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Strong digraph groups

Mehmet Sefa Cihan and Gerald Williams

Abstract. A digraph group is a group defined by non-empty presentation with the property that each
relator is of the form R(x , y), where x and y are distinct generators and R(⋅, ⋅) is determined by
some fixed cyclically reduced word R(a, b) that involves both a and b. Associated with each such
presentation is a digraph whose vertices correspond to the generators and whose arcs correspond to
the relators. In this article, we consider digraph groups for strong digraphs that are digon-free and
triangle-free. We classify when the digraph group is finite and show that in these cases it is cyclic,
giving its order. We apply this result to the Cayley digraph of the generalized quaternion group, to
circulant digraphs, and to Cartesian and direct products of strong digraphs.

1 Introduction

Given a finite digraph � with vertex set V(�) and arc set A(�) (without loops or
parallel arcs) and an element R(a, b) in the free group of rank 2 generated by a and
b, the digraph group G�(R) is the group defined by the presentation

P�(R) = ⟨xv (v ∈ V(�)) ∣ R(xu , xv) ([u, v] ∈ A(�))⟩.
These groups were introduced in [7] and contain the graph groups or right angled
Artin groups as special cases (by setting R(a, b) = aba−1b−1). Formal definitions of
undefined terms of the introduction are given in Section 2.

Digraph groups with balanced presentations (i.e., digraph groups corresponding
to digraphs with an equal number of vertices and arcs) were considered in [7] and
digraph groups corresponding to digraphs with one more arc than vertices were
considered in [5]. Two families of finite, noncyclic, digraph groups were obtained in
[6, Corollaries A2 and B2]. In this article, we consider digraph groups G�(R) where
� is a strong digraph that is digon-free and triangle-free. We state our results in terms
of the period of the digraph (that is, the greatest common divisor of the lengths of its
cycles), the one-relator group K = ⟨a, b ∣ R(a, b)⟩, and integers α, β, which denote the
exponent sums of a and of b−1 in R(a, b), respectively.

In this context, [17, Theorem 3] concerns digraph groups G�(R)where � is a cycle
of length at least 4, and can be expressed as follows:

Theorem 1.1 [17] Let � be a cycle of length n ≥ 4 and let R(a, b) be a cyclically
reduced word that involves both a and b with exponent sums α and β in a and b−1,
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2 M. S. Cihan and G. Williams

respectively, and let K = ⟨a, b ∣ R(a, b)⟩. Then G�(R) is finite if and only if α ≠ 0, β ≠ 0,
gcd{α, β} = 1, αn ≠ βn , aα = bβ in K, in which case G�(R) is cyclic of order ∣αn − βn ∣.

When � is a cycle, the digraph group G�(R) is an example of a cyclically presented
group [12, Chapter III, Section 9]. As observed in [17], Theorem 1.1 cannot be directly
extended to the cases n = 2 and n = 3, that is, to the cases where � is neither digon-
free nor triangle-free. Examples that demonstrate this include the Macdonald groups
Mac(a, a) which, for a ∈ Z, a ≠ 0, 1, 2, are finite of rank 2 [13, 16]; the Fox groups
⟨x , y ∣ x yn = y l x , yxn = x l y⟩ which are finite of rank 2 if (n, l) = 1, n ≠ l [4]; the
Mennicke groups M(q, q, q), which are finite of rank 3 for each q ≥ 3 [15]; and the
Johnson groups J(q, q, q)which are finite of rank 3 for each even q ≥ 2 [11], [12, p. 70].
A strong digraph is one in which there is a path joining every pair of vertices, and so
the cycle of length n is a strong digraph of period n. In this article, we generalize
Theorem 1.1 by replacing the cycle of length at least 4 by a nontrivial, strong digraph
that is digon-free and triangle-free. Our main result is the following:

Theorem 1.2 Let � be a nontrivial, strong digraph of period p that is digon-free and
triangle-free and let R(a, b) be a cyclically reduced word that involves both a and b and
which has exponent sums α, β in a and b−1, respectively, and let K = ⟨a, b ∣ R(a, b)⟩.
Then G�(R) is finite if and only if α ≠ 0, β ≠ 0, gcd{α, β} = 1, α p ≠ βp , aα = bβ in K,
in which case G�(R) is cyclic of order ∣α p − βp ∣.

In Section 5, we apply this to the Cayley digraph of the generalized quaternion
group, to circulant digraphs, and to Cartesian and direct products of strong digraphs.

2 Preliminaries

A digraph (or directed graph) � consists of a finite set V(�) of vertices and a set A(�)
of arcs, which are ordered pairs [u, v] of distinct vertices (as such, � does not contain
parallel arcs or loops); it is nontrivial if it has at least two vertices. The underlying graph
of � is the graph with vertex set V(�) and edge set E(�) consisting of all unordered
pairs {u, v} (edges), where [u, v] ∈ A(�). A digon is a subdigraph of � consisting of
vertices u, v ∈ V(�) and arcs [u, v], [v , u] ∈ A(�). A triangle is a subdigraph of �

consisting of vertices u, v , w ∈ V(�) and either arcs [u, v], [v , w], [w , u] ∈ A(�) or
arcs [u, v], [v , w], [u, w] ∈ A(�). A digraph is said to be digon-free (resp. triangle-free)
if it contains no digons (resp. triangles). A tournament is a digraph � in which exactly
one of [u, v], [v , u] ∈ A(�) for each pair of vertices u, v ∈ V(�). A walk (of length
n − 1) in a digraph � is a collection of vertices v1 , v2 , . . . , vn such that [v i , v i+1] ∈ A(�)
for each 1 ≤ i < n; it is closed if vn = v1. We denote such a walk v1 → v2 →⋯→ vn . A
path is a walk in which the vertices are distinct. A cycle (of length n) is a collection
of distinct vertices v1 , v2 , . . . , vn such that [v i , v i+1] ∈ A(�) for each 1 ≤ i < n and
[vn , v1] ∈ A(�). The period p(�) of a digraph � is the greatest common divisor of the
lengths of its cycles, and so p(�) is equal to the greatest common divisor of the lengths
of its closed walks. A digraph � is strong (or strongly connected) if for each u, v ∈ V(�)
there is a path from u to v (and hence, also a path from v to u); it follows that every
vertex of a nontrivial, strong digraph is contained in some cycle [9, p. 64]. A weak
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Strong digraph groups 3

component (or weakly connected component) of a digraph � is a maximal subdigraph
of � whose underlying graph is connected. A digraph is weak (or weakly connected)
if it has exactly one weak component. A digraph � is bipartite if there is a vertex
partition V(�) = V1 ⊍ V2 such that if [u, v] ∈ A(�) then either u ∈ V1 and v ∈ V2 or
u ∈ V2 and v ∈ V1. A strong digraph is bipartite if and only if it has no odd length
cycles [9, Theorem 6.14], that is, if and only if its period is even.

The Cartesian product �1 ◻ �2 of digraphs �1 , �2 is the digraph � with
V(�) = V(�1) × V(�2) and A(�) = {[(u, u′), (v , v′)] ∣ [u, v] ∈ A(�1), u′ = v′ or
[u′ , v′] ∈ A(�2), u = v}. The direct product �1 × �2 of digraphs �1 , �2 is the
digraph � with V(�) = V(�1) × V(�2) and A(�) = {[(u, u′), (v , v′)] ∣ [u, v] ∈
A(�1) and [u′ , v′] ∈ A(�2)}. Both graph products ◻ and × are associative [8].

Given a finite group G with generating set S that does not contain the identity of
G, the Cayley digraph Cay(G , S) is the digraph � with V(�) = G and arc set

A(�) = {[g , h] ∣ h = gs for some s ∈ S}.

Thus, every finite Cayley digraph is strong. The circulant digraph circn{d1 , . . . , dt},
where n ≥ 2 and 1 ≤ d1 , . . . , dt < n are distinct integers, is the digraph � with
V(�) = {0, 1, . . . , n − 1} and arcs [i , i + d j] for each 0 ≤ i < n, 1 ≤ j ≤ t (where the
entries are taken mod n) [1]. It is weakly connected if and only if gcd{n, d1 , . . . , dt} = 1,
in which case it is strongly connected and is the Cayley digraph
Cay(Zn , {d1 , . . . , dt}).

3 Digraph groups

First, we observe that if � has weakly connected components �1 , . . . , �k with k ≥ 2,
then the presentation P�(R) decomposes as the disjoint union of the presenta-
tions P�1(R), . . . , P�k(R), so G�(R) is isomorphic to the free product G�1(R) ∗ ⋯ ∗
G�k(R). Therefore, without loss of generality, in considering digraph groups G�(R),
we may assume that � is weak.

Lemma 3.1 [17] Let � be a nontrivial, weak digraph that is digon-free and triangle-
free and let R(a, b) be a cyclically reduced word that involves both a and b and which
has exponent sums α, β in a and b−1, respectively, and let K = ⟨a, b ∣ R(a, b)⟩. If G�(R)
is finite, then α ≠ 0, β ≠ 0, and aα = bβ in K.

Proof By [17, Theorem 4], if K has Property W1 (see [17] for the definition), then
G�(R) is infinite, so we may assume that K does not satisfy Property W1. Then, by
[17, Proposition, p. 248], we have α ≠ 0, β ≠ 0, and aα = bβ in K (see [7, p. 5] for further
discussion on this point). ∎

Lemma 3.2 Let � be a digraph and let R(a, b) be a cyclically reduced word that
involves both a and b and which has exponent sums α, β in a and b−1, respectively, and
let K = ⟨a, b ∣ R(a, b)⟩. If aα = bβ in K, then G�(R) is a quotient of G�(aα b−β), so, in
particular, if G�(aα b−β) is abelian, then G�(R) ≅ G�(aα b−β).
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4 M. S. Cihan and G. Williams

Proof Since aα = bβ in K, the presence of a relator R(xu , xv) in P�(R) implies
that the relation xα

u = xβ
v holds in G�(R). Therefore, the corresponding relators

xα
u x−β

v can be added to the defining presentation for G�(R), so G�(R) is a quo-
tient of G�(aα b−β). If G�(aα b−β) is abelian, then G�(R) is abelian and so the
relators R(xu , xv) are equivalent to the relators xα

u x−β
v , so can be removed, that is,

G�(R) ≅ G�(aα b−β). ∎

Lemma 3.3 [17] Let � be a digraph that is not a tournament, and let R(a, b) be
a cyclically reduced word which has exponent sums α, β in a and b−1, respectively. If
G�(R) is finite, then gcd{α, β} = 1.

Proof Since � is not a tournament, there exists a pair of vertices u, v ∈ V(�)
that are not connected by an arc. As in [17, p. 248] (or [7, Proof of Lemma 3.3]),
killing all generators of G�(R) except xu , xv and then adjoining relators xd

u , xd
v , where

d = gcd{α, β}, gives that G�(R) maps onto the group ⟨xu , xv ∣ xd
u , xd

v ⟩ ≅ Zd ∗Zd ,
which is infinite if d > 1. ∎

Lemma 3.4 Let � be a digraph, and let R(a, b) be a cyclically reduced word which
has exponent sums α, β in a and b−1, respectively. Then G�(R)maps epimorphically to
Z∣α−β∣. In particular, if α = β, then G�(R) is infinite.

Proof Let ϕ ∶ G�(R) → Z∣α−β∣ be given by ϕ(xv) = 1 ∈ Z∣α−β∣ for each v ∈ V(�).
Then, for each relator R(xu , xv) of G�(R), we have ϕ(R(xu , xv)) = α ⋅ 1 − β ⋅ 1 = 0 ∈
Z∣α−β∣, so ϕ is a homomorphism, and since ϕ(xv) = 1 for some v ∈ V(�), it is an
epimorphism. ∎

Lemma 3.5 Let � be a bipartite digraph and let R(a, b) be a cyclically reduced word
which has exponent sums α, β in a and b−1, respectively, and suppose gcd{α, β} = 1.
Then G�(R) maps epimorphically to Z∣α2−β2 ∣. In particular, if α = ±β, then G�(R) is
infinite.

Proof Suppose � has vertex partition V(�) = V1 ⊍ V2. Let ϕ ∶ G�(R) → Z∣α2−β2 ∣

be given by ϕ(xu) = α if u ∈ V1 and ϕ(xu) = β if u ∈ V2. Then given an arc [u, v] of
G�(R), we have ϕ(R(xu , xv)) = α2 − β2 = 0 if u ∈ V1 and ϕ(R(xu , xv)) = αβ − βα = 0
if u ∈ V2. Thus, ϕ is a homomorphism. Since gcd{α, β} = 1, there exist r, s ∈ Z such
that rα + sβ = 1, and so if u ∈ V1 , v ∈ V2, then ϕ(x r

u x s
v) = rα + sβ = 1 ∈ Z∣α2−β2 ∣, so ϕ is

an epimorphism. ∎

Lemma 3.6 Let � be a nontrivial, weak digraph that is digon-free and triangle-free,
and let R(a, b) be a cyclically reduced word that involves both a and b and which has
exponent sums α, β in a and b−1, respectively, and suppose α = −β. Then G = G�(R)
is finite if and only if α = −β = ±1, aα = bβ in K, and � is not bipartite, in which case
G ≅ Z2.
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Proof Suppose G is finite. Then Lemma 3.1 implies α ≠ 0, β ≠ 0, and aα = bβ in K,
and Lemma 3.3 implies gcd{α, β} = 1, so α = −β = ±1. Moreover, � is not bipartite by
Lemma 3.5. Under these conditions a = b−1 in K and so, given an arc [u, v] ∈ A(�),
we have xu = x−1

v in G. Fix a vertex w ∈ V(�). Then, since the underlying graph of
� is connected, for any v ∈ V(�) we have either xv = xw or xv = x−1

w . Therefore, G is
cyclic. Since � is not bipartite, there is an odd length cycle 1→ 2→ 3→ ⋅ ⋅ ⋅ → r → 1,
say. Then x1 = x−1

2 = x3 = ⋅ ⋅ ⋅ = x−1
r−1 = xr = x−1

1 , so x2
1 = 1. Moreover, each generator of

G is equal to any other generator or its inverse, so G is generated by x1, which satisfies
the relation x2

1 = 1, that is, G is cyclic of order at most 2. Then, by Lemma 3.4, G maps
onto Z2, so G ≅ Z2. ∎

By Lemma 3.6, we may assume α ≠ −β. In this situation, we summarize Lemmas
3.1–3.4 in the following result.

Theorem 3.7 Let � be a nontrivial, weak digraph that is digon-free and triangle-free
and let R(a, b) be a cyclically reduced word that involves both a and b and which has
exponent sums α, β in a and b−1, respectively, where α ≠ −β, and let K = ⟨a, b ∣R(a, b)⟩.
If G�(R) is finite, then α ≠ 0, β ≠ 0, α ≠ β, gcd{α, β} = 1, and aα = bβ in K, in which
case G�(R) is a quotient of G�(aα b−β), so, in particular, if G�(aα b−β) is abelian, then
G�(R) ≅ G�(aα b−β).

4 Strong digraph groups

In this section, we prove Theorem 1.2.

Lemma 4.1 Let � be a digraph, and let G = G�(aα b−β) where gcd{α, β} = 1. If v is
a vertex of a cycle of length Δ in �, then x ∣α

Δ−βΔ ∣
v = 1 in G.

Proof This is essentially stated implicitly in [17, p. 248], and proofs are given in
[7, Lemma 3.4] and [3, Lemma 3.4]. ∎

Lemma 4.2 Let � be a digraph, and let G = G�(aα b−β) where gcd{α, β} = 1. Let
u ∈ V(�) be a vertex of some cycle, and suppose there is a path from u to a vertex w.
Then the generator xu of G is equal to a power of the generator xw .

Proof Label the path from u to w as u = 1→ 2→ 3→⋯→ (n − 1) → n = w. First,
consider the arc [1, 2]. Since 1 is the vertex of some cycle, of length Δ, say, Lemma
4.1 implies xγ

1 = 1, where γ = ∣αΔ − βΔ ∣. Now gcd{α, γ} = 1, so there exist r, s ∈ Z such
that rα + sγ = 1, so rα ≡ 1 mod γ. Moreover, there is a relation xα

1 = xβ
2 in �, so

x1 = x rα+sγ
1 = (xα

1 )r(xγ
1 )s = (xβ

2 )r = x rβ
2 .

Therefore, x1 is equal to a power of x2. Moreover, xγ
1 = 1, so (x rβ

2 )γ = 1, i.e., x rβγ
2 = 1.

But also xα
1 = xβ

2 so (x rβ
2 )α = xβ

2 , so x(1−rα)β
2 = 1, i.e., x sβγ

2 = 1. Thus, x(rβγ ,sβγ)
2 = 1, i.e.,

x ∣βγ∣
2 = 1. (The argument in this paragraph is that of [7, Proof of Lemma 3.1].)

Now consider the arc [2, 3]. Let γ′ = βγ. Noting that gcd{α, γ′} = 1, repeating
the argument of the previous paragraph gives that x2 is equal to a power of x3 and
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6 M. S. Cihan and G. Williams

x ∣βγ′∣
3 = 1, that is, x ∣β

2 γ∣
3 = 1. Continuing in this way, we see that for each 1 ≤ i < n the

generator x i is equal to a power of x i+1 and x ∣β
i−1 γ∣

i = 1. Therefore, x1 is equal to a power
of xn , that is, xu is equal to a power of xw , as required. ∎

Lemma 4.3 Let � be a nontrivial, strong digraph of period p, and let α, β ∈ Z satisfy
α ≠ 0, β ≠ 0, α ≠ ±β, gcd{α, β} = 1. Then G�(aα b−β) is finite and cyclic, of order
dividing ∣α p − βp ∣.

Proof Fix a vertex w ∈ V(�). Since � is nontrivial and strong, for every vertex
u ∈ V(�), u is a vertex of some cycle and there is a walk from u to w. Therefore, by
Lemma 4.2, the generator xu is equal to some power of xw . Therefore, every generator
of G is equal to some power of xw , so G is cyclic, generated by xw . Since the choice of
w was arbitrary, G is cyclic and generated by xv for any v ∈ V(�) and, by Lemma 4.1,
if Δ is the length of any cycle of which v is a vertex, x ∣α

Δ−βΔ ∣
v = 1 in G. That is, G is

cyclic of order dividing f (Δ) = ∣αΔ − βΔ ∣. Applying this observation to every vertex
v ∈ V(�) and every cycle of � of which v is a vertex, we see that G is cyclic of order
dividing gcd{ f (Δ) ∣ Δ is the length of some cycle of �}. That is, G is cyclic of order
dividing ∣α p − βp ∣. ∎

Lemma 4.4 Let � be a strong digraph of period p ≥ 2, let Λ be the cycle of length p, and
let R(a, b) be a cyclically reduced word. Then G�(R)maps epimorphically to GΛ(R).

Proof (In this proof, subscripts of v∗ , V∗, and y∗ terms are to be taken mod p.)
By [2, Theorem 10.5.1], there exists a vertex partition V(�) = V0 ⊍ V1 ⊍ ⋅ ⋅ ⋅ ⊍ Vp−1
such that if [u, v] ∈ A(�) then u ∈ Vi and v ∈ Vi+1 for some 0 ≤ i < p. By adjoining
all relators R(xv i , xv i+1), where v i ∈ Vi , v i+1 ∈ Vi+1 to the defining presentation for
G = G�(R), we see that G maps onto

H = ⟨xv i (v i ∈ Vi , 0 ≤ i < p) ∣ R(xv i , xv i+1) (v i ∈ Vi , v i+1 ∈ Vi+1 , 0 ≤ i < p)⟩.

For each 0 ≤ i < p, equating all generators xv i (v i ∈ Vi ), and introducing generators
y i = xv i , we see that H maps onto

K = ⟨ xv i (v i ∈ Vi , 0 ≤ i < p),
y i (0 ≤ i < p)

�����������

R(xv i , xv i+1) (v i ∈ Vi , v i+1 ∈ Vi+1 , 0 ≤ i < p),
y i = xv i (v i ∈ Vi , 0 ≤ i < p) ⟩

= ⟨y i (0 ≤ i < p) ∣ R(y i , y i+1) (0 ≤ i < p)⟩
= GΛ(R),

where V(Λ) = {0, 1, . . . , p − 1} and A(Λ) = {[i , i + 1] ∣ 0 ≤ i < p}. ∎

We can now prove Theorem 1.2.

Proof of Theorem 1.2 Suppose first α = −β. Then, by Lemma 3.6, G = G�(R) is
finite if and only if α = ±1, � is not bipartite, and aα = bβ in K, in which case G ≅ Z2.
Equivalently, G is finite if and only if α ≠ 0, β ≠ 0, gcd{α, β} = 1, α p ≠ βp , and aα = bβ

in K, in which case G ≅ Z∣α p−β p ∣.
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Suppose then α ≠ −β. If G is finite, then Theorem 3.7 implies α ≠ 0, β ≠ 0, α ≠ β
(equivalently, α p ≠ βp), gcd{α, β} = 1, and aα = bβ in K. Under these conditions,
Lemma 4.3 implies that G�(aα b−β) is finite and cyclic of order dividing γ = ∣α p − βp ∣.
Then G ≅ G�(aα b−β) by Theorem 3.7. We now show that G maps epimorphically
to Zγ . If p = 1, this follows from Lemma 3.4, so assume p ≥ 2. By Lemma 4.4, G =
G�(aα b−β)maps epimorphically to GΛ(aα b−β), where Λ is the cycle of length p. But
GΛ(aα b−β) ≅ Zγ by [17, p. 248] (or [7, Lemma 3.4], [3, Lemma 3.4]). Thus, G ≅ Zγ ,
as required. ∎

5 Applications

In this section, we obtain corollaries to Theorem 1.2 for particular types of strong
digraphs.

5.1 A Cayley digraph

We consider the Cayley digraph of the generalized quaternion group

Q2n = ⟨c, d ∣ c2n , cnd−2 , cdcd−1⟩

with respect to the generating set {c, d}.

Lemma 5.1 Let � = Cay(Q2n , {c, d})where n ≥ 2. Then � is digon-free and triangle-
free and the period p(�) = gcd{n, 2}.

Proof Since c2 , d2 , c3 , d3 , c2d±1 , d2c±1 ≠ e in Q2n (where e denotes the identity) the
digraph � is digon-free and triangle-free. It contains the following cycles:
• e → d → d2 → d3 → d4 = c2n = e,
• e → c → c2 →⋯→ cn → cnd → cnd2 = cn cn = c2n = e,
• e → c → c2 →⋯→ c2n−1 → c2n−1d → c2n−1dc = c2n−2d → c2n−2dc = c2n−3d →
⋯→ cnd → cnd2 = cn cn = c2n = e,

of lengths 4, n + 2, 3n, respectively, and so p = p(�) divides gcd{4, n + 2, 3n}, so p = 1
if n is odd and p∣2 if n is even. If n is even, then � is bipartite with vertex partition

V(�) = {c i , c i d ∣ where i is even} ⊍ {c i , c i d ∣ where i is odd}

and so � has no odd length cycles and hence p = 2. ∎

Noting that Cayley digraphs are strong, we obtain the following.

Corollary 5.2 Let � = Cay(Q2n , {c, d}) where n ≥ 2, let p = gcd{n, 2}, and let
R(a, b) be a cyclically reduced word that involves both a and b and which has exponent
sums α, β in a and b−1, respectively, and let K = ⟨a, b ∣ R(a, b)⟩. Then G = G�(R) is
finite if and only if α ≠ 0, β ≠ 0, gcd{α, β} = 1, α p ≠ βp , aα = bβ in K, in which case G
is cyclic of order ∣α p − βp ∣.
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5.2 Circulant digraphs

Lemma 5.3 Let � = circn{d1 , . . . , dt}, where n ≥ 2 and 1 ≤ d i < n for each 1 ≤ i ≤ t,
and where gcd{n, d1 , . . . , dt} = 1. Then p(�) = gcd{n, d1 − d2 , d1 − d3 , . . . , d1 − dt}.

Proof Let p = p(�) and r = gcd{n, d1 − d2 , d1 − d3 , . . . , d1 − dt}. Observe that

(n − d2)d1 + d1d2 + 0d3 + ⋅ ⋅ ⋅ + 0dt ≡ 0 mod n,

so there is a closed walk with (n − d2) arcs corresponding to the generator d1 and
d1 arcs corresponding to the generator d2 and 0 arcs corresponding to the remaining
generators (and so has length n + d1 − d2). Similarly, there are closed walks of lengths
n + d1 − d3 , . . . , n + d1 − dt . Also, there is a closed walk of length n, consisting of d1
arcs. Therefore, p divides gcd{n, n + d1 − d2 , n + d1 − d3 , . . . , n + d1 − dt} = r.

Consider a cycle of length l which has l i arcs corresponding to the generator d i ,
for each 1 ≤ i ≤ t. Then l = l1 + ⋅ ⋅ ⋅ + lt and∑t

j=1 l jd j ≡ 0 mod n, and hence∑t
j=1 l jd j ≡

0 mod r, so (since d j ≡ d1 mod r for each 1 ≤ j ≤ t) we have∑t
j=1 l jd1 ≡ 0 mod r. That

is, ld1 ≡ 0 mod r. Now, if δ∣r and δ∣d1, then δ∣d2 , . . . , dt so δ∣(n, d1 , . . . , dt) = 1, so
δ = 1. Thus, gcd{r, d1} = 1, and so l ≡ 0 mod r. Hence, r divides the length of any cycle
in �, and so r divides p. Hence p = r. ∎

Noting that circn{d1 , . . . , dt} is digon-free and triangle-free if and only if
d i + d j /≡ 0 and d i + d j + dk /≡ 0 mod n for each 1 ≤ i , j, k ≤ t and that circulant
digraphs are Cayley digraphs, and hence strong, we obtain the following.

Corollary 5.4 Let circn{d1 , . . . , dt}, where n ≥ 4 and 1 ≤ d i < n for each 1 ≤ i ≤ t,
and where {d1 , . . . , dt} is a generating set for Zn and suppose d i + d j /≡ 0 and d i + d j +
dk /≡ 0 mod n for each 1 ≤ i , j, k ≤ t, and let p = gcd{n, d1 − d2 , d1 − d3 , . . . , d1 − dt}.
Let R(a, b) be a cyclically reduced word that involves both a and b and which has
exponent sums α, β in a and b−1, respectively, and let K = ⟨a, b ∣ R(a, b)⟩. Then
G = G�(R) is finite if and only if α ≠ 0, β ≠ 0, gcd{α, β} = 1, α p ≠ βp, aα = bβ in K,
in which case G is cyclic of order ∣α p − βp ∣.

5.3 Cartesian products of strong digraphs

Lemma 5.5 Let � = �1 ◻ ⋅ ⋅ ⋅ ◻ �t be the Cartesian product of digon-free and triangle-
free strong digraphs �1 , . . . , �t with periods p1 , . . . , pt , respectively. Then � is strong,
digon-free, and triangle-free, with period p(�) = gcd{p1 , . . . , pt}.

Proof Since �1 , . . . , �t are strong, so is � [8, Theorem 10.3.2]. Since �1 , . . . , �t are
digon-free and triangle-free, so is � [18, Lemma 2.4].

Let r = gcd{p1 , . . . , pt} and p = p(�). Since every cycle of each �i has a corre-
sponding cycle in �, the lengths of the cycles in the �i ’s are lengths of cycles in �, so
p divides the lengths of all cycles in all �i ’s, so p divides the greatest common divisor
of these lengths. That is, p divides r.

We shall say that an arc [(u1 , . . . , ut), (v1 , . . . , vt)] ∈ A(�) is of type r if u i = v i for
each 1 ≤ i ≤ t, i ≠ r. Consider a cycle of length l that involves lr arcs of type r (1 ≤ r ≤ t).
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Then, for each 1 ≤ i ≤ t, l i ≡ 0 mod p i and so l i ≡ 0 mod r. Therefore, l = l1 +⋯+ lt ≡
0 mod r. Thus, r divides the length of any cycle in �, so l divides the greatest common
divisor of the lengths of the cycles in �. That is, r divides p, and hence r = p. ∎

Example 5.6 (Cartesian product of cycles) Let � = �1 ◻ ⋅ ⋅ ⋅ ◻ �t where �i (1 ≤ i ≤ t)
is the cycle of length m i ≥ 4 (1 ≤ i ≤ t). Then � is strong, digon-free, and triangle-
free, with period gcd{m1 , . . . , mt}. (Note that � is the Cayley digraph Cay(Zm1 ⊕⋯⊕
Zm t , {e1 , . . . , et}), where e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , et = (0, 0, . . . , 1).)

Corollary 5.7 Let � = �1 ◻ ⋅ ⋅ ⋅ ◻ �t be the Cartesian product of digon-free and
triangle-free, strong digraphs �1 , . . . , �t with periods p1 , . . . , pt , respectively, and let
p = gcd{p1 , . . . , pt}. Let R(a, b) be a cyclically reduced word that involves both a and b
and which has exponent sums α, β in a and b−1, respectively, and let K = ⟨a, b ∣ R(a, b)⟩.
Then G = G�(R) is finite if and only if α ≠ 0, β ≠ 0, gcd{α, β} = 1, α p ≠ βp , aα = bβ in
K, in which case G is cyclic of order ∣α p − βp ∣.

5.4 Direct products of strong digraphs

Lemma 5.8 Let � = �1 × ⋅ ⋅ ⋅ × �t be the direct product of strong digraphs �1 , . . . , �t
with periods p1 , . . . , pt , respectively, where gcd{p1 , . . . , pt} = 1, and where at least one
of �1 , . . . , �t is digon-free and at least one is triangle-free. Then � is strong, digon-free,
and triangle-free, with period p(�) = p1⋯pt .

Proof The digraph � is strong with period p(�) = p1⋯pt by [14] (see [14, Theorem
1(ii) and (iii)] and page 251 and Proposition 4 of [10]; see also [8, Theorem 10.3.2]).
If � contains a digon (resp. triangle), then each of �1 , . . . , �t contains a digon (resp.
triangle), a contradiction. Hence, � is digon-free and triangle-free. ∎

Example 5.9 (Direct product of an oriented diamond and a cycle) Let � =
�1 × �2 where �1 is the oriented diamond digraph with V(�1) = {u, v , w , t} and
A(�1) = {[u, v], [u, w], [v , t], [w , t], [t, u]}, and �2 is the cycle of length n ≥ 2 where
n /≡ 0 mod 3. Then �1 is strong and digon-free with period 3 and �2 is strong and
triangle-free with period n, so � is strong, digon-free, and triangle free, of period
p(�) = 3n.

Corollary 5.10 Let � = �1 × ⋅ ⋅ ⋅ × �t be the direct product of strong digraphs
�1 , . . . , �t with periods p1 , . . . , pt , respectively, where gcd{p1 , . . . , pt} = 1, and where at
least one of �1 , . . . , �t is digon-free and at least one is triangle-free, and let p = p1⋯pt .
Let R(a, b) be a cyclically reduced word that involves both a and b and which has
exponent sums α, β in a and b−1, respectively, and let K = ⟨a, b ∣ R(a, b)⟩. Then
G = G�(R) is finite if and only if α ≠ 0, β ≠ 0, gcd{α, β} = 1, α p ≠ βp , aα = bβ in
K, in which case G is cyclic of order ∣α p − βp ∣.
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