

University of Essex

Research Repository

Multi-level CEP Rules Automatic Extraction Approach for Air

Quality Detection and Energy Conservation Decision Based on

AI Technologies

Accepted for publication in Applied Energy.

Research Repository link: https://repository.essex.ac.uk/38672/

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers
may not be reflected in this version. For the definitive version of this publication, please refer to the
published source. You are advised to consult the publisher’s version if you wish to cite this paper.

www.essex.ac.uk

https://repository.essex.ac.uk/38672/
https://www.sciencedirect.com/journal/applied-energy/
http://www.essex.ac.uk/

Multi-level CEP Rules Automatic Extraction Approach for Air Quality
Detection and Energy Conservation Decision Based on AI
Technologies
Yuan Liua,b,c, Wangyang Yua,b,c,∗, Xiaojun Zhaid, Beiming Zhanga,b,c, Klaus D. McDonald-Maierd

and Maria Faslid

aKey Laboratory of Intelligent Computing and Service Technology for Folk Song, Ministry of Culture and Tourism, Shaanxi Normal University, No. 620,
West Chang’an Street, Chang’an District, Xi’an, 710119, China
bSchool of Computer Science, Shaanxi Normal University, No. 620, West Chang’an Street, Chang’an District, Xi’an, 710119, China
cAnhui Province Engineering Laboratory for Big Data Analysis and Early Warning Technology of Coal Mine Safety, Anhui University of Science and
Technology, An’hui, 232001, China
d School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, U.K.

A R T I C L E I N F O
Keywords:
Air Pollution Detection
Machine Learning
Early Warning
Energy Conservation
CEP
Petri net

A B S T R A C T
Energy conservation is a fundamental requirement in achieving sustainable development, enhancing
environmental protection and improving economic and social wellbeing by reducing energy consump-
tion. Carbon emissions are a significant manifestation of energy consumption. Real-time monitoring
and forecasting of air quality plays a crucial role in effectively controlling carbon emissions and
improving energy conservation measures. Complex Event Processing (CEP) is a technical framework
for streaming data processing based on predefined rules and is widely used for real-time detection.
Yet as the diversity of data increases, it becomes exceptionally difficult for experts to formulate the
CEP rules. Rule-based algorithms can address this issue to a certain extent. However, the CEP rules
extracted through these methods are obtained from static data and are often simple and independent
of each other. Here, we regard such rules as direct rules, which ignore possible connections between
events that usually imply deeper rules. In contrast, we refer to rules that reflect interconnections
between events and reveal higher-level principles as indirect rules. In this paper, we propose a
methodology fusing interpretable machine learning and decision mining to extract direct and indirect
multi-level CEP rules from air pollution datasets for real-time detection, prediction, and early warning.
First, we utilize the decision tree algorithm to extract direct rules to detect air quality in real-time.
Next, we utilize the process mining algorithm to model the changes in air states and extract the Petri
net model from it that reflects the changes in air quality. Then, we utilize our proposed decision mining
algorithm to extract indirect CEP rules. Indirect rules can help to understand how pollutants in the
air change over time. In addition, they can reveal underlying trends and patterns of air quality change
for prediction and early warning. Finally, we validate the accuracy and effectiveness of our approach
using a real air pollution dataset. This work contributes to the field of air pollution detection and can
help promote the optimization of energy conservation, while it can also support the development of
regulatory strategies.

1. Introduction
Air quality detection, prediction, and early warning play

a key role in managing carbon emissions and promoting
energy conservation [1]. By monitoring air pollutants such
as carbon dioxide and other greenhouse gases, we can iden-
tify major problem areas in energy consumption [2, 3].
This data helps decision-makers and businesses understand
which industrial processes or lifestyles are the most energy-
intensive, optimize energy management, and reduce waste
accordingly. In addition, air quality data can raise public
awareness of the importance of reducing carbon emissions
and energy conservation, and motivate people to adopt more
environmentally friendly behaviors [4]. Government depart-
ments may employ this data to formulate more effective
environmental policies, such as improving energy efficiency

∗Corresponding author.
liu_yuan@snnu.edu.cn (Y. Liu); ywy191@snnu.edu.cn (W. Yu);

xzhai@essex.ac.uk (X. Zhai); mingbeizhang@snnu.edu.cn (B. Zhang);
kdm@essex.ac.uk (K.D. McDonald-Maier); mfasli@essex.ac.uk (M. Fasli)

ORCID(s):

standards, promoting clean energy, and reducing overall
energy consumption. Thus, air quality detection helps to
improve the environment and is an essential way to achieve
energy conservation and sustainable development [5, 6].

The primary cause of air pollution is the large amount
of harmful gases and particulate matter produced by human
activities [7, 8]. Exhaust gases released from industrial pro-
duction contain large quantities of sulfur dioxide, nitrogen
oxides, and volatile organic compounds, and carbon monox-
ide and particulate matter emitted from vehicle exhausts are
also among the major sources of pollution [9, 10]. Fertilizers
and pesticides used in agricultural activities also release
substances that are harmful to air quality [11, 12]. Rapid
urbanization and industrialization have led to an increase
in these sources of pollution, which have become the main
driving force behind the deterioration of air quality [13].
Thus, real-time detection and early warning of these harmful
gases and particles in the air are critical to detecting carbon
emissions, mitigating air pollution, and promoting energy
conservation [14, 15].

Page 1 of 14

Complex Event Processing (CEP) plays a critical role
in real-time air detection [16]. CEP is a highly automated
IoT technology that monitors and analyzes large volumes
of complex, dynamic data streams in real-time according to
domain-specialized predefined CEP rules in order to quickly
identify and respond to specific event patterns [17]. In real-
time air monitoring, a CEP system is able to instantly capture
a large amount of data from various sensors and monitoring
devices, including concentrations of air pollutants such as
sulfur dioxide, nitrogen oxides, volatile organic compounds,
and other relevant information such as meteorological condi-
tions. By processing these data streams in real-time, a CEP
system is able to quickly identify anomalies and potential
pollution events [18].

Yet, there are several issues in CEP systems. For exam-
ple, the formulation of the CEP rules requires detailed and
in-depth domain expertise and CEP rules are still manually
formulated by domain experts [19]. However, in the face of
the large amount of data that is constantly being generated,
it becomes extremely difficult to formulate rules manually.
Manually formulated rules often have many one-sided prob-
lems and suffer from subjectivity problems while there is
also the risk that human experts may miss important rules
which may apply in rare or unusual situations. Therefore,
there is an urgent need for a method that can automatically
generate rules to solve such issues.

With the rapid development of machine learning algo-
rithms, data-driven real-time detection based methods have
been successfully applied. Currently, rule-based classifier
algorithms are one of the methods to automatically gener-
ate the CEP rules [20]. Facing the large amount of data
generated, machine learning classifiers can automatically
generate the CEP rules, which can effectively solve the
problems faced by manual rule formulation. In this paper,
the CEP rules automatically generated by machine learning
algorithms are represented as the direct rules.

However, those machine learning based methods have
limitations. They focus only on the data itself to extract
the appropriate classification rules. As a result, the machine
learning algorithms tend to ignore the changes between
events represented by the data and the rules implicit in the
changes. There may be connections between events, and
these connections usually imply deeper principles. We call
rules that reflect the interconnectedness of events and reveal
higher-level laws indirect rules. In any domain of applica-
tion, it is invaluable to be able to extract high-level principles
as indirect rules by learning from real-time data. In the air
pollution domain, indirect rules hidden in the variability of
the data can help us understand how pollutants change over
time and they can reveal underlying trends and patterns that
provide a basis for early warning, effective prevention, and
control measures.

In this paper, we propose an innovative methodology
combining the decision tree [21] and process mining [22]
algorithms to extract direct and indirect rules of air pollution
to address the challenges of formulating CEP rules and
capturing higher level rules in particular from real data while

also solving the problem of real-time air quality detection
and early warning. The decision tree algorithm extracts
direct rules from air quality data to detect air quality in real-
time. The extracted direct rules as the states of the air quality
are then mapped to the raw data and the raw data is converted
to event log data. Then, the inductive mining algorithm [22]
mines Petri net models that can reflect changes in air quality
status from event log data. Next, we use the decision tree
algorithm to perform decision analysis on each decision
point in the extracted Petri nets to extract high-level indirect
rules in real-time. Indirect rules can help to understand how
pollutants in the air change over time. Moreover, they can
reveal potential trends and patterns in air quality changes. By
accurately grasping the trends in air quality changes, we can
make more precise predictions and implement effective early
warning measures. Finally, the extracted direct and indirect
rules are used as predefined rules for the CEP system to
detect and monitor air quality in real-time.

The main contributions of this paper are as follows.
• A novel approach in combining interpretable machine

learning and process mining algorithms to automat-
ically extract CEP rules addresses the difficulty of
manually formulating CEP rules. This approach also
enables detection and early warning of air quality.

• We utilize the decision tree algorithm in a novel way to
analyze decision points in Petri nets and extract high-
level indirect CEP rules in real-time, which further
improves the accuracy of CEP monitoring and enables
early warning.

• The methodology presented extracts multi-level CEP
rules from air-quality data which has not been studied
before.

The rest of this paper is organized as follows: in Section
2, we introduce the research in relevant areas; in Section 3,
we present the general framework of the proposed method-
ology and related concepts; in Section 4, we illustrate our
experimental process and results; and in Section 5, we con-
clude this paper.

2. Related work
Automatic extraction of CEP rules has been the focus

of previous studies and different scholars have proposed
different methods to automatically extract the CEP rules.

Rule-based classification algorithms are one of the main
methods for automatically extracting the CEP rules. The au-
thors in [23, 24] used rule-based machine learning classifiers
(OneR classifier, PART classifier, Ripper classification) in
different domains to automatically extract the CEP rules.

Algorithms based on unsupervised learning have also
been studied in the field of the CEP rule automatic extrac-
tion. The works presented in [25, 26] both used the K-means
unsupervised learning algorithms to automatically extract
the CEP rules.

Page 2 of 14

In addition, in [27], and our previous study [19], a
framework is proposed to label the data as well as to extract
the rules automatically. First, deep learning algorithms (e.g.,
LSTM, CNN, etc.) are used to process and label the dataset,
followed by the automatic extraction of rules using a rule-
based classifier approach.

The experimental results of the above methods show
that the CEP rules can in principle be learned by rule-based
classifiers.

Automatic extraction of the CEP rules based on intel-
ligent algorithms (Bat Algorithm, Genetic Algorithm, etc.)
has also been increasing in recent years. The authors in [20]
proposed an automatic CEP rule extraction method based
on evolutionary algorithms. The method could extract the
temporal and causal relationships between various events in
streaming data. The work of [28, 29] proposed an automatic
CEP rule extraction method based on the bat algorithm. The
method applies the standard Bat algorithm process to a set
of candidate CEP rules and derives new candidate solutions
via an advanced modification operator. This automatically
generates the CEP rules.

As the work in the literature demonstrates, automatic
extraction of the CEP rules remains very much an open
problem. However, a major disadvantage of the aforemen-
tioned methods is that they only extract the CEP rules from
the perspective of the data itself, and they do not capture
rules implied by data changes. To the best of our knowledge,
no study has yet focused on the extraction of the high-
level CEP rules. Thus, this paper focuses on a novel way
of combining interpretable machine learning and process
mining algorithms for extracting the multi-level CEP rules.
This comprises a novel approach to CEP rule formulation
that has not been presented before. The implementation
details of the method are described in Section 3.

3. Proposed methodology
In this section, we present the details of our proposed

methodology, as well as the related basics.
3.1. The overall design

In this paper, we propose a novel fusion of machine
learning (enhanced decision tree algorithm) and decision
mining as the basis for a real-time multi-level CEP rules
automatic extraction methodology. The machine learning
algorithm automatically extracts direct rules from raw air
quality dataset. Each direct rule represents a state of air
quality. Next, the direct rules are respectively mapped to
the original dataset to generate event log data. Then, the
inductive mining algorithm is applied to mine the Petri nets
model that can reflect the change of air quality state from
the continuously generated event log data. We first search
for the decision points from the real-time updated Petri
net model, and then we perform decision analysis for each
decision point using the decision tree algorithm to extract
the higher-level indirect rules. Finally, we feed the extracted
direct and indirect rules into the CEP engine for real-time

air quality detection. The overall design diagram of our
proposed methodology is shown in Figure 1.

Our proposed methodology can be divided into three
phases. The first phase consists of the automatic extraction
of direct rules and the generation of event log data. The
second phase comprises the extraction of indirect rules using
decision mining. The third phase is the formulation and
use of the CEP rules. Next, we present the implementation
details of these.
3.2. Phase 1: extraction of direct rules and

generation of event log
In this phase, we use the decision tree algorithm to

automatically extract direct rules. Immediately after that, we
map the direct rules to the raw data, transforming it into event
log data.
3.2.1. Extraction of direct rules

The decision tree algorithm is one of the most popular
machine learning algorithms and has been widely used in
data mining, classification, and other fields. The decision
tree is a supervised learning method to classify data based
on inductive rules. The process of decision trees is easy to
understand and has better interpretability compared to black
box models such as deep learning [30, 31]. The decision tree
is a tree-like structure in which each internal node represents
a judgment on an attribute, each branch represents the output
of a judgment result, and finally, each leaf node represents
a classification result. When training a decision tree model,
the information of features and labels of the training data
needs to be fed into the model. Then the model is trained by
minimizing the loss function, and then the optimal single-
branch classification rule is calculated. Finally, the deci-
sion tree is extended from the root node down to the leaf
nodes and different sub-classification rules are continuously
merged in order to get the final classification result. The two
most commonly used classification metrics for decision tree
models are information gain and Gini index. The information
gain is calculated as the information entropy of the dataset
as a whole minus the conditional entropy after splitting ac-
cording to a certain feature. The higher the information gain,
the more a feature can determine the classes of the data. The
Gini index is used to evaluate and measure the probability
that a randomly selected sample in a dataset is misclassified.
A smaller Gini index means that the probability of a selected
sample in the dataset being misclassified is smaller.

First, the reason we use the decision tree algorithm to au-
tomatically extract the direct rules is to use its interpretabil-
ity to extract meaningful direct rules similar to those for-
mulated by experts. These rules can explain the relationship
between the results of the classification and the features. In
other words, different combinations of values of the feature
variables can lead to different classification results. The deci-
sion tree algorithm extracts the corresponding direct rules by
classifying the input data. Then these direct rules are mapped
to the original dataset. If any data satisfies one of the direct

Page 3 of 14

Air Dataset
Enhanced Decision Tree

Phase 1:Direct Rules Generation

Direct Rules Event log

Map

Phase 2:Direct Rules Generation

Inductive

miningPetri Net

Decision mining

Indirect Rules

Direct

Rules

Phase 3: CEP

Rules Generation

Indirect RulesIndirect Rules

Direct Direct

Rules

Phase 3: CEP

Rules Generation

D
e
tec

tio
n

Figure 1: The overall proposed methodology.

rules, the data could be categorized into the corresponding
category, such as 𝑛𝑜𝑟𝑚𝑎𝑙_1, 𝑛𝑜𝑟𝑚𝑎𝑙_2, 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙_1, etc.

To ensure that we can extract highly accurate and in-
terpretable direct rules, we apply an enhancement of the
interpretable machine learning model proposed by [32].
The approach integrated the accuracy of a strong model
(e.g., weak learner integration) with the interpretability of
a simple model. The primary objective of the approach is
to train a powerful teacher model with low interpretability,
and yet achieve high test accuracy on a particular dataset
[33]. The trained model will assign weights to each dataset
observation where those that are effortless to classify will
be assigned higher weights, while the challenging ones
will receive lower weights. Specifically, the weight of each
observation in the dataset depends on the probability that
a trained teacher model assigns it an accurate (true) label.
The teacher model can easily obtain weights for each ob-
servation. We then employ the weighted dataset to train the
student model. The student model is straightforward and
easily understood, with high interpretability on the original
dataset, but limited accuracy. Weighted observations allow
the student model to prioritize the prediction of categories
with true label observations with high weights, meanwhile
ignoring outliers that may lead to lower prediction accuracy.
With this approach, it is possible to ensure that the student
model improves its predictive accuracy while maintaining
its interpretability. The author in [32] uses deep neural
networks as a teacher model to improve the performance
of the decision tree. Logistic classifiers are added to the
intermediate layers of a pre-trained deep neural network
to initiate the process. Each classifier offers predictions
based on the attached layer. The logistic classifiers’ outputs
and true input labels produce a confidence profile curve
with confidence scores. The area under the curve (AUC)
is deployed as a weight function for the original dataset
observations. In this paper, we use Light Gradient Boosting

Machine (Lightgbm) [34] as a teacher model instead of a
deep neural network and utilize the prediction probability of
Lightgbm to assign weights to each observation. Lightgbm
is an efficient gradient-boosting decision tree algorithm that
is particularly good at handling large-scale data. It improves
training speed and efficiency through innovative techniques
such as gradient-based one-sided sampling (GOSS) and mu-
tually exclusive feature bundling (EFB). Compared with the
traditional decision trees, Lightgbm significantly improves
operation speed, reduces memory usage, and supports a
wide range of machine learning tasks, such as classifica-
tion, regression, and ranking, which is suitable for various
high-precision prediction scenarios. The schematic of the
enhanced decision tree model is shown in Figure 2.
3.2.2. Generation of event log

In the previous step, we obtain direct rules that can
categorize the raw data by training on the raw data. These
rules consist of different combinations of values for each
attribute of the data. In fact, each direct rule represents a state
of the data (𝑛𝑜𝑟𝑚𝑎𝑙_1, 𝑛𝑜𝑟𝑚𝑎𝑙_2, 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙_1, etc). In the
case of air quality data, each direct rule represents the state
of the air quality at the corresponding moment.

To generate event log data for air quality changes, we
map direct rules to the original dataset. If any data satisfies
one of the direct rules, the data is categorized into the
appropriate category and added to the "𝑆𝑡𝑎𝑡𝑒" column to
form a new dataset. Next, in the new dataset, we assign the
same "𝑇 𝑟𝑎𝑐𝑒𝐼𝐷" to all the data in the same time interval,
which is required to use the inductive mining algorithm. At
this point, we complete the event log data construction, and
the entire process is automatically performed.
3.3. Phase 2: extraction of indirect rules

In this phase, we first feed the generated event log data to
the process mining algorithm to mine the Petri net model that

Page 4 of 14

Dataset

High Accuracy

Low Interpretability

Low Accuracy

High Interpretability

Teacher ModelStudent Model

e.g. Neural Networke.g. Lightgbm

e.g. Decision Tree

Weighted Dataset

Probability Prediction
High Accuracy

High Interpretability

Enhanced Simple

Model

Figure 2: Training of enhanced simple models

can reflect the data state changes. Next, we perform decision
analysis on each decision point in the Petri net model in
order to mine the indirect rules that can reflect the connection
between data states.

Here the process mining algorithm we used is the in-
ductive mining algorithm. The inductive mining algorithm
occupies an important position in the field of process mining,
it is valued for its powerful data processing capabilities
and wide range of application prospects. Compared to other
process mining algorithms, such as alpha algorithm [35] and
heuristic mining algorithm[36], etc., the unique feature of
the inductive mining algorithm is its ability to handle large-
scale event log data. It can efficiently handle huge amounts
of event log data or interaction events at once, which makes
the inductive mining algorithm exceptionally efficient when
dealing with complex datasets. In addition, the inductive
mining algorithm is designed with the practicality of the
algorithm in mind and is able to mine process models with
high quality and accuracy in a limited time. More impor-
tantly, the algorithm is able to avoid generating anomalies
such as deadlocks during the mining process, ensuring that
the mining process proceeds smoothly. These properties
make the inductive mining algorithm an efficient and reliable
tool in process mining [37]. A detailed description of the
principles of the inductive mining algorithm can be found in
[38].

The diagram of the process of mining the Petri net model
from event log data by the inductive mining algorithm is
shown in Figure 3.

A prototype Petri net model can be obtained by the in-
ductive mining algorithm. The prototype Petri net is defined
as follows.
Definition 1 (The prototype Petri net[39]). Let the four-
tuple Σ = (𝑃 , 𝑇 , 𝐹 ;𝑀) be a prototype Petri net, where

(1) 𝑃 is a finite set of places, denoted by circles;

P1 P2 P3T1

T2

T3

P1 P2 P3T1

T2

T3

Event log

Inductive

mining

Petri net

Figure 3: The process of mining Petri nets.

(2) 𝑇 is a finite set of transitions, denoted by rectangles
or boxes;

(3) 𝑃 ∩ 𝑇 = ∅ and 𝑃 ∪ 𝑇 ≠ ∅;
(4) 𝐹 is a set of directed arcs, denoted by directed arcs,

and 𝐹 = (𝑃 × 𝑇) ∪ (𝑇 × 𝑃);
(5) 𝑀 is a Marking of the net 𝜎 for a mapping: 𝑃 →

{0, 1, 2, 3,⋯}. The initial Marking of the net Σ is denoted by
𝑀0.

The predecessor and posterior sets for each place and
transition in the Petri net are defined as follows. Analyzing
the predecessor and posterior sets is crucial for us to extract
the indirect rules next.
Definition 2. [39] Let Σ = (𝑃 , 𝑇 , 𝐹 ;𝑀) be a prototype
Petri net, ∀ 𝑥 ∈ 𝑃 ∪ 𝑇 , then

(1) The predecessor set of 𝑥 is:

.𝑥 = {𝑦|(𝑦 ∈ 𝑃 ∪ 𝑇) ∩ (𝑦, 𝑥) ∈ 𝐹 }

(2) The posterior set of 𝑥 is:

𝑥. = {𝑦|(𝑦 ∈ 𝑃 ∪ 𝑇) ∩ (𝑥, 𝑦) ∈ 𝐹 }

After obtaining the Petri net model through the inductive
mining algorithm, we need to perform decision analysis for

Page 5 of 14

each decision point in the Petri net to extract indirect rules
automatically. Each decision point is in fact a place. Decision
points are defined as follows.
Definition 3 (The decision point). Let Σ = (𝑃 , 𝑇 , 𝐹 ;𝑀)
be a prototype Petri net, 𝑝 ∈ 𝑃 , 𝑝 is a decision point if |𝑝.|
>1.

In the schematic we have given, 𝑃2 is a decision point
since |𝑃2.| >1.

Next, we analyze each decision point using the decision
tree algorithm, which provides us with the likelihood of each
variation occurring at the decision point for the given fea-
ture. This is the indirect rule that we want to extract. Taking
the schematic diagram we have given as an example, for the
decision point 𝑃2, through the decision tree algorithm, we
can get the respective probabilities of the two transitions 𝑇 2
and 𝑇 3 occurring on the decision point 𝑃2. In fact, we also
get the probability that the occurrence of transition 𝑇 1 leads
to the occurrence of transitions 𝑇 2 and 𝑇 3.

As the event log continues to grow, the decision points
may change at the same time. For example, there will be
an increase in the number of decision branches, while new
decision points may also appear. Thus, we need to continu-
ously update the Petri net model based on the constant input
of event log data and re-search for new decision points to
achieve real-time extraction of CEP rules. Then, we propose
an algorithm that can effectively solve the aforementioned
issue. The specific steps of the algorithm 1 are as follows.

Algorithm 1 illustrates the basic steps for extracting
indirect rules in real-time. First, each piece of data from the
event stream is reformatted. The event stream data is usually
in ".csv" format, and the plug-in converts it to ".xes" format
that can be recognized by process mining algorithms. Next,
the transformed data is added to the original event log data
for re-mining by the process mining algorithms. Through
this step, we achieve real-time updating of the Petri net
model. Here, we regard the data with the same "𝑇 𝑟𝑎𝑐𝑒𝐼𝐷"
as the same batch of data. When the value of "𝑒𝑣𝑒𝑛𝑡" of
the new incoming data is "𝑒𝑛𝑑", it means the end of this
batch of data. At this point, we feed the new batch of data
into the process mining algorithm at the same time as the
previous data to mine the new Petri net model. Next, we need
to determine whether the new generated Petri net is the same
as the original Petri net. The specific comparison process is
shown in Algorithm 2.

Algorithm 2 compares whether the places, transitions,
and arcs of the new Petri net and the original Petri net are
identical, respectively. If the places, transitions, and arcs of
the new Petri net and the original Petri are the same, this
means that the arrival of new data has not caused changes
to the original Petri net. It also represents that the decision
points of the Petri net have not changed, and it is only
necessary to update the information of the decision points
(stored in 𝑑𝑝𝑠_𝑑𝑎𝑡𝑎) and re-mining the rules to update the
indirect rules. If there are differences between the places,
transitions, and arcs of the new Petri net and the original
Petri net, this means that the arrival of new data has changed

Algorithm 1: Real-time extraction of indirect
rules.

Input: The event stream
Output: decision_points; Indirect rules

1 begin
2 while Data in the event stream do
3 new_event_log = pm4py.format_dataframe

(Data)
4 if Data[’Event’] == "end" then
5 newPetriNet = make_inductive_net

(new_event_log)
6 if newPetriNet then
7 decision_points, dps_data =

find_decision_points (newPetriNet)
8 end
9 if decision_points ≠ ∅ then

10 Indirect rules =
mine_decision_rules (dps_data)

11 end
12 else
13 if decision_points ≠ ∅ then
14 for 𝑝 in decision_point do
15 if Data[’Event’] ∈ 𝑝. and

LastData[’Event’] ∈ .𝑝 then
16 dps_data [𝑝].add(Data)
17 end
18 end
19 end
20 end
21 end
22 end

Algorithm 2: Comparison of old and new Petri
nets.

Input: newPetriNet, oldPetrinet
Output: The newPetriNet is 𝑇 𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒.

1 begin
2 if newPetriNet.places ≠ oldPetriNet.places then
3 return False
4 end
5 if newPetriNet.transitions ≠ oldPetriNet.

transitions then
6 return False
7 end
8 if newPetriNet.arcs ≠ oldPetriNet.arcs then
9 return False

10 end
11 return True
12 oldPetriNet = newPetriNet
13 end

Page 6 of 14

the original Petri net. At this point, we need to find the
new decision points of the new Petri net and update the
information of the decision points. The detailed steps for
finding decision points are shown in Algorithm 3.

Algorithm 3: Finding decision points.
Input: newPetriNet
Output: decision_points

1 begin
2 for p in newPetriNet.places do
3 if |𝑝.| >1 then
4 decison_points.add(p)
5 end
6 end
7 end

Algorithm 3 iterates over each of the place of the new
Petri net. When the number of elements in the posterior set
of the iterated place is greater than 1, it means that we find a
decision point. Then we add it to the set of decision points.
After iterating over all the places, all the decision points in
the new Petri net are obtained. Then, we perform a decision
analysis on all decision points to extract the indirect rules
we need. The specific steps for extracting indirect rules are
shown in Algorithm 4.

Algorithm 4: Mining indirect rules.
Input: 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡𝑠, 𝑑𝑝𝑠_𝑑𝑎𝑡𝑎
Output: Indirect Rules.

1 begin
2 for p in the set of decision_points do
3 Indirect rules = tree.DecisionTreeClassifier

(dps_data[p])
4 end
5 end

Algorithm 4 iterates over each decision point in turn and
analyzes each decision point with a decision tree classifica-
tion algorithm to extract the indirect rules.

When the value of "𝑒𝑣𝑒𝑛𝑡" of the new incoming data
is not "𝑒𝑛𝑑", it means not the end of this batch of data.
By this time, we need to continuously update the decision
points information based on the new incoming data (𝐷𝑎𝑡𝑎)
to prepare for the future extraction of indirect rules. Lines
13-17 of Algorithm 1 describe the process in detail. First
we need to determine whether there are decision points.
Then continue to determine, if the "𝑒𝑣𝑒𝑛𝑡" of the current
input event stream 𝐷𝑎𝑡𝑎 belongs to the posterior set of
decision point 𝑝, and the "𝑒𝑣𝑒𝑛𝑡" of the last input event
stream 𝐿𝑎𝑠𝑡𝐷𝑎𝑡𝑎 belongs to the posterior set of decision
point 𝑝. This represents that the input event stream at this
point is a branching transition of decision point 𝑝. Thus,
the information (𝑑𝑝𝑠_𝑑𝑎𝑡𝑎[𝑝]) of decision point 𝑝 can be
updated.

At this point, with the algorithms described above, we
have achieved real-time extraction of indirect rules.

3.4. Phase 3: formulation and use of CEP rules
In the previous phases, we have automatically extracted

direct and indirect rules in real-time by fusing machine
learning and process mining algorithms. In this phase, we
merge the direct and indirect rules extracted in the first two
phases and feed them into the CEP engine at the same time.
Then, in our case study, air quality data are monitored in
real-time according to the merged CEP rules.

4. Case study and experimental results
In this section, we validate the effectiveness of our

proposed method on a real air quality dataset. The air quality
dataset we used is collected by the Pulse of the City EU
FP7 project [40]. The Pulse of the City EU FP7 project
provides not only urban air quality data, but also road traffic
data, social events data and more [41]. The dataset we used
in this paper is the original dataset that we labeled in our
previous work [19]. This dataset is composed of four feature
variables and a label. These four features record the Air
Quality Index (AQI) values of particulate matter (𝑃𝑀),
carbon monoxide (𝐶𝑂), sulfur dioxide (𝑆𝑂2) and ozone
(𝑂3) in the air. The label records whether the current air
quality status is normal or not. The value of label is 1, which
means the air is seriously polluted, and the value of label is
0, which means the air quality is good. This dataset contains
3494 data points, of which 894 data (25.58%) are in a normal
state and 2600 data (74.42%) are in an abnormal state.

More statistical information is presented in Table 1,
which includes the maximum, minimum, mean, and stan-
dard deviation (std) of the air pollution data. These statistical
indicators not only help us to grasp the basic characteristics
of air pollution, but also reveal the distribution and vari-
ability of the data, which provide important references for
subsequent analysis of pollution trends and formulation of
control strategies.

Table 1
Basic information about the dataset.

Maximum Minimum Mean Std

𝑃𝑀 170 15 92.09 34.86
𝐶𝑂 213 16 119.99 40.88
𝑆𝑂2 215 16 99.59 49.37
𝑂3 215 16 140.87 45.95

Next, we validate the methodology we proposed to auto-
matically extract direct and indirect rules in real-time on this
dataset.
4.1. Extraction of direct rules and generation of

event log
In this phase, we adopt the enhanced decision tree

(Lightgbm + decision tree) algorithm to extract direct rules
from the air quality dataset.

We import the data into the Python compiler and train the
data to extract the direct rules using the enhanced decision
tree algorithm. The column 𝐿𝑎𝑏𝑒𝑙 in the data is used as the

Page 7 of 14

target variable for training and all the feature variables are
input variables. Before starting the training data, we divided
the dataset into test set and training set. In this case, the
training set data is 80% and the test set data is 20%.

First, in order to compare the accuracy with the enhanced
decision tree algorithm, we use the decision tree algorithm
from the scikit-learn package [42] on the training set. Fi-
nally, the accuracy of the test set using only the decision tree
algorithm is 94.99%.

Next, we train the Lightgbm model on the training set.
The Lightgbm classifier model we are using is invoked from
the lightgbm.sklearn package. Here we optimize the Light-
gbm model with hyperparameters using the GridSearch
strategy to obtain more accurate direct rules.

We optimize four hyperparameters of Lightgbm with
the GridSearch strategy, which are feature_fraction, learn-
ing_rate, max_depth, and num_leaves. These four hyperpa-
rameters play a crucial role in improving Lightgbm predic-
tion accuracy. Their selection and adjustment can signifi-
cantly affect the performance of the model. The explanation
of these four hyperparameters and the principle of the Light-
gbm adjustment parameter can be found in [34]. The search
ranges for these four hyperparameters are as follows:

• feature_fraction: [0.5, 1.5]
• learning_rate: [0.05,0.2]
• max_depth: [1, 10]
• num_leaves: [9,15]
Then, we obtain the values of these four hyperparameters

that make the Lightgbm model most accurate by using 5-
fold cross-validation. The optimal parameter values are as
follows: (feature_fraction = 0.8 , learning_rate = 0.13 ,
max_depth = 3, num_leaves = 10). After testing, Light-
gbm achieved 97.71% accuracy on the test set. Next, the
Lightgbm model’s predictive probabilities are used to assign
weights to each observation in the air quality dataset. Finally,
we train the decision tree model again on the weighted air
quality dataset. This avoids the problem of difficult classi-
fication of the original data and focuses the prediction on
relatively easy observations, which will contribute to better
generalization performance and higher test accuracy.

We use GridSearch to optimize four hyperparameters,
which are: 1. criterion: used to determine the method of
calculation of impurity, that is, to decide whether to use
Entropy or Gini Impurity; 2. max_depth: Limit the maxi-
mum depth of the tree and prune all branches that exceed the
set depth. This is the most widely used pruning parameter,
which is very effective in high dimension and low sample
size. The decision tree grows one more layer and doubles
the demand for sample size, so limiting the depth of the
tree can effectively limit overfitting; 3. min_samples_split:
restrict a node to contain at least min_samples_split training
samples before the node is allowed to be branched, otherwise
branching will not occur; 4. min_samples_leaf: limit a node
to contain at least min_samples_leaf training samples in each

child node after branching, otherwise branching will not
occur, or branching will occur in the direction of satisfying
min_samples_leaf samples in each child node. The last three
hyperparameters are the pruning strategy of the decision
tree. The pruning strategy has a huge impact on the decision
tree, and the correct pruning strategy is the core of the
optimized decision tree algorithm. The search ranges for
each of these four hyperparameters are as follows [43]:

• criterion: [entropy, gini]
• max_depth: [2, 10]
• min_samples_leaf: [1, 8]
• min_samples_split: [1, 10]
Then, we obtain the values of these four hyperparam-

eters that make the decision tree model most accurate by
using 5-fold cross-validation. The optimal parameter val-
ues are as follows: (criterion = gini , max_depth = 5 ,
min_samples_leaf = 3, min_samples_split = 6).

After the model is trained, we test the trained model
on the test set and use the following metrics to measure
the performance of the enhanced decision tree model: 1.
Precision; 2. Recall; 3. F1-score. The formulas for these
three metrics are as follows [43]:

• 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

• 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

• 𝐹1 = 2 ⋅
𝑝𝑟𝑒𝑐𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

= 2𝑇𝑃
2𝑇𝑃 + 𝑇𝑃 + 𝐹𝑁

Where, 𝑇𝑃 represents true positives, 𝐹𝑃 represents
false positives, 𝑇𝑁 represents true negatives and 𝐹𝑁 rep-
resents false negatives.

The Confusion Matrix and ROC of the enhanced deci-
sion tree model are shown in Figure 4.

0 1
Predicted labels

0
1

Tr
ue
 la
be
ls

1.7e+02 13

11 5e+02

The co fusio matrix

100

200

300

400

500

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

The ROC

AUC: 0.95

Figure 4: The Confusion Matrix and ROC.

According to Figure 4, we can see that the AUC of
the decision tree model reaches 0.95 and according to the
confusion matrix, we calculate the above three metrics, and
the results are shown in Table 2.

Finally, after our testing, the enhanced decision tree al-
gorithm achieved an average accuracy of 97.49%, an average

Page 8 of 14

Table 2
Performance Metrics: Precision, Recall and F1.

Precision Recall F1-score

0 (Normal) 0.94 0.93 0.93
1 (Abnormal) 0.98 0.98 0.98

Recall value of 95%, and an average F1-score of 96% on the
test set. The performance of the enhanced decision tree is
already close to that of the Lightgbm.

At the same time, we also performed experiment to
compare with the rule-based CEP rule extraction approaches
OneR, Decision Table, and JRIP [23, 24]. The results of the
comparison are shown in Table 3.

Table 3
Comparison of experimental results of five methods.

Methods Class Precision Recall F1-score

Decision Table 0 0.594 0.634 0.613
1 0.871 0.851 0.861

Average 0.800 0.795 0.798
JRIP 0 0.603 0.705 0.667

1 0.815 0.909 0.860
Average 0.761 0.779 0.763

OneR 0 0.609 0.640 0.624
1 0.874 0.859 0.866

Average 0.806 0.803 0.804
Decision Tree 0 0.860 0.960 0.910

1 0.980 0.950 0.970
Average 0.949 0.950 0.940

Ours 0 0.940 0.930 0.930
1 0.978 0.98 0.98

Average 0.975 0.970 0.970

In order to compare the experimental results of these
algorithms more intuitively, we graphically show the average
scores of these algorithms in the three evaluation metrics
mentioned above, as shown in Figure 5.

Figure 5: Comparison of experimental results.

Comparative experimental results show that the en-
hanced decision tree model has the highest stability and
accuracy in classifying normal and abnormal data.

The direct rules extracted using the enhanced decision
tree model exhibit a tree-like structure, as shown in Figure
6.

SO2 135.5
gini = 0.368

samples = 2795
value = [679, 2116]

class = 1

O3 150.5
gini = 0.5

samples = 1323
value = [654, 669]

class = 1

True

SO2 150.5
gini = 0.033

samples = 1472
value = [25, 1447]

class = 1

False

CO 152.0
gini = 0.31

samples = 809
value = [654, 155]

class = 0

gini = 0.0
samples = 514
value = [0, 514]

class = 1

gini = 0.0
samples = 654
value = [654, 0]

class = 0

gini = 0.0
samples = 155
value = [0, 155]

class = 1

CO 95.0
gini = 0.292

samples = 141
value = [25, 116]

class = 1

gini = 0.0
samples = 1331
value = [0, 1331]

class = 1

PM2.5 147.5
gini = 0.5

samples = 36
value = [18, 18]

class = 0

CO 150.0
gini = 0.124

samples = 105
value = [7, 98]

class = 1

O3 130.0
gini = 0.298

samples = 22
value = [18, 4]

class = 0

gini = 0.0
samples = 14
value = [0, 14]

class = 1

gini = 0.0
samples = 18
value = [18, 0]

class = 0

gini = 0.0
samples = 4
value = [0, 4]

class = 1

O3 150.5
gini = 0.307

samples = 37
value = [7, 30]

class = 1

gini = 0.0
samples = 68
value = [0, 68]

class = 1

gini = 0.0
samples = 7
value = [7, 0]

class = 0

gini = 0.0
samples = 30
value = [0, 30]

class = 1

Figure 6: Part of the direct rules.

With the enhanced decision tree algorithm, we extracted
10 direct rules. Each direct rule represents a state of air
quality. Table 4 gives the composition of some of the direct
rules and the state of air quality they represent.

Table 4
Sample of direct rules automatically extracted.

Direct Rules Rules

𝑃1 𝑆𝑂2 ≤ 135.5 And Normal
𝑂3 ≤ 150.5 And
𝐶𝑂 ≤ 152

𝑃2 𝑆𝑂2 ≤ 135.5 And Abnormal
𝑂3 ≤ 150.5 And
𝐶𝑂 >152

𝑃6 𝑆𝑂2 >135.5 And Abnormal
𝑆𝑂2 ≤ 150.5 And
𝑃𝑀 >147.5 And
𝐶𝑂 ≤ 95.0

Next, we construct event log data from the data in the
original air pollution dataset. First we map the transformed
direct rules to the original air quality data, and each data will
be assigned to a direct rule. Then, we add the state of each
piece of data to the "𝑆𝑡𝑎𝑡𝑒" column. We then assign the same
𝑇 𝑟𝑎𝑐𝑒𝐼𝐷 to the data for the same time interval and keep the
"𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒" column, all the feature columns, and the "𝑆𝑡𝑎𝑡𝑒"
column. In this way, we have constructed the event log data
of air quality status.

Page 9 of 14

4.2. Extraction of indirect rules
After constructing the event log data of air quality data,

next, we feed it to our proposed algorithm for real-time
extraction of indirect rules.

According to Algorithm 1, the format of the continu-
ously fed event log data is first transformed into the data
format that can be fed into the process mining algorithm.
Then, the inductive mining algorithm is used to continuously
mine the Petri net model that can reflect the change of
air quality status from the input event log data. Here, the
inductive mining algorithm we use is invoked from the
pm4py 1 package.

Next, the indirect rules are updated by continuously
updating the decision points and the information at each
decision point based on the changing Petri net model that
can be continuously updated.

As the event log data continues to be fed in, the mined
Petri net model changes as follows.

P0 P10 end.
p0 p1 p2 pEnd

Figure 7: The mined Petri net-1.

Each transition in the Petri net model obtained by the
inductive mining algorithm represents an air quality state.
The Petri net, illustrated in Figure 7, has not yet included the
decision points. This represents that the air quality state has
not changed over a period of time.

Continuing to feed the event log data in, the decision
point occurs when the 𝑇 𝑟𝑎𝑐𝑒𝐼𝐷 is 8. The Petri net model
at this point is shown in Figure 8.

P0

P10

end

p0 p1
p2

pEnd
P5P8

p3

.

Figure 8: The mined Petri net-2.

At this point, our algorithm can find the decision point
𝑝1. Next, we continue to input the event log data to contin-
uously mine the new Petri nets, and in this way, we can find
new decision points and update the information of the new
decision points. Finally, when all the event log data inputs
are completed, the Petri net model we obtained is shown in
Figure 9. In the final Petri net, the black transition is a silent
transition that has no real meaning but ensures that the Petri
net operates properly.

While continuously updating the Petri net model, we
calculate its fitness and precision scores at the same time.
Fitness measures the percentage of event log cases that
are consistent with the model discovered, and precision

1https://pm4py.fit.fraunhofer.de/

P0

P10

end

p0 p1 p2

P5

P8

p3

p4

P6

pEndpEnd

P1

P4

p5

P3

P9

P2

P7

p6

.

Figure 9: The mined Petri net-3.

measures how accurate the model is at not accounting for
additional behavior that is not present in the event log.
The algorithms for measuring fitness and precision are fit-
ness_alignments() and precision_token_based_replay(),
respectively, both from the pm4py package.

The changes in the scores of the mined Petri net models
for these two metrics are shown in Figure 10 .

Figure 10: The fitness and precision of the mined Petri net
model.

With the continuous input of event log data, the fitness
and precision of the mined Petri net model are both 1, and
there is no change. This indicates that our mined Petri net
model is accurate and can reflect the change of air quality
status effectively. This is crucial for us to find the decision
points and mine out the indirect rules.

Next, we continue to use our algorithm to find decision
points from the continuously updated Petri net model and
calculate the prediction accuracy for each decision point.

In the end, we obtain five decision points, which are
𝑝1, 𝑝3, 𝑝4, 𝑝5, 𝑝6. Taking decision points 𝑝3 and 𝑝6 as an
example, the change in prediction accuracy of the decision
tree algorithm at these two decision points with the input of
the event log is shown in Figures 11 and 12 .

Finally, the decision tree algorithm has a prediction
accuracy of 94.73% at decision point 𝑝3 and 100% at the
remaining decision points.

Next, after finding the decision points through our al-
gorithm and continuously testing the prediction accuracy of
the decision tree at each decision point, we also utilize our
proposed algorithm to mine indirect rules from the decision
points. Some of the indirect rules that we mined with our
algorithm are as follows.

Page 10 of 14

Figure 11: The decision point 𝑝3.

Figure 12: The decision point p6.

When the AQI value of 𝑂3 is greater than 182.5, the air
quality of "𝑃8" will be changed to "𝑃5". Both "𝑃8" and
"𝑃5" air quality are in an abnormal state. According to the
AQI value, the AQI value of 𝑂3 is greater than 182.5, which
means that the air is severely polluted and will worsen the
quality of the air. According to our algorithm, we also obtain
that the predicted probability of "𝑃8" developing into "𝑃5"
is 1 when the AQI value of 𝑂3 is greater than 182.5. The
discovery of this information is crucial for early warning.

Similarly, when the AQI value of 𝐶𝑂 is greater than
152, the air quality of "𝑃9" will change to "𝑃2". The air
quality of both "𝑃9" and "𝑃2" is abnormal. According to
the AQI value, the AQI value of "𝐶𝑂" is greater than 152,
indicating that the air is severely polluted and the air quality
will deteriorate. According to our algorithm, when the AQI
value of 𝐶𝑂 is greater than 152, we also derive a predicted
probability of 1 for "𝑃 9" to develop into "𝑃 2".

Thus, we organize the information extracted into indirect
rules in the following format, as shown in Table 5.

Table 5
Sample of indirect rules mined automatically.

Direct Rules Rules Probability

𝑃8 → 𝑃5 𝑂3 >182.5 1.0
𝑃9 → 𝑃2 𝐶𝑂 >152 1.0

4.3. Formulation and use of CEP rules
In the previous two phases, we have extracted the direct

and indirect rules of the air pollution dataset, respectively.
Next, we merge the direct and indirect rules as predefined
CEP rules. Then they are fed into the CEP engine for real-
time air quality detection. The CEP engine we are using is

Flink CEP 2 which is a big data technology based on stream-
ing relationships. Flink CEP rules are SQL-like statements
that can specify the conditions of event attributes through
pattern.where(), pattern.or() or pattern.until() methods.

Before utilizing direct and indirect rules to detect air
quality data, we transform direct and indirect rules into CEP
rules that can be recognized by the CEP engine, respectively.
The transformed direct and indirect rules are shown in Table
6, Table 7 respectively.

Table 6
Part of CEP direct rules.

Direct rules Direct CEP rules

𝑃1 Pattern1 = Pattern.begin[Input]("begin")
.where(𝑆𝑂2 ≤ 135.5)
.where(𝑂3 ≤ 150.5)
.where(𝐶𝑂 ≤ 152.0)

𝑃2 Pattern2 = Pattern.begin[Input]("begin")
.where(𝑆𝑂2 ≤ 135.5)
.where(𝑂3 ≤ 150.5)
.where(𝐶𝑂 > 152.0)

Next, we examine the air pollution dataset with the direct
CEP rules as well as the merged rules that fuse the direct
CEP rules and the indirect CEP rules, respectively. The
comparison of the correct rate of detection and recognition
between the two is shown in Figure 13.

Observing Figure 13, we can ascertain that as the data
continues to be input, the identification accuracies of air
quality detection using only direct rules as well as fusing
direct and indirect rules are increasing for both methods.
But the identification accuracy of this approach, which fuses

2https://flink.apache.org/

Page 11 of 14

Table 7
Part of indirect CEP rules.

Indirect CEP rules Probability
rules

𝑃8 (Abnormal) Indrect1 = Pattern. 1.0
↕ begin[Input]("begin")

𝑃5 (Abnormal) .where(𝑆𝑂2 ≤ 150.5)
.where(𝐶𝑂 ≤ 152.0)
.where(𝑃𝑀 ≤ 147.5)
.where(𝑂3 > 130)
.next("end")
.where(𝑆𝑂2 ≤ 150.5)
.where(𝐶𝑂 ≤ 150.0)
.where(𝑂3 > 150.5)

Figure 13: The comparison of Direct Rules and Direct rules +
Indirect Rules

direct and indirect rules, is greater than the identification
accuracy of using only direct rules. In the end, the identi-
fication accuracy using only direct rules is 97.5%, while the
identification accuracy of fusing direct and indirect rules is
99.4%. The results of our experiments demonstrate that it
is valuable to extract both direct and indirect rules and use
them together to improve the accuracy of event detection.

Finally, in the CEP engine, the anomaly data filtered
according to our extracted rules is shown in Figure 14.

Figure 14: Anomaly data filtered by the CEP engine.

5. Conclusions
Air quality detection is not only an important part of

environmental monitoring, it is also a key and indispensable
part of measures to promote sustainable development, car-
bon emission reduction and energy conservation. Through
accurate air quality detection, we can understand the types

and concentrations of pollutants promptly, to formulate more
effective pollution control strategies and emission reduction
measures. This not only helps to improve air quality and
protect public health, but also promotes the rational use and
conservation of energy, reduces reliance on fossil fuels, and
in turn reduces greenhouse gas emissions. This paper pro-
poses a methodology that fuses machine learning and pro-
cess mining to automatically extract the direct and indirect
multi-level CEP rules from air quality datasets to detect air
quality in real-time. The approach focuses on both the data
itself and the rules implied by data changes. Our approach
provides a novel idea for the automatic extraction of CEP
rules. We apply our proposed approach to the field of air
quality testing and validate the effectiveness of our approach
on a real air quality dataset. The experimental results show
that the multi-level CEP rules extracted by our approach
achieve the highest detection accuracy in comparison with
other CEP automatic extraction approaches. In addition, the
CEP rules extracted by our approach not only help to identify
pollution events but also, due to their interpretability, enable
decision-makers to understand where the problems lie and
where interventions are needed. It is significant in reducing
carbon emissions and energy conservation.

In most cases, the data collected by sensors are usually
unlabeled and their data volume is huge. Thus, in our future
work, we plan to adopt a time series-based clustering ap-
proach, e.g., using advanced techniques such as transformer
models, to effectively cluster these unlabeled data. With this
approach, we expect to be able to extract valuable CEP rules
from these large-scale datasets.

Declaration of competing interest
The authors declare that they have no known competing

financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability
Data will be made available on request.

Acknowledgement
This work was supported in part by the Open Research

Fund of Anhui Province Engineering Laboratory for Big
Data Analysis and Early Warning Technology of Coal Mine
Safety, China, under Grant No. CSBD2022-ZD05; in part by
the Fundamental Research Funds for the Central Universities
under Grant No. GK202205039; and in part by the Natural
Science Foundation of Shaanxi Province under Grant No.
2021JM-205; in part by the Open Research Fund of Key
Laboratory of Embedded System and Service Computing
(Tongji University), Ministry of Education, China under
Grant ESSCKF2023-02.

References
[1] L. Du, W. Lin, J. Du, M. Jin, M. Fan, Can vertical environmental

regulation induce enterprise green innovation? a new perspective

Page 12 of 14

from automatic air quality monitoring station in china, Journal of
Environmental Management 317 (2022) 115349.

[2] L. Yu, X. Guo, C. Qin, L. Yang, W. Lu, R. Niu, K. Yuan, Q. Xue,
Integrating synergistic control of pollutants and carbon dioxide into
“three lines and one permit” in china, Environmental Impact Assess-
ment Review 97 (2022) 106908.

[3] K. Yan, X. Chen, X. Zhou, Z. Yan, J. Ma, Physical model in-
formed fault detection and diagnosis of air handling units based on
transformer generative adversarial network, IEEE Transactions on
Industrial Informatics 19 (2) (2022) 2192–2199.

[4] S. Zeng, A. Tanveer, X. Fu, Y. Gu, M. Irfan, Modeling the influence
of critical factors on the adoption of green energy technologies,
Renewable and Sustainable Energy Reviews 168 (2022) 112817.

[5] S. Afshan, I. Ozturk, T. Yaqoob, Facilitating renewable energy tran-
sition, ecological innovations and stringent environmental policies
to improve ecological sustainability: evidence from mm-qr method,
Renewable Energy 196 (2022) 151–160.

[6] J. Panneerselvam, L. Liu, N. Antonopoulos, Y. Bo, Workload analysis
for the scope of user demand prediction model evaluations in cloud
environments, in: 2014 IEEE/ACM 7th International Conference on
Utility and Cloud Computing, IEEE, 2014, pp. 883–889.

[7] C.-C. Lin, C.-C. Chiu, P.-Y. Lee, K.-J. Chen, C.-X. He, S.-K. Hsu,
K.-C. Cheng, The adverse effects of air pollution on the eye: a review,
International Journal of Environmental Research and Public Health
19 (3) (2022) 1186.

[8] B. Alahmad, H. Khraishah, K. Althalji, W. Borchert, F. Al-Mulla,
P. Koutrakis, Connections between air pollution, climate change, and
cardiovascular health, Canadian Journal of Cardiology (2023).

[9] Y. Guo, L. Zhu, X. Wang, X. Qiu, W. Qian, L. Wang, Assessing
environmental impact of nox and so2 emissions in textiles production
with chemical footprint, Science of The Total Environment 831
(2022) 154961.

[10] J. Zhou, X. Bai, J. Tian, Study on the impact of electric power and
thermal power industry of beijing–tianjin–hebei region on industrial
sulfur dioxide emissions—from the perspective of green technology
innovation, Energy Reports 8 (2022) 837–849.

[11] N. Boregowda, S. C. Jogigowda, G. Bhavya, C. R. Sunilkumar,
N. Geetha, S. S. Udikeri, S. Chowdappa, M. Govarthanan, S. Jogaiah,
Recent advances in nanoremediation: Carving sustainable solution
to clean-up polluted agriculture soils, Environmental Pollution 297
(2022) 118728.

[12] W. S. Darwish, L. A. Thompson, Soil, water, and air: potential con-
tributions of inorganic and organic chemicals, in: Present Knowledge
in Food Safety, Elsevier, 2023, pp. 26–43.

[13] X. Zhang, L. Han, H. Wei, X. Tan, W. Zhou, W. Li, Y. Qian, Linking
urbanization and air quality together: A review and a perspective
on the future sustainable urban development, Journal of Cleaner
Production 346 (2022) 130988.

[14] V. Shakhov, A. Materukhin, O. Sokolova, I. Koo, Optimizing urban
air pollution detection systems, Sensors 22 (13) (2022) 4767.

[15] K. Yan, X. Zhou, J. Chen, Collaborative deep learning framework on
iot data with bidirectional nlstm neural networks for energy consump-
tion forecasting, Journal of Parallel and Distributed Computing 163
(2022) 248–255.

[16] E. Brazález, H. Macià, G. Díaz, M. Baeza_Romero, E. Valero,
V. Valero, Fume: An air quality decision support system for cities
based on cep technology and fuzzy logic, Applied Soft Computing
129 (2022) 109536.

[17] W. Yu, Z. Ma, X. Zhai, Y. Zhou, W. Zhou, Y. Liu, Modeling and
analyzing user behavior risks in online shopping processes based on
data-driven and petri-net methods, Computing and Informatics 42 (2)
(2023) 501–524.

[18] J. Rosa Bilbao, J. Boubeta Puig, et al., Mode driven engineering for
complex event processing: A survey (2022).

[19] Y. Liu, W. Yu, C. Gao, M. Chen, An auto-extraction framework for
cep rules based on the two-layer lstm attention mechanism: A case
study on city air pollution forecasting, Energies 15 (16) (2022) 5892.

[20] J. Lv, B. Yu, H. Sun, Cep rule extraction framework based on
evolutionary algorithm, in: 2022 11th International Conference of
Information and Communication Technology (ICTech)), IEEE, 2022,
pp. 245–249.

[21] A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, S. D. Brown, An
introduction to decision tree modeling, Journal of Chemometrics: A
Journal of the Chemometrics Society 18 (6) (2004) 275–285.

[22] W. Van Der Aalst, Process mining: Overview and opportunities, ACM
Transactions on Management Information Systems (TMIS) 3 (2)
(2012) 1–17.

[23] N. Mehdiyev, J. Krumeich, D. Enke, D. Werth, P. Loos, Determination
of rule patterns in complex event processing using machine learning
techniques, Procedia Computer Science 61 (2015) 395–401.

[24] M. M. Naseri, S. Tabibian, E. Homayounvala, Intelligent rule ex-
traction in complex event processing platform for health monitoring
systems, in: 2021 11th International Conference on Computer Engi-
neering and Knowledge (ICCKE), IEEE, 2021, pp. 163–168.

[25] E. Petersen, M. A. To, S. Maag, T. Yamga, An unsupervised rule
generation approach for online complex event processing, in: 2018
IEEE 17th International Symposium on Network Computing and
Applications (NCA), IEEE, 2018, pp. 1–8.

[26] M. U. Şimşek, S. Özdemir, Cep rule extraction from unlabeled data in
iot, in: 2018 3rd International Conference on Computer Science and
Engineering (UBMK), IEEE, 2018, pp. 429–433.

[27] M. U. Simsek, F. Yildirim Okay, S. Ozdemir, A deep learning-
based cep rule extraction framework for iot data, The Journal of
Supercomputing 77 (2021) 8563–8592.

[28] R. Bruns, J. Dunkel, N. Offel, Learning of complex event processing
rules with genetic programming, Expert Systems with Applications
129 (2019) 186–199.

[29] R. Bruns, J. Dunkel, Bat4cep: a bat algorithm for mining of complex
event processing rules, Applied intelligence 52 (13) (2022) 15143–
15163.

[30] S. B. Kotsiantis, Decision trees: a recent overview, Artificial Intelli-
gence Review 39 (2013) 261–283.

[31] K. Yan, X. Zhou, Chiller faults detection and diagnosis with sensor
network and adaptive 1d cnn, Digital Communications and Networks
8 (4) (2022) 531–539.

[32] A. Dhurandhar, K. Shanmugam, R. Luss, P. A. Olsen, Improving sim-
ple models with confidence profiles, Advances in Neural Information
Processing Systems 31 (2018).

[33] M. Lee, J. Jeon, H. Lee, Explainable ai for domain experts: a post hoc
analysis of deep learning for defect classification of tft–lcd panels,
Journal of Intelligent Manufacturing (2021) 1–13.

[34] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-
Y. Liu, Lightgbm: A highly efficient gradient boosting decision tree,
Advances in neural information processing systems 30 (2017).

[35] W. Van der Aalst, T. Weijters, L. Maruster, Workflow mining: Discov-
ering process models from event logs, IEEE transactions on knowl-
edge and data engineering 16 (9) (2004) 1128–1142.

[36] A. Weijters, J. T. S. Ribeiro, Flexible heuristics miner (fhm), in:
2011 IEEE symposium on computational intelligence and data mining
(CIDM), IEEE, 2011, pp. 310–317.

[37] S. J. Leemans, D. Fahland, W. M. Van Der Aalst, Discovering block-
structured process models from event logs-a constructive approach,
in: Application and Theory of Petri Nets and Concurrency: 34th
International Conference, PETRI NETS 2013, Milan, Italy, June 24-
28, 2013. Proceedings 34, Springer, 2013, pp. 311–329.

[38] J. Rudnitckaia, Process mining. data science in action, University of
Technology, Faculty of Information Technology (2016) 1–11.

[39] W. Zhehui, Introduction to petri nets, Beijing, Press of Machinery and
Industry (2006) 15–21.

[40] T. Consortium, et al., Citypulse annual report, The CityPulse Consor-
tium (2016).

[41] M. I. Ali, F. Gao, A. Mileo, Citybench: A configurable benchmark
to evaluate rsp engines using smart city datasets, in: International
semantic web conference, Springer, 2015, pp. 374–389.

Page 13 of 14

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,
Scikit-learn: Machine learning in python, the Journal of machine
Learning research 12 (2011) 2825–2830.

[43] I. H. Witten, E. Frank, A. Mark, Hall, and christopher j pal. data
mining: Practical machine learning tools and techniques (2016).

Page 14 of 14

	cover.pdf
	Research Repository

	APEN(1).pdf
	Introduction
	Related work
	Proposed methodology
	The overall design
	Phase 1: extraction of direct rules and generation of event log
	Extraction of direct rules
	Generation of event log

	Phase 2: extraction of indirect rules
	Phase 3: formulation and use of CEP rules

	Case study and experimental results
	Extraction of direct rules and generation of event log
	Extraction of indirect rules
	Formulation and use of CEP rules

	Conclusions

