale or have inelastic loads or supplies, they usually act as price-takers. Along
this direction, [7] formulates a stochastic mixed-integer linear program to obtain an
optimal bidding strategy for a DERs aggregator participating in the day-ahead market
where the market-clearing prices are given by different scenarios. In [21], the lower
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level of the bilevel program represents multiple smart grids’ optimal scheduling
problems, whereas the ISO clears the day-ahead market at the upper level. [26]
takes both price-maker and price-taker positions into consideration. Specifically,
the DR aggregator acts as a price-taker and a price-maker in the day-ahead and
real-time market, respectively.

The decision-making of multiple retailers has also been studied in the literature
either through a single-level model or a bilevel model. For the former, [27] ad-
dresses the portfolio optimisation model of retailers, which involves a risk-return
optimisation method based on the Markowitz theory. [28] proposes a multistage
stochastic optimisation approach to capture the uncertainties of electricity loads and
prices for retailers’ contract portfolios, which account for their risk preferences. For
the latter, [29] proposes a bilevel multi-leader multi-follower game to investigate the
benefit of aggregation of prosumers to revenue generation in wholesale and retail
markets in which aggregated prosumers act as retailers (leaders) and end-users act
as followers. [30] considers strategic firms as leaders in the upper-level problem,
whereas electricity and natural gas market operators act as followers in the lower
level. [31] presents a dynamic pricing framework for electricity and gas utility
companies in the coupled retail electricity and natural gas markets by developing a
two-leader multi-follower bilevel model. In particular, the electricity and gas utility
companies acting as leaders serve energies to the integrated DR aggregators which
are followers at the lower level. The competition among multi-energy retailers in
the presence of integrated DR prosumers is formulated as a multi-leader-follower
bilevel game in [32]. Lastly, [33] considers an EPEC framework to model the inter-
action among generation companies, microgrids, and load aggregators participating
in the wholesale and distribution network electricity markets. In Chapter 3, we
study multiple strategic retailers as price-makers participating in both wholesale
and local/regional energy markets within the bilevel decision-making framework.

Existing studies can be further categorised based on whether market players partic-
ipate in multiple levels of markets (e.g., wholesale vs. local/ retail) simultaneously.
Most studies, however, are often based on a single electricity market, such as day-
ahead market [4], [6], [7], [9], [16], [20], [21], [35] or retail market [5], [10], [34],
[39], [42]. There are also a few studies that focus on analysing interactions among
market participants in the wholesale (i.e., day-ahead and real-time) electricity mar-
kets [17], [25], [26]. Only a few studies in the literature consider multiple levels
of markets simultaneously, such as wholesale and retail markets [18], [33], [40],

9
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Table 2.1: Literature classification. ✓: Yes; ✗: No; – : Not applicable.

Literature Bilevel model Price maker Multi-market Multi-leader Customer be-
haviour

[29], [31]–[33] ✓ ✓ ✓ ✓ ✗

[5], [6], [16],
[19], [20],
[22], [34]

✓ ✓ ✗ ✗ ✗

[4], [30], [35] ✓ ✓ ✗ ✓ ✗

[21] ✓ ✗ ✗ ✗ ✗

[7] ✗ ✗ ✗ – ✗

[9], [28], [36],
[37]

✗ ✓ ✗ – ✗

[27] ✗ ✓ ✓ – ✗

[18], [38] ✓ ✓ ✓ ✗ ✗

[39] ✓ ✓ ✗ ✗ ✓

[10] ✗ ✗ ✗ – ✓

[17], [26],
[40], [41]

✓ ✓ ✓ ✗ ✓

[25], [42] ✗ ✓ ✓ – ✓

[43] ✗ ✓ ✓ ✓ ✓

[43]. For instance, the aggregator in [18] participates in both the wholesale and
local energy markets. [40] proposes a framework that can optimise the strategy
of a distribution company owning DERs and ESS in the wholesale and retail en-
ergy markets. In Chapter 3, we also consider multiple levels of electricity markets
(i.e., wholesale and local markets). Apart from the conventional retail market, we
develop a novel local/regional energy exchange market named the local power ex-
change (LPE) market for retailers. In the literature, studying the local energy market
typically focuses on modelling the operation of emerging market participants such
as prosumers, DERs aggregators, and microgrids [36], [37]. For instance, in [36],
a local power exchange centre is developed where a novel clustering algorithm is
developed to cluster prosumers trading in the local energy market geographically.
Another local energy exchange market design for energy trading among energy
storage unit owners is studied in [37], where a novel local energy exchange market-
clearing approach is proposed based on double auctions. However, modelling the
established and traditional role of energy retailers in the local market is much less
studied. In Chapter 3, we propose an LPE market for strategic retailers equipped
with energy storage to manage their supply and demand deviation. Compared to the
papers mentioned above, the uniqueness of our proposed LPE market lies in that
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1) The participants in the LPE market are strategic retailers equipped with energy
storage and arbitrage opportunities; 2) retailers in the LPE market can buy/ sell elec-
tricity from/ to other retailers; 3) the LPE market provides a platform for retailers to
balance their supply and demand deviation in a local level market. This new local
market for energy retailers will complement existing local energy markets to better
facilitate the management of local and distribution energy systems.

In addition to the strategic decision-making problem of multiple retailers in multiple
levels of electricity markets, customers’ switching behaviours are also modelled
in Chapter 3. There are only a few existing studies that address this direction.
For instance, [43] considers customers’ switching behaviours in the retail market
where a single-level model is proposed to maximise the profit of strategic retailers.
[41] presents a decision-making framework for an electricity retailer considering
the rational response of consumers in a competitive environment. The retailer is
considered as a price-taker in the day-ahead market, and the rival retailers’ selling
prices are assumed to be given. The switching behaviours of consumers are modelled
as the switching cost for the hesitation of consumers to switch contracts between
retailers. [39] adopts utility functions to model three categories of DR customers
based on their sensitivity to retail prices from low, semi, to high flexibility. It should
be noted that modelling customers’ switching behaviours for the strategic offering
of multiple retailers is particularly crucial to capturing the switching decisions
of customers among different retailers, the implications and impacts on retailers’
strategic decisions, and the market operations. To the best of our knowledge, there
is no existing research that tackles this problem while considering the hierarchical
nature of multiple competitive price-maker retailers and customers.

The above-reviewed literature is summarised in Table 2.1. To fill the research
gap following the above analysis, we propose a bilevel game-theoretic framework in
Chapter 3 to model the multiple retailers’ (as price-makers) optimal decision-making
problems when participating in both wholesale and local markets with customers’
switching behaviours considered.

2.2 Retail Pricing Schemes of Energy Suppliers
Retail energy pricing is an important research problem and has been extensively
studied in the literature. [44] systematically investigates and summarises the exis-
tence of retail pricing schemes, which demonstrates that the real-time pricing (RTP)
strategy can well utilise the demand-side management flexibility over the static

11



2.2. RETAIL PRICING SCHEMES OF ENERGY SUPPLIERS CHAPTER 2.

pricing strategy, such as the time-of-use (TOU) scheme. [45] presents a dynamic,
real-time energy pricing mechanism to accurately distribute power for the EVs
charging process fairly when the microgrids are congested. A retail RTP scheme in
the presence of hydrogen storage systems and EVs, compared with TOU and fixed
pricing schemes, is proposed in [46]. The bi-objective problem is formulated, in
which the average profit needs to be maximised, while the profit deviation should be
minimised. The Pareto optimal solution is obtained by the epsilon constraint method
and fuzzy satisfying approach. The numerical results show the privilege of the RTP
scheme regarding the obtained profit of the retailer. [47] develops a conditional
value at risk (CVaR)-based retail electricity pricing scheme to reduce the impact
of risk caused by the uncertainties from RES generation and estimated wholesale
electricity prices. An energy management and pricing method for the community
energy retailer incorporating smart building consumers is investigated in [48]. The
numerical results, which are solved by the bilevel chance-constrained programming
approach, show that the proposed approach can benefit both retailers and customers.
Lastly, [49] proposes a bilevel game-theoretic model for multiple strategic retailers’
decision-making problems, which include the retail prices in the retail market, bid
prices in the day-ahead wholesale market, and the bid/offer prices in the local power
exchange market. The problem is formulated as an EPEC problem, which is solved
by the diagonalisation algorithm.

The majority of the existing literature focuses on developing a retail pricing strategy
in the electricity market, whereas only few studies analyse the retail pricing problem
in a multi-energy context. In addition, since the development of a multi-energy
pricing scheme consists of energy suppliers (e.g., retailers) and customers (e.g.,
microgrids and aggregators), a bilevel optimisation model, which can well present
the intrinsic hierarchical structure of the energy system, has been widely adopted in
the literature. For instance, [50] proposes a bilevel optimal retail pricing scheme for
the retailer and multi-energy buildings to perform the price-based DR programs. A
bilevel stochastic RTP model in the framework of the Markov Decision Process is
formulated for the multi-energy system in [51]. A novel distributed online multi-
agent reinforcement learning algorithm is developed to solve the proposed model.
[52] proposes a bilevel multi-energy trading model between the multi-energy service
provider and consumer by setting the optimal energy pricing scheme and energy
economic dispatch at the upper level. Optimal consuming patterns of different
energies are obtained for the multi-energy consumer in the lower-level problem.
[53] develops an integrated energy service provider (IESP) as a retailer to effectively
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set energy prices and energy management in the multi-energy market. The impact
of DR and wholesale prices’ uncertainties is considered in the proposed two-stage
stochastic hierarchical framework. The day-ahead energy pricing and management
method considering multi-energy DR programs for IESP in regional integrated
energy systems is addressed in [54]. The bilevel Stackelberg game optimisation
model is established and shows that the pricing scheme benefits both the energy
supplier (i.e., IESP) and the consumer. The pricing behaviour of multi-energy
players who can trade electricity, natural gas and heat energy to maximise their
profits and reduce their operational risk is studied in [18]. The bilevel approach
is applied to model the decision-making conflict of the multi-energy players with
other energy players participating in the multi-energy system.

The bilevel optimisation model is typically solved by analytical mathematical meth-
ods, such as the KKT-based reformulations in the literature [18], [50], [52]–[54].
However, the premise of applying those methods may include the convexity of the
lower-level problem. For the bilevel model, whose lower-level problem is proved
as non-convex, such as including integer variables, traditional mathematical ap-
proaches cannot solve it effectively. Therefore, many metaheuristic algorithms,
such as PSO, GA and SA, are introduced in the literature to overcome the non-
convexity of the lower-level problem [55]. For instance, [56] develops a hierarchical
market framework to apply real-time retail pricing between an energy supplier and
multi-energy microgrids, where a hybrid solution method combining PSO and the
branch and bound algorithm is proposed. In [57], a dynamic pricing profile is
developed for utilising distributed energy storage and overcoming the intermittency
from renewable generation. A novel non-cooperative Stackelberg game is proposed
to formulate the pricing problem, in which the upper-level problem is solved by the
PSO algorithm, and linear programming is applied at the lower level. In addition,
[58] presents a bilevel price decision model for a load-serving entity to manage
multiple multi-energy microgrids with DR. The microgrids’ operation problems are
formulated at the lower level and solved by a MILP program. A GA algorithm is
applied to find the optimal price decisions for the load-serving entity at the upper
level. A real-time pricing strategy is proposed in [59] to effectively adjust the power
balance between the supply and demand and manage the microgrid’s internal energy
dispatch. The pricing strategy is formulated as a bilevel programming model, where
the supplier’s price decision-making at the upper level is solved by the GA algorithm.
[60] develops an SA-based price control algorithm to solve the non-convex real-time
pricing problem, which can reduce the peak-to-average load ratio and retailer’s cost
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through DR management in smart grid systems. [15] proposes a bilevel Stackelberg
game to model hierarchical interactions between one profit-seeking energy retailer
and multiple cost-minimising energy customers. A GA algorithm is developed to
solve the bilevel model. Lastly, [10] proposes a bilevel model, where data-driven
appliance-level customer behaviour learning models are developed at the lower level.
The resulting hybrid optimisation–machine learning bilevel model is solved by GA.

The retail pricing schemes mentioned in the above literature are classified into
the uniform pricing scheme, where the decision maker optimises the pricing deci-
sions without considering the different characteristics among underlying energy cus-
tomers, such as the demand-side load profile and the specifications of the equipped
DERs, such as energy converters and storage. Therefore, the elasticity on the
demand-side management of each energy customer cannot be fully utilised under
the uniform pricing scheme. To conquer the deficiency of the widely used uniform
pricing scheme, a novel customised energy pricing scheme should be developed
that takes the unique characteristics of each customer into consideration. It is de-
signed to motivate the potential flexibility of demand-side management to benefit
market participants, such as energy retailers. However, only few studies address the
customised retail energy pricing problem in the literature. For instance, [61] devel-
ops a bilevel model for optimal differential pricing considering different customer
groups characterised by different price sensitivities. [17] proposes a customised
TOU electricity pricing scheme for different residential users depending on their
load-consumption profiles, which is established based on the bilevel optimisation
framework. The problem of customising TOU electricity retail prices based on load
profile analysis by applying a clustering algorithm is addressed in [62]. Similarly, a
realistic multiple dynamic pricing scheme for the segmented customers based on the
different identification of load patterns is proposed in [13], which demonstrates the
effectiveness of the clustering-based approach. Furthermore, the electricity retailer
could achieve better profit gain under the proposed multiple pricing scheme. [63]
presents a personalised RTP scheme using a bilevel model to improve the manage-
ment of different electricity consumption, including both traditional and renewable
energies. [64] proposes a bilateral energy-trading structure to coordinate the hierar-
chical personalised electricity pricing model between the energy trading agent and
energy prosumers.

The above-reviewed literature is compared and summarised in Table 2.2. Although
the above studies provide valuable insights regarding the customised retail pricing
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Table 2.2: Literature comparison. ✓: Yes; ✗: No; –: Not applicable.

Literature Uniform
Pricing

Customised
Pricing

Electricity
Market

Multi-
Energy
Market

Bilevel
Model

KKT-
Based
Approach

Metaheuristic-
Based
Approach

[45]–[47] ✓ ✗ ✓ ✗ ✗ – –
[48], [49] ✓ ✗ ✓ ✗ ✓ ✓ ✗

[18], [50],
[52]–[54]

✓ ✗ ✗ ✓ ✓ ✓ ✗

[51] ✓ ✗ ✗ ✓ ✓ ✗ ✗

[56]–[58] ✓ ✗ ✗ ✓ ✓ ✗ ✓

[10], [15],
[59], [60]

✓ ✗ ✓ ✗ ✓ ✗ ✓

[61] ✗ ✓ ✓ ✗ ✓ ✗ ✓

[17] ✗ ✓ ✓ ✗ ✓ ✓ ✗

[62]–[64] ✗ ✓ ✓ ✗ ✓ ✗ ✗

[13] ✗ ✓ ✓ ✗ ✗ – –

scheme, they are limited to electricity markets. Therefore, to the best of our knowl-
edge, there is no existing research studying the customised multi-energy pricing
problem. To fill the research gap following the above analysis, in Chapter 4, we
propose a novel customised multi-energy pricing scheme for an energy retailer that
manages multiple microgrids in the multi-energy market.

2.3 Long-Term Multi-Energy Load Forecasting for Energy Suppliers
The development of Integrated Multi-Energy Systems (IMES) marks a significant
evolution in the energy sector, which reflects a shift towards more diversified, ef-
ficient, and sustainable energy management practices. IMES encompasses various
energy sources and forms, including electricity, gas, heat, cooling and renewables,
and it integrates into a comprehensive system. This integration facilitates a more
holistic energy production, distribution, and consumption framework. The evolution
of IMES reflects a growing recognition of the need for more resilient and adaptable
energy systems, especially in the face of escalating global energy demands and the
need for improving collective technical, economic, and environmental performance
[65]. IMES has become an important strategic development direction in the energy
field to deal with the global challenges in the fossil energy crisis, climate changes
and environmental pollution. The role of energy forecasting is central to the effec-
tive operation of IMES. Precise prediction plays a crucial role in overseeing these
complex systems, guaranteeing that energy generation and supply correspond with
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demand trends. This alignment is essential for maximising the economic and en-
vironmental benefits of IMES as well as for their operational efficiency. Accurate
load forecasting contributes to the economic and environmental sustainability of
energy systems by optimising resource allocation and lowering operating costs. For
instance, [66] shows that the annual economic loss could be up to 10 million pounds
when every percentage point increases in the error of electricity load forecasting
in the United Kingdom. In addition, [67] also illustrates that when the forecasting
error is decreased by 1%, the total energy consumption of 58 million MW/h can be
saved in one year in China. Moreover, effective energy load forecasting promotes
the integration of renewable energy sources, assisting in the reduction of carbon/
greenhouse gas emissions and furthering the aims of sustainable energy from an
environmental standpoint. The prediction’s reliability and accuracy are critical for
the development of future energy systems to be sustainable and able to satisfy energy
demands economically.

The methods of time-series forecasting can be categorised into two groups: 1) tra-
ditional methods represented by time-series analysis and regression analysis. 2)
artificial intelligence methods represented by machine learning and deep learning.
Autoregressive integrated moving-average (ARIMA) [68], [69] is one of the most
popular models in the former group. It predicts the data by obtaining the fitting
equations for time series data and other variables. However, the traditional forecast-
ing methods are mainly based on linear analysis and have limited capacity to deal
with nonlinear problems [67]. The latter group of time-series forecasting methods
includes various machine learning and deep learning techniques, such as Recurrent
Neural Networks (RNN) [70], Long Short-Term Memory (LSTM) networks [71],
Gated Recurrent Units (GRU) [72], [73], and Transformer-based methods [74]–
[78], which have significantly enhanced forecasting capabilities. Among these,
Transformer-based models stand out for their ability to handle large datasets and
capture complex temporal relationships in multivariate data, offering substantial
improvements over other techniques. This is due to their parallelisability and atten-
tion mechanism. In particular, the vanilla transformer model [79] uses a scaled dot
product attention mechanism to calculate the point-wise correlation between two
different data points. However, applying the full attention mechanism to LTTSF is
computationally expensive due to its quadratic complexity in terms of the length of
input sequence 𝐿, which makes it challenging to handle long-term sequences. To
overcome this issue, many improved models for LTTSF have been developed. For
instance, Reformer [74] has been designed to enhance the efficiency for training on
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long sequences by introducing the Locality-Sensitive Hashing attention to reduce
the computational complexity from O(𝐿2) to O(𝐿 log 𝐿). Informer model [75],
which also achieves O(𝐿 log 𝐿) complexity, introduces a ProbSparse self-attention
mechanism, self-attention distilling, and a generative style decoder. These features
collectively enhance the model’s efficiency and prediction capacity, making it a
robust solution for LTTSF. Although the computational complexity has been re-
duced, the above models still use the point-wise attention mechanism to understand
the correlation between two data points. This may not be the preferred mecha-
nism in time-series forecasting compared to NLP. It is because, unlike a word in
a sequence sentence, a single time step in a time series does not have semantic
meaning. Therefore, the point-wise correlation cannot capture the input sequence’s
local semantic information or pattern, which results in poor LTTSF performance.
A few models have been developed to address the problem. For instance, Aut-
oformer [76] incorporates a decomposition architecture with an Auto-Correlation
mechanism calculated by Fast Fourier Transforms (FFT) based on series period-
icity. It focuses on discovering dependencies and aggregating representations at
the sub-series level. This mechanism is more efficient and accurate than tradi-
tional self-attention mechanisms, especially for long-term forecasting. Similarly,
FEDformer [77] also introduces the seasonal-trend decomposition and Frequency
Enhanced Attention block with Discrete Fourier Transform (DFT) to capture the
sub-series level correlation in time-series sequences. Moreover, inspired by the
Vision Transformer (ViT) [80] which truncates each image into 16 × 16 patches
before feeding it into the vanilla transformer model, and the following influential
work BEiT [81], PatchTST [78] segments time series into subseries-level patches
as input tokens, which is designed to retain local semantic information, and em-
ploys channel-independence, where each channel contains a single univariate time
series sharing the same embedding and Transformer weights which benefits for
multivariate time-series forecasting. This design enhances long-term forecasting
accuracy significantly compared to state-of-the-art Transformer models, reduces
computation and memory usage, and allows the model to attend to a more extended
history. Chapter 5 proposes a novel Transformer-based model which integrates the
patch embedding mechanism and vanilla transformer’s encode-decoder architecture
to improve the LTTSF performance.

The methods for load forecasting also consist of both traditional and artificial in-
telligence methods. For instance, [82], [83] apply ARIMA and its variant seasonal
autoregressive integrated moving-average (SARIMA) for load forecasting problems.
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[84] proposes a novel pooling-based deep RNN for household load forecasting,
which batches a group of customers’ load profiles in a pool of inputs. [85] intro-
duces an LSTM RNN-based framework to forecast the highly volatile and uncertain
electric load of an individual energy customer. A novel short-term load forecast-
ing method based on attention mechanism, rolling update and bi-directional long
short-term memory (Bi-LSTM) neural network is proposed for short-term electric-
ity load forecasting in [86]. One of the characteristics of multi-energy data is the
interdependence among each energy. Forecasting models have been built to capture
the interdependence to enhance the forecasting accuracy in the literature. For in-
stance, [67] proposes an encoder-decoder model based on LSTM, considering the
high-dimensional temporal dynamic characteristic. To capture the cross-coupling
characteristic, a coupling feature matrix for multi-energy load is established. [87]
presents a convolutional neural network (CNN)-Seq2Seq model with an attention
mechanism based on a multi-tasking learning method for a short-term multi-energy
load forecasting, which considering temperature, humidity, wind speed, and the cou-
pling relationship of multi-energy. An improved multi-energy forecasting method,
which uses a CNN-Attention-LSTM model based on federated learning to predict
multi-energy load in the integrated energy microgrid is proposed in [88]. In time-
series forecasting literature, the prediction length for LTTSF typically ranges from
96 to 720 time steps with hourly data [76]–[78], [89]. On the other hand, short-term
energy load forecasting literature usually predicts for a few days or weeks [86], [87],
[90], [91], while long-term energy load forecasting literature extends to months or
years [92]–[94]. However, the daily or monthly data used in energy load prediction
may have fewer time steps to predict than LTTSF literature. To predict multi-energy
load with hourly data, this thesis follows the definition of long-term in LTTSF
literature. Furthermore, long-term multi-energy load forecasting has witnessed a
paradigm shift in recent years with the development of Transformer-based models.
Many Transformer-based models are developed for multi-energy load forecasting in
the literature. For instance, A one-encoder multi-decoder multi-task model is devel-
oped in [95] to capture the joint relationships among different energies. A similar
idea is also adopted in [96] with the novel Bayesian multi-head attention mechanism.
Despite the growing body of research on Transformer-based models in multi-energy
forecasting, a research gap remains in the literature. To the best of our knowledge,
there has been no exploration of Transformer-based models that incorporate patch
embedding techniques in long-term multi-energy load forecasting, which has shown
great promise in other domains, such as NLP and CV, for its ability to capture
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local contextual information and reduce computational complexity. [91] proposes
a PatchTCN-TST model, which applies a patching approach but only for short-term
multi-load energy forecasting. The absence of patch embedding-based Transformer
models in long-term multi-energy load forecasting is a significant neglect. Such
models have the potential to enhance the model’s ability to process and learn from
multivariate time series data, capture local and global semantic information, and
provide a deep understanding of energy consumption patterns. This approach could
lead to more accurate and robust forecasting models, which are essential for effective
energy management and planning in the face of increasing demand and the growing
complexity of future energy systems.

2.4 Conclusion
This chapter reviews the related literature of three major research topics, which are:
1) strategic bidding among energy suppliers, 2) retail pricing schemes of energy
suppliers, and 3) long-term multi-energy load forecasting for energy suppliers. In
particular, due to the intrinsic hierarchical structure of the problem, the modelling of
strategic bidding and offering for energy suppliers, such as retailers and aggregators,
is discussed using a bilevel model approach. Furthermore, the KKT solution method
is applied to solve the bilevel model. In addition, the role of the price-maker and
price-taker is compared. It also reviews the problem of multiple energy retailers
participating in multiple energy markets. For the second research topic, the retail
energy pricing problem in electricity and multi-energy markets is presented in
detail. The related solution methods, such as KKT and metaheuristic methods
(e.g., PSO, GA and SA) are discussed. Finally, the customised multi-energy retail
pricing scheme is proposed. In terms of the third research topic, the importance of
multi-energy load forecasting is illustrated. Moreover, it reviews the development of
general time-series forecasting and long-term multi-energy load forecasting in detail.
The next three chapters, namely, Chapter 3-5, focus on each of the research topics
and provide detailed contributions, model formulation, and numerical analysis.

19



20

C h a p t e r 3

A BILEVEL GAME-THEORETIC DECISION-MAKING
FRAMEWORK FOR STRATEGIC RETAILERS IN BOTH
LOCAL AND WHOLESALE ELECTRICITY MARKETS

This chapter is reproduced with changes from:

• Q. Hong, F. Meng, J. Liu, and R. Bo, “A bilevel game-theoretic decision-
making framework for strategic retailers in both local and wholesale electricity
markets,” Applied Energy, vol. 330, p. 120311, 2023.

In Chapter 2, the background information and literature review are illustrated for
strategic bidding and offering problems. To tackle the problem, a multi-leader,
multi-follower bilevel optimisation model for strategic retailers participating in both
local and wholesale energy markets is proposed in this chapter.

3.1 Introduction
This chapter proposes a bilevel game-theoretic model for multiple strategic retailers
participating in both wholesale and local electricity markets while considering
customers’ switching behaviours. At the upper level, each retailer maximises its own
profit by making optimal offering decisions in the retail market and bidding decisions
in the DAW and LPE markets. The interaction among multiple strategic retailers
is formulated using the Bertrand competition model. For the lower level, there are
three optimisation problems. First, the customers’ welfare maximisation problem
with their switching behaviours is formulated to capture the demand responses from
customers. Second, a market-clearing problem is formulated for the ISO in the
DAW market. Third, a novel LPE market is developed for retailers to facilitate their
power balancing. In addition, the bilevel multi-leader multi-follower Stackelberg
game forms an EPEC problem, which is solved by the diagonalisation algorithm.
Numerical results demonstrate the feasibility and effectiveness of the EPEC model
and the importance of modelling customers’ switching behaviours. We corroborate
that incentivizing customers’ switching behaviours and increasing the number of
retailers facilitates retail competition, which results in reducing strategic retailers’
retail prices and profits. Moreover, the relationship between customers’ switching
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behaviours and welfare is reflected by a balance between the electricity purchasing
cost (i.e., electricity price) and the electricity consumption level.

3.1.1 Contributions
The contributions of this chapter are summarised as follows:

• We propose a novel bilevel model to formulate strategic behaviours of multiple
retailers as price-makers participating in both DAW and local markets. The proposed
bilevel model consisting of multiple retailers, multiple electricity markets, and
customers’ abilities to switch to different retailers is particularly important to model
practical scenarios. To the best of our knowledge, this is the first work from the
bilevel game-theoretic perspective to investigate the problem for multiple retailers
considering customers’ switching behaviours and market share.

• The bilevel problem with a single retailer is firstly reformulated into an MPEC
problem by deriving KKT conditions from lower-level problems. To overcome the
non-convexity in the resulting MPEC problem introduced by the bilinear terms and
complementarity slackness constraints, linearisation methods are conducted, which
leads to a tractable MIQP problem. In addition, the Bertrand competition model is
adopted to model the interaction among strategic retailers, which is formulated as
an EPEC problem and solved by the diagonalisation algorithm.

• Comprehensive numerical results are provided to verify the feasibility and effec-
tiveness of the proposed EPEC model and diagonalisation algorithm. In addition,
the effects of customers’ switching behaviours and the number of retailers in the mar-
kets on the strategic retailers’ optimal decisions are extensively studied. Specifically,
increasing customers’ switching behaviours and the number of retailers promotes
retail competition, which negatively correlates to strategic retailers’ equilibrium re-
tail prices and profits. The relationship between customers’ switching behaviours
and their welfare is also elaborated.

3.1.2 Chapter Organisation
The remainder of this chapter is organised as follows. The proposed bilevel model
of a single retailer is developed in Section 3.2. Section 3.3 discusses the method-
ologies for reformulating the bilevel model into an MIQP model. Furthermore, the
diagonalisation algorithm for solving the EPEC problem with multiple retailers is
also proposed in this section. Numerical results are presented and discussed in detail
in Section 3.4.
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3.2 Bilevel Game-Theoretic Model
This section proposes a bilevel optimisation problem for a strategic retailer who
maximises its profit. Specifically, the strategic retailer participates in DAW and
local markets (i.e., retail and LPE markets). The detailed description of the proposed
bilevel model is presented in Section 3.2.1. Furthermore, the upper and lower-level
problems of the bilevel model are introduced and analysed in Section 3.2.2 and
3.2.3, respectively. Consequently, the complete bilevel model is formulated in
Section 3.2.4.

3.2.1 Model Description
The proposed bilevel model with a single retailer can be interpreted as a single-
leader multi-follower game where the strategic retailer acts as the leader, whereas
customers, ISO, and the LPE market operator are followers. In particular, the
strategic retailer optimises the ESS management and pricing decisions (i.e., retail
prices in the retail market, bid prices in the DAW market, and bid/offer prices in
the LPE market) at the upper level. Subsequently, customers react to the optimal
load demand at the lower level based on their welfare. Market operators clear
their corresponding markets (i.e., DAW and LPE markets) and send their cleared
electricity volume back to the strategic retailer. The structure of the proposed bilevel
model is shown in Figure 3.1. Specifically, the strategic retailer 𝑘 maximises its profit
at the upper level by setting its strategies when participating in all three electricity
markets. These strategies include its retail prices 𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘
in the retail market, its bid

prices in the DAW market 𝜋𝑏𝑖𝑑,𝑡
𝑘

, its bid/offer prices in the LPE market 𝜋𝐿𝑃𝐸,𝑡
𝑘

and its
ESS charging/discharging volume 𝑝𝑐,𝑡𝑒 /𝑝𝑑,𝑡𝑒 . Subsequently, there are three lower-level
problems. The first lower-level problem describes customers’ welfare maximisation
problem. The welfare function is formulated as the difference between customers’
utility and their cost of purchasing electricity [1]. The market share function of
the retailer 𝑘 , as opposed to other retailers participating in the retail market, is
derived after reformulating the problem, which can be embedded directly into the
upper-level problem as a constraint. The ISO’s DAW market-clearing problem is
constructed as the second lower-level problem. The ISO receives the bid prices and
electricity load demand from retailers and offers prices and generation capacities
from generators to clear the DAW market. As a result, generators receive the volume
of electricity that needs to be produced in each time period, while retailers receive
the volume of electricity allocated to each of them. The market-clearing price of
the DAW market can also be obtained. The third lower-level problem represents
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Figure 3.1: Bilevel model structure.

the LPE market-clearing problem, where the volume of electricity that each retailer
needs to buy or sell is optimised. The market-clearing price of the LPE market can
be derived simultaneously.

3.2.2 Upper Level Problem
The upper-level problem aims to maximise the profit of the strategic retailer 𝑘
participating in the retail, DAW, and LPE markets. We assume that all three markets
are operated on an hourly basis and scheduled on the same time horizon T =

{1, ..., 𝑇} [25], [40]. It is also assumed that the retailer 𝑘 owns the ESS, which
aims to facilitate its energy operations. Mathematically, the upper-level problem is
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modelled as follows:

Maximise
Ξ𝑢𝑝𝑝𝑒𝑟

∑︁
𝑡∈T

{
𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘
𝑞
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘
− 𝜆𝑡𝑞𝑏𝑖𝑑,𝑡

𝑘
− 𝑐𝑘 (𝑝𝑐,𝑡𝑘 + 𝑝𝑑,𝑡

𝑘
)Δ𝑡 − 𝜆𝐿𝑃𝐸,𝑡𝑞𝐿𝑃𝐸,𝑡

𝑘

}
(3.1a)

Subject to:

𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑚𝑖𝑛

𝑘
≤ 𝜋

𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘
≤ 𝜋

𝑟𝑒𝑡𝑎𝑖𝑙,𝑚𝑎𝑥

𝑘
,∀𝑡 ∈ T (3.1b)

𝜋
𝑏𝑖𝑑,𝑚𝑖𝑛

𝑘
≤ 𝜋

𝑏𝑖𝑑,𝑡

𝑘
≤ 𝜋

𝑏𝑖𝑑,𝑚𝑎𝑥

𝑘
,∀𝑡 ∈ T (3.1c)

𝜋
𝐿𝑃𝐸,𝑚𝑖𝑛

𝑘
≤ 𝜋

𝐿𝑃𝐸,𝑡

𝑘
≤ 𝜋

𝐿𝑃𝐸,𝑚𝑎𝑥

𝑘
,∀𝑡 ∈ T (3.1d)

𝐸 𝑡+1
𝑘 = 𝐸 𝑡𝑘 + 𝜂

𝑐
𝑘 𝑝

𝑐,𝑡

𝑘
Δ𝑡 − 1

𝜂𝑑
𝑘

𝑝
𝑑,𝑡

𝑘
Δ𝑡 − 𝜖𝑘Δ𝑡,∀𝑡 ∈ T (3.1e)

𝐸𝑚𝑖𝑛𝑘 ≤ 𝐸 𝑡𝑘 ≤ 𝐸𝑚𝑎𝑥𝑘 ,∀𝑡 ∈ T (3.1f)

𝐸1
𝑘 = 𝐸

𝑇+1
𝑘 (3.1g)

𝛾
𝑐,𝑡

𝑘
𝑝
𝑐,𝑚𝑖𝑛

𝑘
≤ 𝑝

𝑐,𝑡

𝑘
≤ 𝛾𝑐,𝑡

𝑘
𝑝
𝑐,𝑚𝑎𝑥

𝑘
,∀𝑡 ∈ T (3.1h)

𝛾
𝑑,𝑡

𝑘
𝑝
𝑑,𝑚𝑖𝑛

𝑘
≤ 𝑝

𝑑,𝑡

𝑘
≤ 𝛾𝑑,𝑡

𝑘
𝑝
𝑑,𝑚𝑎𝑥

𝑘
,∀𝑡 ∈ T (3.1i)

𝛾
𝑐,𝑡

𝑘
+ 𝛾𝑑,𝑡

𝑘
≤ 1,∀𝑡 ∈ T (3.1j)

𝛾
𝑐,𝑡

𝑘
, 𝛾

𝑑,𝑡

𝑘
∈ {0, 1},∀𝑡 ∈ T (3.1k)

𝑞
𝑏𝑖𝑑,𝑡

𝑘
+ 𝑝𝑑,𝑡

𝑘
Δ𝑡 + 𝑞𝐿𝑃𝐸,𝑡

𝑘
= 𝑞

𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘
+ 𝑝𝑐,𝑡

𝑘
Δ𝑡,∀𝑡 ∈ T (3.1l)

The decision variables of the upper level problem areΞ𝑢𝑝𝑝𝑒𝑟 = {𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑘

, 𝜋
𝑏𝑖𝑑,𝑡

𝑘
, 𝜋

𝐿𝑃𝐸,𝑡

𝑘
,

𝑝
𝑐,𝑡

𝑘
, 𝑝

𝑑,𝑡

𝑘
, 𝐸 𝑡

𝑘
, 𝛾

𝑐,𝑡

𝑘
, 𝛾

𝑑,𝑡

𝑘
,∀𝑡 ∈ T }.

The upper-level objective function (3.1a) denotes the overall profit that the strategic
retailer 𝑘 can obtain. It consists of the revenue made in the retail market, the cost
of purchasing electricity in the DAW market, the cost of operating the ESS, and
the revenue or cost made in the LPE market. (3.1b)-(3.1d) constrain the pricing
decisions of the retailer in the three markets, respectively. We define the operating
constraints for the ESS following [97] [98]. In particular, (3.1e) represents the
time-varying energy level of ESS. (3.1f), (3.1h), and (3.1i) ensure the energy level,
charging and discharging power of the ESS at each time period follow the operational
limitations. (3.1g) makes sure that by the end of the scheduling hours, the energy
level of the retailer is equivalent to the initial energy level. (3.1j) and (3.1k) ensure
the ESS can only be in either a charging or discharging state in a time period. (3.1l)
represents the retailer’s power balance constraint at each time period.
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3.2.3 Lower Level Problems
The lower level of the proposed bilevel model consists of three different optimisation
problems: customers’ welfare maximisation problem and market-clearing problems
of the DAW and LPE markets, respectively. It should be noted that we model
aggregated customers’ welfare and behaviour from the perspective of retailers to
reflect customers’ switching behaviours among different retailers. In addition, we
follow [6], [18], [41], [99] in formulating the market-clearing problems by omitting
the loss of direct current power flow and line congestion in transmission (i.e., DAW
market) and distribution (i.e., LPE market) networks. Such a modelling choice
will improve computational tractability and also allow us to focus on studying the
strategic behaviours of retailers in different electricity markets.

3.2.3.1 Customers Welfare Maximisation

In the first lower-level problem, customers’ satisfaction is considered and modelled
as the utility function from microeconomics [3]. Following [43] [100], the utility
function can be formulated as follows:

𝑈 (𝒒𝑟𝑒𝑡𝑎𝑖𝑙,𝑡) =
∑︁
𝑛∈N

𝛼𝑡𝑛𝑞
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑛 − 1

2

( ∑︁
𝑛∈N

𝛽𝑡𝑛𝑞
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡2

𝑛 +
∑︁

𝑛∈N ,𝑖∈N\{𝑘}
𝛽𝑡𝑛,𝑖𝑞

𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑛 𝑞

𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑖

)
(3.2a)

where N = {1, ..., 𝑁} represents a set of retailers in the markets. 𝒒𝑟𝑒𝑡𝑎𝑖𝑙,𝑡 ∈ R𝑁 is a
vector where each element denotes the electricity demand of customers from each
retailer at time 𝑡. Moreover, customers’ welfare is defined as the difference between
the utility of all customers and the electricity purchase cost [1], which is formulated
below:

Maximise
Ξ𝑙𝑜𝑤𝑒𝑟1

∑︁
𝑡∈T

{
𝑈 (𝒒𝑟𝑒𝑡𝑎𝑖𝑙,𝑡) −

∑︁
𝑛∈N

𝑞𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑛 𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑛

}
(3.2b)

where the decision variables of the customer’s welfare maximisation problem are
Ξ𝑙𝑜𝑤𝑒𝑟1 = {𝑞𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑛 ,∀𝑛 ∈ N ,∀𝑡 ∈ T }.

After deriving KKT optimality conditions from (3.2b), the market share function of
each retailer is obtained below, which can be directly embedded in the upper-level
optimisation problem of the retailer as a constraint.

𝑞𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑛 (𝝅𝑟𝑒𝑡𝑎𝑖𝑙,𝑡) =
∑︁
𝑗∈N

𝜔𝑡𝑛, 𝑗𝛼
𝑡
𝑗 − 𝜔𝑡𝑛,𝑛𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑛 −

∑︁
𝑗∈N\{𝑛}

𝜔𝑡𝑛, 𝑗𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑗

, ∀𝑛 ∈ N ,∀𝑡 ∈ T

(3.2c)
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where 𝝅𝑟𝑒𝑡𝑎𝑖𝑙,𝑡 ∈ R𝑁 is a vector that each element denotes the electricity retail price
of each retailer at time 𝑡. The details of the derivation of (3.2c) can be found in
the next section. In particular, elements along the main diagonal of 𝛀𝑡 (taking
into account the negative sign) could be used to indicate the self-elasticity of the
corresponding retailer’s pricing decisions on its own customers. For instance, when
the magnitude of 𝜔𝑡𝑛,𝑛 becomes larger, it causes the load of customers served by the
retailer 𝑛 to reduce given that the unit retail price 𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑛 increases. Furthermore,
other off-diagonal elements of 𝛀𝑡 (taking into account the negative sign) could
be used to indicate cross-impact effects among retail prices of different retailers,
which can be interpreted as switching coefficients [43]. The switching coefficients
indicate the impact on the retailer’s market share when other retailers change their
retail prices. A larger magnitude of the switching coefficient demonstrates a more
significant impact on other retailers’ retail price change to the retailer’s market
share. From the customers’ perspective, (3.2c) implies that customers can switch
among different retailers based on their offered retail prices. Specifically, customers
prefer to switch to other retailers who offer lower retail prices when their subscribed
retailer increases its retail price. Moreover,

∑
𝑗∈N 𝜔

𝑡
𝑛, 𝑗
𝛼𝑡
𝑗
indicates the market share

potential of the retailer 𝑛, which is not affected by the price changes. It is also worth
noting that (3.2c) indicates customers switch energy retailers at each time period 𝑡
(e.g. on an hourly basis), which could be a viable business model in practice. This is
because, with the development of information and communication technology and
smart meter analytics, technical barriers to automatic and smart switching among
retailers will be ultimately removed [101][102]. In addition, the proposed agile
customer switching model could be modified and utilised to provide much-needed
demand flexibility on short notice to help with demand and supply management
(e.g. unexpected peak demand or excessive renewable generation in some hours due
to forecast uncertainty).

Derivation of the market share function The combination of (3.2a) and (3.2b)
can derive an unconstrained minimization problem as follows:

Minimize
Ξ𝑙𝑜𝑤𝑒𝑟1

∑︁
𝑡∈T

{
1
2

( ∑︁
𝑛∈N

𝛽𝑡𝑛𝑞
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡2

𝑛 +
∑︁

𝑛∈N ,𝑖∈N\{𝑘}
𝛽𝑡𝑛,𝑖𝑞

𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑛 𝑞

𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑖

)
+

∑︁
𝑛∈N

𝑞𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑛 𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑛 −
∑︁
𝑛∈N

𝛼𝑡𝑛𝑞
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑛

} (3.2.1a)
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The first-order conditions of the objective function (3.2.1a) can be derived as:

𝛽𝑡𝑛𝑞
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑛 +

∑︁
𝑛∈N ,𝑖∈N\{𝑛}

+𝛽𝑡𝑛,𝑖𝑞
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑖

+ 𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑛 − 𝛼𝑡𝑛 = 0,∀𝑛 ∈ N ,∀𝑡 ∈ T (3.2.1b)

It can be reformulated to a compact form:

𝝅𝑟𝑒𝑡𝑎𝑖𝑙,𝑡 = 𝜶𝑡 − 𝑩𝑡𝒒𝑟𝑒𝑡𝑎𝑖𝑙,𝑡 ,∀𝑡 ∈ T (3.2.1c)

where 𝜶𝑡 ∈ R𝑁 is a vector that each element represents a parameter of each retailer.
𝑩𝑡 ∈ R𝑁×𝑁 is a symmetric, strictly diagonally dominant matrix in which each
element in a row/column represents the parameter of each retailer.

Let 𝛀𝑡 be the inverse matrix of 𝑩𝑡 , and (3.2.1c) can be reformulated as below:

𝒒𝑟𝑒𝑡𝑎𝑖𝑙,𝑡 = 𝛀𝑡𝜶𝑡 −𝛀𝑡𝝅𝑡 ,∀𝑡 ∈ T (3.2.1d)

where 𝛀𝑡 =

©«
𝜔𝑡1,1 ... 𝜔𝑡1,𝑁
... ... ...

𝜔𝑡
𝑁,1 ... 𝜔𝑡

𝑁,𝑁

ª®®®¬ ,∀𝑡 ∈ T are all symmetric matrices. Therefore, the

market share function of each retailer can be derived as:

𝑞𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑛 =
∑︁
𝑗∈N

𝜔𝑡𝑛, 𝑗𝛼
𝑡
𝑗 − 𝜔𝑡𝑛,𝑛𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑛 −

∑︁
𝑗∈N\{𝑛}

𝜔𝑡𝑛, 𝑗𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑗

, ∀𝑛 ∈ N ,∀𝑡 ∈ T

(3.2.1e)

which is equivalent to (3.2c).

3.2.3.2 DAW Market-Clearing Problem

The ISO’s DAW market-clearing problem is formulated to minimise the social
cost among all generators and retailers participating in the DAW market [103].
Specifically, the bid prices 𝜋𝑏𝑖𝑑,𝑡

𝑘
of the strategic retailer 𝑘 are treated as known

parameters in the lower-level problem. Furthermore, all generators are assumed
to be non-strategic since we focus on the strategic behaviours of retailers in this
chapter. The optimisation problem is therefore formulated below.

Minimise
Ξ𝑙𝑜𝑤𝑒𝑟2

∑︁
𝑡∈T

{∑︁
𝑔∈G

𝑞𝑡𝑔𝑐𝑔 −
(
𝑞
𝑏𝑖𝑑,𝑡

𝑘
𝜋
𝑏𝑖𝑑,𝑡

𝑘
+

∑︁
𝑖∈N\{𝑘}

𝑞
𝑏𝑖𝑑,𝑡
𝑖

𝜋
𝑏𝑖𝑑,𝑡
𝑖

)}
(3.3a)

Subject to:

𝑞𝑚𝑖𝑛𝑔 ≤ 𝑞𝑡𝑔 ≤ 𝑞𝑚𝑎𝑥𝑔 : 𝜇𝑡𝑔, 𝜇𝑡𝑔,∀𝑔 ∈ G,∀𝑡 ∈ T (3.3b)
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𝑞
𝑏𝑖𝑑,𝑚𝑖𝑛,𝑡

𝑘
≤ 𝑞𝑏𝑖𝑑,𝑡

𝑘
≤ 𝑞

𝑏𝑖𝑑,𝑚𝑎𝑥,𝑡

𝑘
: 𝜁 𝑡𝑘 , 𝜁

𝑡
𝑘
,∀𝑡 ∈ T (3.3c)

𝑞
𝑏𝑖𝑑,𝑚𝑖𝑛,𝑡
𝑖

≤ 𝑞𝑏𝑖𝑑,𝑡
𝑖

≤ 𝑞
𝑏𝑖𝑑,𝑚𝑎𝑥,𝑡
𝑖

: 𝜁 𝑡𝑖 , 𝜁 𝑡𝑖 ,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T (3.3d)

𝑞
𝑏𝑖𝑑,𝑡

𝑘
+

∑︁
𝑖∈N\{𝑘}

𝑞
𝑏𝑖𝑑,𝑡
𝑖

−
∑︁
𝑔∈G

𝑞𝑡𝑔 = 0, : 𝜆𝑡 ,∀𝑡 ∈ T (3.3e)

where Ξ𝑙𝑜𝑤𝑒𝑟2 = {𝑞𝑡𝑔, 𝑞𝑏𝑖𝑑,𝑡𝑘
, 𝑞

𝑏𝑖𝑑,𝑡
𝑖

,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T } are the decision variables
in this lower level problem. Ξ𝑑𝑢𝑎𝑙

𝑙𝑜𝑤𝑒𝑟2 = {𝜇𝑡𝑔, 𝜇𝑡𝑔, 𝜁 𝑡𝑘 , 𝜁
𝑡
𝑘
, 𝜁 𝑡
𝑖
, 𝜁 𝑡
𝑖
, 𝜆𝑡 ,∀𝑔 ∈ G,∀𝑖 ∈ N \

{𝑘},∀𝑡 ∈ T } represents the set of dual variables of corresponding constraints.

The objective function (3.3a) minimizes the social cost of the DAW market. The pro-
duction level of each generator is constrained in (3.3b). (3.3c) and (3.3d) constrain
the demand level of strategic retailer 𝑘 and other retailers, respectively. (3.3e) rep-
resents the electricity supply and demand balance. Furthermore, the dual variable
𝜆𝑡 in (3.3e) represents the market-clearing price of the DAW market.

3.2.3.3 LPE Market-Clearing Problem

The LPE market facilitates each retailer’s electricity supply and demand balance.
The LPE market operator acts as a non-profit entity (the same role as the ISO) and
clears the LPE market as the social welfare maximisation problem. The mathemat-
ical formulation is shown as follows:

Maximise
Ξ𝑙𝑜𝑤𝑒𝑟3

∑︁
𝑡∈T

{
𝜋
𝐿𝑃𝐸,𝑡

𝑘
𝑞
𝐿𝑃𝐸,𝑡

𝑘
+

∑︁
𝑖∈N\{𝑘}

𝜋
𝐿𝑃𝐸,𝑡
𝑖

𝑞
𝐿𝑃𝐸,𝑡
𝑖

}
(3.4a)

Subject to:

− 𝑞𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡
𝑘,𝑜𝑢𝑡

≤ 𝑞𝐿𝑃𝐸,𝑡
𝑘

≤ 𝑞
𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡

𝑘,𝑖𝑛
: 𝜓𝑡𝑘,𝑜𝑢𝑡 , 𝜓

𝑡
𝑘,𝑖𝑛,∀𝑡 ∈ T (3.4b)

− 𝑞𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡
𝑖,𝑜𝑢𝑡

≤ 𝑞
𝐿𝑃𝐸,𝑡
𝑖

≤ 𝑞
𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡
𝑖,𝑖𝑛

: 𝜎𝑡𝑖,𝑜𝑢𝑡 , 𝜎
𝑡
𝑖,𝑖𝑛,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T (3.4c)∑︁

𝑖∈N\{𝑘}
𝑞
𝐿𝑃𝐸,𝑡
𝑖

+ 𝑞𝐿𝑃𝐸,𝑡
𝑘

= 0 : 𝜆𝐿𝑃𝐸,𝑡 ,∀𝑡 ∈ T (3.4d)

where the decision variables are Ξ𝑙𝑜𝑤𝑒𝑟3 = {𝑞𝐿𝑃𝐸,𝑡
𝑘

, 𝑞
𝐿𝑃𝐸,𝑡
𝑖

,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈
T }. The dual variables of corresponding constraints are denoted as Ξ𝑑𝑢𝑎𝑙

𝑙𝑜𝑤𝑒𝑟3 =

{𝜓𝑡
𝑘,𝑜𝑢𝑡

, 𝜓𝑡
𝑘,𝑖𝑛
, 𝜎𝑡

𝑖,𝑜𝑢𝑡
, 𝜎𝑡

𝑖,𝑖𝑛
, 𝜆𝐿𝑃𝐸,𝑡 ,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T }.

The objective function (3.4a) maximises the social welfare of the LPE market. (3.4b)
and (3.4c) ensure the volume of electricity that each retailer buys or sells in the LPE
market is bounded. Finally, (3.4d) represents the power balance constraint. The
dual variable 𝜆𝐿𝑃𝐸,𝑡 represents the market-clearing price of the LPE market.
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3.2.4 Bilevel Model
After formulating both the upper- and lower-level problems, the proposed bilevel
model for the strategic retailer 𝑘 can be summarised as follows.

Ξ𝑢𝑝𝑝𝑒𝑟 ∈ arg maximise
Ξ𝑢𝑝𝑝𝑒𝑟

(3.1a) (3.5a)

Subject to:
Constraints (3.1b)-(3.1l) (3.5b)

Ξ𝑙𝑜𝑤𝑒𝑟1 ∈ arg maximise
Ξ𝑙𝑜𝑤𝑒𝑟1

(3.2b) (3.5c)

Ξ𝑙𝑜𝑤𝑒𝑟2, 𝜇
𝑡
𝑔, 𝜇

𝑡
𝑔, 𝜁

𝑡
𝑘 , 𝜁

𝑡
𝑘
, 𝜁 𝑡𝑖 , 𝜁

𝑡
𝑖
, 𝜆𝑡 ∈ arg minimise

Ξ𝑙𝑜𝑤𝑒𝑟2

{
(3.3a)

Subject to:

Constraints(3.3b)-(3.3e)

}
,∀𝑔 ∈ G,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T

(3.5d)

Ξ𝑙𝑜𝑤𝑒𝑟3, 𝜓
𝑡
𝑘,𝑜𝑢𝑡 , 𝜓

𝑡
𝑘,𝑖𝑛, 𝜎

𝑡
𝑖,𝑜𝑢𝑡 , 𝜎

𝑡
𝑖,𝑖𝑛, 𝜆

𝐿𝑃𝐸,𝑡 ∈ arg maximise
Ξ𝑙𝑜𝑤𝑒𝑟3

{
(3.4a)

Subject to:

Constraints(3.4b)-(3.4d)

}
,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T

(3.5e)

(3.5a) and (3.5b) denote the strategies of the retailer 𝑘 at the upper level. Further-
more, (3.5c)-(3.5e) represent the reactions from the three electricity markets given
by the upper-level decisions, respectively. The bilevel model forms a single-leader-
multiple-follower Stackelberg game, which can also be interpreted as an MPEC
program [2]. The methods to solve the MPEC problem are discussed in detail in the
next section.

3.3 Solution Methods
This section illustrates the solution methods for MPEC and EPEC problems. It first
details the treatment of the MPEC problem, which is linearised and reformulated to
an MIQP problem. Furthermore, the single-leader MPEC model is extended to the
multi-leader EPEC model, which can be solved by the diagonalisation algorithm.
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3.3.1 MPEC Problem
The bilevel model can be transformed into a single-level MPEC problem by deriving
KKT optimality conditions for the lower-level problems into a system of equations
and inequalities. The transformed MPEC problem is shown below:

Maximise
Ξ𝑀𝑃𝐸𝐶

(3.1a) (3.6a)

Subject to:

Constraints (3.1b)-(3.1l), (3.2c) (3.6b)

𝑐𝑔 − 𝜇𝑡𝑔 + 𝜇𝑡𝑔 − 𝜆𝑡 = 0,∀𝑔 ∈ G,∀𝑡 ∈ T (3.6c)

− 𝜋𝑏𝑖𝑑,𝑡
𝑘

− 𝜁 𝑡𝑘 + 𝜁 𝑡𝑘 + 𝜆
𝑡 = 0,∀𝑡 ∈ T (3.6d)

− 𝜋𝑏𝑖𝑑,𝑡
𝑖

− 𝜁 𝑡𝑖 + 𝜁 𝑡𝑖 + 𝜆
𝑡 = 0,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T (3.6e)

𝑞
𝑏𝑖𝑑,𝑡

𝑘
+

∑︁
𝑖∈N\{𝑘}

𝑞
𝑏𝑖𝑑,𝑡
𝑖

−
∑︁
𝑔∈G

𝑞𝑡𝑔 = 0,∀𝑡 ∈ T (3.6f)

0 ≤ (𝑞𝑡𝑔 − 𝑞𝑚𝑖𝑛𝑔 ) ⊥ 𝜇𝑡𝑔 ≥ 0,∀𝑔 ∈ G,∀𝑡 ∈ T (3.6g)

0 ≤ (𝑞𝑚𝑎𝑥𝑔 − 𝑞𝑡𝑔) ⊥ 𝜇𝑡𝑔 ≥ 0,∀𝑔 ∈ G,∀𝑡 ∈ T (3.6h)

0 ≤ (𝑞𝑏𝑖𝑑,𝑡𝑛 − 𝑞𝑏𝑖𝑑,𝑚𝑖𝑛,𝑡𝑛 ) ⊥ 𝜁 𝑡𝑛 ≥ 0,∀𝑛 ∈ N ,∀𝑡 ∈ T (3.6i)

0 ≤ (𝑞𝑏𝑖𝑑,𝑚𝑎𝑥,𝑡𝑛 − 𝑞𝑏𝑖𝑑,𝑡𝑛 ) ⊥ 𝜁 𝑡𝑛 ≥ 0,∀𝑛 ∈ N ,∀𝑡 ∈ T (3.6j)

− 𝜋𝐿𝑃𝐸,𝑡
𝑘

− 𝜓𝑡𝑘,𝑜𝑢𝑡 + 𝜓
𝑡
𝑘,𝑖𝑛 + 𝜆

𝐿𝑃𝐸,𝑡 = 0,∀𝑡 ∈ T (3.6k)

− 𝜋𝐿𝑃𝐸,𝑡
𝑖

− 𝜎𝑡𝑖,𝑜𝑢𝑡 + 𝜎𝑡𝑖,𝑖𝑛 + 𝜆𝐿𝑃𝐸,𝑡 = 0,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T (3.6l)∑︁
𝑖∈N\{𝑘}

𝑞
𝐿𝑃𝐸,𝑡
𝑖

+ 𝑞𝐿𝑃𝐸,𝑡
𝑘

= 0,∀𝑡 ∈ T (3.6m)

0 ≤ 𝜓𝑡𝑘,𝑜𝑢𝑡 ⊥ (𝑞𝐿𝑃𝐸,𝑡
𝑘

− 𝑞𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡
𝑘,𝑜𝑢𝑡

) ≥ 0,∀𝑡 ∈ T (3.6n)

0 ≤ 𝜓𝑡𝑘,𝑖𝑛 ⊥ (𝑞𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡
𝑘,𝑖𝑛

− 𝑞𝐿𝑃𝐸,𝑡
𝑘

) ≥ 0,∀𝑡 ∈ T (3.6o)

0 ≤ 𝜎𝑡𝑖,𝑜𝑢𝑡 ⊥ (𝑞𝐿𝑃𝐸,𝑡
𝑖

− 𝑞𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡
𝑖,𝑜𝑢𝑡

) ≥ 0,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T (3.6p)

0 ≤ 𝜎𝑡𝑖,𝑖𝑛 ⊥ (𝑞𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡
𝑖,𝑖𝑛

− 𝑞𝐿𝑃𝐸,𝑡
𝑖

) ≥ 0,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T (3.6q)

where the decision variables of the MPEC problem are Ξ𝑀𝑃𝐸𝐶 =

{
𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘
, 𝜋

𝑏𝑖𝑑,𝑡

𝑘
,

𝑞
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘
, 𝑞
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑖

, 𝑞
𝑏𝑖𝑑,𝑡

𝑘
, 𝑞

𝑏𝑖𝑑,𝑡
𝑖

, 𝑝
𝑐,𝑡

𝑘
, 𝑝

𝑑,𝑡

𝑘
, 𝐸 𝑡

𝑘
, 𝜋

𝐿𝑃𝐸,𝑡

𝑘
, 𝑞

𝐿𝑃𝐸,𝑡

𝑘
, 𝑞

𝐿𝑃𝐸,𝑡
𝑖

, 𝑞𝑡𝑔, 𝛾
𝑐,𝑡

𝑘
, 𝛾

𝑑,𝑡

𝑘
, 𝜇𝑡𝑔,

𝜇𝑡𝑔, 𝜁
𝑡
𝑗
, 𝜁 𝑡

𝑗
, 𝜆𝑡 , 𝜓𝑡

𝑘,𝑜𝑢𝑡
, 𝜓𝑡

𝑘,𝑖𝑛
, 𝜎𝑡

𝑖,𝑜𝑢𝑡
, 𝜎𝑡

𝑖,𝑖𝑛
,∀𝑡 ∈ T ,∀𝑖 ∈ N \ {𝑘},∀𝑔 ∈ G,∀ 𝑗 ∈ N

}
.
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(3.6a) denotes the objective function of the MPEC model. In the following con-
straints, (3.6b) represents a collection of constraints from the upper-level problem
and retailers’ market share function. Equations (3.6c)-(3.6f) and (3.6k)-(3.6m) are
stationary conditions of the KKT optimality conditions. Moreover, (3.6g)-(3.6j) and
(3.6n)-(3.6q) represent the complementarity slackness.

3.3.2 Linearisation of the MPEC Problem
The MPEC model above is non-convex and difficult to solve due to the existence
of bilinear terms in the objective function (3.6a) and complementarity slackness
constraints (3.6g)-(3.6j) and (3.6n)-(3.6q). To overcome the difficulties, we first
deal with the bilinear terms in the upper-level objective function (3.6a) through the
strong duality theorem [104]. Therefore, the objective function of the MPEC model
becomes:

Φ =
∑︁
𝑡∈T

{∑︁
𝑔∈G

(
𝑞𝑡𝑔𝑐𝑔 − 𝜇𝑡𝑔𝑞𝑚𝑖𝑛𝑔 + 𝜇𝑡𝑔𝑞𝑚𝑎𝑥𝑔

)
−

∑︁
𝑗∈N\{𝑘}

(
𝜋
𝑏𝑖𝑑,𝑡
𝑗

𝑞
𝑏𝑖𝑑,𝑡
𝑗

+ 𝜁 𝑡𝑗𝑞
𝑏𝑖𝑑,𝑚𝑖𝑛
𝑗

−

𝜁 𝑡
𝑗
𝑞
𝑏𝑖𝑑,𝑚𝑎𝑥
𝑗

)
+ 𝑐𝑘

(
𝑝
𝑐,𝑡

𝑘
+ 𝑝𝑑,𝑡

𝑘

)
Δ𝑡 − 𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘

∑︁
𝑗∈N

𝜔𝑡𝑘, 𝑗𝛼
𝑡
𝑗 + 𝜔𝑡𝑘𝜋

𝑟𝑒𝑡𝑎𝑖𝑙,𝑡2

𝑘
+

𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘

∑︁
𝑗∈N\{𝑘}

𝜔𝑡𝑘, 𝑗𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑗

+
∑︁

𝑖∈N\{𝑘}

(
𝜎𝑡𝑖,𝑜𝑢𝑡𝑞

𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡
𝑖,𝑜𝑢𝑡

+ 𝜎𝑡𝑖,𝑖𝑛𝑞
𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡
𝑖,𝑖𝑛

−

𝜋
𝐿𝑃𝐸,𝑡
𝑖

𝑞
𝐿𝑃𝐸,𝑡
𝑖

)}
(3.7a)

The details of the derivation of objective function Φ are provided in the next section
below.

Linearisation of the Objective Function of MPEC

Reformulation of bilinear terms The Lagrange function of the minimisation
problem (3.3a)-(3.3e) is formulated as follows.

L(Ξ𝑙𝑜𝑤𝑒𝑟2 |Ξ𝑑𝑢𝑎𝑙𝑙𝑜𝑤𝑒𝑟2) =
∑︁
𝑡∈T

{∑︁
𝑔∈G

𝑞𝑡𝑔𝑐𝑔 −
(
𝑞
𝑏𝑖𝑑,𝑡

𝑘
𝜋
𝑏𝑖𝑑,𝑡

𝑘
+

∑︁
𝑖∈N\{𝑘}

𝑞
𝑏𝑖𝑑,𝑡
𝑖

𝜋
𝑏𝑖𝑑,𝑡
𝑖

)}
(3.7.1a)
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+
∑︁
𝑡∈T

∑︁
𝑔∈G

(
𝜇𝑡𝑔

(
𝑞𝑚𝑖𝑛𝑔 − 𝑞𝑡𝑔

)
+ 𝜇𝑡𝑔

(
𝑞𝑡𝑔 − 𝑞𝑚𝑎𝑥𝑔

))
+

∑︁
𝑡∈T

∑︁
𝑖∈N

(
𝜁 𝑡𝑖

(
𝑞
𝑏𝑖𝑑,𝑚𝑖𝑛,𝑡
𝑖

−𝑞𝑏𝑖𝑑,𝑡
𝑖

)
+ 𝜁 𝑡

𝑖

(
𝑞𝑡𝑖 − 𝑞

𝑏𝑖𝑑,𝑚𝑎𝑥,𝑡
𝑖

))
+

∑︁
𝑡∈T

(
𝜆𝑡

(∑︁
𝑖∈N

𝑞
𝑏𝑖𝑑,𝑡
𝑖

−
∑︁
𝑔∈G

𝑞𝑡𝑔

))
Then, the dual program can be derived below:

Maximize
Ξ𝑑𝑢𝑎𝑙
𝑙𝑜𝑤𝑒𝑟2

∑︁
𝑡∈T

∑︁
𝑔∈G

(
𝜇𝑡𝑔𝑞

𝑚𝑖𝑛
𝑔 − 𝜇𝑡𝑔𝑞𝑚𝑎𝑥𝑔

)
+

∑︁
𝑡∈T

∑︁
𝑖∈N

(
𝜁 𝑡𝑖 𝑞

𝑏𝑖𝑑,𝑚𝑖𝑛,𝑡
𝑖

− 𝜁 𝑡
𝑖
𝑞
𝑏𝑖𝑑,𝑚𝑎𝑥,𝑡
𝑖

)
(3.7.1b)

Subject to:

𝑐𝑔 − 𝜇𝑡𝑔 + 𝜇𝑡𝑔 − 𝜆𝑡 = 0,∀𝑔 ∈ G,∀𝑡 ∈ T (3.7.1c)

− 𝜋𝑏𝑖𝑑,𝑡
𝑖

− 𝜁 𝑡𝑖 + 𝜁 𝑡𝑖 + 𝜆
𝑡 = 0,∀𝑖 ∈ N ,∀𝑡 ∈ T (3.7.1d)

Since the primal program (3.3a)-(3.3e) is a linear program, the strong duality the-
orem holds. This indicates that the value of the primal objective function (3.3a) is
the same as the value of the dual objective function (3.7.1b). Therefore, we can then
obtain a system of equations:

Objective function (3.3a) = Objective function (3.7.1b) (3.7.1e)

Constraints (3.6d), (3.6e) (3.7.1f)

𝜁 𝑡𝑖 (𝑞
𝑏𝑖𝑑,𝑚𝑖𝑛,𝑡
𝑖

− 𝑞𝑏𝑖𝑑,𝑡
𝑖

) = 0,∀𝑖 ∈ N ,∀𝑡 ∈ T (3.7.1g)

𝜁 𝑡
𝑖
(𝑞𝑏𝑖𝑑,𝑡
𝑖

− 𝑞𝑏𝑖𝑑,𝑚𝑎𝑥,𝑡
𝑖

) = 0,∀𝑖 ∈ N ,∀𝑡 ∈ T (3.7.1h)

After solving the system of equations (3.7.1e)-(3.7.1h), we can derive the equality
below.∑︁

𝑡∈T
𝜆𝑡𝑞

𝑏𝑖𝑑,𝑡

𝑘
=

∑︁
𝑡∈T

∑︁
𝑔∈G

{
𝑞𝑡𝑔𝑐𝑔 − 𝜇𝑡𝑔𝑞𝑚𝑖𝑛𝑔 + 𝜇𝑡𝑔𝑞𝑚𝑎𝑥𝑔

}
−

∑︁
𝑡∈T

∑︁
𝑗∈N\{𝑘}

{
𝜋
𝑏𝑖𝑑,𝑡
𝑗

𝑞
𝑏𝑖𝑑,𝑡
𝑗

+𝜁 𝑡𝑗𝑞
𝑏𝑖𝑑,𝑚𝑖𝑛,𝑡
𝑗

− 𝜁 𝑡
𝑗
𝑞
𝑏𝑖𝑑,𝑚𝑎𝑥,𝑡
𝑗

}
(3.7.1i)
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Analogously, the Lagrange function of the problem (3.4a)-(3.4d) is formulated as
follows.

L(Ξ𝑙𝑜𝑤𝑒𝑟3 |Ξ𝑑𝑢𝑎𝑙𝑙𝑜𝑤𝑒𝑟3) =
∑︁
𝑡∈T

{
𝜋
𝐿𝑃𝐸𝑀,𝑡

𝑘
𝑞
𝐿𝑃𝐸𝑀,𝑡

𝑘
+

∑︁
𝑖∈N\{𝑘}

𝜋
𝐿𝑃𝐸𝑀,𝑡
𝑖

𝑞
𝐿𝑃𝐸𝑀,𝑡
𝑖

}
+
∑︁
𝑡∈T

{
𝜓𝑡𝑘,𝑜𝑢𝑡

(
𝑞
𝐿𝑃𝐸𝑀,𝑡

𝑘
+ 𝑞𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡

𝑘

)
+ 𝜓𝑡𝑘,𝑖𝑛

(
𝑞
𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡

𝑘,𝑖𝑛
− 𝑞𝐿𝑃𝐸𝑀,𝑡

𝑘

)}
+
∑︁
𝑡∈T

∑︁
𝑖∈N\{𝑘}

{
𝜎𝑡𝑖,𝑜𝑢𝑡

(
𝑞
𝐿𝑃𝐸𝑀,𝑡
𝑖

+ 𝑞𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡
𝑖,𝑜𝑢𝑡

)
+ 𝜎𝑡𝑖,𝑖𝑛

(
𝑞
𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡
𝑖,𝑖𝑛

−𝑞𝐿𝑃𝐸𝑀,𝑡
𝑖

)}
−

∑︁
𝑡∈T

{
𝜆𝐿𝑃𝐸𝑀,𝑡

( ∑︁
𝑖∈N\{𝑘}

𝑞
𝐿𝑃𝐸𝑀,𝑡
𝑖

+ 𝑞𝐿𝑃𝐸𝑀,𝑡
𝑘

)}
(3.7.1j)

The dual program of (3.4a)-(3.4d) is derived below.

Minimize
Ξ𝑑𝑢𝑎𝑙
𝑙𝑜𝑤𝑒𝑟3

∑︁
𝑡∈T

{
𝑞
𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡

𝑘,𝑜𝑢𝑡
𝜓𝑡𝑘,𝑜𝑢𝑡 + 𝑞

𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡

𝑘,𝑖𝑛
𝜓𝑡𝑘,𝑖𝑛

}
+
∑︁
𝑡∈T

∑︁
𝑖∈N\{𝑘}

{
𝜎𝑡𝑖,𝑜𝑢𝑡𝑞

𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡
𝑖,𝑜𝑢𝑡

+ 𝜎𝑡𝑖,𝑖𝑛𝑞
𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡
𝑖,𝑖𝑛

} (3.7.1k)

Subject to:

𝜋
𝐿𝑃𝐸𝑀,𝑡

𝑘
+ 𝜓𝑡𝑘,𝑜𝑢𝑡 − 𝜓

𝑡
𝑘,𝑖𝑛 − 𝜆

𝐿𝑃𝐸𝑀,𝑡 = 0,∀𝑡 ∈ T (3.7.1l)

𝜋
𝐿𝑃𝐸𝑀,𝑡
𝑖

+ 𝜎𝑡𝑖,𝑜𝑢𝑡 − 𝜎𝑡𝑖,𝑖𝑛 − 𝜆𝐿𝑃𝐸𝑀,𝑡 ,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T (3.7.1m)

The primal program (3.4a)-(3.4d) is also a linear program. Therefore, the strong
duality theorem holds. A system of equations can be derived as follows.

Objective function (3.4a) = Objective function (3.7.1k) (3.7.1n)

Constraint (3.7.1l)

𝜓𝑡𝑘,𝑜𝑢𝑡 (𝑞
𝐿𝑃𝐸𝑀,𝑡

𝑘
+ 𝑞𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡

𝑘
) = 0,∀𝑡 ∈ T (3.7.1o)

𝜓𝑡𝑘,𝑖𝑛 (𝑞
𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡

𝑘,𝑖𝑛
− 𝑞𝐿𝑃𝐸𝑀,𝑡

𝑘
) = 0,∀𝑡 ∈ T (3.7.1p)

A solution of the system of equations (3.7.1n)-(3.7.1p), and (3.7.1l) is shown below.∑︁
𝑡∈T

𝜆𝐿𝑃𝐸𝑀,𝑡𝑞
𝐿𝑃𝐸𝑀,𝑡

𝑘
=

∑︁
𝑡∈T

∑︁
𝑖∈N\{𝑘}

{
𝜎𝑡𝑖,𝑜𝑢𝑡𝑞

𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡
𝑖,𝑜𝑢𝑡

+ 𝜎𝑡𝑖,𝑖𝑛𝑞
𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡
𝑖,𝑖𝑛

−𝜋𝐿𝑃𝐸𝑀,𝑡
𝑖

𝑞
𝐿𝑃𝐸𝑀,𝑡
𝑖

}
(3.7.1q)
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Reformulation of the objective function of MPEC There are three bilin-
ear terms in the objective function of the MPEC program, which are 𝜆𝑡𝑞𝑏𝑖𝑑,𝑡

𝑘
,

𝜆𝐿𝑃𝐸𝑀,𝑡𝑞
𝐿𝑃𝐸𝑀,𝑡

𝑘
and 𝜋

𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘
𝑞
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘
. The first two bilinear terms are linearised

in (3.7.1i) and (3.7.1q), respectively. The last bilinear term can be linearised by
substituting

∑
𝑗∈N 𝜔

𝑡
𝑘, 𝑗
𝛼𝑡
𝑗
−𝜔𝑡

𝑘,𝑘
𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘
−∑

𝑗∈N\{𝑘} 𝜔
𝑡
𝑘, 𝑗
𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑗

for 𝑞𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑘

based on
(3.2c).

After linearising the bilinear terms, the final objective function of the MPEC program
is derived as follows.

Φ =
∑︁
𝑡∈T

{∑︁
𝑔∈G

(
𝑞𝑡𝑔𝑐𝑔 − 𝜇𝑡𝑔𝑞𝑚𝑖𝑛𝑔 + 𝜇𝑡𝑔𝑞𝑚𝑎𝑥𝑔

)
−

∑︁
𝑗∈N\{𝑘}

(
𝜋
𝑏𝑖𝑑,𝑡
𝑗

𝑞
𝑏𝑖𝑑,𝑡
𝑗

+ 𝜁 𝑡𝑗𝑞
𝑏𝑖𝑑,𝑚𝑖𝑛
𝑗

−𝜁 𝑡
𝑗
𝑞
𝑏𝑖𝑑,𝑚𝑎𝑥
𝑗

)
+ 𝑐𝑘

(
𝑝
𝑐,𝑡

𝑘
+ 𝑝𝑑,𝑡

𝑘

)
Δ𝑡 − 𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘

∑︁
𝑗∈N

𝜔𝑡𝑘, 𝑗𝛼
𝑡
𝑗 + 𝜔𝑡𝑘𝜋

𝑟𝑒𝑡𝑎𝑖𝑙,𝑡2

𝑘

+𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑘

∑︁
𝑗∈N\{𝑘}

𝜔𝑡𝑘, 𝑗𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑗

+
∑︁

𝑖∈N\{𝑘}

(
𝜎𝑡𝑖,𝑜𝑢𝑡𝑞

𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡
𝑖,𝑜𝑢𝑡

+ 𝜎𝑡𝑖,𝑖𝑛𝑞
𝐿𝑃𝐸𝑀,𝑚𝑎𝑥,𝑡
𝑖,𝑖𝑛

−𝜋𝐿𝑃𝐸𝑀,𝑡
𝑖

𝑞
𝐿𝑃𝐸𝑀,𝑡
𝑖

)}
(3.7.2a)

Furthermore, the Fortuny-Amat transformation is used to linearise complementarity
slackness by introducing additional binary variables and a relatively large integer
constant 𝑀 [105]. The resulting linearised constraints of (3.6g)-(3.6j) and (3.6n)-
(3.6q) are shown in (3.7a)-(3.7j) and (3.7k)-(3.7t), respectively.

0 ≤ 𝜇𝑡𝑔 ≤ 𝜄𝑡𝑔𝑀,∀𝑔 ∈ G,∀𝑡 ∈ T (3.7b)

0 ≤ 𝑞𝑡𝑔 − 𝑞𝑚𝑖𝑛𝑔 ≤ (1 − 𝜄𝑡𝑔)𝑀,∀𝑔 ∈ G,∀𝑡 ∈ T (3.7c)

0 ≤ 𝜇𝑡𝑔 ≤ 𝜄𝑡𝑔𝑀,∀𝑔 ∈ G,∀𝑡 ∈ T (3.7d)

0 ≤ 𝑞𝑚𝑎𝑥𝑔 − 𝑞𝑡𝑔 ≤ (1 − 𝜄𝑡𝑔)𝑀,∀𝑔 ∈ G,∀𝑡 ∈ T (3.7e)

𝜄𝑡𝑔, 𝜄
𝑡
𝑔 ∈ {0, 1},∀𝑔 ∈ G,∀𝑡 ∈ T (3.7f)

0 ≤ 𝜁 𝑡𝑖 ≤ 𝜉 𝑡𝑖𝑀,∀𝑖 ∈ N ,∀𝑡 ∈ T (3.7g)

0 ≤ 𝑞𝑏𝑖𝑑,𝑡
𝑖

− 𝑞𝑏𝑖𝑑,𝑚𝑖𝑛,𝑡
𝑖

≤ (1 − 𝜉 𝑡𝑖 )𝑀,∀𝑖 ∈ N ,∀𝑡 ∈ T (3.7h)

0 ≤ 𝜁 𝑡
𝑖
≤ 𝜉 𝑡

𝑖
𝑀,∀𝑖 ∈ N ,∀𝑡 ∈ T (3.7i)

0 ≤ 𝑞𝑏𝑖𝑑,𝑚𝑎𝑥,𝑡
𝑖

− 𝑞𝑏𝑖𝑑,𝑡
𝑖

≤ (1 − 𝜉 𝑡
𝑖
)𝑀,∀𝑖 ∈ N ,∀𝑡 ∈ T (3.7j)

𝜉 𝑡𝑔, 𝜉
𝑡
𝑔 ∈ {0, 1},∀𝑔 ∈ G,∀𝑡 ∈ T (3.7k)

0 ≤ 𝜓𝑡𝑘,𝑜𝑢𝑡 ≤ 𝜌𝑡𝑘,𝑜𝑢𝑡𝑀,∀𝑡 ∈ T (3.7l)
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0 ≤ 𝑞𝐿𝑃𝐸,𝑡
𝑘

+ 𝑞𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡
𝑘,𝑜𝑢𝑡

≤ (1 − 𝜌𝑡𝑘,𝑜𝑢𝑡)𝑀,∀𝑡 ∈ T (3.7m)

0 ≤ 𝜓𝑡𝑘,𝑖𝑛 ≤ 𝜌𝑡𝑘,𝑖𝑛𝑀,∀𝑡 ∈ T (3.7n)

0 ≤ 𝑞𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡
𝑘,𝑖𝑛

− 𝑞𝐿𝑃𝐸,𝑡
𝑘

≤ (1 − 𝜌𝑡𝑘,𝑖𝑛)𝑀,∀𝑡 ∈ T (3.7o)

𝜌𝑡𝑘,𝑜𝑢𝑡 , 𝜌
𝑡
𝑘,𝑖𝑛 ∈ {0, 1},∀𝑡 ∈ T (3.7p)

0 ≤ 𝜎𝑡𝑖,𝑜𝑢𝑡 ≤ 𝛿𝑡𝑖,𝑜𝑢𝑡𝑀,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T (3.7q)

0 ≤ 𝑞𝐿𝑃𝐸,𝑡
𝑖

+ 𝑞𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡
𝑖,𝑜𝑢𝑡

≤ (1 − 𝛿𝑡𝑖,𝑜𝑢𝑡)𝑀,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T (3.7r)

0 ≤ 𝜎𝑡𝑖,𝑖𝑛 ≤ 𝛿𝑡𝑖,𝑖𝑛𝑀,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T (3.7s)

0 ≤ 𝑞𝐿𝑃𝐸,𝑚𝑎𝑥,𝑡
𝑖,𝑖𝑛

− 𝑞𝐿𝑃𝐸,𝑡
𝑖

≤ (1 − 𝛿𝑡𝑖,𝑖𝑛)𝑀,∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T (3.7t)

𝛿𝑡𝑖,𝑜𝑢𝑡 , 𝛿
𝑡
𝑖,𝑖𝑛 ∈ {0, 1},∀𝑖 ∈ N \ {𝑘},∀𝑡 ∈ T (3.7u)

3.3.3 MIQP Problem
After the linearisation, the MPEC model is reformulated into an MIQP problem and
can be solved efficiently using off-the-shelf solvers. The complete MIQP model is
formulated as follows.

Minimise
Ξ𝑀𝐼𝑄𝑃

Φ (3.8a)

Subject to:

Constraints (3.1b)-(3.1l), (3.2c), (3.6c)-(3.6f), (3.6k)-(3.6m), (3.7a)-(3.7t) (3.8b)

where Ξ𝑀𝐼𝑄𝑃 =

{
𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘
, 𝜋

𝑏𝑖𝑑,𝑡

𝑘
, 𝑞
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑘
, 𝑞
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑖

, 𝑞
𝑏𝑖𝑑,𝑡

𝑘
, 𝑞

𝑏𝑖𝑑,𝑡
𝑖

, 𝑝
𝑐,𝑡

𝑘
, 𝑝

𝑑,𝑡

𝑘
, 𝐸 𝑡

𝑘
, 𝜋

𝐿𝑃𝐸,𝑡

𝑘
,

𝑞
𝐿𝑃𝐸,𝑡

𝑘
, 𝑞

𝐿𝑃𝐸,𝑡
𝑖

, 𝑞𝑡𝑔, 𝛾
𝑐,𝑡

𝑘
, 𝛾

𝑑,𝑡

𝑘
, 𝜏𝑡
𝑖𝑛
, 𝜏𝑡𝑜𝑢𝑡 , 𝜇

𝑡
𝑔, 𝜇

𝑡
𝑔, 𝜁

𝑡
𝑗
, 𝜁 𝑡

𝑗
, 𝜄𝑡𝑔, 𝜄

𝑡
𝑔, 𝜉

𝑡
𝑗
, 𝜉 𝑡

𝑗
, 𝜆𝑡 , 𝜓𝑡

𝑘,𝑜𝑢𝑡
, 𝜓𝑡

𝑘,𝑖𝑛
,

𝜎𝑡
𝑖,𝑜𝑢𝑡

, 𝜎𝑡
𝑖,𝑖𝑛
, 𝜌𝑡

𝑘,𝑜𝑢𝑡
, 𝜌𝑡

𝑘,𝑖𝑛
, 𝛿𝑡
𝑖,𝑜𝑢𝑡

, 𝛿𝑡
𝑖,𝑖𝑛
,∀𝑡 ∈ T ,∀𝑖 ∈ N \ {𝑘},∀𝑔 ∈ G,∀ 𝑗 ∈ N

}
repre-

sents the set of decision variables of the MIQP model.

The objective function (3.8a) shapes a quadratic form with respect to 𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑘

. Con-
straint (3.8b) consists of all the constraints in the upper-level problem, market share
functions, KKT stationary conditions for the market-clearing problems of the DAW
and LPE markets, and the linearised complementarity slackness constraints.

3.3.4 EPEC Problem
The Bertrand competition model is utilised to extend the MIQP model from a sin-
gle strategic retailer to multiple strategic retailers. This results in a multi-leader,
multi-follower Stackelberg game and can be reformulated as an EPEC problem [2],
which is illustrated in Figure 3.2. Although the retailers share complete informa-
tion among themselves in the theoretical setting of the EPEC problem, in practice,
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Figure 3.2: EPEC problem structure.

an independent market agent (e.g. ISO for wholesale markets) can play such a
role in sharing required information among retailers. We adopt the diagonalisation
algorithm in [106] to tackle our formulated EPEC problem where the converged
strategies of strategic retailers represent a generalised Nash equilibrium. The di-
agonalisation algorithm considered for solving our EPEC problem is outlined in
Algorithm 1. In Step 1, the strategy set is initialised as S0. The maximum iteration
𝑌 and convergence criterion 𝜖 are also predefined. The main iteration procedure of
the diagonalisation algorithm is shown in Steps 2 − 13, which consists of an outer
loop and an inner loop. In particular, the outer loop controls the iteration of the
algorithm. For each iteration of the outer loop, Steps 3 − 6 define the inner loop
and aim to solve the MIQP problem for each strategic retailer sequentially with the
other retailers’ strategies as given parameters. The convergence of the algorithm is
checked in Steps 7−12 at each iteration of the outer loop. Specifically, in Steps 7−9,
if the difference between the retailers’ optimal decisions of two adjacent iterations is
less than 𝜖 , the algorithm converges and terminates with retailers’ optimal decisions.
However, in Steps 10−12, if the algorithm reaches the maximum iteration𝑌 without
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Algorithm 1 Diagonalisation algorithm
1: Initialisation:

S
0 =

{
𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑛 , 𝜋𝑏𝑖𝑑,𝑡𝑛 , 𝜋𝐿𝑃𝐸,𝑡𝑛 , 𝑝𝑐,𝑡𝑛 , 𝑝

𝑑,𝑡
𝑛 , 𝐸

𝑡
𝑛, 𝛾

𝑐,𝑡
𝑛 , 𝛾

𝑑,𝑡
𝑛 ,∀𝑛 ∈ N ,∀𝑡 ∈ T

}
;

maximum number of iterations 𝑌 ; convergence criterion 𝜖 .

2: for 𝑦 = 1 to 𝑌 do
3: for 𝑖 = 1 to 𝑁 do
4: Solve strategic retailer 𝑖’s MIQP model assuming other retailers’ strategies

as given parameters.
5: Update S

𝑦

𝑖
;

6: end for
7: if ∥S𝑦

𝑖
− S

𝑦−1
𝑖

∥ ≤ 𝜖,∀𝑖 ∈ N then
8: The algorithm converges and terminates.
9: end if

10: if 𝑦 = 𝑌 then
11: The algorithm fails to converge and terminates.
12: end if
13: end for

convergence, it terminates and no optimal results are found.

3.4 Numerical Results
Numerical results are illustrated in this section to demonstrate the feasibility and
effectiveness of the EPEC model and the diagonalisation algorithm. The effects
of customers’ switching behaviours and the number of strategic retailers on retail
competition are discussed in detail. The proposed model is solved by Gurobi
Optimiser (version 9.5.2) using the branch and bound algorithm under Pyomo [107]
on Windows 10 Enterprise 64-bit with 4 cores CPU at 3.6GHz and 16GB of RAM.

3.4.1 Experimental Setup
Data used in this section comes mainly from the PJM datasets [108], such as the
initial retail and DAW market bid prices for each retailer during the day. The initial
LPE market bid/offer prices and the maximum of cleared electricity volume are
based on PJM real-time market bid prices and cleared electricity for each retailer.
We further calibrate the retailers’ maximum cleared electricity volume in the LPE
market to be 5% of the maximum bid load of retailers in the DAW market. The initial
DAW market’s maximum bid load of each retailer comes from the PJM DAW market
bid load of different utility companies. In addition, the minimum and maximum
retail, DAW market bid, and LPE market bid/offer prices are all set to be $0/MWh
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(a) Prices when switching coefficient is 0 (b) Prices when switching coefficient is - 4 (c) Prices when switching coefficient is - 7

Figure 3.3: Time-varying retail prices and market-clearing prices of LPE and DAW
markets with different switching coefficients.

and $300/MWh, respectively. The minimum bid load for the retailers in the DAW
market is considered to be 0.1 MW following the PJM day-ahead wholesale market
[109]. The maximum iteration 𝑌 = 30 and the termination criteria 𝜖 = 1 are
chosen for the diagonalisation algorithm. The ESS-related parameters are modified
based on [98]. In particular, the initial ESS energy level is set to be 80𝑀𝑊ℎ. The
maximum and minimum charging and discharging rates are 60𝑀𝑊 and 2𝑀𝑊 . The
maximum and minimum ESS energy capacities are 200𝑀𝑊ℎ and 30𝑀𝑊ℎ. The
charging and discharging efficiencies are set to be 0.9. Lastly, the self-discharge
rate 𝜖𝑘 = 0.002𝑀𝑊 is considered.

In this chapter, we consider 24 time periods for the day starting from midnight.
That is, each time period represents an hour. In this case, 12 strategic retailers are
considered in the proposed EPEC model. Furthermore, the strategic retailers are
classified into 3 groups based on their market share potential which the self-elasticity
coefficient 𝜔𝑡𝑛,𝑛 and parameter 𝛼𝑡𝑛 are assumed to be time-varying. Specifically,
retailers 1 − 4 are classified into small market share groups (group 1). Retailers
5 − 8 belong to the medium market share group (group 2). Lastly, retailers 9 − 12
are in the large market share group (group 3). The input data of electricity prices
and volume, self-elasticity coefficient 𝜔𝑡𝑛,𝑛, and 𝛼𝑡𝑛 for each retailer can be found
in A.1.1. Additionally, we include 30 generators participating in the DAW market.
The cost and maximum supply of each generator are shown in A.1.2.

3.4.2 Illustrative Examples
In this section, illustrative examples are given to discuss the results of the EPEC
model when switching coefficients are set to be 0𝑀𝑊ℎ/$,−4𝑀𝑊ℎ/$, and−7𝑀𝑊ℎ/$
respectively. The magnitude of the switching coefficient represents the ability of
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(a) Retail prices at 5 am (b) Retail prices at 12 pm (c) Retail prices at 5 pm

Figure 3.4: Retail prices of retailers with different switching coefficients at different
times of the day.

customers to switch to other retailers and thus the competition level in the retail
market. A larger magnitude of the switching coefficient indicates more competition
in the retail market. Time-varying retail prices of each retailer and market-clearing
prices of the LPE and DAW markets are shown in Figure 3.3. It can be found
that both the retail and market-clearing prices decrease from 1 am to around 5 am,
then increase until around 5 pm and drop down again afterwards, which follows
customers’ demand during the day.

Furthermore, the retail prices of all retailers are generally higher than the market-
clearing prices of the LPE and DAW markets but become closer to the market-
clearing prices with the increase of the magnitude of the switching coefficient. This
can be explained that more competition in the retail market drives down the retail
prices, and retailers’ profit margins become lower. In addition, the retail prices are
typically higher when the retailers have a larger market share (bigger retailers). This
could be due to the fact that retailers with large market shares have more flexibility
in their pricing decisions without worrying about losing customers.

It is also observed that the market-clearing prices of the LPE market are generally
more volatile than the market-clearing prices of the DAW market. This could be
explained by the fact that the market size (market-cleared electricity volume) of the
LPE market is much smaller than the DAW market. Therefore, the unit difference in
customers’ demand has a more significant impact on the LPE market, which results
in higher volatility of its market-clearing prices.

3.4.3 Retail Prices and Profits
Figure 3.4 presents the equilibrium retail prices among all strategic retailers given
by different switching coefficients at 5 am, 12 pm, and 5 pm, respectively. It shows

39



3.4. NUMERICAL RESULTS CHAPTER 3.

Figure 3.5: Percentage change in retail prices with different switching coefficients.

Figure 3.6: Profit of retailers with different switching coefficients.

that when the magnitude of the switching coefficient becomes larger, the retail prices
among all retailers decrease dramatically. This is because retailers would like to
reduce their retail prices to prevent customer losses as customers are more capable
of switching their electricity retailers.

Moreover, the percentage changes in average retail prices of different retailer groups
at 5 am, 12 pm, and 5 pm are shown against different switching coefficients in Figure
3.5. From the figure, we can find that with the increase of the magnitude of the
switching coefficient, average retail prices of all retailer groups decrease consistently
for different time periods. It should also be noted that when the magnitude is less
than 4MWh/$, there is not much difference in price changes among the three retailer
groups at different time periods. However, following the continuing increase of the
magnitude, the price changes differ in different retailer groups and different time
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Figure 3.7: Customers’ welfare with different switching coefficients.

periods. For instance, the price changes in all three retailer groups at 5 am are much
higher than in other time periods. In addition, the price change of the small retailer
group (e.g. group 1) is larger than that of the large retailer group (e.g. group 3).
The above two phenomena enforce our findings that the switching coefficients have
a larger impact on the prices of small retailers and low-demand time periods.

The impact of the switching coefficient on the profits of retailers is illustrated
in Figure 3.6. Not surprisingly, the retailers’ profits reduce significantly when
increasing the magnitude of the switching coefficient. In addition, although the
profits of bigger retailers are usually higher, the profit difference among retailers
tends to decrease when the magnitude of the switching coefficient becomes larger
(higher competition in the market). In other words, a market with higher competition
provides a healthier environment for small players/ entrants.

3.4.4 Customers’ Welfare
The relationship between the switching coefficient and customers’ welfare is dis-
played in Figure 3.7, which reflects the balance between the customers’ utility (the
amount of electricity consumed) and the electricity purchase cost. In particular,
there is a positive correlation between the magnitude of the switching coefficient
and customers’ welfare until it reaches the peak with the switching coefficient around
−4𝑀𝑊ℎ/$. Thereafter, the customers’ welfare decreases drastically. Namely, com-
pared to the situation of no switching behaviours being considered, increasing the
magnitude of the switching coefficient at a certain level can increase customers’
welfare since it can cause the reduction of the retail price whilst keeping the re-
tailers’ load supply at an acceptable level. However, when the magnitude of the
switching coefficient becomes sufficiently large, it discourages the retailers from
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(a) ESS result when switching coefficient is 0 (b) ESS result when switching coefficient is - 4 (c) ESS result when switching coefficient is - 7

Figure 3.8: ESS energy level, charging and discharging power of retailers in group
1.

(a) ESS result when switching coefficient is 0 (b) ESS result when switching coefficient is - 4 (c) ESS result when switching coefficient is - 7

Figure 3.9: ESS energy level, charging and discharging power of retailers in group
2.

(a) ESS result when switching coefficient is 0 (b) ESS result when switching coefficient is - 4 (c) ESS result when switching coefficient is - 7

Figure 3.10: ESS energy level, charging and discharging power of retailers in group
3.

offering electricity supply with a smaller profit margin in return. In this regard, the
customers are provided less electricity by the retailers, which results in the reduction
of the customers’ utility. Therefore, it leads to the customers’ welfare losses.
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3.4.5 ESS Result
This section discusses the ESS operation in the EPEC problem. Figure 3.8-3.10
show the ESS energy level, charging, and discharging power of each retailer in
different retailers’ market share groups, respectively. Particularly, Figure 3.8 (a)
indicates the ESS result when there are no customers’ switching behaviours. Figure
3.8 (b) and (c) show the ESS results when the switching coefficients are −4𝑀𝑊ℎ/$
and −7𝑀𝑊ℎ/$. Notice that the line plot in each figure denotes the ESS energy
level, while the bar plot indicates the charging power (if positive) and discharging
power (if negative) of the ESS. We conclude that the retailers typically charge their
ESS when the DAW market-clearing price is low and discharge the ESS when the
DAW market-clearing price is high regardless of the corresponding market share
and the value of the switching coefficient.

Moreover, by comparing the ESS results under different switching coefficients, we
can find that each retailer’s charging/discharging strategy within each market share
group becomes similar when the magnitude of the switching coefficient increases.
The reason is that increasing the ability of customers’ switching behaviours causes
the convergence of the retailers’ optimal strategies, including the ESS operating
decisions.

3.4.6 The Number of Retailers on the Retail Competition
This section discusses the effect of the number of strategic retailers on the retail
competition, where the results are shown in Table 3.1. We consider three different
cases with different numbers of retailers. All cases have three retailer groups with
different market share. To focus on the effect of the number of retailers, we do not
consider switching behaviours in these three cases. The parameter setup for cases 2
and 3 can be found in A.1.3 and A.1.4, respectively. Compared to case 1, decreasing
the number of retailers in cases 2 and 3 can significantly reduce the competition
among retailers, resulting in much higher daily average retail prices in the larger
market share group (e.g., group 3). Furthermore, the reduced retail competition
surges the retail prices in each group consistently. For instance, the retailer’s daily
average retail price in group 3 of case 3 is $299.86/MWh, which approaches the
cap of the retail price ($300/MWh). In addition, reducing retail competition causes
the remarkable dilation of retailers’ profit in each group and the total profit in each
case. This is the result of the noticeably increased retail price and market power of
the retailers in the absence of competition.
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3.5 Discussion
This chapter proposes a bilevel game-theoretic framework for strategic retailers who
aim to maximise their profits by participating in both DAW and local electricity
markets. The proposed bilevel model consists of customers’ switching behaviour
and market-clearing problems for the DAW and local electricity markets, which is
formulated as an MPEC problem and solved by the KKT conditions approach. The
final multi-leader multi-follower bilevel model is reformulated as an EPEC problem
as solved by the diagonalisation algorithm. The numerical analysis demonstrates
the feasibility and effectiveness of the proposed bilevel decision-making framework
and the effect of customers’ switching behaviour on retailers’ decision-making. The
work can be further developed in the following directions. First, the modelling of
customers’ switching behaviours among different retailers could be considered in
enhancing existing demand response programs such as load shifting and curtailment
[15]. Second, the proposed bilevel strategic model could consider multi-energy sce-
narios involving electricity, natural gas, and heat energy. Moreover, the effect of
network congestion and locational marginal prices on the main findings of this chap-
ter is also worth investigating. In the next chapter, a customised multi-energy pricing
problem is modelled as a single-leader-multiple-follower bilevel program and solved
by three hybrid metaheuristic algorithms (i.e., PSO, GA and SA). Lastly, data-driven
approaches can be employed to improve the modelling process, accuracy and perfor-
mance. For instance, customers’ switching behaviours, wholesale electricity prices
and demand are all time-series data and can be learned from historical data through
machine learning methods, such as RNN, GRU, LSTM and Transformer-based
methods. To this end, chapter 5 proposes Patchformer, a Transformer-based model
for long-term time-series forecasting. The model has demonstrated its superiority
compared to many state-of-the-art time-series models in long-term forecasting.
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C h a p t e r 4

CUSTOMISED MULTI-ENERGY PRICING: MODEL AND
SOLUTIONS

This chapter is reproduced with changes from:

• Q. Hong, F. Meng, “Customized Multi-Energy Pricing in Smart Grids: A
Bilevel and Evolutionary Computation Approach,” The 21st UK Workshop
on Computational Intelligence, Springer, 2022.

• Q. Hong, F. Meng, and J. Liu, “Customised multi-energy pricing: Model and
solutions,” Energies, vol. 16, no. 4, p. 2080, 2023.

The previous chapter proposes a multi-leader, multi-follower bilevel game-theoretic
decision-making framework for multiple strategic retailers participating in both
local and wholesale electricity markets. To extend the research from a single-
energy market to a multi-energy market, in this chapter, a novel customised retail
pricing scheme is proposed in the multi-energy context.

4.1 Introduction
With the increasing interdependence among energies (e.g., electricity, natural gas
and heat) and the development of a decentralised energy system, a novel retail pric-
ing scheme in the multi-energy market is demanded. Therefore, the problem of
designing a customised multi-energy pricing scheme for energy retailers is investi-
gated in this chapter. In particular, the proposed pricing scheme is formulated as a
bilevel optimisation problem. At the upper level, the energy retailer (leader) aims
to maximise its profit. Microgrids (followers) equipped with energy converters,
storage, RES and DR programs are located at the lower level and minimise their
operational costs. Three hybrid algorithms combining metaheuristic algorithms
(i.e., PSO, GA and SA) with the MILP are developed to solve the proposed bilevel
problem. Numerical results verify the feasibility and effectiveness of the proposed
model and solution algorithms. We find that GA outperforms other solution al-
gorithms to obtain a higher retailer’s profit through comparison. In addition, the
proposed customised pricing scheme could benefit the retailer’s profitability and net
profit margin compared to the widely adopted uniform pricing scheme due to the
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reduction in the overall energy purchasing costs in the wholesale markets. Lastly,
the negative correlations between the rated capacity and power of the energy storage
and both retailer’s profit and the microgrid’s operational cost are illustrated.

4.1.1 Contributions
The main contributions of this chapter are summarised as follows:

• A bilevel optimisation model is developed to formulate the novel customised
pricing scheme for an energy retailer that manages multiple microgrids in the
multi-energy market. In particular, a retailer’s profit maximisation problem
is considered at the upper level. The energy management for each microgrid
is detailed, and the operational cost minimisation is formulated at the lower
level.

• The detailed energy management model for each microgrid equipped with
energy converters (i.e., CHP and heat pump), electrical and thermal storage,
RES (i.e., solar and wind) and DR programs (i.e., load curtailment and shift-
ing) is formulated as a MILP program at the lower level. Specifically, load
curtailment refers to the reduction in energy consumption, while in the load-
shifting program, the electricity demand can be rescheduled and shifted to
other scheduling hours.

• Three hybrid metaheuristic algorithms (i.e., PSO, GA and SA) combined
with the conventional MILP program are developed to solve the proposed
bilevel problem. The hybrid solution algorithms conquer the non-convexity
of the lower level problems, which are proved difficult to solve with traditional
mathematical methods, such as KKT-based solution methods. In numerical
analyses, we test the performance of the three algorithms. The comparison
between the customised and uniform pricing schemes is illustrated in detail. In
addition, the effect of the rated capacity and power of electrical and thermal
storage on the energy retailer’s pricing decisions, profit, and microgrids’
operational costs is thoroughly investigated.

4.1.2 Chapter Organisation
The remainder of this chapter is organised as follows. In Section 4.2, the proposed
bilevel model is discussed in detail. Section 4.3 describes the three hybrid meta-
heuristic algorithms combined with the MILP program. The numerical results are
presented in Section 4.4. Finally, the discussion is drawn in Section 4.5
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4.2 Model Formulation
This section shows the formulation of the proposed bilevel optimisation model. In
particular, Section 4.2.1 presents an overview of the bilevel MILP model. The
customised multi-energy pricing problem is described in Section 4.2.2. Lastly, the
lower and upper-level model formulations are discussed in Sections 4.2.3 and 4.2.4,
respectively.

4.2.1 Bilevel MILP Model Overview
Bilevel optimisation refers to one of the categories of optimisation that cope with
the problem with a hierarchical structure in nature, which includes two decision
makers (i.e., leader and follower) located at the upper and lower levels, respectively.
The bilevel model is formulated by an optimisation problem (lower level) embedded
into another problem (upper level). The problem originates from the game theory in
economics and was introduced by Heinrich Freiherr von Stackelberg in 1934 [110].
The decision variables of a bilevel model can be continuous and discrete. Since
formulating the customised multi-energy pricing problem involves integer variables
in the lower-level problem, in this section, an overview of the bilevel MILP model
is introduced as follows.

The general form of a bilevel MILP model with a single leader and multiple inde-
pendent followers is shown below:

max
𝑥∈𝑋

𝐹 (𝑥, 𝑦1, ...𝑦𝑀)

Subject to:

𝐺 (𝑥, 𝑦1, ...𝑦𝑀) ≤ 0

𝑦𝑖 ∈ arg min
𝑦′
𝑖
∈𝑌𝑖

{
𝑓𝑖 (𝑥, 𝑦′𝑖) : 𝑔𝑖 (𝑥, 𝑦′𝑖) ≤ 0, 𝑦′𝑗 ∈ Z,∀ 𝑗 ∈ J𝑖

}
,∀𝑖 ∈ M

where 𝑋 ⊂ R𝑛 and 𝑌𝑖 ⊂ R𝑚𝑖 are the feasible solution sets for both upper and
lower level problems. The set of followers {1, ..., 𝑀} is denoted as M. 𝑛 and 𝑚𝑖
indicate the number of decision variables for the leader and the follower 𝑖 ∈ M.
𝐹 (𝑥, 𝑦1, ...𝑦𝑀) and 𝑓𝑖 (𝑥, 𝑦𝑖),∀𝑖 ∈ M represent the objective functions for the upper
and lower level problems. On the other hand, the upper and lower level constraint
functions are indicated as𝐺 (𝑥, 𝑦1, ...𝑦𝑀) and 𝑔𝑖 (𝑥, 𝑦𝑖),∀𝑖 ∈ M, respectively. Notice
that J𝑖 is the set of indices that the corresponding {𝑦 𝑗 ,∀ 𝑗 ∈ J𝑖} are integer variables.

If 𝑥 ∈ 𝑋 denotes the vector of the leader’s decision variables, the feasible solution
and rational reaction sets of each follower 𝑖 can be represented as 𝑌𝑖 (𝑥) = {𝑦𝑖 ∈ 𝑌𝑖 :
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Figure 4.1: Structure of the multi-energy market.

𝑔𝑖 (𝑥, 𝑦𝑖) ≤ 0, 𝑦′
𝑗
∈ Z,∀ 𝑗 ∈ J𝑖} and Ω𝑖 (𝑥) =

{
𝑦𝑖 ∈ 𝑌𝑖 : arg min𝑦′

𝑖
∈𝑌𝑖 (𝑥){ 𝑓𝑖 (𝑥, 𝑦′𝑖)}

}
.

Finally, the bilevel MILP feasible set, which is also called the inducible region, is pre-
sented as 𝐼𝑅 =

{
(𝑥, 𝑦1, ..., 𝑦𝑀) : 𝐺 (𝑥, 𝑦1, ...𝑦𝑀) ≤ 0, 𝑥 ∈ 𝑋, 𝑦𝑖 ∈ Ω𝑖 (𝑥),∀𝑖 ∈ M

}
.

The optimal solution of the bilevel model is denoted as (𝑥∗, 𝑦∗1, ..., 𝑦
∗
𝑀
) ∈ arg max{

𝐹 (𝑥, 𝑦1, ...𝑦𝑀) : (𝑥, 𝑦1, ..., 𝑦𝑀) ∈ 𝐼𝑅}.

4.2.2 Customised Multi-Energy Pricing Problem Description
In the proposed multi-energy market, which is shown in Figure 4.1, multiple micro-
grids are managed by a single energy retailer that purchases electricity and natural
gas from the upstream wholesale markets. The microgrids are allocated with CHP,
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Leader: The energy retailer
Objective function: Maximisation of the profit
Decision variables: Customised electricity and natural gas retail
    prices for each microgrid 
Constraints: 

Electricity and natural gas volume bonding constraints
Electricity and natural gas retail price bonding constraints
Average retail price equality constraints

Follower: Microgrid  
Objective function: Minimisation of the operational cost
Decision variables: 

Sell/purchase energy to/from the retailer
Energy input/output of the CHP and heat pump
Charging/discharging of ES and TS
Results of DR programs
Electricity from RES

Constraints: 
CHP and heat pump operational constraints
ES and TS operational constraints
DR and RES constraints
Electricity exchange and energy balance constraints

Upper level problem

Lower level problem

Input: Wholesale electricity and natural gas prices

Input: CHP, heat pump, ES, TS, DR, and RES parameters

Customised
retail prices

Energy needed/exported

The customised multi-energy pricing scheme
Optimal energy management of each microgrid

Figure 4.2: Framework diagram of the proposed bilevel model.

heat pump, electrical and thermal storage, RES and DR programs, which operate
their energy management systems. Therefore, given the ability of microgrids to
generate and transfer energy, the energy retailer can also purchase the electricity
from the managed microgrids and sell it back to the wholesale market to make a
profit. In addition, the detailed framework of the proposed bilevel model is pre-
sented in Figure 4.2. Particularly, at the upper level, to maximise the profit, the
energy retailer optimises the retail pricing decisions based on the proposed cus-
tomised multi-energy pricing scheme within the scheduling hours T = {1, ..., 𝑇}
and announces them a day ahead to each microgrid 𝑚, respectively. After receiving
the corresponding retail energy prices, each microgrid 𝑚 reacts by minimising its
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operational cost and reports the volume of energy to be exchanged (buy or sell) to
the retailer. As a result, each microgrid’s optimal customised retail pricing scheme
and energy management are obtained. The detailed model formulations for both the
lower and upper levels are shown in Sections 4.2.3 and 4.2.4 below.

4.2.3 Follower-Side/Lower-Level Problem
It is assumed that the microgrids in M managed by the energy retailer operate
independently at the lower level. In this section, the detailed lower-level formulations
for the microgrid 𝑚 ∈ M are shown as follows.

4.2.3.1 Lower-Level Objective Function

The lower-level objective function (4.1) shows the total operational costs of the
microgrid 𝑚. In particular, the first group of elements presents the energy exchange
between the microgrid𝑚 and the retailer. 𝑝𝑡𝑚 and 𝑔𝑡𝑚 denote the amount of electricity
and natural gas that the microgrid 𝑚 purchases from the retailer. 𝑝𝑒𝑥𝑝𝑜𝑟𝑡,𝑡𝑚 represents
the amount of electricity that the microgrid 𝑚 exports to the retailer. 𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑒𝑙𝑒,𝑚
and

𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑔𝑎𝑠,𝑚 denote the retail electricity and natural gas prices that the energy retailer

announces to the microgrid 𝑚. Notice that the price of electricity sold by the
microgrid𝑚 back to the retailer is proportional to the retail electricity price, denoted
as 𝛼𝑚. The second and third groups of elements describe the CHP and heat pump
costs, respectively, including operation and maintenance costs 𝑐𝐶𝐻𝑃𝑚 ,𝑐𝑝𝑢𝑚𝑝𝑚 , start-
up cost 𝑐𝑠𝑡

𝐶𝐻𝑃,𝑚
,𝑐𝑠𝑡𝑝𝑢𝑚𝑝,𝑚 and shut-down cost 𝑐𝑠𝑑

𝐶𝐻𝑃,𝑚
,𝑐𝑠𝑑𝑝𝑢𝑚𝑝,𝑚. The fourth group of

elements represents the electrical and thermal storage costs, which are denoted as
𝑐𝐸𝑆𝑚 and 𝑐𝑇𝑆𝑚 . The last group of elements shows the costs of the load curtailment
program for all energies, which are denoted as 𝑐𝑒𝑙𝑒,𝑡

𝑐𝑢𝑟𝑡𝑎𝑖𝑙,𝑚
, 𝑐𝑔𝑎𝑠,𝑡

𝑐𝑢𝑟𝑡𝑎𝑖𝑙,𝑚
, and 𝑐ℎ𝑒𝑎𝑡,𝑡

𝑐𝑢𝑟𝑡𝑎𝑖𝑙,𝑚
.

min
Ξ𝐿𝑚

𝑓𝑚 =
∑︁
𝑡∈T

{[
𝑝𝑡𝑚𝜋

𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑒𝑙𝑒,𝑚
− 𝑝𝑒𝑥𝑝𝑜𝑟𝑡,𝑡𝑚 𝛼𝑚𝜋

𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑒𝑙𝑒,𝑚
+ 𝑔𝑡𝑚𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑔𝑎𝑠,𝑚

]
+

[
𝑐𝐶𝐻𝑃𝑚 𝑔𝐶𝐻𝑃,𝑡𝑚 +

𝑐𝑠𝑡𝐶𝐻𝑃,𝑚𝛿
𝑠𝑡,𝑡
𝑚 + 𝑐𝑠𝑑𝐶𝐻𝑃,𝑚𝛿

𝑠𝑑,𝑡
𝑚

]
+

[
𝑐
𝑝𝑢𝑚𝑝
𝑚 𝑝

𝑝𝑢𝑚𝑝,𝑡
𝑚 + 𝑐𝑠𝑡𝑝𝑢𝑚𝑝,𝑡𝜃𝑠𝑡,𝑡𝑚 + 𝑐𝑠𝑑𝑝𝑢𝑚𝑝,𝑚𝜃𝑠𝑑,𝑡𝑚

]
+[

𝑐𝐸𝑆𝑚 (𝑝𝑐,𝑡𝑚 + 𝑝𝑑,𝑡𝑚 ) + 𝑐𝑇𝑆𝑚 (𝑞𝑐,𝑡𝑚 + 𝑞𝑑,𝑡𝑚 )
]
+

[
𝑑
𝑒𝑙𝑒,𝑡

𝑐𝑢𝑟𝑡𝑎𝑖𝑙,𝑚
𝜌𝑡𝑒𝑙𝑒,𝑚𝑐

𝑒𝑙𝑒
𝑐𝑢𝑟𝑡𝑎𝑖𝑙,𝑚+

𝑑
𝑔𝑎𝑠,𝑡

𝑐𝑢𝑟𝑡𝑎𝑖𝑙,𝑚
𝜌𝑡𝑔𝑎𝑠,𝑚𝑐

𝑔𝑎𝑠

𝑐𝑢𝑟𝑡𝑎𝑖𝑙,𝑚
+ 𝑑ℎ𝑒𝑎𝑡,𝑡

𝑐𝑢𝑟𝑡𝑎𝑖𝑙,𝑚
𝜌𝑡ℎ𝑒𝑎𝑡,𝑚𝑐

ℎ𝑒𝑎𝑡
𝑐𝑢𝑟𝑡𝑎𝑖𝑙,𝑚

]}
(4.1)
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4.2.3.2 CHP Operational Constraints

The CHP unit, which converts natural gas into electricity and heat, is formulated
in (4.2a)–(4.2m) inspired by Ref. [97]. The energy conversion constraints of the
CHP are denoted in (4.2a) and (4.2b). 𝑔𝐶𝐻𝑃,𝑡𝑚 represents the amount of natural gas
consumed by the CHP. 𝑝𝐶𝐻𝑃,𝑡𝑚 and 𝑞𝐶𝐻𝑃,𝑡𝑚 denote the amount of electricity and heat
generated by the CHP. The energy conversion efficiencies for different energies are
denoted as 𝜂𝐶𝐻𝑃𝑚 and 𝜂𝑒2ℎ𝑚 , respectively. The limitation of the CHP electricity output
is shown in (4.2c), where 𝛿𝑡𝑚 denotes the CHP operational status. (4.2d)–(4.2g)
represent the ramp-up and ramp-down power constraints of the CHP electricity
output. The initial status of the CHP is denoted as 𝛿𝑖𝑛𝑖𝑡𝑚 . 𝑝𝐶𝐻𝑃,𝑖𝑛𝑖𝑡𝑚 represents the last
amount of CHP generated electricity during the last scheduling hours. 𝑝𝑅𝑈𝑚 and 𝑝𝑅𝐷𝑚
show the maximum amount of ramp-up and ramp-down electricity. In addition, the
start-up and shut-down actions of the CHP are described in (4.2h)–(4.2l), where 𝛿𝑠𝑡,𝑡𝑚

and 𝛿𝑠𝑑,𝑡𝑚 denote the CHP start-up and shut-down statuses. Lastly, (4.2m) presents
the binary variables that appear in the CHP operation:

𝑝𝐶𝐻𝑃,𝑡𝑚 = 𝜂𝐶𝐻𝑃𝑚 𝑔𝐶𝐻𝑃,𝑡𝑚 ,∀𝑡 ∈ T (4.2a)

𝑞𝐶𝐻𝑃,𝑡𝑚 = 𝜂𝑒2ℎ𝑚 𝑝𝐶𝐻𝑃,𝑡𝑚 ,∀𝑡 ∈ T (4.2b)

𝑝𝐶𝐻𝑃,𝑚𝑖𝑛𝑚 𝛿𝑡𝑚 ≤ 𝑝𝐶𝐻𝑃,𝑡𝑚 ≤ 𝑝𝐶𝐻𝑃,𝑚𝑎𝑥𝑚 𝛿𝑡𝑚,∀𝑡 ∈ T (4.2c)

𝑝𝐶𝐻𝑃,𝑡𝑚 − 𝑝𝐶𝐻𝑃,𝑖𝑛𝑖𝑡𝑚 ≤ 𝑝𝑅𝑈𝑚 , 𝑡 = 1 (4.2d)

𝑝𝐶𝐻𝑃,𝑡𝑚 − 𝑝𝐶𝐻𝑃,𝑡−1
𝑚 ≤ 𝑝𝑅𝑈𝑚 ,∀𝑡 ∈ T \ {1} (4.2e)

𝑝𝐶𝐻𝑃,𝑖𝑛𝑖𝑡𝑚 − 𝑝𝐶𝐻𝑃,𝑡𝑚 ≤ 𝑝𝑅𝐷𝑚 , 𝑡 = 1 (4.2f)

𝑝𝐶𝐻𝑃,𝑡−1
𝑚 − 𝑝𝐶𝐻𝑃,𝑡𝑚 ≤ 𝑝𝑅𝐷𝑚 ,∀𝑡 ∈ T \ {1} (4.2g)

𝛿𝑡𝑚 − 𝛿𝑖𝑛𝑖𝑡𝑚 ≤ 𝛿𝑠𝑡,𝑡𝑚 , 𝑡 = 1 (4.2h)

𝛿𝑡𝑚 − 𝛿𝑡−1
𝑚 ≤ 𝛿𝑠𝑡,𝑡𝑚 ,∀𝑡 ∈ T \ {1} (4.2i)

𝛿𝑖𝑛𝑖𝑡𝑚 − 𝛿𝑡𝑚 ≤ 𝛿𝑠𝑑,𝑡𝑚 , 𝑡 = 1 (4.2j)

𝛿𝑡−1
𝑚 − 𝛿𝑡𝑚 ≤ 𝛿𝑠𝑑,𝑡𝑚 ,∀𝑡 ∈ T \ {1} (4.2k)

𝛿𝑠𝑡,𝑡𝑚 + 𝛿𝑠𝑑,𝑡𝑚 ≤ 1,∀𝑡 ∈ T (4.2l)

𝛿𝑡𝑚, 𝛿
𝑠𝑡,𝑡
𝑚 , 𝛿𝑠𝑑,𝑡𝑚 ∈ {0, 1},∀𝑡 ∈ T (4.2m)

4.2.3.3 Heat Pump Operational Constraints

The heat pump generates heat energy by consuming electricity. Equation (4.3a)
is the energy conversion constraint. 𝑝

𝑝𝑢𝑚𝑝,𝑡
𝑚 and 𝑞

𝑝𝑢𝑚𝑝,𝑡
𝑚 denote the amount of

electricity consumed and the amount of heat generated by operating the heat pump.
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𝜂
𝑝𝑢𝑚𝑝
𝑚 denotes the energy conversion efficiency. The amount of generated heat is

bounded in (4.3b), where the heat pump operational status is presented as 𝜃𝑡𝑚. The
ramp-up and ramp-down constraints of the heat pump are depicted in (4.3c)–(4.3f),
where 𝑞𝑝𝑢𝑚𝑝,𝑖𝑛𝑖𝑡𝑚 denotes the final amount of heat generated by the heat pump in
the last scheduling hours. The maximum amount of ramp-up and ramp-down heat
are represented as 𝑞𝑅𝑈𝑚 and 𝑞𝑅𝐷𝑚 , respectively. (4.3g)–(4.3k) define the heat pump
start-up and shut-down actions, whose corresponding start-up and down statuses are
denoted as 𝜃𝑠𝑡,𝑡𝑚 and 𝜃𝑠𝑑,𝑡𝑚 . The binary variables in this operation are shown in (4.3l):

𝑞
𝑝𝑢𝑚𝑝,𝑡
𝑚 = 𝜂

𝑝𝑢𝑚𝑝
𝑚 𝑝

𝑝𝑢𝑚𝑝,𝑡
𝑚 ,∀𝑡 ∈ T (4.3a)

𝑞
𝑝𝑢𝑚𝑝,𝑚𝑖𝑛
𝑚 𝜃𝑡𝑚 ≤ 𝑞𝑝𝑢𝑚𝑝,𝑡𝑚 ≤ 𝑞𝑝𝑢𝑚𝑝,𝑚𝑎𝑥𝑚 𝜃𝑡𝑚,∀𝑡 ∈ T (4.3b)

𝑞
𝑝𝑢𝑚𝑝,𝑡
𝑚 − 𝑞𝑝𝑢𝑚𝑝,𝑖𝑛𝑖𝑡𝑚 ≤ 𝑞𝑅𝑈𝑚 , 𝑡 = 1 (4.3c)

𝑞
𝑝𝑢𝑚𝑝,𝑡
𝑚 − 𝑞𝑝𝑢𝑚𝑝,𝑡−1

𝑚 ≤ 𝑞𝑅𝑈𝑚 ,∀𝑡 ∈ T \ {1} (4.3d)

𝑞
𝑝𝑢𝑚𝑝,𝑖𝑛𝑖𝑡
𝑚 − 𝑞𝑝𝑢𝑚𝑝,𝑡𝑚 ≤ 𝑞𝑅𝐷𝑚 , 𝑡 = 1 (4.3e)

𝑞
𝑝𝑢𝑚𝑝,𝑡−1
𝑚 − 𝑞𝑝𝑢𝑚𝑝,𝑡𝑚 ≤ 𝑞𝑅𝐷𝑚 ,∀𝑡 ∈ T \ {1} (4.3f)

𝜃𝑡𝑚 − 𝜃𝑖𝑛𝑖𝑡𝑚 ≤ 𝜃𝑠𝑡,𝑡𝑚 , 𝑡 = 1 (4.3g)

𝜃𝑡𝑚 − 𝜃𝑡−1
𝑚 ≤ 𝜃𝑠𝑡,𝑡𝑚 ,∀𝑡 ∈ T \ {1} (4.3h)

𝜃𝑖𝑛𝑖𝑡𝑚 − 𝜃𝑡𝑚 ≤ 𝜃𝑠𝑑,𝑡𝑚 , 𝑡 = 1 (4.3i)

𝜃𝑡−1
𝑚 − 𝜃𝑡𝑚 ≤ 𝜃𝑠𝑑,𝑡𝑚 ,∀𝑡 ∈ T \ {1} (4.3j)

𝜃𝑠𝑡,𝑡𝑚 + 𝜃𝑠𝑑,𝑡𝑚 ≤ 1,∀𝑡 ∈ T (4.3k)

𝜃𝑡𝑚, 𝜃
𝑠𝑡,𝑡
𝑚 , 𝜃𝑠𝑑,𝑡𝑚 ∈ {0, 1},∀𝑡 ∈ T (4.3l)

4.2.3.4 Electrical Storage (ES) Operational Constraints

Constraints (4.4a) and (4.4b) describe the change of the ES energy level 𝐸𝐸𝑆,𝑡𝑚

considering charging rate 𝜂𝐸𝑆,𝑐𝑚 , discharging rate 𝜂𝐸𝑆,𝑑𝑚 , and self-discharging rate
𝜖𝐸𝑆𝑚 . 𝑝𝑐,𝑡𝑚 and 𝑝𝑑,𝑡𝑚 denote the amount of charged and discharged electricity. (4.4c)
limits the energy level of the ES in each scheduling hour. In addition, for operational
purposes, (4.4d) ensures that the energy level of the ES stays unchanged after the
scheduling hours. 𝐸𝐸𝑆,𝑇𝑚 and 𝐸𝐸𝑆,𝑖𝑛𝑖𝑡𝑚 denote the final and initial energy level of the
ES. The charging and discharging power are bounded in (4.4e)–(4.4h), where 𝛾𝑐,𝑡𝑚
and 𝛾𝑑,𝑡𝑚 represent the charging and discharging statuses:

𝐸𝐸𝑆,𝑡𝑚 = 𝐸𝐸𝑆,𝑖𝑛𝑖𝑡𝑚 + 𝜂𝐸𝑆,𝑐𝑚 𝑝𝑐,𝑡𝑚 − 1
𝜂
𝐸𝑆,𝑑
𝑚

𝑝𝑑,𝑡𝑚 − 𝜖𝐸𝑆𝑚 , 𝑡 = 1 (4.4a)

𝐸𝐸𝑆,𝑡𝑚 = 𝐸𝐸𝑆,𝑡−1
𝑚 + 𝜂𝐸𝑆,𝑐𝑚 𝑝𝑐,𝑡𝑚 − 1

𝜂
𝐸𝑆,𝑑
𝑚

𝑝𝑑,𝑡𝑚 − 𝜖𝐸𝑆𝑚 ,∀𝑡 ∈ T \ {1} (4.4b)
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𝐸𝐸𝑆,𝑚𝑖𝑛𝑚 ≤ 𝐸𝐸𝑆,𝑡𝑚 ≤ 𝐸𝐸𝑆,𝑚𝑎𝑥𝑚 ,∀𝑡 ∈ T (4.4c)

𝐸𝐸𝑆,𝑇𝑚 = 𝐸𝐸𝑆,𝑖𝑛𝑖𝑡𝑚 (4.4d)

𝛾𝑐,𝑡𝑚 𝑝
𝑐,𝑚𝑖𝑛
𝑚 ≤ 𝑝𝑐,𝑡𝑚 ≤ 𝛾𝑐,𝑡𝑚 𝑝𝑐,𝑚𝑎𝑥𝑚 ,∀𝑡 ∈ T (4.4e)

𝛾𝑑,𝑡𝑚 𝑝𝑑,𝑚𝑖𝑛𝑚 ≤ 𝑝𝑑,𝑡𝑚 ≤ 𝛾𝑑,𝑡𝑚 𝑝𝑑,𝑚𝑎𝑥𝑚 ,∀𝑡 ∈ T (4.4f)

𝛾𝑐,𝑡𝑚 + 𝛾𝑑,𝑡𝑚 ≤ 1,∀𝑡 ∈ T (4.4g)

𝛾𝑐,𝑡𝑚 , 𝛾
𝑑,𝑡
𝑚 ∈ {0, 1},∀𝑡 ∈ T (4.4h)

4.2.3.5 Thermal Storage (TS) Operational Constraints

The operational constraints of TS are similar to ES. Specifically, the TS energy level
is represented in (4.5a) and (4.5b), where 𝐸𝑇𝑆,𝑡𝑚 , 𝜂𝑇𝑆,𝑐𝑚 , 𝜂𝑇𝑆,𝑑𝑚 and 𝜖𝑇𝑆𝑚 denote the TS
energy level, charging rate, discharging rate and self-discharging rate, respectively.
𝑞
𝑐,𝑡
𝑚 and 𝑞𝑑,𝑡𝑚 present the amount of charged and discharged heat. The TS energy

level in each scheduling hour is bounded in (4.5c). The initial and final energy levels
𝐸
𝑇𝑆,𝑇
𝑚 , 𝐸𝑇𝑆,𝑖𝑛𝑖𝑡𝑚 of the TS are imposed to be equal in (4.5d). Constraints (4.5e)–(4.5h)

constrain the charging and discharging power of the TS, where 𝜁 𝑐,𝑡𝑚 and 𝜁 𝑑,𝑡𝑚 represent
the TS charging and discharging statuses:

𝐸𝑇𝑆,𝑡𝑚 = 𝐸𝑇𝑆,𝑖𝑛𝑖𝑡𝑚 + 𝜂𝑇𝑆,𝑐𝑚 𝑞𝑐,𝑡𝑚 − 1
𝜂
𝑇𝑆,𝑑
𝑚

𝑞𝑑,𝑡𝑚 − 𝜖𝑇𝑆𝑚 , 𝑡 = 1 (4.5a)

𝐸𝑇𝑆,𝑡𝑚 = 𝐸𝑇𝑆,𝑡−1
𝑚 + 𝜂𝑇𝑆,𝑐𝑚 𝑞𝑐,𝑡𝑚 − 1

𝜂
𝑇𝑆,𝑑
𝑚

𝑞𝑑,𝑡𝑚 − 𝜖𝑇𝑆𝑚 ,∀𝑡 ∈ T \ {1} (4.5b)

𝐸𝑇𝑆,𝑚𝑖𝑛𝑚 ≤ 𝐸𝑇𝑆,𝑡𝑚 ≤ 𝐸𝑇𝑆,𝑚𝑎𝑥𝑚 ,∀𝑡 ∈ T (4.5c)

𝐸𝑇𝑆,𝑇𝑚 = 𝐸𝑇𝑆,𝑖𝑛𝑖𝑡𝑚 (4.5d)

𝜁 𝑐,𝑡𝑚 𝑞
𝑐,𝑚𝑖𝑛
𝑚 ≤ 𝑞𝑐,𝑡𝑚 ≤ 𝜁 𝑐,𝑡𝑚 𝑞

𝑐,𝑚𝑎𝑥
𝑚 ,∀𝑡 ∈ T (4.5e)

𝜁 𝑑,𝑡𝑚 𝑞𝑑,𝑚𝑖𝑛𝑚 ≤ 𝑞𝑑,𝑡𝑚 ≤ 𝜁 𝑑,𝑡𝑚 𝑞𝑑,𝑚𝑎𝑥𝑚 ,∀𝑡 ∈ T (4.5f)

𝜁 𝑐,𝑡𝑚 + 𝜁 𝑑,𝑡𝑚 ≤ 1,∀𝑡 ∈ T (4.5g)

𝜁 𝑐,𝑡𝑚 , 𝜁
𝑑,𝑡
𝑚 ∈ {0, 1},∀𝑡 ∈ T (4.5h)

4.2.3.6 DR Programs Constraints

Two types of DR programs are considered in microgrid𝑚, which are load curtailment
(LC) and load shifting (LS), which are formulated in (4.6a)–(4.6c) and (4.6d)–(4.6h),
respectively. Both formulations of the DR programs are inspired by [97]. The
detailed description and formulation are shown below.

Load curtailment:
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It is assumed that the electricity, natural gas, and heat demand can all be curtailed
during the scheduling hours, and the curtailment rates are denoted as 𝜌𝑡

𝑒𝑙𝑒,𝑚
, 𝜌𝑡𝑔𝑎𝑠,𝑚,

𝜌𝑡
ℎ𝑒𝑎𝑡,𝑚

, respectively. The bounding constraints for the three types of energies
are presented in (4.6a)–(4.6c). Notice that the curtailable energy demand in each
scheduling hour is predetermined by the energy retailer and represented as 𝑑𝑒𝑙𝑒,𝑡

𝑐𝑢𝑟𝑡𝑎𝑖𝑙
,

𝑑
𝑔𝑎𝑠,𝑡

𝑐𝑢𝑟𝑡𝑎𝑖𝑙
and 𝑑ℎ𝑒𝑎𝑡,𝑡

𝑐𝑢𝑟𝑡𝑎𝑖𝑙
:

𝜌𝑚𝑖𝑛𝑒𝑙𝑒,𝑚 ≤ 𝜌𝑡𝑒𝑙𝑒,𝑚 ≤ 𝜌𝑚𝑎𝑥𝑒𝑙𝑒,𝑚,∀𝑡 ∈ T (4.6a)

𝜌𝑚𝑖𝑛𝑔𝑎𝑠,𝑚 ≤ 𝜌𝑡𝑔𝑎𝑠,𝑚 ≤ 𝜌𝑚𝑎𝑥𝑔𝑎𝑠,𝑚,∀𝑡 ∈ T (4.6b)

𝜌𝑚𝑖𝑛ℎ𝑒𝑎𝑡,𝑚 ≤ 𝜌𝑡ℎ𝑒𝑎𝑡,𝑚 ≤ 𝜌𝑚𝑎𝑥ℎ𝑒𝑎𝑡,𝑚,∀𝑡 ∈ T (4.6c)

Load shifting:

We assume there are households in A𝑖 that participate in the load-shifting program.
Each household has the load-adjustable time window 𝐷𝑎𝑖 , which is represented
in (4.6d). 𝜇𝑡𝑎𝑖 denotes the household’s operational status. The start and stop
times of the load-shifting program for each household 𝑎𝑚 are denoted as 𝑇 𝑠𝑡𝑎𝑟𝑡𝑎𝑖

and
𝑇
𝑠𝑡𝑜𝑝
𝑎𝑖 . Constraint (4.6e) imposes that there is no shiftable load available in the

scheduling hours outside of the adjustable time window. The shiftable load 𝑑𝑡𝑎𝑖 in
each scheduling hour is flexible but bounded in (4.6f). Finally, (4.6g) makes sure
the overall electricity consumption 𝐸𝑎𝑖 is not affected by the load-shifting program:

𝑇
𝑠𝑡𝑜𝑝
𝑎𝑖∑︁

𝑡=𝑇 𝑠𝑡𝑎𝑟𝑡
𝑎𝑖

𝜇𝑡𝑎𝑖 = 𝐷𝑎𝑖 ,∀𝑎𝑖 ∈ A𝑚 (4.6d)

𝑇 𝑠𝑡𝑎𝑟𝑡
𝑎𝑖

−1∑︁
𝑡=1

𝜇𝑡𝑎𝑖 +
𝑇∑︁

𝑡=𝑇
𝑠𝑡𝑜𝑝
𝑎𝑖

+1

𝜇𝑡𝑎𝑖 = 0,∀𝑎𝑖 ∈ A𝑚 (4.6e)

𝑑𝑚𝑖𝑛𝑎𝑖
𝜇𝑡𝑎𝑖 ≤ 𝑑𝑡𝑎𝑖 ≤ 𝑑𝑚𝑎𝑥𝑎𝑖

𝜇𝑡𝑎𝑖 ,∀𝑎𝑖 ∈ A𝑚,∀𝑡 ∈ T (4.6f)
𝑇
𝑠𝑡𝑜𝑝
𝑎𝑖∑︁

𝑡=𝑇 𝑠𝑡𝑎𝑟𝑡
𝑎𝑖

𝑑𝑡𝑎𝑖 = 𝐸𝑎𝑖 ,∀𝑎𝑖 ∈ A𝑚 (4.6g)

𝜇𝑡𝑎𝑖 ∈ {0, 1},∀𝑎𝑖 ∈ A𝑚,∀𝑡 ∈ T (4.6h)

4.2.3.7 RES Constraints

Two renewable energies, solar and wind power, which are generated by photovoltaics
(PV) and wind turbines (WT) are considered in this chapter. To reduce the effect of
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the uncertainties of the renewable energies in nature, the bounding constraints of the
forecast of PV 𝑝

𝑃𝑉,𝑡
𝑚 and wind powers 𝑝𝑤𝑖𝑛𝑑,𝑡𝑚 in each scheduling hour are introduced

in (4.7a) and (4.7b):

𝑝𝑃𝑉,𝑡,𝑚𝑖𝑛𝑚 ≤ 𝑝𝑃𝑉,𝑡𝑚 ≤ 𝑝𝑃𝑉,𝑡,𝑚𝑎𝑥𝑚 ,∀𝑡 ∈ T (4.7a)

𝑝𝑤𝑖𝑛𝑑,𝑡,𝑚𝑖𝑛𝑚 ≤ 𝑝𝑤𝑖𝑛𝑑,𝑡𝑚 ≤ 𝑝𝑤𝑖𝑛𝑑,𝑡,𝑚𝑎𝑥𝑚 ,∀𝑡 ∈ T (4.7b)

In addition, inspired by Ref. [111], the spinning reserve constraint (4.7c) is imple-
mented to further maintain and secure the operation of microgrids and the power
system. It presents that the maximum power supply of the microgrid 𝑚 must be
sufficient to provide at least (1 + 𝜏𝑠𝑝𝑖𝑛) times load demand in each scheduling hour.
𝜏𝑠𝑝𝑖𝑛 denotes the spinning reserve ratio:

𝑝𝐶𝐻𝑃,𝑚𝑎𝑥𝑚 𝛿𝑡𝑚 + 𝑝𝑑,𝑡𝑚 − 𝑝𝑐,𝑡𝑚 + 𝑝𝑡𝑚 − 𝑝𝑒𝑥𝑝𝑜𝑟𝑡,𝑡𝑚 − 𝑝𝑝𝑢𝑚𝑝,𝑡𝑚 + 𝑝𝑃𝑉,𝑡𝑚

+ 𝑝𝑤𝑖𝑛𝑑,𝑡𝑚 ≥ (1 + 𝜏𝑠𝑝𝑖𝑛)
[
𝑑𝑒𝑙𝑒,𝑡𝑚 +

∑︁
𝑎𝑖∈A𝑚

𝑑𝑡𝑎𝑖 + 𝑑
𝑒𝑙𝑒,𝑡

𝑐𝑢𝑟𝑡𝑎𝑖𝑙,𝑚
(1 − 𝜌𝑡𝑒𝑙𝑒,𝑚)

]
,∀𝑡 ∈ T (4.7c)

4.2.3.8 Microgrid Electricity Exchange Constraints

The electricity imported to and exported from the microgrid 𝑚 are constrained in
(4.8a) and (4.8b), where the importing and exporting statuses are denoted as 𝜓𝑡𝑚
and 𝜓𝑒𝑥𝑝𝑜𝑟𝑡,𝑡𝑚 , respectively. Additionally, (4.8c) imposes that electricity import and
export cannot happen simultaneously:

𝜓𝑡𝑚𝑝
𝑚𝑖𝑛,𝑡
𝑚 ≤ 𝑝𝑡𝑚 ≤ 𝜓𝑡𝑚𝑝𝑚𝑎𝑥,𝑡𝑚 ,∀𝑡 ∈ T (4.8a)

𝜓
𝑒𝑥𝑝𝑜𝑟𝑡,𝑡
𝑚 𝑝

𝑚𝑖𝑛,𝑡
𝑒𝑥𝑝𝑜𝑟𝑡,𝑚 ≤ 𝑝

𝑒𝑥𝑝𝑜𝑟𝑡,𝑡
𝑚 ≤ 𝜓𝑒𝑥𝑝𝑜𝑟𝑡,𝑡𝑚 𝑝

𝑚𝑎𝑥,𝑡
𝑒𝑥𝑝𝑜𝑟𝑡,𝑚,∀𝑡 ∈ T (4.8b)

𝜓𝑡𝑚 + 𝜓𝑒𝑥𝑝𝑜𝑟𝑡,𝑡𝑚 ≤ 1,∀𝑡 ∈ T (4.8c)

𝜓𝑡𝑚, 𝜓
𝑒𝑥𝑝𝑜𝑟𝑡,𝑡
𝑚 ∈ {0, 1},∀𝑡 ∈ T (4.8d)

4.2.3.9 Energy Balance Constraints

The demand and supply balance constraint for each type of energy in the multi-
energy system must be satisfied at every scheduling hour. Constraints (4.9a)–
(4.9c) represent the energy balance constraints of electricity, natural gas, and heat,
respectively. 𝑑𝑒𝑙𝑒,𝑡𝑚 , 𝑑𝑔𝑎𝑠,𝑡𝑚 , and 𝑑ℎ𝑒𝑎𝑡,𝑡𝑚 denote the critical/base demand for each type
of energy:

𝑝𝑑,𝑡𝑚 + 𝑝𝑡𝑚 + 𝑝𝐶𝐻𝑃,𝑡𝑚 + 𝑝𝑃𝑉,𝑡𝑚 + 𝑝𝑤𝑖𝑛𝑑,𝑡𝑚 = 𝑑𝑒𝑙𝑒,𝑡𝑚 + 𝑝𝑒𝑥𝑝𝑜𝑟𝑡,𝑡𝑚 + 𝑝𝑝𝑢𝑚𝑝,𝑡𝑚 + 𝑝𝑐,𝑡𝑚
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+
∑︁
𝑎𝑖∈A𝑚

𝑑𝑡𝑎𝑖 + 𝑑
𝑒𝑙𝑒,𝑡

𝑐𝑢𝑟𝑡𝑎𝑖𝑙,𝑚
(1 − 𝜌𝑡𝑒𝑙𝑒,𝑚),∀𝑡 ∈ T (4.9a)

𝑔𝑡𝑚 = 𝑑
𝑔𝑎𝑠,𝑡
𝑚 + 𝑔𝐶𝐻𝑃,𝑡𝑚 + 𝑑𝑔𝑎𝑠,𝑡

𝑐𝑢𝑟𝑡𝑎𝑖𝑙,𝑚
(1 − 𝜌𝑡𝑔𝑎𝑠,𝑚),∀𝑡 ∈ T (4.9b)

𝑞𝑑,𝑡𝑚 + 𝑞𝐶𝐻𝑃,𝑡𝑚 + 𝑞𝑝𝑢𝑚𝑝,𝑡𝑚 = 𝑑ℎ𝑒𝑎𝑡,𝑡𝑚 + 𝑞𝑐,𝑡𝑚 + 𝑑ℎ𝑒𝑎𝑡,𝑡
𝑐𝑢𝑟𝑡𝑎𝑖𝑙,𝑚

(1 − 𝜌𝑡ℎ𝑒𝑎𝑡,𝑚),∀𝑡 ∈ T (4.9c)

The decision variables of the lower-level problem for the microgrid 𝑚 are Ξ𝐿𝑚 =

{𝑝𝑡𝑚, 𝑔𝑡𝑚, 𝑝𝐶𝐻𝑃,𝑡𝑚 , 𝑝
𝑒𝑥𝑝𝑜𝑟𝑡,𝑡
𝑚 , 𝑝

𝑝𝑢𝑚𝑝,𝑡
𝑚 , 𝑔

𝐶𝐻𝑃,𝑡
𝑚 , 𝑞

𝐶𝐻𝑃,𝑡
𝑚 , 𝑞

𝑝𝑢𝑚𝑝,𝑡
𝑚 , 𝛿𝑡𝑚, 𝛿

𝑠𝑡,𝑡
𝑚 , 𝛿

𝑠𝑑,𝑡
𝑚 , 𝜃𝑡𝑚, 𝜃

𝑠𝑡,𝑡
𝑚 , 𝜃

𝑠𝑑,𝑡
𝑚 ,

𝜓𝑡𝑚, 𝜓
𝑒𝑥𝑝𝑜𝑟𝑡,𝑡
𝑚 , 𝐸

𝐸𝑆,𝑡
𝑚 , 𝑝

𝑐,𝑡
𝑚 , 𝑝

𝑑,𝑡
𝑚 , 𝛾

𝑐,𝑡
𝑚 , 𝛾

𝑑,𝑡
𝑚 , 𝐸

𝑇𝑆,𝑡
𝑚 , 𝑞

𝑐,𝑡
𝑚 , 𝑞

𝑑,𝑡
𝑚 , 𝜁

𝑐,𝑡
𝑚 , 𝜁

𝑑,𝑡
𝑚 , 𝜌𝑡

𝑒𝑙𝑒,𝑚
, 𝜌𝑡𝑔𝑎𝑠,𝑚, 𝜌

𝑡
ℎ𝑒𝑎𝑡,𝑚

,

𝜇𝑡𝑎𝑖 , 𝑑
𝑡
𝑎𝑖
, 𝑝

𝑃𝑉,𝑡
𝑚 , 𝑝

𝑤𝑖𝑛𝑑,𝑡
𝑚 }. Notice that the lower-level problem of each microgrid forms

a MILP problem, which can be solved efficiently by off-the-shelf commercial solvers,
such as CPLEX and GUROBI.

4.2.4 Leader-Side/Upper-Level Problem
We assume that the energy retailer manages multiple multi-energy microgrids by
adopting the proposed customised multi-energy pricing scheme. The profit max-
imisation problem of the retailer is formulated at the upper level and shown as
follows:

max
Ξ𝑈

𝐹 =
∑︁
𝑡∈T

{ ∑︁
𝑚∈M

(
𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑒𝑙𝑒,𝑚
𝑝𝑡𝑚 − 𝛼𝑚𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑒𝑙𝑒,𝑚

𝑝
𝑒𝑥𝑝𝑜𝑟𝑡,𝑡
𝑚

)
− 𝜋𝑡𝑒𝑙𝑒

∑︁
𝑚∈M

(
𝑝𝑡𝑚 − 𝑝𝑒𝑥𝑝𝑜𝑟𝑡,𝑡𝑚

)
+

∑︁
𝑚∈M

(
𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑔𝑎𝑠,𝑚 − 𝜋𝑡𝑔𝑎𝑠

)
𝑔𝑡𝑚

}
(4.10a)

subject to

𝑝𝑚𝑖𝑛𝑡𝑜𝑡𝑎𝑙 ≤
∑︁
𝑚∈M

(
𝑝𝑡𝑚 − 𝑝𝑒𝑥𝑝𝑜𝑟𝑡,𝑡𝑚

)
≤ 𝑝𝑚𝑎𝑥𝑡𝑜𝑡𝑎𝑙 ,∀𝑡 ∈ T (4.10b)

𝑔𝑚𝑖𝑛𝑡𝑜𝑡𝑎𝑙 ≤
∑︁
𝑚∈M

𝑔𝑡𝑚 ≤ 𝑔𝑚𝑎𝑥𝑡𝑜𝑡𝑎𝑙 ,∀𝑡 ∈ T (4.10c)

𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑚𝑖𝑛

𝑒𝑙𝑒,𝑚
≤ 𝜋

𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑒𝑙𝑒,𝑚
≤ 𝜋

𝑟𝑒𝑡𝑎𝑖𝑙,𝑚𝑎𝑥

𝑒𝑙𝑒,𝑚
,∀𝑚 ∈ M,∀𝑡 ∈ T (4.10d)

𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑚𝑖𝑛𝑔𝑎𝑠,𝑚 ≤ 𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡𝑔𝑎𝑠,𝑚 ≤ 𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑚𝑎𝑥𝑔𝑎𝑠,𝑚 ,∀𝑚 ∈ M,∀𝑡 ∈ T (4.10e)∑
𝑡∈T 𝜋

𝑟𝑒𝑡𝑎𝑖𝑙,𝑡

𝑒𝑙𝑒,𝑚

𝑇
= 𝐴𝑉𝐺𝑒𝑙𝑒,∀𝑚 ∈ M (4.10f)∑

𝑡∈T 𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑔𝑎𝑠,𝑚

𝑇
= 𝐴𝑉𝐺𝑔𝑎𝑠,∀𝑚 ∈ M (4.10g)

The decision variables of the upper-level problem are Ξ𝑈 = {𝜋𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑒𝑙𝑒,𝑚

, 𝜋
𝑟𝑒𝑡𝑎𝑖𝑙,𝑡
𝑔𝑎𝑠,𝑚 },

which denote the retail electricity and natural gas prices for each microgrid 𝑚 ∈ M
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at each scheduling hour. The objective function (4.10a) depicts the overall profit of
the retailer. 𝜋𝑡

𝑒𝑙𝑒
and 𝜋𝑡𝑔𝑎𝑠 denote the wholesale electricity and natural gas prices.

In particular, the first group of elements in (4.10a) represents the revenue obtained
from all microgrids by exchanging electricity. The electricity purchasing cost from,
or the selling revenue to, the wholesale electricity market is described in the second
group of elements. The last group of elements denotes the profit of selling natural
gas to the microgrids. Constraints (4.10b) and (4.10c) limit the amount of electricity
and natural gas exchange between the energy retailer and wholesale markets. The
retail electricity and natural gas prices customised for each microgrid are bounded
in (4.10d) and (4.10e). Constraints (4.10f) and (4.10g), which are inspired by
Ref. [13], impose the average retail electricity and natural gas prices within the
scheduling hours to be equal to the predetermined constants 𝐴𝑉𝐺𝑒𝑙𝑒 and 𝐴𝑉𝐺𝑔𝑎𝑠.
Notice that the two equality constraints ensure a sufficient number of low-price
scheduling hours. Without these constraints, in principle, the retailer could always
choose the maximum retail prices to maximise its profit. As a result, the constraints
provide a fair retail price image among microgrids, which are also crucial for the
retailer’s market share in the long term [112].

4.3 Solution Methods
The proposed bilevel model includes many binary decision variables in the lower-
level problems, which make it extremely hard to solve by conventional analytical
methods, such as KKT reformulation-related methods. To overcome the non-
convexity of the model, we propose three categories of metaheuristic algorithms
that simulate the behaviours of the energy retailer at the upper level to find an opti-
mal solution efficiently, which are as follows: swarm-based, PSO; evolution-based,
GA; and physics-based, SA. Therefore, the three metaheuristic algorithms combined
with the lower-level MILP solver form different hybrid solution algorithms, which
are illustrated in detail below.

4.3.1 PSO-Based Algorithm
The PSO algorithm is a swarm-based metaheuristic method that simulates the social
behaviour of the movement of organisms in a bird flock or fish school [113]. Namely,
when birds search randomly for food, for instance, all birds in the flock are able to
share their knowledge and discovery to help the entire flock find the best location
for hunting. Figure 4.3 shows the flowchart of the proposed PSO-based algorithm.
Essentially, each particle contains two properties: position and velocity. During
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PSO Initialisation

For every particle, solve each follower's
lower-level problem and return the

solution back to the leader

Evaluate the fitness function for each
particle and obtain the local and global

best solutions. 

Update the velocity of each particle

Update the position of each particle

Yes

No

Is the termination condition satisfied?Stop

Start

Figure 4.3: Flowchart of the PSO-based algorithm.

each iteration, the global best position of all particles and the best previously visited
position of each particle are found by evaluating the fitness function of each particle.
Each particle’s position and velocity are updated via the equations as follows:

𝑣
𝑦+1
𝑛 = 𝑤𝑣

𝑦
𝑛 + 𝑐1𝑟

𝑦

1 (𝑥
𝑝,𝑦
𝑛 − 𝑥𝑦𝑛) + 𝑐2𝑟

𝑦

2 (𝑥
𝑔,𝑦 − 𝑥𝑦𝑛) (4.11a)

𝑥
𝑦+1
𝑛 = 𝑥

𝑦
𝑛 + 𝑣𝑦+1

𝑛 (4.11b)

where the superscript 𝑦 indicates the number of iterations, 𝑤 denotes the inertia
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Algorithm 2 PSO-based algorithm.
1: Initialisation: Total number of particles 𝑁𝑃𝑆𝑂 . Maximum iteration. Each

particle’s position 𝑥 and velocity 𝑣.
2: Each particle’s position denotes the strategy of the leader (i.e., energy retailer).

3: for 𝑛𝑃𝑆𝑂 = 1 to 𝑁𝑃𝑆𝑂 do
4: The energy retailer announces customised electricity and natural gas prices

for each microgrid for the next 24 h.
5: After receiving the prices, each microgrid 𝑛𝑃𝑆𝑂 reacts to the leader’s strat-

egy by solving the energy management problem and obtaining the optimal
solutions, which are returned back to the energy retailer.

6: The energy retailer solves the profit maximisation problem and evaluates
it using the fitness function after receiving the optimal solutions from all
microgrids.

7: end for
8: if The termination condition is satisfied then
9: The algorithm terminates and returns the outputs.

10: else
11: Record the global best position of all particles as 𝑥𝑔,𝑦.
12: Record the best previously visited position of the particle 𝑛𝑃𝑆𝑂 as 𝑥𝑝,𝑦𝑛𝑃𝑆𝑂 .
13: Update each particle’s velocity and position by using (4.11a) and (4.11b)
14: end if
15: Repeat steps 3–14 until the termination condition is reached.

weight, 𝑐1 and 𝑐2 represent cognitive constant and social constant, respectively, and
𝑟1 and 𝑟2 are uniformly distributed random numbers in [0, 1]. Notice that if any
element in the updated particle position is out of the boundary set by (4.10d) and
(4.10e), the nearest boundary is assigned to the element [4].

The detailed process of the PSO-based decision-making algorithm is shown in
Algorithm 2. In particular, the maximum iteration, total number of particles 𝑁𝑃𝑆𝑂
and each particle’s position 𝑥 and velocity 𝑣 need to be initialised. Notice that
each particle’s position denotes the energy retailer’s customised pricing decision
for the next 24 h. Steps 3–7 show the interaction between the energy retailer and
microgrids and are interpreted as follows. First, the energy retailer announces the
customised electricity and natural gas prices for each microgrid for the next 24
h in step 4. Then, each microgrid solves its energy-management problem based
on the received energy prices from the retailer and obtains the optimal solution,
which is returned back to the energy retailer in step 5. In step 6, after receiving the
optimal energy management solutions from all microgrids, the energy retailer solves
its profit maximisation problem and evaluates the current pricing decisions using
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Start

GA Initialisation

For every chromosome, solve each
follower's lower-level problem and

return the solution back to the leader 

Evaluate the fitness function for each
chromosome

Is the termination condition satisfied?

Elitism and Selection

Crossover

Mutation

No

Stop
Yes

Figure 4.4: Flowchart of the GA-based algorithm.

the fitness function based on the penalisation method proposed by [114], [115].
Notice that the penalised fitness function formulation can not only be used for the
PSO-based algorithm but also be applied to GA- and SA-based algorithms since
the constraint-handling technique can be generalised in metaheuristic algorithms.
When the predefined termination condition is not satisfied, the global best position
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Algorithm 3 GA-based algorithm.
1: Initialisation: Maximum iteration. Population of 𝑁𝐺𝐴 chromosomes.
2: Each chromosome indicates the strategy of the leader (i.e., energy retailer).
3: for 𝑛𝐺𝐴 = 1 to 𝑁𝐺𝐴 do
4: The energy retailer announces customised electricity and natural gas prices

for each microgrid for the next 24 h.
5: After receiving the prices, each microgrid 𝑛𝐺𝐴 reacts to the leader’s strat-

egy by solving the energy management problem and obtaining the optimal
solutions, which are returned back to the energy retailer.

6: The energy retailer solves the profit maximisation problem and evaluates
it using the fitness function after receiving the optimal solutions from all
microgrids.

7: end for
8: if The termination condition is satisfied then
9: The algorithm terminates and returns the outputs.

10: else
11: The next generation of chromosomes is produced by selection, crossover and

mutation.
12: end if
13: Repeat steps 3–12 until the termination condition is reached.

of all particles 𝑥𝑔,𝑦 and the personal best previously visited position of each particle
𝑥
𝑝,𝑦
𝑛 are recorded in steps 11 and 12. Each particle’s position and velocity are then

updated by applying (4.11a) and (4.11b) in step 13. The algorithm iterates until the
termination condition is reached and outputs the optimal solutions for the energy
retailer and each microgrid.

4.3.2 GA-Based Algorithm
GA algorithm is an evolution-based computational method inspired by genetics
and natural selection [116]. The flowchart of the GA-based algorithm is shown in
Figure 4.4. In particular, after evaluating the population of the current generation,
the elite chromosome with the best fitness value is inherited by the next generation.
Furthermore, the selection process, such as the roulette wheel, tournament and
random selection, is applied to choose other chromosomes for the next generation.
The chromosomes of the successive generation are finally generated by crossover and
mutation processes [15]. Algorithm 3 explains the process of the solution algorithm.
Firstly, the maximum iteration and population of chromosomes 𝑁𝐺𝐴 are initialised.
Similar to the PSO-based algorithm, each chromosome indicates the energy retailer’s
pricing decisions, and steps 3–7 show the retailer and microgrids’ interactions. Then,
the next generation of chromosomes is created by applying selection, crossover and
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mutation in step 11. Specifically, the stochastic uniform selection method is used
to choose the next generation of chromosomes. The scattered crossover function is
applied by creating a random binary vector and selecting the genes from the first
parent chromosome when the entry is 1 and from the second parent chromosome
when the entry is 0. Lastly, the Gaussian mutation is utilised to explore the search
space, which adds a random number taken from the Gaussian distribution with a
mean 0 to each gene of the chromosome. The algorithm is stopped when repeating
steps 3–12 until the termination condition is satisfied.

4.3.3 SA-Based Algorithm
Simulated annealing is a physics-based probabilistic approach that emulates the
standard annealing process used in metallurgy to improve the properties of solids.
Essentially, after the solid is heated up by a significantly high temperature, the atoms
gain the energy to explore their stable states. The optimal state of each atom can be
then found following the annealing process. As a result, the solid is recrystallised
and improves its ductility. Similarly, the simulated annealing algorithm is applied to
find the optimal solution by cooling the heated atoms in the search space. Figure 4.5
shows the flowchart of the SA-based algorithm. In particular, it uses the Metropolis
algorithm to generate the next trial atoms by randomly perturbing the current ones.
If the fitness value of the trial atom is greater than the current fitness value, the
trial atom replaces the current atom in the next iteration. Otherwise, the trial atom
can still be accepted by the acceptance criterion, which is based on the Boltzmann
distribution shown in (4.12) [117]:

𝑃𝑟
𝑦
𝑛𝑆𝐴 = exp (Δ𝑛𝑆𝐴/𝑇 𝑦) (4.12)

where Δ𝑛𝑆𝐴 represents the difference of fitness values between the trial atom and
current atom 𝑛𝑆𝐴. The temperature in the current iteration is denoted as 𝑇 𝑦. Notice
that when the temperature is significantly high, the SA algorithm can accept the
worse solution, which is particularly beneficial in search space exploration. As the
temperature drops in every iteration, the acceptance criterion 𝑃𝑟 𝑦𝑛𝑆𝐴 also decreases,
which leads to the lower possibility of accepting the worse solution. The SA
algorithm can be considered to be the hill climbing algorithm when the temperature
is significantly low (e.g., 1), which takes advantage of the efficient local search
method.
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Figure 4.5: Flowchart of the SA-based algorithm.

Algorithm 4 shows the proposed SA-based algorithm to solve the bilevel model.
The maximum iteration, total number of atoms, and initial and final temperature
are initialised in step 1. Steps 2–7 are similar to Algorithm 2 and 3, which present
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Algorithm 4 SA-based algorithm.
1: Initialisation: Maximum iteration. Population of atoms 𝑁𝑆𝐴. Initial and final

temperature.
2: Each atom indicates the strategy of the leader (i.e., energy retailer).
3: for 𝑛𝑆𝐴 = 1 to 𝑁𝑆𝐴 do
4: The energy retailer announces customised electricity and natural gas prices

for each microgrid for the next 24 h.
5: After receiving the prices, each microgrid 𝑛𝑆𝐴 reacts to the leader’s strategy by

solving the energy management problem and obtaining the optimal solutions,
which are returned back to the energy retailer.

6: The energy retailer solves the profit maximisation problem and evaluates
it using the fitness function after receiving the optimal solutions from all
microgrids.

7: end for
8: For each current energy prices strategy, the energy retailer generates trial energy

prices and repeats steps 5 and 6.
9: The energy retailer decides to accept the trial energy prices against the current

ones by comparing the fitness values and acceptance criterion (4.12).
10: if Trial energy prices are accepted then
11: The current energy prices are replaced by the trial prices in the next iteration.
12: end if
13: Decrease the temperature parameter.
14: if The termination condition is satisfied then
15: The algorithm terminates and returns the outputs.
16: else
17: Repeat steps 8–16 until the termination condition is reached.
18: end if

the interactions between the retailer and microgrids. In step 8, the energy retailer
proposes a trial energy price decision for each current price strategy and collects
the evaluation by repeating steps 5 and 6. If the fitness value from the trial prices
is higher than the current ones, the retailer replaces the current prices with the trial
prices in the next iteration. Otherwise, the retailer decides the accept or refuse
the trial prices based on the acceptance criterion (4.12). This decision process is
illustrated in steps 9–12. The temperature decreases in every iteration in step 13.
The algorithm repeats steps 8–16 until the termination condition is fulfilled.

4.4 Numerical Results
The section discusses the results of numerical analyses to illustrate the feasibility and
effectiveness of the proposed bilevel model and the solution algorithms. In particu-
lar, Section 4.4.1 describes the setup for the experiments. The three aforementioned
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Table 4.1: ES parameters. – : Not applicable

Parameter Microgrid 1 Microgrid 2 Microgrid 3
Charging rate – 0.95 0.95

Discharging rate – 0.95 0.95
Self-discharging rate (MWh) – 0.002 0.002
Initial energy level (MWh) – 250 500

Minimum energy level (MWh) – 50 100
Rated Capacity (MWh) – 500 1000

Minimum charging/discharging power (MW/h) – 20 30
Rated charging/discharging power (MW/h) – 200 300
Operation & maintenance cost ($/MWh) – 3.5 3.5

Table 4.2: TS parameters. – : Not applicable

Parameter Microgrid 1 Microgrid 2 Microgrid 3
Charging rate – 0.95 0.95

Discharging rate – 0.95 0.95
Self-discharging rate (MBtu) – 0.004 0.004
Initial energy level (MBtu) – 300 650

Minimum energy level (MBtu) – 60 130
Rated Capacity (MBtu) – 600 1300

Minimum charging/discharging power (MBtu/h) – 20 43
Rated charging/discharging power (MBtu/h) – 200 430

Operation & maintenance cost ($/MBtu) – 3.5 3.5

metaheuristic algorithms for solving the proposed bilevel model are compared and
analysed in Section 4.4.2. Moreover, the performance results of the proposed cus-
tomised and uniform multi-energy pricing schemes are investigated in Section 4.4.3.
Lastly, Section 4.4.4 presents the effect of the rated capacity and power of the ES
and TS on the retailer’s profit and the microgrids’ operations.

4.4.1 Experimental Setup
In this section, we consider three different microgrids (i.e., microgrid 1, microgrid
2 and microgrid 3) that are managed by the energy retailer. Each microgrid’s
base demand and the configurations of its facilities (i.e., the capacity and rated
power of ES and TS) are differentiated from others. The base electricity, natural
gas, and heat demand for each microgrid come from the PJM dataset [108], United
Kingdom Department of Education Gas dataset [118], and Open Power System Data
[119], respectively, which are shown in Table B.1. Each microgrid’s ES and TS

66



4.4. NUMERICAL RESULTS CHAPTER 4.

parameter setups are shown in Tables 4.1 and 4.2. Besides the ES and TS parameter
setup, other facilities, such as CHP, heat pump, and load-shifting programs, share
the same parameters among microgrids, shown in Tables B.2, B.3 and B.5. The
minimum power of RES is zero, while the maximum power for each scheduling
hour is shown in Table B.4, which originated from [120], [121]. The wholesale
electricity and natural gas prices come from [122], which are presented in Table
B.6. In addition, the curtailable load and costs of electricity, natural gas and heat
are 300 MWh, 100 kcf and 350 MBtu, and $70/MWh, $20/kcf and $60/MBtu,
respectively. The minimum and maximum curtailment rates are 0 and 0.4. For each
microgrid, the minimum and maximum electricity purchased from and exported to
the energy retailer is 0 MWh and 5000 MWh, respectively. For the energy retailer,
the minimum and maximum retail electricity prices are $60/MWh and $110/MWh,
and $15/kcf and $60/kcf for the natural gas prices. The electricity price that each
microgrid sells back to the energy retailer is set to be 90% of the current retail price.
The average retail electricity and natural gas prices are predetermined as $90/MWh
and $40/kcf.

All three hybrid algorithms are written in MATLAB R2022b and run on Windows
11 Pro 64-bit with 12 cores CPU @ 3.6 GHz and 32 GB of RAM. The coupled MILP
problem is solved by Gurobi Optimiser (version 10.0.0) using the branch and bound
algorithm. Each iteration for all three hybrid algorithms consists of upper-level
operations and 600 (200 individuals × 3 microgrids) lower-level MILP problems,
which take about 60 s to complete.

For the hybrid solution algorithms, we consider 100 iterations for a single run,
which includes a population of 200 individuals (price signals). In particular, for the
PSO-based algorithm, the inertia weight is 1.1. The cognitive and social constants
are both 1.49. For the GA-based algorithm, the best 10 elite chromosomes survive
to the next generation. In the SA-based algorithm, the initial and final temperatures
are 100 and 1 degrees. Notice that all parameters are set after a mass of experiments,
considering the balance between the quality of results and computation burden.

4.4.2 Solution Algorithms Comparison
The principal focus of this section is the numerical comparison among the afore-
mentioned hybrid solution methods, i.e., PSO, GA and SA coupled with MILP
algorithms. In this experiment, the three hybrid algorithms run 25 times indepen-
dently for both proposed customised and uniform pricing models. The detailed
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Table 4.3: Statistical results of three hybrid solution algorithms.

Scheme Algorithm Minimum
($)

Maximum
($)

Median
($)

Average
($)

Standard
Deviation

IQR

Customised
PSO 1,747,893.23 3,237,259.44 2,637,117.20 2,661,933.25 305,700.17 304,077.64
GA 2,793,836.04 3,621,174.98 3,226,859.38 3,235,457.87 188,685.73 262,036.86
SA 2,157,779.58 3,253,958.04 2,652,633.36 2,794,698.37 313,398.40 534,933.18

Uniform
PSO 2,229,066.83 3,454,961.22 2,868,594.24 2,873,363.22 335,318.00 477,855.56
GA 2,785,634.97 3,852,188.64 3,160,983.13 3,206,485.96 252,908.66 274,699.89
SA 2,555,064.32 3,268,070.40 2,862,418.32 2,890,620.58 199,545.25 323,634.31

statistical analysis of the results of the energy retailer’s profit is shown in Table
4.3. For the customised pricing scheme, the GA-based algorithm presents outstand-
ing performance along with others, obtaining higher minimum, maximum, median
and average values of the retailer’s profit. Furthermore, the standard deviation and
interquartile range (IQR) that measures the spread of the middle 50% of the data
are the lowest using the GA-based algorithm, which indicates less data dispersion.
On the other hand, for the uniform pricing scheme, although the standard devia-
tion of SA-based results is the lowest among others, the GA algorithm still reveals
significantly high values in all minimum, maximum, median and average statisti-
cal measurements. In summary, the GA-based algorithm is verified to provide the
best performance for both customised and uniform pricing models, considering the
value and stability of the results it can achieve. Therefore, the GA-based hybrid al-
gorithm is applied to solve customised and uniform pricing models in the following
experiments.

4.4.3 Customised and Uniform Multi-Energy Pricing Schemes
This section presents the difference between the performance of customised and
uniform pricing schemes. Notice that the results come from the GA-based algorithm,
which runs 25 times independently in the previous section. The cost and revenue
of the retailer, net profit margin and each microgrid’s cost are calculated based on
the run, which generates the median value of the retailer’s profit. The two pricing
schemes are compared in Table 4.4. It reveals that the energy retailer can make
more profit under the customised pricing scheme measured by both the average
(+0.90%) and median (+2.08%) profit value. This is because the customised retail
prices are tailored to each microgrid with different characteristics and load patterns,
which makes the retailer’s pricing decisions more flexible. In addition, Table 4.5
shows the microgrids’ energy management results under the two pricing schemes.
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Table 4.4: Results of retailer under customised and uniform pricing schemes.

Pricing
Scheme

Average Profit
of Retailer ($)

Median Profit
of Retailer ($)

Cost of
Retailer ($)

Revenue of
Retailer ($)

Net Profit
Margin

Customised 3,235,457.87 3,226,859.38 8,745,212.30 11,972,071.68 26.95%
Uniform 3,206,485.96 3,160,983.13 8,811,088.55 12,187,869.46 25.94%

Specifically, except for the operational cost, all other values in Table 4.5 are the
sum of the particular result over the 24 scheduling hours. Notice that the amount
of the microgrids’ purchased energy is identical to the amount of energy the retailer
bids from the wholesale markets. It turns out that the retailer purchases 7.93% less
electricity and buys 3.84% more natural gas under the customised pricing scheme
because natural gas is cheaper than electricity. Since the retailer purchases energy
at a lower cost from the wholesale markets and gains the ability to customise the
pricing strategy for each microgrid, the retailer’s profit is increased compared to
that under the uniform pricing scheme. Moreover, because the customised pricing
scheme obtains higher profit with relatively less revenue, the retailer’s net profit
margin, which measures the amount of profit the retailer obtains per dollar of
revenue gained, is 1.01% larger compared to the uniform pricing scheme. As a
result, the proposed customised pricing scheme is superior to the uniform pricing
scheme and beneficial for the retailer to acquire more profit and a higher net profit
margin.

Each microgrid’s energy demand under the customised pricing scheme is less than
or equal to the demand under the uniform pricing scheme. This can show the
effectiveness of the load curtailment program. Moreover, the CHP is heavily used
as a cheaper alternative to generate electricity under the customised pricing scheme.
On the contrary, the heat pump is less implemented since more heat demand is
satisfied by the CHP. Additionally, because the rated capacity and power of the
ES and TS in microgrid 3 are significantly larger than those in microgrid 2, the
microgrid’s ES and TS charging and discharging power is remarkably greater than
those of microgrid 2 under both pricing schemes.

4.4.4 Effect of ES and TS Rated Capacity and Power
One of the objectives of this section is to identify the effect of the rated capacity
and power of the ES and TS on the profit of the energy retailer. We consider three
different scenarios to illustrate these effects. The identical base energy load demand

69



4.4. NUMERICAL RESULTS CHAPTER 4.

Ta
bl

e
4.

5:
M

ic
ro

gr
id

se
ne

rg
y

m
an

ag
em

en
tr

es
ul

ts
un

de
rc

us
to

m
is

ed
an

d
un

ifo
rm

pr
ic

in
g

sc
he

m
es

.–
:N

ot
ap

pl
ic

ab
le

.

C
us

to
m

ise
d

U
ni

fo
rm

M
ic

ro
gr

id
1

M
ic

ro
gr

id
2

M
ic

ro
gr

id
3

M
ic

ro
gr

id
1

M
ic

ro
gr

id
2

M
ic

ro
gr

id
3

O
pe

ra
tio

na
lc

os
t(

$)
5,

44
3,

05
3.

70
4,

65
7,

52
2.

95
5,

15
7,

58
6.

89
5,

39
4,

07
8.

29
4,

58
9,

88
1.

26
5,

16
6,

62
4.

95
Pu

rc
ha

se
d

el
ec

tri
ci

ty
(M

W
h)

24
,1

18
.7

8
23

,2
75

.5
7

20
,9

84
.3

0
28

,0
06

.4
6

22
,1

21
.8

2
24

13
6.

56

Pu
rc

ha
se

d
na

tu
ra

l
ga

s
(k

cf
)

61
,8

66
.3

4
49

,6
12

.8
7

65
,1

19
.0

2
56

,3
40

.0
5

53
,2

70
.5

6
60

46
0.

13

El
ec

tri
ci

ty
de

m
an

d
(M

W
h)

27
,9

49
.1

0
23

,0
22

.8
0

25
,1

80
.2

6
28

,1
89

.1
0

23
,0

72
.7

2
25

18
0.

26

N
at

ur
al

ga
s

de
m

an
d

(k
cf

)
11

,8
44

.7
9

87
12

.0
0

11
,3

65
.1

3
11

,9
64

.7
9

88
32

.0
0

11
,3

65
.1

3

H
ea

td
em

an
d

(M
B

tu
)

26
,2

93
.8

1
24

,3
78

.0
8

27
,5

94
.9

1
26

,4
53

.6
4

24
,5

29
.0

0
27

,5
91

.8
0

C
H

P-
ge

ne
ra

te
d

el
ec

-
tri

ci
ty

(M
W

h)
15

,0
06

.4
7

12
,2

70
.2

6
16

,1
26

.1
7

13
,3

12
.5

8
13

,3
31

.5
7

14
72

8.
50

H
ea

t
pu

m
p-

ge
ne

ra
te

d
he

at
(M

B
tu

)
11

,2
87

.3
4

12
,1

91
.0

4
11

,6
73

.6
9

13
,1

41
.0

6
11

,3
08

.4
2

12
98

8.
86

ES
ch

ar
gi

ng
po

w
er

(M
W

/h
)

–
12

15
.5

0
16

82
.9

2
–

16
00

.0
0

22
94

.5
1

ES
di

sc
ha

rg
in

g
po

w
er

(M
W

/h
)

–
10

96
.9

4
15

18
.7

9
–

14
43

.9
5

20
70

.7
5

TS
ch

ar
gi

ng
po

w
er

(M
B

tu
/h

)
–

85
2.

64
21

01
.0

7
–

11
37

.4
2

12
86

.8
2

TS
di

sc
ha

rg
in

g
po

w
er

(M
B

tu
/h

)
–

76
9.

42
18

96
.1

3
–

10
26

.4
3

11
61

.2
6

70
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Table 4.6: Profit of retailer with different scenarios.

Scenario 1 Scenario 2 Scenario 3
Average of profit

($)
3,434,862.90 3,667,999.43 3,247,324.34

Median of profit
($)

3,433,100.16 3,656,147.99 3,248,191.95

(i.e., the base energy demand in microgrid 1) is applied for all three microgrids.
In the first scenario (Scenario 1), each microgrid has differentiated ES and TS
configurations (shown in Table 4.1 and 4.2). Notice that microgrid 1 does not equip
either ES or TS. The rated capacity and power of ES and TS for microgrid 2 are
500 MWh and 200 MW/h, 600 MBtu and 200 MBtu/h. For microgrid 3, the rated
capacity and power of ES and TS are 1000 MWh and 300 MW/h, and 1300 MBtu
and 430 MBtu/h. In the second scenario (Scenario 2), none of the three microgrids
are equipped with ES and TS. On the other hand, all three microgrids in the third
scenario (Scenario 3) own the same configurations of ES and TS, which are the
same as those of microgrid 3 in Scenario 1. Additionally, we analyse the retailer’s
profit and microgrids’ operational costs over 15 independent runs for each scenario
to obtain reliable results. The average and median values of the retailer’s profit
with each scenario are listed in Table 4.6. Scenario 1 represents a realistic context
in which all three microgrids are equipped with different ES and TS configuration
setups. On the other hand, Scenarios 2 and 3 can be considered as two extreme
cases with the least and the greatest resources of ES and TS. It turns out that the
retailer can make the highest profit in Scenario 2 since the underlying microgrids
lack the ability to manage their energy by ES and TS. Therefore, the retailer can take
advantage of this demand response deficiency. In contrast, microgrids in Scenario
3 own the highest rated capacity and power of ES and TS, which provide the most
capability to manage their energy. As a result, it leads to the retailer making the
least profit over the three scenarios.

To analyse the ES and TS energy management and the effect of their rated capacity
and power on the operational cost of microgrids, we select the median value of the
proposed bilevel problem solution in Scenario 1. Figures 4.6–4.8 display the oper-
ational results of load demand, CHP, heat pump, ES, TS, DR, renewable energies,
and electricity exchange for each microgrid categorised by types of energy (i.e.,
electricity, natural gas and heat). The positive value of each energy indicates the
energy supply for the load demand, and the negative value states the demand for
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Table 6. Microgrids energy management results under customised and uniform pricing schemes. – :
Not applicable

Customised Uniform

Microgrid 1 Microgrid 2 Microgrid 3 Microgrid 1 Microgrid 2 Microgrid 3

Operational
cost ($) 5443053.70 4657522.95 5157586.89 5394078.29 4589881.26 5166624.95

Purchased
electricity

(MWh)
24118.78 23275.57 20984.30 28006.46 22121.82 24136.56

Purchased
natural gas (kcf) 61866.34 49612.87 65119.02 56340.05 53270.56 60460.13

Electricity
demand (MWh) 27949.10 23022.80 25180.26 28189.10 23072.72 25180.26

Natural gas
demand (kcf) 11844.79 8712.00 11365.13 11964.79 8832.00 11365.13

Heat demand
(MBtu) 26293.81 24378.08 27594.91 26453.64 24529.00 27591.80

CHP-generated
electricity

(MWh)
15006.47 12270.26 16126.17 13312.58 13331.57 14728.50

Heat pump-
generated heat

(MBtu)
11287.34 12191.04 11673.69 13141.06 11308.42 12988.86

ES charging
power (MW/h) – 1215.50 1682.92 – 1600.00 2294.51

ES discharging
power (MW/h) – 1096.94 1518.79 – 1443.95 2070.75

TS charging
power

(MBtu/h)
– 852.64 2101.07 – 1137.42 1286.82

TS discharging
power

(MBtu/h)
– 769.42 1896.13 – 1026.43 1161.26
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Figure 6. Operational results of microgrid 1.

Figure 4.6: Operational results of microgrid 1.Version January 28, 2023 submitted to Energies 22 of 32

0 5 10 15 20 25
Time (h)

-2000

-1000

0

1000

2000

3000

E
le

ct
ri

ci
ty

 lo
ad

 (
M

W
h)

purchased electricity CHP generated electricity
ES discharged electricity PV generated electricity
WT generated electricity exported electricity
heat pump needed electricity ES charged electricity
total electricity demand (critical, LC, LS)

0 5 10 15 20 25
Time (h)

-4000

-2000

0

2000

4000

6000

N
at

ur
al

 g
as

 lo
ad

 (
kc

f)

purchased natural gas
CHP needed natural gas
total natural gas demand (critical, LC)

0 5 10 15 20 25
Time (h)

-500

0

500

1000

1500

H
ea

t l
oa

d 
(M

B
tu

)

CHP generated heat heat pump generated heat
TS discharged heat TS charged heat
total heat demand (critical, LC)

Figure 7. Operational results of microgrid 2.
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Figure 8. Operational results of microgrid 3.

Table 7. Profit of retailer with different scenarios.
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Table 7. Profit of retailer with different scenarios.

Scenario 1 Scenario 2 Scenario 3

Average of profit ($) 3434862.90 3667999.43 3247324.34

Median of profit ($) 3433100.16 3656147.99 3248191.95

One of the objectives in this section is to identify the effect of rated capacity and power 538

of the ES and TS on the profit of the energy retailer. We consider three different scenarios 539

to illustrate these effects. The identical base energy load demand (i.e., the base energy 540

demand in microgrid 1) is applied for all three microgrids. In the first scenario (Scenario 541

1), each microgrid has differentiated ES and TS configurations (shown in Table 2 and 3). 542

Notice that microgrid 1 does not equip either ES or TS. The rated capacity and power of 543

ES and TS for microgrid 2 are 500 MWh and 200 MW/h, 600 MBtu and 200 MBtu/h. For 544

microgrid 3, the rated capacity and power of ES and TS are 1000 MWh and 300 MW/h, 1300 545

MBtu and 430 MBtu/h. In the second scenario (Scenario 2), none of the three microgrids 546

are equipped with ES and TS. On the other hand, all three microgrids in the third scenario 547

(Scenario 3) own the same configurations of ES and TS, which are the same as those of 548

microgrid 3 in Scenario 1. Additionally, we analyse the retailer’s profit and microgrids’ 549

operational costs over 15 independent runs for each scenario to obtain reliable results. The 550

average and median values of the retailer’s profit with each scenario are listed in Table 7. 551

Scenario 1 represents a realistic context in which all three microgrids equip with different 552

ES and TS configuration setup. On the other hand, Scenarios 2 and 3 can be considered 553

as two extreme cases with the least and the most resource of ES and TS. It turns out that 554

the retailer can make the highest profit in Scenario 2 since the underlying microgrids lack 555

the ability to manage their energy by ES and TS. Therefore, the retailer can take advantage 556

of this demand response deficiency. In contrast, microgrids in Scenario 3 own the highest 557

Figure 4.8: Operational results of microgrid 3.

each energy. In particular, the ES and TS operational results for microgrids 2 and
3 are shown in Tables 4.7 and 4.8. Microgrid 2 charges the ES with rated power
in hours 2, 4, 6, 12, 13, 21 and 22 when the retail electricity prices are below the
predetermined average price of $90/MWh. This can manage the energy usage for
further use and reduce the potential cost. In contrast, ES is discharged with rated
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Table 4.7: ES and TS results for microgrid 2. – : Not applicable

Time (h) Retail
Electric-
ity Price
($/MWh)

ES
Energy
Level

(MWh)

ES
Charg-

ing
Power

(MW/h)

ES Dis-
charging

Power
(MW/h)

Retail
Natural

Gas
Price

($/kcf)

TS
Energy
Level

(MBtu)

TS
Charg-

ing
Power

(MBtu/h)

TS Dis-
charging

Power
(MBtu/h)

1 100.01 50.00 0.00 190.00 41.30 163.89 0.00 129.30
2 73.72 240.00 200.00 0.00 33.06 220.01 59.08 0.00
3 106.93 76.02 0.00 155.78 33.51 410.00 200.00 0.00
4 68.81 266.02 200.00 0.00 20.26 600.00 200.00 0.00
5 105.15 55.49 0.00 200.00 44.33 600.00 0.00 0.00
6 65.89 245.49 200.00 0.00 41.39 514.83 0.00 80.91
7 99.23 120.01 0.00 119.20 31.70 471.08 0.00 41.56
8 91.80 120.01 0.00 0.00 42.80 408.90 0.00 59.07
9 80.04 120.01 0.00 0.00 55.36 408.89 0.00 0.00
10 85.11 120.01 0.00 0.00 44.86 363.23 0.00 43.38
11 89.07 120.00 0.00 0.00 27.63 363.22 0.00 0.00
12 66.12 310.00 200.00 0.00 40.06 387.41 25.46 0.00
13 74.45 500.00 200.00 0.00 28.80 577.33 199.93 0.00
14 106.84 500.00 0.00 0.00 21.27 600.00 23.87 0.00
15 98.33 500.00 0.00 0.00 38.25 600.00 0.00 0.00
16 98.75 499.99 0.00 0.00 34.21 599.99 0.00 0.00
17 104.40 357.63 0.00 135.24 47.71 438.23 0.00 153.67
18 94.22 357.63 0.00 0.00 39.77 340.75 0.00 92.61
19 109.85 254.05 0.00 98.40 26.59 246.44 0.00 89.58
20 103.01 50.00 0.00 193.85 51.12 185.41 0.00 57.97
21 66.43 240.00 200.00 0.00 53.62 320.54 142.24 0.00
22 86.17 270.53 32.14 0.00 54.54 320.53 0.00 0.00
23 109.31 60.00 0.00 200.00 56.92 110.00 0.00 200.00
24 76.35 250.00 200.00 0.00 50.99 300.00 200.00 0.00

Total: – – 1432.14 1292.46 – – 1050.57 948.05

power in hours 1, 3, 5, 7, 17, 19, 20, and 23 when retail prices are above average to
substitute the relatively expensive electricity source. On the other hand, since CHP
and the heat pump are the primary heat source, the TS charging and discharging de-
cisions depend on both retail electricity and natural gas prices. Analogous decisions
are made by the microgrid 3.

In addition, Tables 4.7 and 4.8 indicate that increasing the rated capacity and power
from microgrids 2 to 3 boosts ES and TS usage. Specifically, the total ES charging
and discharging power in microgrid 2 are 1432.14 MW/h and 1292.46 MW/h,
which are less than 1800.00 MW/h and 1624.45 MW/h in microgrid 3. A similar
pattern happens to TS energy management (i.e., 1050.57 MBtu/h and 948.05 MBtu/h
compared to 1264.09 MBtu/h and 1140.75 MBtu/h). Moreover, Table 4.9 shows
the operational cost of three different microgrids. With ES and TS, microgrids 2
and 3 can reduce operational costs by 2.02% and 4.14% compared to microgrid 1,
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Table 4.8: ES and TS results for microgrid 3. – : Not applicable

Time (h) Retail
Electric-
ity Price
($/MWh)

ES
Energy
Level

(MWh)

ES
Charg-

ing
Power

(MW/h)

ES Dis-
charging

Power
(MW/h)

Retail
Natural

Gas
Price

($/kcf)

TS
Energy
Level

(MBtu)

TS
Charg-

ing
Power

(MBtu/h)

TS Dis-
charging

Power
(MBtu/h)

1 72.75 785.00 300.00 0.00 45.98 556.00 0.00 89.30
2 105.28 469.21 0.00 300.00 49.69 449.34 0.00 101.32
3 102.46 245.64 0.00 212.39 50.22 449.34 0.00 0.00
4 105.44 245.63 0.00 0.00 35.79 677.53 240.20 0.00
5 109.89 245.63 0.00 0.00 31.66 677.52 0.00 0.00
6 102.56 245.63 0.00 0.00 29.20 467.25 0.00 199.75
7 102.04 100.00 0.00 138.34 54.17 130.01 0.00 320.38
8 83.42 100.00 0.00 0.00 27.65 130.01 0.00 0.00
9 62.57 385.00 300.00 0.00 42.99 130.00 0.00 0.00
10 67.83 670.00 300.00 0.00 54.99 130.00 0.00 0.00
11 106.24 354.20 0.00 300.00 33.50 171.21 43.38 0.00
12 94.18 354.20 0.00 0.00 18.17 291.18 126.29 0.00
13 64.51 639.20 300.00 0.00 57.00 421.18 136.84 0.00
14 106.82 639.20 0.00 0.00 31.65 541.81 126.99 0.00
15 89.62 639.20 0.00 0.00 29.78 582.66 43.00 0.00
16 81.47 639.19 0.00 0.00 55.27 582.66 0.00 0.00
17 61.14 924.19 300.00 0.00 49.24 582.65 0.00 0.00
18 89.72 924.19 0.00 0.00 25.13 582.65 0.00 0.00
19 105.77 608.40 0.00 300.00 53.40 130.01 0.00 430.00
20 62.25 893.40 300.00 0.00 44.58 130.01 0.00 0.00
21 100.28 577.61 0.00 300.00 42.99 130.00 0.00 0.00
22 94.81 577.60 0.00 0.00 40.82 130.00 0.00 0.00
23 96.90 500.00 0.00 73.72 35.15 309.00 188.42 0.00
24 92.04 500.00 0.00 0.00 20.99 650.00 358.95 0.00

Total: – – 1800.00 1624.45 – – 1264.09 1140.75

Table 4.9: Operational costs of microgrids.

Microgrid 1 Microgrid 2 Microgrid 3
Operational cost

($)
5,431,648.01 5,323,884.54 5,215,699.40

respectively. Furthermore, following the rise of ES and TS usage from microgrids 2
to 3, the operational costs of microgrids decrease notably. This is because microgrids
with higher rated capacity and power of ES and TS are more capable of managing
energy and reducing the potential cost.

4.5 Discussion
This chapter develops a customised multi-energy pricing scheme for an energy
retailer that manages multiple microgrids equipped with energy converters, storage,
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RES and DR programs. The proposed pricing problem is formulated as a single-
leader-multiple-follower bilevel optimisation model. For future work, we would like
to consider applying machine learning methods to predict the multi-energy prices,
such as the maximum and minimum of the retail electricity and natural gas price
for microgrids, also the multi-energy demand, such as maximum and minimum of
the electricity volume the microgrids purchased from and sold to the retailer, and
natural gas volume the microgrids purchased from the retailer. Chapter 5 proposes a
Transformer-based model, Patchformer, to forecast long-term time-series data, such
as energy prices and demand. Furthermore, we would like to develop a machine
learning or data-driven model at the lower level to present the interaction between
the upper-level energy retailer’s price signals and the lower-level microgrids’ energy
management decisions. The method will benefit real-world applications due to the
existence of imperfect information on lower-level agents, such as microgrids and
aggregators (that is, their operation models may not be known by retailers).
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C h a p t e r 5

ADVANCING LONG-TERM MULTI-ENERGY LOAD
FORECASTING WITH PATCHFORMER: A PATCH AND

TRANSFORMER-BASED APPROACH

This chapter is reproduced with changes from:

• Q. Hong, F. Meng, and F. Maldonado, “Advancing Long-Term Multi-Energy
Load Forecasting with Patchformer: A Patch and Transformer-Based Ap-
proach.” [In preparation for journal submission]

In the previous chapter, a customised multi-energy pricing scheme is introduced
along with its solution methods. Additionally, in Chapters 3 and 4, some predeter-
mined data, such as electricity, natural gas and heat load demand, used to examine
the model performance are simulated/ synthetic data, which may not reflect the real-
world scenario. To address this issue, an effective load forecasting method needs
to be developed to predict the future energy load based on the collected historical
data. Therefore, this chapter proposes a Transformer-based time-series forecasting
model for long-term multi-energy load prediction.

5.1 Introduction
In the context of increasing demands for long-term multi-energy load forecasting
in real-world applications, this chapter introduces Patchformer, a novel model that
integrates patch embedding with encoder-decoder Transformer-based architectures.
To address the limitation in existing Transformer-based models, which struggle with
intricate temporal patterns in long-term forecasting, Patchformer employs patch em-
bedding, which predicts multivariate time-series data by separating it into multiple
univariate data and segmenting each of them into multiple patches. This method
effectively enhances the model’s ability to capture local and global semantic de-
pendencies. The numerical analysis shows that Patchformer obtains overall better
prediction accuracy in both multivariate and univariate long-term forecasting on the
novel Multi-Energy dataset and other benchmark datasets. In addition, the positive
effect of the interdependence among energy-related products on the performance of
long-term time-series forecasting across Patchformer and other compared models
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is discovered, and the superiority of the Patchformer against other models is also
demonstrated, which presents a significant advancement in handling the interdepen-
dence and complexities of long-term multi-energy forecasting. Lastly, Patchformer
is illustrated as the only model that follows the positive correlation between model
performance and the length of the past sequence, which states its ability to capture
long-range past local semantic information.

5.1.1 Contributions
This chapter introduces a novel Transformer-based model that integrates patch em-
bedding techniques for long-term multi-energy load forecasting. This model, which
we have named the Patchformer, is designed to address the specific challenges of
forecasting energy loads over extended periods. By processing the multivariate
time series data into multiple univariate data and segmenting individual univariate
data into patches, the Patchformer offers a unique approach to understanding and
predicting energy consumption patterns. We believe this model represents an ad-
vancement in energy forecasting, filling a critical gap in the existing literature and
improving the accuracy and efficiency across long-term forecasting models. The
key contributions of this chapter are outlined as follows:

• Innovative Model Architecture: The Patchformer is designed to integrate the
Patch Embedding block from PatchTST and the encoder-decoder structure
from the vanilla transformer model. This Patch Embedding block treats
each channel of the multivariate time series as a distinct univariate input
and segments it into subseries-level patches. This approach captures local
semantic information within each univariate time series and learns inter-
channel relationships more effectively via a channel-independent approach,
where each channel shares the same embedding and Transformer weights,
enhancing efficiency in multivariate time-series forecasting. In addition, with
its multi-head attention mechanisms, the encoder-decoder structure facilitates
the importation of comprehensive information from the encoder to the decoder,
potentially improving forecasting accuracy.

• First of its kind for Long-Term Multi-Energy Load Forecasting: To the best
of our knowledge, the Patchformer is the first Transformer-based model em-
ploying a patch embedding method for long-term multi-energy load fore-
casting. This approach effectively addresses the complexities of predicting
multi-energy load over extended periods and captures the interdependence
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among different energies (e.g., electricity, gas and heat) and other energy-
related products (e.g., GHG).

• Comprehensive Numerical Analysis: Experiments show the Patchformer
model achieves better performance against other state-of-the-art Transformer-
based models for multivariate long-term forecasting in the Multi-Energy
dataset and six other benchmark datasets. In addition, the model also pro-
cures higher accuracy in univariate long-term forecasting when predicting the
load of electricity and gas. Moreover, the numerical analysis also illustrates
the positive effect of the interdependence among energies and energy-related
products on the performance of the forecasting in the Multi-Energy dataset
across Patchformer and other models via comparing the model accuracy be-
tween predicting the electricity, gas load and GHG emissions all at once and
the average of the individual predictions. Lastly, the experiment demonstrates
the distinct positive correlation between Patchformer’s performance and the
past sequence length, which shows its ability to capture long-range past local
semantic information.

5.1.2 Chapter Organisation
The remainder of this chapter is organised as follows. Section 5.2 illustrates the
proposed Patchformer model architecture in detail. In Section 5.3, numerical anal-
ysis has been developed and evaluated the performance of the Patchformer as well
as other state-of-the-art Transformer-based models in different types of datasets,
including one novel multi-energy dataset and six public benchmark datasets. In
addition, the multi-energy analysis is also illustrated in the section. Lastly, Section
5.4 concludes the chapter and discusses future work.

5.2 Model Architecture
This section introduces the Patchformer model architecture, which is shown in
Figure 5.1. Section 5.2.1 gives a high-level overview of the Patchformer model.
Section 5.2.2 presents one of the core concepts of the model, which is the patching
embedding approach. Sections 5.2.3, 5.2.4 and 5.2.5 depict each of the building
blocks for the encoder and decoder. Finally, the structure of the encoder, decoder,
and linear head are illustrated in Sections 5.2.6, 5.2.7 and 5.2.8, respectively.
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5.2.1 Model Overview
The model consists of an encoder and a decoder, while the maximum number of
layers in the encoder and decoder are 𝑁 and 𝑀 , respectively. For the multivariate
time-series forecasting, the past time sequence is denoted as X ∈ R𝐼×𝐶 with a total
of length 𝐼 and channels 𝐶. X𝑐

𝑡:𝐼 represents a data point at time 𝑡 and channel 𝑐. The
future/prediction time sequence is represented as Y ∈ R𝑂×𝐶 with the total length
𝑂. Through the encoder, the information of its inputs is imported into the decoder
to provide extra past information for the decoder to predict future sequences.

5.2.2 Patch Embedding
The past multivariate time sequence X is split as 𝐶 univariate time sequences
X𝑐 ∈ R1×𝐼 before patching, which is the representation of the channel-independence.
Each X𝑐 is then segmented into multiple patches X𝑐

𝑧:𝑍 ∈ R𝑍×𝑃 by the patch length
𝑃 and stride 𝑆 which is similar to the idea in CNN. Therefore, the total number of
patches is calculated by 𝑍 = ⌊ 𝐼−𝑃

𝑆
⌋ + 2. Notice that the patching method always

pads extra 𝑃 time steps with the last value of the past time sequence to ensure all
time-series data are in patches [78]. After patching, a one-dimensional univariate
time series data X𝑐 is converted to a two-dimensional matrix P𝑐

𝑝𝑎𝑡𝑐ℎ
in which each

row represents a patch. In addition, value embedding which projects P𝑐
𝑝𝑎𝑡𝑐ℎ

from
R𝑍×𝑃 dimensional space into R𝑍×𝐷 dimensional space and positional embedding
is applied to optimise the patch representation and ordering. Figure 5.2 shows the
procedure of the patch embedding approach. Lastly, the patch embedding block can
be represented as P𝑐 = PatchEmbed(X𝑐) which are illustrated as follows:

P𝑐
𝑝𝑎𝑡𝑐ℎ = Patching(Padding(X𝑐))

P𝑐 = P𝑐
𝑝𝑎𝑡𝑐ℎ𝑊𝑣𝑎𝑙𝐸𝑚𝑏𝑒𝑑 + PosEmbed(P𝑐

𝑝𝑎𝑡𝑐ℎ)
(1)

where𝑊𝑣𝑎𝑙𝐸𝑚𝑏𝑒𝑑 ∈ R𝑃×𝐷 is a learnable weight for value embedding and PosEmbed(.)
denotes positional embedding. P𝑐 ∈ R𝑍×𝐷 is the patch embedded output.

5.2.3 Multi-Head Attention Block
The Patchformer employs the vanilla transformer’s multi-head attention mechanism
[79] to learn the complex local semantic information among patches. Figure 5.3
shows the scaled dot product attention and multi-head attention mechanisms. In
particular, the attention layer is used to calculate the attention score by applying
the softmax function to the dot product of the scaled similarity between Query Q𝑐

ℎ

and Key K𝑐
ℎ

by
√
𝑑𝑘 . The attention score is calculated by the product between the

scaled dot product and Value V𝑐
ℎ
. All the Q𝑐

ℎ
, K𝑐

ℎ
and V𝑐

ℎ
are computed from
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Scaled Dot-Product Attention
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Matrix
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Softmax

Matrix Multiplication

Q K V

Scaled Dot-Product Attention Block

Linear

Scaled Dot-Product Attention

Concatenate

Linear

LinearLinear

Q K V

H

Multi-Head Attention Block

Figure 5.3: Scaled Dot-Product Attention Block (left) and Multi-Head Attention
Block (right) including 𝐻 attention layers (heads).

the dot product between input P𝑐 and 𝑊Q , 𝑊K and 𝑊Q , respectively. The multi-
head attention block consists of 𝐻 attention layers, namely, heads, which obtain the
multi-head attention score by calculating the dot product between the concatenated
attention scores and 𝑊𝑂 . The multi-head attention block P𝑐

𝑎𝑡𝑡𝑛 = MultiHead(P𝑐)
are formulated as follows:

Q𝑐
ℎ = P𝑐𝑊Q

K𝑐
ℎ = P𝑐𝑊K

V𝑐
ℎ = P𝑐𝑊V

H 𝑐
ℎ = Attention(Q𝑐

ℎ,K
𝑐
ℎ ,V

𝑐
ℎ ) = Softmax(

Q𝑐
ℎ
K𝑐𝑇

ℎ√
𝑑𝑘

)V𝑐
ℎ

P𝑐
𝑎𝑡𝑡𝑛 = Concat(H 𝑐

1 , ...,H
𝑐
𝐻)𝑊

𝑂

(2)

where the trainable weights𝑊Q ,𝑊K ∈ R𝐷×𝑑𝑘 and𝑊V ∈ R𝐷×𝐷 result in Q𝑐
ℎ
,K𝑐

ℎ
∈

R𝑍×𝑑𝑘 and V𝑐
ℎ
,H 𝑐

ℎ
∈ R𝑍×𝐷 . Lastly, the multi-head attention output P𝑐

𝑎𝑡𝑡𝑛 ∈ R𝑍×𝐷

82



5.2. MODEL ARCHITECTURE CHAPTER 5.

is obtained by projecting the row-wise concatenation among all heads H 𝑐
ℎ
,∀ℎ ∈

{1, ..., 𝐻} with weight𝑊𝑜 ∈ R𝐻∗𝑍×𝐷 .

5.2.4 Layer Normalisation Block
Layer normalisation is a technique designed to normalise the inputs across the fea-
tures for each data sample in a mini-batch. Unlike batch normalisation, which nor-
malises across the batch dimension, layer normalisation performs normalisation for
each individual sample. For a given sub-layer output P𝑐

𝑎𝑡𝑡𝑛, layer normalisation first
computes the mean 𝜇𝑐 and standard deviation𝜎𝑐 for each data sample independently.
The output of the sub-layer is then normalised by subtracting the mean and dividing
by the standard deviation. After normalisation, the process applies two learnable
parameters, typically denoted as 𝛾𝑐 and 𝛽𝑐, which scale and shift the normalised
value, respectively. These are trainable parameters which are learned during the
training process. The layer normalisation is denoted as P𝑐

𝑛𝑜𝑟𝑚 = LayerNorm(P𝑐
𝑎𝑡𝑡𝑛)

and the detailed process is shown below:

𝜇𝑐 =
1

𝑍 × 𝐷

𝑍∑︁
𝑧=1

𝐷∑︁
𝑑=1

P𝑐
𝑎𝑡𝑡𝑛,𝑧,𝑑

𝜎𝑐 =

√√√
1

𝑍 × 𝐷

𝑍∑︁
𝑧=1

𝐷∑︁
𝑑=1

(P𝑐
𝑎𝑡𝑡𝑛,𝑧,𝑑

− 𝜇𝑐)

P𝑐
𝑛𝑜𝑟𝑚 = 𝛾𝑐 (

P𝑐
𝑎𝑡𝑡𝑛 − 𝜇𝑐

𝜎𝑐
) + 𝛽𝑐

(3)

Layer normalisation helps stabilise the training process and enables the training of
deeper models by mitigating the vanishing or exploding gradient problems. It can
lead to faster convergence in training, which is crucial for complex models like
transformers that have a large number of parameters.

5.2.5 Feed Forward Block
The Feed Forward block includes two fully connected feed-forward networks (FFNs)
with the ReLU activation function in between.

P𝑐
𝑓 𝑓 𝑛 = Max(0,P𝑐

𝑛𝑜𝑟𝑚𝑊
𝑓 𝑓 𝑛

1 + 𝑏1)𝑊 𝑓 𝑓 𝑛

2 + 𝑏2 (4)

where the weights in the FFNs are 𝑊 𝑓 𝑓 𝑛

1 ∈ R𝐷×𝑑 𝑓 𝑓 and 𝑊 𝑓 𝑓 𝑛

2 ∈ R𝑑 𝑓 𝑓×𝐷 , respec-
tively. 𝑏1, 𝑏2 ∈ R𝑍 denote the bias terms of the FFNs. The feed forward block
is summarised by P𝑐

𝑓 𝑓 𝑛
= FeedForward(P𝑐

𝑛𝑜𝑟𝑚) with the output dimension (𝑍, 𝐷)
unchanged compared to its input.
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5.2.6 Encoder
With all the above blocks, the Patchformer encoder P𝑐,𝑙

𝑒𝑛 = Encoder(P𝑐,𝑙−1
𝑒𝑛 ) can be

summarised as below:

P𝑐,𝑙

𝑒𝑛,1 = LayerNorm(MultiHead(P𝑐,𝑙−1
𝑒𝑛 ) + P𝑐,𝑙−1

𝑒𝑛 )

P𝑐,𝑙

𝑒𝑛,2 = LayerNorm(FeedForward(P𝑐,𝑙

𝑒𝑛,1) + P𝑐,𝑙

𝑒𝑛,1)
(5)

where the P𝑐,𝑙

𝑒𝑛,1 and P𝑐,𝑙

𝑒𝑛,2 represent the outputs of the first and the second layer
normalisation blocks, respectively. In addition, the output of the 𝑙-th encoder layer
P𝑐,𝑙
𝑒𝑛 = P𝑐,𝑙

𝑒𝑛,2,∀𝑙 ∈ {1, ..., 𝑁} and P𝑐,0
𝑒𝑛 = P𝑐

𝑒𝑛 which is converted from the encoder
inputs X𝑐

𝑒𝑛.

5.2.7 Decoder
Patchformer decoder’s input X𝑐

𝑑𝑒
∈ R( 𝐼2+𝑂)×1 consists of two parts. The first part

comes from the second half of the encoder’s inputsX𝑐
𝑒𝑛, denoted asX𝑐

𝑒𝑛, 𝐼2 :𝐼
to provide

the most recent past information to the decoder. The second part of X𝑐
𝑑𝑒

are all zeros.
The detailed formulation is shown below:

X𝑐
𝑑𝑒 = Concat(X𝑐

𝑒𝑛, 𝐼2 :𝐼 + Xzero) (6)

where Xzero ∈ R𝑂×1 is used as a placeholder to form the decoder input.

After Patch Embedding, P𝑐
𝑑𝑒

= PatchEmbed(X𝑐
𝑑𝑒
), P𝑐

𝑑𝑒
is obtained as the input

for the decoder. Notice that the inner and encoder-decoder multi-head attentions
are designed to capture the local semantic information among input patches. By
adopting the encoder’s output P𝑐,𝑁

𝑒𝑛 , the decoder P𝑐,𝑙

𝑑𝑒
= Decoder(P𝑐,𝑙−1

𝑑𝑒
,P𝑐,𝑁

𝑒𝑛 ) can
be summarised as follows:

P𝑐,𝑙

𝑑𝑒,1 = LayerNorm(MultiHead(P𝑐,𝑙−1
𝑑𝑒

) + P𝑐,𝑙−1
𝑑𝑒

)

P𝑐,𝑙

𝑑𝑒,2 = LayerNorm(MultiHead(P𝑐,𝑙

𝑑𝑒,1,P
𝑐,𝑁
𝑒𝑛 ) + P𝑐,𝑙

𝑑𝑒,1)

P𝑐,𝑙

𝑑𝑒,3 = LayerNorm(FeedForward(P𝑐,𝑙

𝑑𝑒,2) + P𝑐,𝑙

𝑑𝑒,2)

(7)

where P𝑐,𝑙

𝑑𝑒
= P𝑐,𝑙

𝑑𝑒,3,∀𝑙 ∈ {1, ..., 𝑀} represents the outputs for the 𝑙-th decoder
layer. In addition, P𝑐,0

𝑑𝑒
= P𝑐

𝑑𝑒
. P𝑐,𝑙

𝑑𝑒,𝑖
,∀𝑖 ∈ {1, 2, 3} denote the outputs of layer

normalisation blocks in the 𝑙-th decoder layer, respectively.

5.2.8 Flatten and Linear Head
The Flatten and Linear Head block is designed first to flatten the output of the
decoder P𝑐,𝑀

𝑑𝑒
from dimension (𝑍𝑑𝑒, 𝑃) to (1, 𝑍𝑑𝑒 ∗ 𝑃). Second, the final prediction
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sequence is obtained by converting the output dimension again to (1, 𝑂). The
detailed formulations are shown below:

Y𝑐
𝑓 𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 = Flatten(P𝑐,𝑀

𝑑𝑒
)

Y𝑐 = Y𝑐
𝑓 𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑𝑊𝑦

(8)

where Y𝑐
𝑓 𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑

∈ R1×𝑍𝑑𝑒∗𝑃, P𝑐,𝑀

𝑑𝑒
∈ R𝑍𝑑𝑒×𝑃. The final prediction time sequence

Y𝑐 ∈ R1×𝑂 ,∀𝑐 ∈ {1, ..., 𝐶} is obtained by a linear transformation with weight
𝑊𝑦 ∈ R𝑍𝑑𝑒∗𝑃×𝑂 .

5.3 Numerical Analysis
In this section, the performance comparison and evaluation between the proposed
Patchformer and other state-of-the-art models: Autoformer [76], Crossformer [89],
and Transformer [79] and multi-energy analysis are discussed in detail. Firstly, the
datasets which contain a novel Multi-Energy dataset, six public benchmark datasets
and experimental setup are introduced in Section 5.3.1. The performance of mul-
tivariate forecasting for Patchformer and other models across different datasets are
discussed in Section 5.3.2. Sections 5.3.3-5.3.5 analyse the Patchformer perfor-
mance on the Multi-Energy dataset from various perspectives in detail. In particu-
lar, Section 5.3.3 studies the univariate forecasting performance among Patchformer
and other models on the Multi-Energy dataset by predicting electricity, gas load and
GHG emission. In addition, the effect of the interdependence among electricity,
gas load and GHG emission on the performance of the LTTSF on the Multi-Energy
dataset is illustrated in Section 5.3.4. Lastly, in Section 5.3.5, the forecasting per-
formance is compared between Patchformer and other models with different past
sequence lengths.

5.3.1 Datasets and Experimental Setup
The proposed Patchformer model is evaluated on seven datasets, including the novel
and comprehensive Multi-Energy dataset [123] and other six datasets that are well
known and have been utilised as benchmarks, publicly available on [76]. Here is the
description of the seven datasets: (1) Multi-Energy dataset records energy-related
data collected on the Temple campus at Arizona State University, which includes
hourly electricity, gas, and heat load demand, renewable energy generation, and
GHG emissions for each building from 24 July 2015 to 12 September 2020. (2)
Exchange dataset collects the daily exchange rate of eight different countries from
1 January 1990 to 10 October 2010. (3) Weather dataset is a collection of 21
meteorological indicators (e.g., air temperature, humidity and precipitation) every
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Figure 5.4: Visualisation of 192 step forecasting on Multi-Energy, Exchange,
Weather, ETTh1 and ETTm1 datasets with the past sequence length = 96.
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Table 5.1: Statistics of datasets.
Datasets Multi-Energy Exchange Weather ETTh1 ETTh2 ETTm1 ETTm2
Features 19 8 21 7 7 7 7
Length 49415 7588 52696 17420 17420 69680 69680

10 minutes in the entire year of 2020. (4) and (5) ETTh1 and ETTh2 datasets
record the hourly data (e.g., load and oil temperature) from two different electricity
transformers from 1 July 2016 to 26 June 2018. Similarly, (6) and (7) ETTm1 and
ETTm2 datasets collect every 15 minutes data from the two electricity transformers
in the same time period. The statistics of the seven datasets are shown in Table
5.1, which shows the total number of input features and length of the time-series
observations. The Patchformer and other models are written in PyTorch and run on
Ubuntu 22.04.3 LTS x86_64 with Intel Xeon (8) @ 2.000GHz and 52GB of RAM.
The GPU uses NVIDIA Tesla V100 SXM2 16GB.

Moreover, in this section, the mean squared error (MSE) and mean absolute error
(MAE) are applied as experimental evaluation indicators to reflect the forecasting
accuracy of the proposed Patchformer and other comparison models. The definitions
of the two evaluation indexes are formulated as follows:

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
(9)

where 𝑛 is the total number of the data. The actual and predicted values are denoted
as 𝑦𝑖 and 𝑦𝑖 at the 𝑖-th time step of the dataset, respectively.

5.3.2 Multivariate Forecasting on Different Datasets
In this section, the performance of multivariate forecasting among different mod-
els on the above-mentioned seven datasets is compared. Multivariate forecasting
considers the historical data of several variables to forecast one or more of these
variables while taking into account the interdependence between multiple input
variables. The same number of input and output variables is applied to analyse the
performance of the multivariate forecasting in this section. The hyperparameters
used in the section are shown in Table 5.2. The prediction and past sequence length
are set to be Y ∈ {96, 192, 336, 720} and X = 96, respectively. The evaluation
results are shown in Table 5.3. Patchformer consistently outperformed competing
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Table 5.2: Hyperparameters of different models for multivariate forecasting.

Models Hyperparameters

Patchformer

patch length = 16, stride = 8, encoder number = 2, decoder number
= 1, model dimension = 512, label length = sequence length/2,
batch size = 32, head = 8, learning rate = 0.0001, dropout rate =
0.1, Optimiser = Adam, loss function = MSE, epoch = 10

Autoformer

topK = 5, encoder number = 2, decoder number = 1, model
dimension = 512, label length = sequence length/2, batch size
= 32, learning rate = 0.0001, dropout rate = 0.1, Optimiser =
Adam, loss function = MSE, epoch = 10

Crossformer

topK = 5, encoder number = 2, decoder number = 1, model
dimension = 512, label length = sequence length/2, batch size
= 32, learning rate = 0.0001, dropout rate = 0.1, Optimiser =
Adam, loss function = MSE, epoch = 10

Transformer

encoder number = 2, decoder number = 1, model dimension =
512, label length = sequence length/2, batch size = 32, head = 8,
learning rate = 0.0001, dropout rate = 0.1, Optimiser = Adam, loss
function = MSE, epoch = 10

models at prediction sequence lengths of 192, 336 and 720 on the Multi-Energy
dataset introduced in this chapter. Notably, at the 720-step forecast, the Patchformer
achieved an MSE of 0.121 and an MAE of 0.193, which is 15.70% and 11.40%
less than the second-best scores, respectively. It indicates its capability to capture
the complex interdependencies among the multiple energy vectors over long-term
horizons. In addition, at the extended horizon of 96, 192 and 336 steps, the Patch-
former’s performance remains competitive, with all the best MSE and MAE, except
for two second-best MSE at 96 and 336 steps, demonstrating the model’s robustness
in long-term forecasting. Its superiority in the multi-energy forecasting domain is
critical for modern IMES systems.

For benchmark datasets in multivariate time series forecasting, the Patchformer
exhibited varying degrees of efficacy. In the Exchange Rate dataset, the Patchformer
performs the best across all prediction lengths and is optimal at shorter horizons but
showed a significant decline as the prediction length increased, with the MSE rising
sharply to 1.071 at the 720-step horizon. This suggests a potential vulnerability
in the Patchformer’s architecture when dealing with the non-stationary and volatile
nature of financial time series over long-term periods.

In Weather forecasting, the Patchformer maintained competitiveness and the best
performance across all horizons, with the best MSE and MAE for all prediction
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Table 5.3: Multivariate time-series forecasting results with Patchformer. We use
prediction lengths Y ∈ {96, 192, 336, 720} and past sequence length X = 96. The
best results are in bold, and the second best is in underlined.

Model Patchformer Autoformer Crossformer Transformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE

M
ul

ti-
En

er
gy 96 0.062 0.135 0.061 0.150 0.067 0.150 0.063 0.147

192 0.073 0.149 0.075 0.161 0.086 0.172 0.079 0.161
336 0.090 0.167 0.083 0.173 0.165 0.243 0.153 0.217
720 0.121 0.193 0.140 0.215 0.221 0.274 0.257 0.273

Ex
ch

an
ge 96 0.089 0.217 0.153 0.285 0.256 0.367 0.550 0.579

192 0.190 0.321 0.277 0.383 0.468 0.508 0.934 0.734
336 0.387 0.471 0.471 0.513 0.975 0.763 1.328 0.904
720 1.071 0.769 1.107 0.818 1.620 1.029 2.565 1.336

W
ea

th
er 96 0.175 0.231 0.342 0.385 0.177 0.242 0.353 0.412

192 0.213 0.274 0.321 0.374 0.222 0.289 0.574 0.542
336 0.263 0.311 0.347 0.384 0.276 0.338 0.631 0.584
720 0.339 0.369 0.415 0.418 0.372 0.411 0.850 0.686

ET
Th

1 96 0.425 0.444 0.529 0.487 0.419 0.439 0.773 0.684
192 0.484 0.477 0.509 0.486 0.539 0.517 0.886 0.744
336 0.549 0.512 0.508 0.494 0.709 0.638 0.966 0.770
720 0.603 0.566 0.542 0.520 0.721 0.622 1.016 0.800

ET
Th

2 96 0.342 0.387 0.375 0.410 0.790 0.612 2.633 1.291
192 0.473 0.459 0.443 0.449 1.830 1.041 5.961 2.007
336 0.475 0.478 0.501 0.496 1.863 1.088 5.811 1.948
720 0.600 0.538 0.496 0.499 2.833 1.447 2.964 1.399

ET
Tm

1 96 0.364 0.393 0.512 0.485 0.362 0.403 0.725 0.620
192 0.411 0.421 0.539 0.494 0.388 0.422 0.870 0.703
336 0.437 0.447 0.587 0.523 0.617 0.579 1.062 0.790
720 0.499 0.482 0.650 0.535 0.931 0.722 1.063 0.789

ET
Tm

2 96 0.214 0.308 0.230 0.314 0.250 0.333 0.469 0.500
192 0.321 0.380 0.281 0.340 0.888 0.694 1.438 0.891
336 0.373 0.415 0.338 0.373 1.451 0.850 1.154 0.818
720 0.592 0.529 0.459 0.441 2.678 1.148 2.675 1.208

steps. This indicates the Patchformer’s adeptness at modelling environmental time
series data, which often have clearer temporal patterns and seasonality.

With the ETTh1, ETTh2, ETTm1, and ETTm2 datasets, which contain the data
from electricity transformers, including load and oil temperature, the Patchformer
displays either the best or second-best MSE and MAE for all prediction lengths,
which indicates the model’s robustness and reliability. In particular, Patchformer
obtains the best MSE and MAE for all different prediction lengths on the ETTm1
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Figure 5.5: Visualisation of 192 step forecasting on Electricity, Gas and GHG in
Multi-Energy dataset with the past sequence length = 336.

dataset, except for MSE at 96 and 192 steps, which are relatively close to the best
results obtained by Crossformer.

Figure 5.4 visualises the time-series predictions of the four models on Multi-Energy,
Exchange, Weather, ETTh1 and ETTm1 datasets. In particular, the predicted values
of the electricity load on the Multi-Energy dataset are visualised to show the models’
performance. As a result, the Patchformer exhibits strong performance across
multiple datasets since it efficiently captures the trend and is closest to the ground
truth. The experimental results indicate that the Patchformer can handle long-term
predictions efficiently, especially in domains where the data has explicit seasonality
patterns. With high volatility and irregular patterns, such as financial markets, the
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Figure 5.6: Visualisation of 720 step forecasting on Electricity, Gas and GHG in
Multi-Energy dataset with the past sequence length = 336.

Patchformer’s long-term forecasting performance can be improved in future work.

5.3.3 Univariate Forecasting
In addition to multivariate forecasting, this section presents univariate forecasting
results of Patchformer and other compared models on the Multi-Energy dataset.
Univariate forecasting focuses on forecasting the future values of that single variable
based on its own historical data. The output is the prediction of future values
of the same single variable without considering any other input variables. The
features chosen to be analysed are electricity and gas load demand, as well as
GHG emissions. The hyperparameters of Patchformer among different prediction
lengths are shown in Table 5.4. The past sequence length for all models is fixed at
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Table 5.4: Hyperparameters of Patchformer for univariate forecasting.

Prediction Length Hyperparameters

96

patch length = 16, stride = 8, encoder number = 2, decoder
number = 1, model dimension = 512, label length = sequence
length/2, batch size = 32, head = 16, fully connected layer
dimension = 2048, learning rate = 0.0001, dropout rate =
0.1, Optimiser = Adam, loss function = MSE, epoch = 10

192

patch length = 16, stride = 8, encoder number = 2, decoder
number = 1, model dimension = 256, label length = sequence
length/2, batch size = 32, head = 16, fully connected layer
dimension = 1024, learning rate = 0.0001, dropout rate =
0.1, Optimiser = Adam, loss function = MSE, epoch = 10

336

patch length = 16, stride = 8, encoder number = 2, decoder
number = 1, model dimension = 512, label length = sequence
length/2, batch size = 32, head = 16, fully connected layer
dimension = 2048, learning rate = 0.0001, dropout rate =
0.1, Optimiser = Adam, loss function = MSE, epoch = 10

720

patch length = 16, stride = 8, encoder number = 2, decoder
number = 1, model dimension = 128, label length = sequence
length/2, batch size = 32, head = 16, fully connected layer
dimension = 1024, learning rate = 0.0001, dropout rate =
0.1, Optimiser = Adam, loss function = MSE, epoch = 10

336 time steps, and the forecasting horizons are 96, 192, 336, and 720 time steps.
Table 5.5 shows univariate forecasting results. Patchformer outperforms all other
models on electricity and gas forecasting as it receives the best MSE and MAE
results across all prediction lengths. For the forecasting results on the GHG dataset,
Patchformer has room for improvement, which implies there may not be a single
model that universally outperforms others across all metrics, electricity and gas
demand, GHG emissions, and prediction lengths. In addition, Figure 5.5 and 5.6
visualise 336 steps past sequence length forecasting with all models on Electricity,
Gas and GHG in the Multi-Energy dataset when the prediction lengths are 192 and
720 steps, respectively. The time-series patterns among Electricity, Gas and GHG
are shown to be different in both figures. Also, it is fairly obvious to observe that the
predictions of Patchformer are the closest to the ground truth value when predicting
electricity and gas in Figure 5.5 and 5.6, which indicates the excellent performance
of Patchformer. Furthermore, from Figure 5.6, the prediction of Crossformer is
stated as relatively consistent across time while other models fluctuate dramatically.
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Table 5.5: Univariate multi-energy forecasting results with Patchformer. We use
prediction lengths Y ∈ {96, 192, 336, 720} and past sequence length X = 336. The
best results are in bold and the second best are underlined.

Model Patchformer Autoformer Crossformer Transformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE

El
ec

tri
ci

ty 96 0.114 0.262 0.176 0.326 0.116 0.264 0.154 0.304
192 0.148 0.300 0.230 0.372 0.151 0.306 0.186 0.336
336 0.181 0.332 0.291 0.427 0.227 0.375 0.226 0.369
720 0.272 0.412 0.290 0.428 0.340 0.472 0.497 0.556

G
as

96 0.071 0.195 0.114 0.262 0.074 0.196 0.101 0.232
192 0.084 0.221 0.121 0.269 0.095 0.230 0.120 0.262
336 0.106 0.244 0.193 0.340 0.130 0.273 0.118 0.264
720 0.143 0.293 0.335 0.439 0.270 0.405 0.169 0.307

G
H

G

96 0.141 0.290 0.242 0.368 0.135 0.285 0.172 0.323
192 0.202 0.354 0.217 0.369 0.159 0.312 0.184 0.335
336 0.280 0.413 0.226 0.373 0.225 0.377 0.266 0.399
720 0.426 0.518 0.311 0.442 0.550 0.583 0.317 0.449

5.3.4 Multi-Energy Forecasting Comparison
In this section, the effect of the interdependence among energy-related products
on the performance of the time-series forecasting in the Multi-Energy dataset is
discussed. The features in the dataset chosen to be analysed are electricity and gas
load demand, as well as GHG emissions since they are highly interrelated in nature.
The prediction, past sequence length and hyperparameters of the Patchformer model
are identical to Section 5.3.3. The forecasting results are shown in Table 5.6, in
which All-at-Once means to predict electricity and gas load and GHG emission
simultaneously, whereas Electricity, Gas and GHG are predicted individually. The
feature Average is calculated by the mean of the features Electricity, Gas and GHG.
In Table 5.6, Patchformer outperforms all other three models across all features
selected from the Multi-Energy dataset as it achieves the most numbers of best
MSE and MAE results than other models. In addition, the Patchformer forecasting
results at 336 and 720 prediction lengths when predicting electricity, gas load, and
GHG emission all at once are better than predicted individually. Furthermore,
the percentage difference of Patchformer MSE and MAE between All-at-Once and
Average at 96 and 192 prediction lengths are insignificant (MSE: 2.65% and 1.36%,
MAE: 1.96% and 0.34%). Moreover, the results of All-at-Once are generally
better than Average for all other models, especially Autoformer and Transformer.
Overall, the pattern in which predicting multi-energy results all at once is better than
predicting them individually demonstrates the interdependence among electricity,
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Table 5.6: Multi-energy forecasting results with Patchformer. We use prediction
lengths Y ∈ {96, 192, 336, 720} and past sequence lengthX = 336. The best results
are in bold, the second best is underlined, and the better results between All-at-Once
and Average are shaded .

Model Patchformer Autoformer Crossformer Transformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE

A
ll-

at
-O

nc
e 96 0.113 0.255 0.139 0.286 0.130 0.274 0.146 0.282

192 0.147 0.292 0.156 0.304 0.173 0.318 0.233 0.357
336 0.179 0.324 0.187 0.336 0.368 0.467 0.318 0.408
720 0.255 0.389 0.234 0.378 0.499 0.540 0.471 0.501

El
ec

tri
ci

ty 96 0.115 0.263 0.154 0.306 0.134 0.284 0.186 0.321
192 0.145 0.297 0.161 0.311 0.230 0.375 0.255 0.374
336 0.178 0.330 0.209 0.355 0.246 0.391 0.491 0.518
720 0.311 0.440 0.289 0.427 0.584 0.599 0.539 0.554

G
as

96 0.073 0.198 0.111 0.253 0.088 0.216 0.101 0.233
192 0.085 0.221 0.131 0.281 0.114 0.253 0.159 0.294
336 0.101 0.241 0.128 0.279 0.174 0.315 0.192 0.320
720 0.137 0.287 0.196 0.330 0.382 0.467 0.210 0.338

G
H

G

96 0.139 0.288 0.171 0.323 0.154 0.305 0.188 0.333
192 0.206 0.355 0.211 0.362 0.212 0.359 0.360 0.453
336 0.312 0.438 0.225 0.370 0.311 0.439 0.432 0.492
720 0.439 0.522 0.273 0.411 0.682 0.643 0.551 0.565

Av
er

ag
e 96 0.109 0.250 0.145 0.294 0.125 0.268 0.159 0.295

192 0.145 0.291 0.168 0.318 0.185 0.329 0.258 0.374
336 0.197 0.336 0.187 0.335 0.244 0.382 0.371 0.443
720 0.296 0.416 0.252 0.389 0.549 0.570 0.433 0.486

gas load and GHG emission can be captured by Patchformer and other models and
improve the forecasting performance.

5.3.5 Different Length of Past Time Sequences
In this section, the forecasting performance between Patchformer and other mod-
els with different lengths of past time sequences has been compared and shown
in Figure 5.7 and Table 5.7. Five different past sequence lengths are selected:
{24, 48, 96, 192, 336}. Two prediction lengths are {96, 720}. Intuitively, the mod-
els’ forecasting performance and the length of past sequences should be positively
correlated. However, based on the argument in [124], this principle may not work
for the majority of the Transformer-based models since they cannot capture the tem-
poral local information efficiently. Figure 5.7 also proves the phenomenon, which
shows that except for the proposed Patchformer, all other models do not follow the
positive correlation between model performance and the past sequence length. This
shows Patchformer’s ability to capture long-range, past local semantic information.
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Figure 5.7: Performance analysis with different past time sequence lengths on
Multi-Energy dataset.

Table 5.7: Multi-Energy load forecasting results with Patchformer on Multi-Energy
dataset. We use prediction lengths Y ∈ {96, 720} and past sequence lengths
X ∈ {24, 48, 96, 192, 336}. The best results are in bold and the second best are
underlined.

Model Patchformer Autoformer Crossformer Transformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Pr
ed

:9
6

24 0.101 0.170 0.072 0.155 0.078 0.158 0.120 0.182
48 0.076 0.150 0.064 0.147 0.072 0.155 0.075 0.151
96 0.062 0.135 0.061 0.150 0.067 0.150 0.063 0.147
192 0.056 0.128 0.070 0.167 0.134 0.212 0.086 0.165
336 0.054 0.126 0.072 0.162 0.134 0.214 0.075 0.160

Pr
ed

:7
20

24 0.158 0.224 0.141 0.224 0.174 0.250 0.220 0.256
48 0.142 0.214 0.122 0.210 0.240 0.287 0.207 0.244
96 0.121 0.193 0.140 0.215 0.221 0.274 0.257 0.273
192 0.118 0.191 0.135 0.216 0.223 0.282 0.263 0.280
336 0.111 0.183 0.115 0.223 0.202 0.289 0.172 0.226

In addition, Table 5.7 shows that, as the length of the past sequence increases,
Patchformer’s performance improves and surpasses all other models.

5.4 Discussion
The chapter presents Patchformer, a novel Transformer-based model for long-term
multi-energy load forecasting. It addresses the challenges in IMES forecasting by
predicting each feature in multivariate time-series data independently and segment-
ing it into patches, which can benefit the capture of interdependence among different
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features and the reception of local semantic information. The Patchformer’s architec-
ture, including its patch embedding and encoder-decoder mechanism, is illustrated
in detail. In numerical analysis, the Patchformer model demonstrates superior per-
formance against other state-of-the-art models in multivariate long-term forecasting
by the unique Multi-Energy dataset and six other benchmark datasets. Further-
more, the model’s performance in univariate long-term forecasting when predicting
electricity and gas load is superior to other models. The experiment also demon-
strates the positive effect of the interdependence among energy-related products on
the performance of the time-series forecasting in the Multi-Energy dataset across
Patchformer and other models by comparing the forecasting results between predict-
ing the electricity, gas load and GHG emissions all at once and the average of the
individual predictions. In addition, the positive correlation between Patchformer’s
performance and the past sequence length is stated, which shows its capability to
capture long-range past local semantic information. Future research directions can
be addressed as follows: handling volatile data, like in financial markets, capturing
long-term dependencies, and adapting to the non-stationarity of real-world datasets,
which need to be improved in further study. In addition, for univariate forecast-
ing, such as GHG data, the model performance needs to be enhanced accordingly.
Lastly, the next chapter concludes the thesis and provides future research directions
for Chapters 3-5.
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C h a p t e r 6

CONCLUSION AND FUTURE DIRECTIONS

The last three chapters illustrate the three research topics, respectively. In particular,
Chapter 3 discusses the strategic bidding and offering problems among energy
suppliers. Chapter 4 introduces the retail pricing schemes of energy suppliers.
Lastly, the long-term multi-energy load forecasting problem for energy suppliers is
studied in Chapter 5. In this chapter, the conclusion and future directions for each
research topic are provided in Sections 6.1 and 6.2, respectively.

6.1 Conclusion
Chapter 3 proposes a bilevel game-theoretic framework for strategic retailers who
aim to maximise their profits by participating in both DAW and local electricity
markets. In terms of the proposed bilevel model, customers’ welfare function and
switching behaviours are considered to be the lower-level problems along with the
market-clearing problems for the DAW and local electricity markets, respectively.
Furthermore, the proposed model is formulated as an MPEC problem and then re-
formulated to a MIQP model. By extending the above bilevel model from a single
leader (one retailer) to multiple leaders (multiple retailers), a Bertrand competition
model is adopted to model the interactions among multiple leaders at the upper
level. Finally, the resulting multi-leader, multi-follower Stackelberg game model
is reformulated as an EPEC problem and solved by the diagonalisation algorithm.
Extensive numerical results are present to demonstrate the feasibility and effec-
tiveness of the proposed bilevel strategic decision-making framework, the effect
of customers’ switching behaviours on decision-making, and the benefits of dif-
ferent market players (e.g. retailers and customers). In particular, results show
that incentivizing customers’ switching behaviours can decrease strategic retailers’
retail prices and profits. However, switching may not always benefit customers’
welfare due to customers’ need for balance between the electricity purchasing cost
(i.e., electricity price) and the electricity consumption level. In addition, similar
ESS charging/discharging decisions among strategic retailers are observed when
customers’ switching behaviours are enhanced.

In chapter 4, a customised multi-energy pricing scheme is proposed for an energy
retailer that manages multiple microgrids equipped with energy converters, storage,
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RES and DR programs. The proposed pricing problem is formulated as a bilevel
optimisation model. The energy retailer is the leader at the upper level in maximising
profit. Each multi-energy microgrid acting as a follower minimises the operational
cost at the lower level. In addition, three hybrid metaheuristic algorithms (i.e., PSO,
GA and SA) coordinated with the MILP program are developed to solve the model
efficiently. Through numerical analyses, the GA-based hybrid solution algorithm has
been proven to perform best against others. The customised pricing scheme presents
superiority compared to the uniform pricing scheme. In addition, since increasing
the rated capacity and power of the ES and TS can improve the microgrids’ energy
management capability, the retailer’s profit and microgrids’ operational costs will
be reduced accordingly.

Chapter 5 introduces Patchformer, an innovative model designed for long-term
multi-energy load forecasting. This model combines patch embedding with encoder-
decoder Transformer architectures to tackle the inherent limitations in existing
Transformer-based models, which often struggle with complex temporal patterns
in long-term forecasting scenarios. By segmenting multivariate time series into
multiple univariate patches, Patchformer significantly enhances its ability to recog-
nise both local and global dependencies within the data. The chapter’s numerical
studies demonstrate Patchformer’s superior performance over current state-of-the-
art models in long-term multivariate and univariate time-series forecasting tasks,
especially on the Multi-Energy dataset. Furthermore, the positive effect of the inter-
dependence among energy-related products on the performance of the time-series
forecasting in the Multi-Energy dataset is also illustrated in detail. In addition,
Patchformer’s positive correlation between its performance and the past sequence
length is addressed to show its capacity to capture long-term past local semantic
information. These advancements show a significant step forward in addressing
the complexities of multi-energy load forecasting, presenting a promising new fore-
casting model for managing the intricacies of IMES. Patchformer’s development
is reflected in a broader shift towards more sophisticated, efficient, and accurate
forecasting methods, essential for the sustainable and reliable operation of modern
energy systems with growing demand and increasing system complexity.

6.2 Future Directions
For the study of strategic bidding and offering problems for energy suppliers, while
considering customers’ switching behaviour, the modelling of customers’ behaviours
could also consider existing demand response programs, such as load shifting and
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curtailment, to better reflect the scenarios of future energy systems. Applying the
network congestion and locational marginal prices to the proposed bilevel model and
investigating the effects on the main findings of Chapter 3 is also a promising research
direction. In addition, the strategic bidding and offering problems only focus on
the electricity market in the thesis. Since the rapid growth of DER technologies,
the IMES systems, including electricity, natural gas, and heat energies, tend to
develop extensively. Therefore, there is a need to analyse the strategic bidding and
offering problems in the multi-energy market. Lastly, data-driven approaches can
be employed to improve the modelling process, accuracy and performance. For
instance, customers’ switching behaviours, wholesale electricity prices and demand
are all time-series data and can be learned from historical data through machine
learning and deep learning methods, such as RNN, GRU, LSTM and Transformer-
based methods.

Future research for retail multi-energy pricing problems can align with the direction
of developing data-driven models (e.g., machine learning and deep learning) at
the lower-level problem to learn the pattern of the interaction between the retail
prices set by energy retailers and the microgrids’ energy management decisions.
In addition, developing a novel approximation and numerical solution method for
solving the bilevel model with the existence of binary variables in the lower-level
problem can be another future research direction. The solution method can be
compared with the proposed hybrid metaheuristic algorithms. Furthermore, since
environmental factors, such as carbon cost/budget, are increasingly implemented by
different organisations (e.g. microgrids or local energy communities) as required
by retailers and governments, it could affect retailers’ pricing decisions. Therefore,
the objective functions and constraints of the bilevel model will consider such
environmental factors in our future work. Lastly, we will investigate our modelling
alternatives, such as cooperative game theory and bargaining mechanism, to model
the interactions between the retailer and customers/microgrids.

There are some future research directions for long-term multi-energy forecasting
problems. For instance, the performance of Patchformer for volatile data, such as
financial data needs to be improved to adapt to the non-stationary real-world data.
Furthermore, even though the Patchformer generally performs well for multivariate
forecasting, the prediction accuracy for univariate forecasting tasks may sometimes
be worse than other forecasting models and needs to be enhanced. Moreover, ab-
lation/ sensitivity analysis, such as varying patch length, past sequence length, and
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random seed, could be studied to examine the relevant effects on Patchformer fore-
casting performance. In addition, to further measure the Patchformer performance
and allow users to understand the model’s behaviour better, interpret and trust the
results and output, Explainable AI (XAI) methods, such as SHapley Additive exPla-
nations (SHAP) [125] and local interpretable model-agnostic explanations (LIME)
[126] could be implemented for future study.
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A p p e n d i x A

APPENDIX FOR CHAPTER 3

A.1 Input data for Chapter 3
A.1.1 Data in case 1

Table A.1: Initial retail prices of retailers in case 1 ($/MWh).

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 37.88 34.55 35.72 32.23 34.07 37.75 37.52 41.66 49.56 52.75 59.06 68.86 74.26 79.44 85.44 100.36 94.39 81.25 67.66 64.47 54.95 48.48 41.64 40.20
2 39.28 36.18 33.82 32.62 34.60 36.83 40.55 43.33 49.94 49.03 47.61 51.33 52.44 54.83 53.01 66.12 59.83 52.98 54.56 52.73 49.23 47.31 43.99 42.34
3 37.95 35.44 35.36 33.41 33.46 36.28 38.77 44.49 50.54 57.28 64.90 74.22 77.24 89.10 93.23 105.97 100.47 81.00 71.94 65.26 53.89 50.07 41.15 43.06
4 40.34 35.27 32.80 31.79 35.71 36.99 39.38 43.80 52.16 49.82 47.19 50.28 54.84 58.89 58.84 80.03 79.59 69.16 59.39 49.13 47.31 44.95 42.45 42.91
5 37.64 34.81 34.12 33.35 35.22 36.88 37.71 44.26 49.91 49.91 46.58 53.00 50.81 53.83 53.31 62.38 59.93 52.60 50.74 49.08 47.92 47.43 40.79 41.54
6 38.81 35.28 32.68 30.90 32.10 35.41 38.36 40.51 46.65 49.63 58.64 66.94 74.77 83.71 95.71 107.56 95.76 84.04 73.90 53.36 48.54 45.91 42.73 39.78
7 36.06 35.83 33.23 32.51 33.25 35.09 40.49 43.65 47.98 48.75 46.35 49.65 52.61 51.43 49.51 60.94 56.61 51.34 51.50 49.07 45.58 44.98 41.49 41.57
8 37.66 34.18 34.26 32.33 36.04 37.19 39.43 42.90 49.94 51.49 63.97 70.27 75.38 84.64 93.90 103.83 93.60 76.59 69.49 70.11 59.02 49.98 43.10 42.34
9 37.89 34.66 31.78 32.94 33.58 35.56 39.29 43.00 48.29 46.30 50.58 54.73 60.84 65.78 71.82 80.41 72.09 66.97 59.88 48.60 45.58 44.35 40.55 39.56
10 36.31 36.21 32.53 31.39 33.89 35.50 38.82 44.11 48.78 49.94 53.22 59.43 63.45 66.53 66.23 67.76 64.79 64.10 61.80 56.28 48.58 46.77 40.15 39.28
11 37.69 35.34 33.70 32.10 34.12 36.12 37.70 43.40 48.85 49.48 47.45 51.62 52.89 54.02 54.43 63.38 58.91 54.34 52.27 50.38 48.35 44.98 43.00 40.81
12 37.46 35.78 34.30 34.01 34.34 36.96 40.19 44.15 48.42 49.12 50.82 51.85 55.66 55.90 58.14 65.42 62.37 54.03 55.40 53.17 46.99 46.84 41.50 41.42

Table A.2: Initial DAW market bid prices of retailers in case 1 ($/MWh).

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 28.80 26.83 25.61 24.99 26.12 27.82 29.56 32.50 37.98 40.83 46.35 53.13 57.40 60.64 67.00 77.74 71.72 61.07 53.21 49.10 43.02 37.95 32.70 31.25
2 29.45 27.28 25.97 25.37 26.61 28.41 30.58 33.82 38.42 37.79 36.66 39.29 40.19 41.15 40.84 49.66 46.26 41.12 41.89 40.29 37.66 35.40 32.96 32.19
3 29.45 27.34 26.11 25.53 26.75 28.44 30.27 33.34 38.96 42.32 49.42 57.00 59.75 67.79 71.90 82.15 76.85 62.30 54.42 50.26 43.65 37.91 33.10 31.94
4 29.63 27.46 26.13 25.53 26.80 28.61 30.75 33.88 38.52 38.06 35.73 38.08 41.40 44.48 45.81 61.73 61.81 53.75 44.81 38.18 36.45 35.11 33.11 32.40
5 29.30 27.15 25.87 25.27 26.48 28.24 30.36 33.56 38.01 37.61 36.48 38.83 40.03 40.85 40.97 48.36 45.47 40.68 40.83 38.65 36.51 34.76 32.52 31.97
6 28.74 26.67 25.43 24.86 26.06 27.81 29.79 32.89 37.19 37.94 45.42 52.07 57.83 65.02 72.91 81.48 72.07 64.10 56.27 39.92 36.00 34.19 31.94 31.09
7 28.97 26.89 25.63 25.05 26.26 27.99 30.07 33.22 37.73 37.20 35.42 37.79 38.75 39.59 39.07 46.85 44.04 39.07 39.45 37.48 35.50 34.28 32.31 31.58
8 29.20 27.15 25.97 25.41 26.61 28.27 29.97 32.92 38.46 41.44 48.27 54.68 57.25 65.60 72.34 80.04 72.80 59.05 53.09 54.25 46.37 38.89 32.96 31.69
9 28.50 26.44 25.21 24.64 25.81 27.54 29.52 32.60 36.76 36.50 39.38 43.41 46.65 50.58 54.53 61.69 55.74 49.89 46.85 38.41 35.53 33.71 31.46 30.77
10 28.79 26.72 25.50 24.98 26.16 27.93 30.04 32.90 37.87 38.45 41.22 45.86 48.18 50.77 51.21 52.84 49.94 48.67 47.55 43.39 38.76 35.21 32.03 31.20
11 29.28 27.16 25.89 25.28 26.49 28.25 30.39 33.58 38.11 37.74 36.61 38.97 40.15 40.86 40.94 48.22 45.44 40.76 40.92 38.78 36.53 34.82 32.53 32.01
12 29.23 27.10 25.84 25.24 26.47 28.20 30.43 33.60 38.25 38.22 37.98 40.84 42.33 43.33 43.95 50.92 47.94 43.12 42.65 40.07 37.30 35.12 32.47 31.90

Table A.3: Initial LPE market bid/offer prices of retailers in case 1 ($/MWh).

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 30.63 28.06 26.38 25.95 27.23 28.75 29.94 33.99 34.99 35.55 39.75 40.37 47.26 47.82 50.22 117.52 70.51 56.30 44.02 40.82 46.75 43.10 32.50 31.92
2 31.24 28.55 26.84 26.43 27.74 29.17 30.36 34.31 34.80 33.85 39.53 36.07 41.90 37.68 36.92 47.14 41.88 36.28 38.11 38.17 41.81 41.49 32.16 31.94
3 31.19 28.53 26.81 26.39 27.73 29.26 30.50 34.57 35.51 36.22 40.21 41.62 47.42 47.69 43.67 104.86 59.44 45.74 42.10 41.54 48.01 43.81 32.44 32.21
4 31.52 28.77 27.03 26.61 27.96 29.47 30.62 34.48 34.98 34.06 39.87 36.27 42.39 37.77 37.31 46.94 42.61 271.33 38.61 38.57 42.11 42.03 32.46 32.24
5 30.97 28.35 26.69 26.33 27.64 29.03 30.18 34.03 34.40 33.65 39.11 35.91 41.39 37.81 36.48 47.78 41.08 37.77 37.61 37.87 41.63 40.99 31.78 31.69
6 30.26 27.71 26.09 25.72 27.01 28.42 29.57 33.44 33.98 33.28 38.57 35.56 40.99 37.43 35.68 46.85 39.83 38.59 36.73 37.16 40.87 39.92 31.14 31.01
7 30.67 28.07 26.42 26.02 27.30 28.71 29.86 33.72 34.18 33.28 38.77 35.32 41.02 36.88 35.92 44.67 40.18 41.09 37.08 37.27 40.84 40.71 31.60 31.43
8 31.01 28.38 26.67 26.26 27.60 29.14 30.35 34.38 35.41 36.75 39.97 43.51 49.21 51.43 46.08 129.88 66.77 46.94 43.35 42.59 50.28 43.68 32.27 32.03
9 30.06 27.57 25.95 25.58 26.84 28.23 29.35 33.12 33.63 32.96 38.17 35.31 40.45 37.22 35.12 46.26 39.02 37.68 36.33 36.88 40.63 39.61 30.88 30.83
10 30.24 27.74 26.13 25.79 27.06 28.33 29.63 33.57 34.21 34.17 38.83 37.92 39.01 41.69 38.18 71.84 47.25 40.06 38.48 38.54 43.64 41.24 31.53 31.42
11 31.00 28.39 26.75 26.37 27.68 29.08 30.26 34.09 34.44 33.69 39.11 35.98 41.39 37.88 36.54 48.37 41.21 37.94 37.57 37.83 41.66 41.07 31.87 31.78
12 31.00 28.40 26.76 26.38 27.70 29.09 30.33 34.22 34.64 34.05 39.35 36.61 41.75 39.01 37.50 54.56 43.35 39.15 38.13 38.21 42.36 41.37 31.98 31.87
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Table A.4: Maximum LPE market bid/offer electricity volume of retailers in case 1
(MWh).

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 250 240 231 232 232 234 240 250 266 282 296 310 322 329 331 333 331 324 315 306 299 286 267 251
2 252 243 236 236 237 240 246 262 284 304 318 329 342 353 361 367 369 362 353 337 327 306 282 264
3 253 243 238 238 243 242 249 263 284 305 323 341 350 357 362 368 370 366 354 339 327 307 282 266
4 253 246 241 241 244 253 265 277 290 306 323 342 357 368 372 377 376 367 354 339 330 308 285 266
5 261 250 245 244 248 260 271 284 294 313 325 344 360 368 375 382 379 369 354 339 331 311 286 266
6 269 257 249 245 253 262 272 285 302 319 334 349 360 374 381 383 382 376 362 349 340 321 301 282
7 269 258 251 251 260 270 283 294 305 322 342 361 373 377 383 391 395 391 379 363 355 329 305 284
8 271 259 254 254 260 272 284 300 319 335 349 362 376 385 391 398 397 392 381 368 357 335 310 290
9 277 266 260 260 264 273 287 304 321 343 360 380 399 408 404 406 402 403 391 378 362 338 311 290
10 277 269 261 261 268 280 291 306 325 344 365 385 400 409 411 408 407 405 396 378 366 341 320 294
11 283 272 266 265 274 281 293 313 327 347 371 391 405 412 413 409 409 411 403 385 375 348 320 298
12 288 277 269 268 277 289 301 313 335 361 381 400 407 413 418 422 419 418 407 391 380 356 329 306

Table A.5: Maximum DAW market bid load of retailers in case 1 (MWh).
Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 5184 4928 4739 4646 4645 4678 4866 5111 5338 5521 5667 5845 6056 6299 6602 6877 7039 6995 6744 6559 6352 5994 5607 5236
2 5191 4983 4827 4758 4757 4805 5082 5504 5956 6370 6760 7145 7440 7653 7822 7907 7923 7743 7482 7288 7070 6542 5982 5529
3 5220 4985 4871 4871 5037 5186 5371 5703 6111 6550 6882 7177 7485 7743 7912 8056 8099 7957 7639 7348 7076 6558 6029 5556
4 5443 5200 5047 5043 5161 5294 5651 5989 6267 6573 7007 7292 7542 7760 7996 8195 8290 8123 7767 7385 7107 6661 6090 5572
5 5611 5397 5239 5149 5187 5466 5852 6175 6441 6740 7062 7512 7936 8270 8422 8423 8333 8161 7968 7591 7203 6751 6327 5813
6 5871 5653 5517 5524 5692 5994 6452 6853 7180 7504 7837 8108 8320 8414 8563 8661 8646 8498 8048 7802 7500 6927 6334 5921
7 5897 5657 5525 5554 5753 6035 6473 6907 7326 7660 7958 8187 8409 8545 8656 8750 8745 8518 8122 7815 7576 7126 6630 6194
8 5927 5685 5537 5569 5765 6077 6492 6934 7339 7834 8204 8536 8846 8967 8810 8851 8999 8983 8772 8419 8048 7419 6796 6260
9 6109 5826 5652 5623 5785 6086 6569 7002 7434 7863 8378 8739 8889 9043 9210 9327 9362 9168 8776 8539 8270 7759 7096 6517
10 6178 5895 5709 5683 5848 6112 6570 7120 7569 8010 8423 8847 9225 9510 9700 9855 9889 9681 9320 8927 8476 7780 7184 6603
11 6310 6037 5862 5838 5983 6287 6710 7154 7659 8263 8799 9203 9521 9710 9863 10036 10077 9882 9398 8986 8572 7871 7203 6700
12 6335 6072 5903 5901 6086 6385 6865 7358 7854 8357 8835 9290 9654 9879 10087 10230 10294 10111 9611 9104 8602 7920 7264 6708

Table A.6: Alpha values of retailers in case 1.

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 144 133 124 119 115 112 117 123 132 143 153 163 171 178 183 187 189 186 183 177 168 163 153 142
2 148 134 126 119 117 117 120 127 134 144 155 165 175 182 186 189 189 188 184 183 173 165 154 146
3 147 138 128 123 118 118 122 130 138 149 158 168 176 183 188 191 194 192 187 184 176 168 159 149
4 153 140 133 125 121 121 125 132 140 152 162 169 181 189 193 195 195 196 192 188 180 172 162 152
5 175 167 156 150 147 144 148 157 164 177 185 194 205 212 218 220 219 221 215 211 204 194 186 176
6 179 167 160 154 148 149 152 161 169 179 188 199 206 214 218 223 224 222 219 213 205 198 189 179
7 184 173 162 157 151 152 156 164 171 181 192 201 211 216 221 225 226 228 223 217 209 202 191 180
8 186 175 167 160 157 155 158 167 174 185 195 205 213 219 225 227 231 228 225 221 213 206 194 186
9 211 199 192 185 182 182 187 193 200 211 222 231 240 244 251 254 256 255 252 246 240 230 220 210
10 215 205 198 189 184 185 188 196 203 215 225 234 242 250 254 258 259 259 254 251 244 232 225 215
11 218 208 199 192 189 187 194 200 207 217 229 237 247 253 260 263 263 261 257 254 245 238 228 218
12 220 212 204 196 192 193 197 200 214 223 232 241 251 257 261 268 267 267 262 259 251 242 231 224

Table A.7: Self-elasticity values of retailers in case 1.

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 130 122 117 113 113 110 116 117 123 128 133 133 138 140 144 143 144 143 143 141 137 136 133 129
2 127 120 116 111 110 111 111 115 120 125 129 133 135 139 142 142 142 141 140 140 136 132 130 128
3 124 119 114 110 107 108 110 114 119 125 128 132 133 138 139 139 140 139 139 138 136 129 126 123
4 122 117 112 106 106 107 108 112 116 122 126 129 132 134 136 138 138 139 137 134 131 128 126 122
5 114 109 103 101 98 99 101 104 107 114 118 120 124 127 127 130 131 129 129 125 124 119 119 114
6 112 106 103 100 94 97 100 102 105 113 115 118 121 125 127 127 129 126 127 125 122 119 116 113
7 111 105 100 97 94 95 96 97 106 112 114 117 120 122 124 124 125 125 125 122 120 117 115 110
8 110 101 97 95 95 92 94 97 104 108 112 115 117 121 123 125 124 123 123 121 118 115 113 108
9 103 96 91 85 86 85 88 91 95 102 104 110 109 111 113 115 116 118 115 112 112 107 103 102
10 99 93 90 85 85 84 87 89 92 101 102 106 108 111 113 115 115 116 113 110 108 105 101 100
11 96 91 87 82 80 82 84 86 93 96 100 104 104 111 112 111 115 113 112 109 107 102 101 97
12 95 91 85 81 80 79 82 86 90 96 98 101 104 109 109 112 110 110 110 108 105 102 99 95
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A.1.2 Information of generators in DAW market

Table A.8: Information of generators in DAW market.

Information Generator

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cost ($/MWh) 10 12 15 17 20 23 25 27 30 34 36 38 40 45 46
Maximum supply (MWh) 5000 4350 3940 3460 5070 2810 5300 4250 4650 3910 3250 3500 4750 3000 5750

Information Generator

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Cost ($/MWh) 48 51 53 56 60 65 68 70 74 76 78 80 84 88 90
Maximum supply (MWh) 2250 3460 3940 2290 1990 2600 3800 3000 2500 2000 1050 3860 4800 3900 3000

A.1.3 Data in case 2

Table A.9: Initial retail prices of retailers in case 2 ($/MWh).

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 38.77 38.38 33.33 34.95 33.91 32.60 32.75 32.67 33.96 33.96 36.60 37.59 37.46 40.12 42.48 43.63 48.24 49.18 54.56 47.28 58.28 44.30 69.34 51.51
2 39.41 39.63 35.56 36.69 33.49 34.37 32.71 32.48 34.73 34.12 38.24 36.95 40.15 38.62 45.22 42.06 50.61 49.65 48.19 53.38 46.85 62.54 50.74 71.40
3 38.85 36.90 35.52 34.66 33.40 33.48 34.03 32.24 37.17 34.47 36.86 35.44 39.12 37.87 44.47 41.68 50.57 47.26 56.06 46.03 63.88 51.07 74.42 56.89
4 38.30 38.42 36.01 37.20 32.46 33.77 32.14 31.68 36.83 35.75 35.34 36.09 39.91 36.92 44.00 43.16 50.29 47.24 50.59 50.23 46.39 52.83 50.22 60.54
5 37.61 38.15 36.12 33.35 33.75 31.75 31.93 33.33 34.28 34.04 36.42 37.57 40.17 38.72 43.92 43.18 51.82 48.80 48.58 48.71 46.98 47.73 50.75 49.04
6 36.79 36.68 35.91 37.70 34.44 33.94 33.34 32.98 35.53 35.08 35.92 35.53 38.09 39.87 41.53 43.46 49.69 49.75 51.31 51.13 58.76 48.01 67.64 52.61

Table A.10: Initial DAW market bid prices of retailers in case 2 ($/MWh).

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 28.80 28.97 26.83 26.89 25.61 25.63 24.99 25.05 26.12 26.26 27.82 27.99 29.56 30.07 32.50 33.22 37.98 37.73 40.83 37.20 46.35 35.42 53.13 37.79
2 29.45 29.20 27.28 27.15 25.97 25.97 25.37 25.41 26.61 26.61 28.41 28.27 30.58 29.97 33.82 32.92 38.42 38.46 37.79 41.44 36.66 48.27 39.29 54.68
3 29.45 28.50 27.34 26.44 26.11 25.21 25.53 24.64 26.75 25.81 28.44 27.54 30.27 29.52 33.34 32.60 38.96 36.76 42.32 36.50 49.42 39.38 57.00 43.41
4 29.63 28.79 27.46 26.72 26.13 25.50 25.53 24.98 26.80 26.16 28.61 27.93 30.75 30.04 33.88 32.90 38.52 37.87 38.06 38.45 35.73 41.22 38.08 45.86
5 29.30 29.28 27.15 27.16 25.87 25.89 25.27 25.28 26.48 26.49 28.24 28.25 30.36 30.39 33.56 33.58 38.01 38.11 37.61 37.74 36.48 36.61 38.83 38.97
6 28.74 29.23 26.67 27.10 25.43 25.84 24.86 25.24 26.06 26.47 27.81 28.20 29.79 30.43 32.89 33.60 37.19 38.25 37.94 38.22 45.42 37.98 52.07 40.84

Table A.11: Initial LPE market bid/offer prices of retailers in case 2 ($/MWh).

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 30.63 30.67 28.06 28.07 26.38 26.42 25.95 26.02 27.23 27.30 28.75 28.71 29.94 29.86 33.99 33.72 34.99 34.18 35.55 33.28 39.75 38.77 40.37 35.32
2 31.24 31.01 28.55 28.38 26.84 26.67 26.43 26.26 27.74 27.60 29.17 29.14 30.36 30.35 34.31 34.38 34.80 35.41 33.85 36.75 39.53 39.97 36.07 43.51
3 31.19 30.06 28.53 27.57 26.81 25.95 26.39 25.58 27.73 26.84 29.26 28.23 30.50 29.35 34.57 33.12 35.51 33.63 36.22 32.96 40.21 38.17 41.62 35.31
4 31.52 30.24 28.77 27.74 27.03 26.13 26.61 25.79 27.96 27.06 29.47 28.33 30.62 29.63 34.48 33.57 34.98 34.21 34.06 34.17 39.87 38.83 36.27 37.92
5 30.97 31.00 28.35 28.39 26.69 26.75 26.33 26.37 27.64 27.68 29.03 29.08 30.18 30.26 34.03 34.09 34.40 34.44 33.65 33.69 39.11 39.11 35.91 35.98
6 30.26 31.00 27.71 28.40 26.09 26.76 25.72 26.38 27.01 27.70 28.42 29.09 29.57 30.33 33.44 34.22 33.98 34.64 33.28 34.05 38.57 39.35 35.56 36.61

Table A.12: Maximum LPE market bid/offer electricity volume of retailers in case
2 (MWh).

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1002 962 924 929 929 937 959 1000 1062 1128 1183 1241 1286 1316 1325 1332 1325 1296 1260 1226 1196 1145 1068 1005
2 1007 970 945 944 949 959 982 1049 1136 1214 1274 1314 1368 1412 1443 1468 1476 1450 1414 1347 1307 1226 1128 1057
3 1010 973 951 953 971 967 994 1051 1136 1218 1291 1365 1399 1430 1449 1471 1478 1463 1416 1357 1308 1227 1128 1063
4 1013 983 962 963 975 1012 1059 1109 1161 1222 1292 1367 1428 1470 1488 1507 1504 1467 1416 1357 1319 1232 1139 1064
5 1046 1001 978 978 992 1040 1084 1138 1178 1252 1300 1376 1439 1472 1502 1529 1517 1474 1418 1358 1322 1246 1145 1065
6 1074 1028 996 981 1012 1049 1087 1138 1207 1277 1336 1396 1441 1496 1523 1530 1529 1506 1449 1395 1361 1284 1204 1129
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Table A.13: Maximum DAW market bid load of retailers in case 2 (MWh).
Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 20735 19713 18956 18586 18582 18714 19464 20445 21350 22084 22668 23378 24225 25197 26409 27508 28154 27978 26977 26237 25408 23975 22428 20945
2 20764 19930 19306 19030 19027 19221 20328 22015 23826 25478 27038 28578 29760 30612 31288 31627 31690 30970 29928 29154 28280 26167 23929 22117
3 20881 19941 19483 19485 20149 20744 21486 22812 24443 26201 27528 28706 29939 30972 31646 32224 32397 31826 30555 29390 28304 26232 24117 22224
4 21773 20799 20186 20174 20645 21178 22604 23957 25069 26294 28027 29167 30166 31041 31986 32779 33161 32492 31067 29541 28428 26642 24360 22290
5 22442 21586 20957 20597 20750 21864 23409 24698 25765 26959 28247 30049 31744 33082 33690 33693 33333 32643 31872 30364 28811 27002 25310 23251
6 23484 22613 22068 22098 22769 23978 25807 27412 28722 30014 31350 32432 33278 33655 34252 34642 34585 33991 32191 31208 30000 27710 25336 23684

Table A.14: Alpha values of retailers in case 2.

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 242 230 222 216 212 210 215 221 230 240 250 261 269 275 281 284 287 284 281 274 266 260 251 239
2 252 238 231 224 222 222 224 231 239 248 260 270 279 286 290 294 294 292 289 287 278 269 259 251
3 293 284 274 269 264 264 269 276 284 295 304 314 322 329 334 337 340 338 333 330 322 314 305 295
4 307 294 287 279 275 276 279 287 294 307 316 324 335 343 347 349 350 351 346 342 334 326 316 306
5 354 346 335 329 327 323 327 336 343 356 364 373 384 391 397 399 398 400 395 390 383 374 365 355
6 367 355 348 342 337 337 340 349 357 367 376 387 394 402 407 411 412 410 408 401 393 387 377 367

Table A.15: Self-elasticity values of retailers in case 2.

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 128 120 115 111 111 108 114 115 121 126 131 131 136 138 142 140 142 141 140 139 135 134 130 127
2 123 116 111 107 106 107 107 111 116 121 125 129 131 135 138 138 138 137 135 136 132 128 126 124
3 112 107 102 98 95 96 98 102 107 113 116 120 121 126 127 127 128 128 128 126 124 118 114 111
4 108 103 98 92 92 93 94 98 102 108 112 115 118 121 122 124 124 125 124 121 118 114 112 108
5 98 93 88 86 83 84 85 89 92 99 103 105 109 111 112 115 116 114 114 110 109 104 103 99
6 95 89 86 83 77 80 83 85 88 96 98 101 104 108 110 110 112 109 110 108 105 102 99 96

A.1.4 Data in case 3

Table A.16: Initial retail prices of retailers in case 3 ($/MWh).

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 37.88 38.19 40.09 37.17 34.99 37.28 34.05 34.14 33.48 33.64 32.13 32.95 32.13 33.79 30.90 31.77 35.11 36.70 32.63 34.65 35.19 36.34 35.52 35.89
2 39.28 38.80 38.02 37.70 35.47 35.19 36.09 34.68 33.75 33.53 33.71 33.91 33.18 34.19 32.95 34.43 34.29 33.95 34.69 34.79 37.20 38.00 37.89 37.22
3 37.95 37.26 38.46 38.22 34.23 33.98 33.79 36.38 33.84 35.32 33.43 33.72 32.75 33.29 31.79 31.99 35.34 33.89 34.74 34.34 34.11 36.94 33.92 38.20

Table A.17: Initial DAW market bid prices of retailers in case 3 ($/MWh).

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 28.80 29.63 28.97 28.79 26.83 27.46 26.89 26.72 25.61 26.13 25.63 25.50 24.99 25.53 25.05 24.98 26.12 26.80 26.26 26.16 27.82 28.61 27.99 27.93
2 29.45 29.30 29.20 29.28 27.28 27.15 27.15 27.16 25.97 25.87 25.97 25.89 25.37 25.27 25.41 25.28 26.61 26.48 26.61 26.49 28.41 28.24 28.27 28.25
3 29.45 28.74 28.50 29.23 27.34 26.67 26.44 27.10 26.11 25.43 25.21 25.84 25.53 24.86 24.64 25.24 26.75 26.06 25.81 26.47 28.44 27.81 27.54 28.20

Table A.18: Initial LPE market bid/offer prices of retailers in case 3 ($/MWh).

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 30.63 31.52 30.67 30.24 28.06 28.77 28.07 27.74 26.38 27.03 26.42 26.13 25.95 26.61 26.02 25.79 27.23 27.96 27.30 27.06 28.75 29.47 28.71 28.33
2 31.24 30.97 31.01 31.00 28.55 28.35 28.38 28.39 26.84 26.69 26.67 26.75 26.43 26.33 26.26 26.37 27.74 27.64 27.60 27.68 29.17 29.03 29.14 29.08
3 31.19 30.26 30.06 31.00 28.53 27.71 27.57 28.40 26.81 26.09 25.95 26.76 26.39 25.72 25.58 26.38 27.73 27.01 26.84 27.70 29.26 28.42 28.23 29.09
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Table A.19: Maximum LPE market bid/offer electricity volume of retailers in case
3 (MWh).

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 6260 6012 5777 5806 5806 5855 5995 6248 6639 7052 7392 7758 8038 8222 8282 8324 8282 8097 7876 7661 7472 7156 6674 6284
2 6296 6064 5905 5902 5928 5994 6140 6558 7098 7590 7960 8214 8547 8827 9018 9173 9228 9060 8837 8418 8170 7662 7050 6606
3 6314 6080 5946 5959 6072 6042 6215 6568 7102 7614 8070 8534 8744 8937 9056 9193 9239 9141 8848 8480 8174 7668 7052 6642

Table A.20: Maximum DAW market bid load of retailers in case 3 (MWh).
Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 129595 123205 118475 116160 116135 116960 121650 127780 133440 138025 141675 146115 151405 157480 165055 171925 175965 174865 168605 163980 158800 149845 140175 130905
2 129775 124565 120665 118940 118920 120130 127050 137595 148910 159240 168990 178615 186000 191325 195550 197670 198065 193565 187050 182210 176750 163545 149555 138230
3 130505 124630 121770 121780 125930 129650 134285 142575 152770 163755 172050 179415 187120 193575 197790 201400 202480 198915 190970 183690 176900 163950 150730 138900

Table A.21: Alpha values of retailers in case 3.

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 411 399 391 385 381 379 384 390 399 409 419 430 438 444 450 453 456 453 450 443 435 429 420 408
2 503 489 481 474 472 472 474 481 489 498 510 520 530 537 540 544 544 543 539 537 528 519 509 501
3 599 590 580 575 570 569 574 581 590 601 610 619 628 635 640 642 645 644 639 636 627 620 611 600

Table A.22: Self-elasticity values of retailers in case 3.

Retailer Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 123 116 111 107 107 104 110 111 117 122 127 127 131 134 137 136 138 137 136 135 131 130 126 122
2 109 102 98 93 92 93 93 97 102 107 111 115 117 121 124 124 124 123 122 122 118 114 112 110
3 95 90 85 81 78 79 81 85 90 96 99 103 104 109 110 110 111 111 111 109 107 101 97 94
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A p p e n d i x B

APPENDIX FOR CHAPTER 4

B.1 Input data for Chapter 4

Table B.1: Base energy demand for microgrid 1-3.

Microgrid 1 Microgrid 2 Microgrid 3
Time
(h)

Electricity
(MWh)

Natural
gas

(kcf)

Heat
(MBtu)

Electricity
(MWh)

Natural
gas

(kcf)

Heat
(MBtu)

Electricity
(MWh)

Natural
gas

(kcf)

Heat
(MBtu)

1 842.92 387.74 519.30 504.00 210.00 554.40 622.31 311.16 715.66
2 828.44 381.08 531.32 499.20 208.00 549.12 596.93 298.46 686.46
3 820.95 377.64 578.56 504.00 210.00 554.40 580.13 290.06 667.14
4 831.32 382.41 698.73 499.20 208.00 549.12 580.06 290.03 667.07
5 861.44 396.26 972.46 508.80 212.00 559.68 597.68 298.84 687.33
6 924.58 425.31 1176.48 518.40 216.00 570.24 629.41 314.71 723.82
7 939.25 432.06 1137.13 528.00 220.00 580.80 677.44 338.72 779.05
8 981.48 451.48 1091.99 696.00 290.00 765.60 725.28 362.64 834.07
9 956.98 440.21 1032.92 835.20 348.00 918.72 770.57 385.29 886.16
10 937.68 431.33 979.94 936.00 390.00 1029.60 825.62 412.81 949.46
11 935.63 430.39 936.56 998.40 416.00 1098.24 879.69 439.85 1011.64
12 919.00 422.74 911.10 1008.00 420.00 1108.80 928.89 464.45 1068.23
13 916.53 421.60 900.55 1003.20 418.00 1103.52 968.60 484.30 1113.89
14 934.69 429.96 910.40 998.40 416.00 1098.24 998.55 499.28 1148.33
15 961.06 442.09 929.05 1008.00 420.00 1108.80 1018.46 509.23 1171.23
16 1002.37 461.09 968.73 1017.60 424.00 1119.36 1034.82 517.41 1190.04
17 1075.71 494.83 1004.19 1070.40 446.00 1177.44 1038.35 519.17 1194.10
18 1090.57 501.66 1017.83 1027.20 428.00 1129.92 1016.55 508.27 1169.03
19 1074.07 494.07 1016.88 619.20 258.00 681.12 978.60 489.30 1125.39
20 1046.70 481.48 985.27 614.40 256.00 675.84 943.57 471.79 1085.11
21 1011.72 465.39 887.76 590.40 246.00 649.44 900.10 450.05 1035.12
22 968.94 445.71 686.22 489.60 204.00 538.56 831.58 415.79 956.32
23 885.73 407.44 541.79 470.40 196.00 517.44 762.76 381.38 877.18
24 871.34 400.82 578.48 508.80 212.00 559.68 704.32 352.16 809.97
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Table B.2: CHP parameters.

Parameter Value
Gas-to-power conversion rate 0.3
Power-to-heat conversion rate 1

Minimum power output (MW/h) 40
Maximum power output (MW/h) 1200

Ramp-up rate (MW/h) 600
Ramp-down rate (MW/h) 600

Operation & maintenance cost ($/kcf) 15
Start-up & shut-down cost ($) 3.48

Table B.3: Heat pump parameters.

Parameter Value
Power-to-heat conversion rate 0.9

Minimum heat output (MBtu/h) 20
Maximum heat output (MBtu/h) 1200

Ramp-up rate (MBtu/h) 600
Ramp-down rate (MBtu/h) 600

Operation & maintenance cost
($/MBtu)

2

Start-up & shut-down cost ($) 3

118



APPENDIX B.

Table B.4: Maximum power of RES.

Time (h) PV power(MW/h) Wind power (MW/h)
1 0.00 0.00
2 0.00 0.00
3 0.00 0.00
4 0.00 0.00
5 0.00 0.00
6 6.43 0.00
7 35.50 0.00
8 67.44 5.98
9 80.50 41.53
10 114.05 77.96
11 127.20 135.86
12 63.41 165.05
13 47.74 94.61
14 48.03 145.59
15 39.42 71.58
16 34.44 88.22
17 13.96 45.99
18 1.92 41.53
19 0.00 18.38
20 0.00 13.05
21 0.00 2.55
22 0.00 1.55
23 0.00 0.56
24 0.00 0.00

Table B.5: Load shifting program parameters.

Shiftable
load

Total
energy
(MWh)

Min.
power

(MW/h)

Max.
power

(MW/h)

Time
window

(h)

Duration
(h)

Task 1 250 25 150 2-18 5
Task 2 110 5 50 2-20 8
Task 3 180 20 80 5-22 6
Task 4 150 10 60 3-21 12
Task 5 200 15 100 8-22 10

Tasks 1-5 can be assigned to many appliances, such as dishwashers, electric vehicles and water
heaters.
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Table B.6: Wholesale electricity and natural gas prices.

Time (h) Electricity price
($/MWh)

Natural gas price
($/kcf)

1 67.09 16.93
2 66.89 16.60
3 67.64 15.75
4 68.64 16.85
5 69.54 20.54
6 70.16 21.30
7 71.34 22.15
8 71.04 22.60
9 71.41 23.77
10 71.61 23.73
11 71.23 23.93
12 71.17 23.75
13 70.88 20.25
14 71.10 20.25
15 71.52 20.48
16 72.27 24.50
17 72.82 24.65
18 73.15 25.00
19 72.56 24.60
20 71.19 24.43
21 70.42 20.53
22 70.16 17.98
23 69.36 17.88
24 66.92 17.18
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