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A Caolitional Game-based Adaptive Scheduler
Leveraging Task Heterogeneity For Greener Data

Centers
Saeed Akbar , Ubaid Ul Akbar , Rahmat Ullah , and Zhonglong Zheng

Abstract—Managing power and its subsequent thermal im-
plications is of paramount concern in modern Data Centers
(DCs) management. Failure to adequately address the escalating
energy use can result in excessive heat dissipation, leading to
thermal imbalances and hotspots. In addition, the prolonged
execution of CPU-intensive user jobs on servers operating at
higher temperatures can significantly aggravate the DCs cooling
efforts. Researchers advocate Thermal-aware (TA) scheduling as
a promising tool to counter the said issue. However, existing state-
of-the-art overlooks user jobs runtime heterogeneity, potentially
causing aggravated heat dissipation when CPU-intensive tasks
run on servers at elevated temperatures for longer duration.
Moreover, existing works do not provide any mechanism to detect
overloaded computing nodes at runtime in a TA context. Finally,
existing strategies do not adapt according to the DCs dynamic
thermal conditions. This paper offers a Coalitional Game-based
Thermal-aware Adaptive Scheduling (CGTAS) tailored for het-
erogeneous DCs to minimize the cooling cost stemming from
excessive heat generated during compute-intensive job execution.
CGTAS intelligently differentiates incoming jobs based on their
thermal profiles and CPU-time for optimal thermal outcomes. In
addition, it dynamically allocates user jobs to computing nodes
based on their real-time marginal thermal performance using
the Core solution concept from game theory. Finally, unlike
existing TA strategies, the proposed design identifies thermally
overloaded computing elements using the Core and performs task
migrations to optimize thermal-efficiency. Extensive simulations
confirm substantial energy savings (up to 26.08%) compared to
its TA substitutes, promoting sustainable and high-performance
computing infrastructure in large-scale cloud DCs.

Index Terms—Data Center, K-means Clustering, Coalitional
Game, Core, Thermal-aware, Energy Efficiency, Cooling Cost

I. INTRODUCTION

The power requirements and the subsequent thermal im-
plications of Data Centers (DCs) operations are of paramount
concern in modern DCs management [1]. Failure to adequately
address the escalating energy use and its subsequent thermal
consequences can result in excessive heat dissipation, leading
to thermal imbalances and hotspots [2]. While cooling mech-
anisms are implemented to keep servers and other computing
elements under their thermal constraints (TC), they come at a
substantial energy cost, accounting from 30% and potentially
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as much as 50% of the total DC energy cost [3, 4, 5,
6]. Research has identified hotspots as one of the primary
contributors to elevated cooling costs [7, 8]. Consequently,
efficient thermal management (TM) inside DCs is essential to
conserve energy within the cooling infrastructure [2]. Research
community offers several strategies such as Thermal-aware
(TA) scheduling, liquid cooling, and air-flow management to
mitigate the said issues.

Recent studies show that TA scheduling is a promising
dynamic TM tool for large-scale DCs [12, 13, 9, 14, 15].
For instance, TA approaches in [12, 8] optimize the thermal
outcomes considering the servers temperature and thermal-
profile (TP) of user jobs in homogeneous DCs. For heteroge-
neous DCs, Ref. [9] offers TA strategy considering marginal
contribution of computing nodes in disturbing the DC thermal
uniformity to minimize the cooling efforts. In addition to TP
of user jobs and servers temperature, Ozceylan et al. [14]
consider task duration in their study. However, they ignore the
relative thermal performance of servers during task scheduling,
which may lead to non-optimal results. In summary, existing
TA models primarily focus on minimizing cooling expenses
associated with elevated server temperatures, emphasizing fac-
tors such as TPs of user jobs, server inlet/outlet temperatures,
and ambient conditions during task allocation and migration.
However, they overlook the impact of CPU-intensive jobs
run-time on thermal outcomes. This may lead to frequent
rise of thermally overloaded servers in the long run. Also,
existing state-of-the-art does not adapt the workload according
to dynamic thermal conditions of the DC environment.

The prolonged execution of CPU-intensive jobs on servers
operating at higher temperatures can significantly aggravate
cooling efforts due to increased heat dissipation. Therefore,
the duration of CPU-intensive tasks stands as a critical factor
influencing the DCs cooling costs if not managed intelli-
gently. Furthermore, according to [9], assigning user jobs to
computing nodes based on their relative thermal performance
offers significant improvement in DCs thermal-efficiency. In
this context, Coalitional Game Theory (CGT) [10, 11] offers
two useful solution concepts that can be used to distribute
payoff/cost/benefit based on the marginal contributions of
participating agents: (1) the Shapley value, and (2) the Core.

In this work, we use the Core solution from CGT as
it offers more stable outcomes compared to the Shapley
value [16, 11]. We devise a Coalitional Game-based Thermal-
aware Adaptive Scheduler (CGTAS) that assigns incoming
jobs based on the relative thermal performance of computing
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Fig. 1: Illustrating potential improvement in thermal efficiency offered by the proposed system. Computing nodes are
represented using rectangles with height indicating their capacity. Rounded rectangle represents user jobs where gray, light

gray, and white represent hot, warm and cold jobs. The thermal readings of computing nodes are represented using
thermometer indicator. The difference in the indicators readings show thermal imbalance within the system. Lastly, running
user jobs currently on servers are placed above the dotted line in each server box. (1) Figure on the left shows the current

status of computing nodes before scheduling the newly arrived jobs (𝜆1, 𝜆2, . . . , 𝜆6). (2) Figure in the center illustrates
thermal consequences of TA task allocation without considering CPU-time of user jobs and relative thermal performance of
computing nodes, and (3) Figure on the right depicts the improvement in thermal consequences while considering CPU-time

and assigning user jobs in proportion to the relative thermal performance of computing nodes

nodes while considering both the temporal aspects of user
job execution and their thermal characteristics. In addition,
the proposed approach identifies overloaded computing nodes
and performs migrations to achieve thermal efficiency. Finally,
CGTAS dynamically adapts the proportion of workload on
each computing node to handle the DCs dynamic thermal
conditions. Fig. 1 illustrates how considering the relative
thermal performance of computing units and the duration of
CPU-intensive jobs can improve the thermal performance of
the system.

The proposed TA design has the following four differ-
ences compared to its TA substitutes. Firstly, using K-means
clustering, the proposed design is able to intelligently assign
long-running CPU-intensive jobs to servers that offer optimal
thermal performance. Secondly, it uses the Core solution
concept to determine a fair and optimal proportion of user
jobs for each computing node based on its marginal thermal
performance. Thirdly, it detects overloaded computing nodes
using the proposed Core solution. Finally, using the Core
, it dynamically adjusts the workload on each computing
node to adapt to the DC’s extremely dynamic thermal condi-
tions. By considering CPU-time of user jobs and the relative
thermal performance of computing nodes, the proposed CG-
TAS demonstrates superior effectiveness in achieving optimal
thermal-efficiency compared to its TA counterparts.

Summary of our main contributions:

• A Core-based formulation of TA job allocation among
computing nodes considering their relative thermal per-
formance within the DC environment – it determines a
fair and optimal proportion of user jobs to be assigned
to each computing node based on its marginal impact on
the system thermal performance.

• Devising a mechanism to detect overloaded nodes in a TA
context using the Core solution and perform migration of
jobs to attain optimal thermal conditions.

• Classification of user jobs based on both TP and CPU-
time using K-means clustering to intelligently distribute

lengthy CPU-intensive user jobs to servers that offer
optimal thermal performance.

• Conducting comprehensive simulations using real-world
data, demonstrating that our proposed design achieves
substantial energy savings (up to an average of 26.08%)
compared to existing TA alternatives.

The subsequent sections are organized as follows: Section
II briefly highlights the current state-of-the-art related to TA
scheduling. Sections III and IV present the system model and
our proposed CGT-based task allocation strategy, respectively.
Section V discusses the simulation results, and we draw
conclusions in Section VI.

II. RELATED WORK

Running CPU-intensive jobs is one of the main factors
affecting the DC thermal conditions as they typically require
extended periods of processing time, during which the CPU
continuously operates at high utilization rate, generating sig-
nificant amount of heat. The prolonged execution of CPU-
intensive jobs on servers operating at higher temperatures can
significantly aggravate cooling efforts due to increased heat
dissipation. Therefore, the duration of CPU-intensive tasks
stands as a critical factor influencing the DCs cooling costs if
not managed intelligently. The impact of CPU-intensive jobs
on thermal outcomes is particularly pronounced in densely
packed DC environments due to the ambient temperature as
multiple servers are placed in close proximity [8, 17]. In
such settings, the cumulative heat generated by CPU-intensive
tasks may result in the formation of thermal hotspots, areas
within the DC where temperatures are significantly higher
than the surrounding environment. According to literature [9],
thermal hotspots pose increased cooling efforts and a risk
to the integrity and reliability of the DC infrastructure, as
they can lead to localized overheating and potential hardware
failures. By effectively managing CPU-intensive workloads
and their subsequent thermal consequences, DC operators can
significantly reduce the cooling cost and ensure the reliability
and performance of their computing elements [18].
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To address the thermal challenges posed by CPU-intensive
jobs in a DC, dynamic TM strategies are essential. Exist-
ing TM approaches include TA designs that prioritize the
allocation of CPU-intensive tasks to servers with optimal
thermal conditions. TA scheduling has proven to be highly
cost-effective solution for addressing thermal challenges in
DCs [12, 15, 9]. A significant body of literature is dedicated
to studying TA scheduling to reduce energy costs and ensure
the reliable operation of DC services. Table I highlights
existing TA strategies in terms of their design strategy, novelty,
optimization approach, consideration of SLA violations, con-
sideration of task TP and CPU-time (length/duration), targeted
energy level, and thermal constraints (TC). Cheng et al. [19]
categorize energy conservation technologies in cloud DCs
into three main groups: (1) techniques focusing on energy
savings in IT equipment, (2) strategies targeting the reduction
of cooling expenses in DCs, and (3) approaches for joint
optimization. Before diving into the details of each group of
strategies, we briefly highlight the suitability of the Coalitional
Game (CG) for the TA scheduling problem in our paper.

Existing literature [20, 21, 22, 23, 24] shows that Game
Theory (GT) is a promising tool for complex optimization
problems. GT can be applied to any field where the optimiza-
tion scenario can be modeled as a strategic interaction among
multiple rational agents. For instance, studies in [21, 24]
model scenarios where resources are competitively allocated
across multiple battlefields. Each player aims to outperform
the other by maximizing their allocation’s effectiveness against
the opponent’s strategy. The study in [21] focuses on power
allocation to prevent jamming in underwater communication,
emphasizing how strategic resource distribution can mitigate
external threats using Colonel Blotto Game (CBG). Similarly,
the study in [24] uses CBG to strategically allocate channel
against aerial eavesdroppers, aiming to optimize the security
of power transmissions.

On the contrary, in our work, the players (DC nodes) share
a common goal of minimizing cooling energy by optimizing
thermal conditions. Unlike the competitive allocation in CBG,
where players work against each other, the CG in our paper
fosters collaborative approach among the participants to attain
globally optimal solution. The proposed game models manage-
ment of computing resources holistically that is more suited
to addressing complex, system-wide challenges like TM in
DCs. While non-cooperative games such as the CBG provides
insights into strategic resource distribution under competitive
conditions, the CG is motivated by the need for coopera-
tion among the agents, making it particularly effective in
environments where joint optimization can lead to significant
operational improvements. This emphasizes the suitability of
CGs for addressing the multi-faceted challenges of TM in
modern DCs.

A. Minimizing Power Usage of Cooling System

Cheng et al. [19] categorizes the methods for DC cooling
efficiency into: (1) layout and airflow management [25, 26],
(2) TA scheduling [27], and (3) other techniques including
liquid cooling [28], and waste heat recovery [29]. In this

paper, we focus on TA scheduling. In this context, Li et al.
[12] propose a TA approach, investigating the impact of node
failures on power usage. Niknia et al. [13] combine TA and
DVFS strategies, modeling the task allocation in multiproces-
sor systems-on-chip as a SMDP. Ozceylan et al. [14] develop
a TA scheduler for workloads with known resource usage and
duration, exploring the trade-off between system throughput
and server temperature employing a thermodynamics model.
Akbar et al. [8] devise a CG-based scheduler considering the
ambient temperature of computing nodes to reduce the cooling
cost by minimizing thermal imbalance and hotspots. However,
studies in [12, 13, 14, 8] are designed for homogeneous DCs,
ignoring the thermal impact of heterogeneous resources.

In a heterogeneous DC environment, Oxley et al. [32] design
three resource management mechanisms, employing a genetic
algorithm (GA), a greedy algorithm, and a colocation-aware
technique to reduce energy consumption without violating
thermal constraints (TCs). Similarly, Akbar et al. [9] propose
a Shapley value-based TA scheduler for heterogeneous DCs,
aiming to allocate incoming jobs to computing nodes in
proportion to their relative temperatures while considering TCs
of servers and racks. However, the strategies in [14, 8, 32, 9]
may lead to thermally overloaded servers in the long run due to
the long running CPU-intensive workloads as the CPU-time
of user jobs is ignored during task allocation. Lastly, a TA
scheduling heuristic assisted by a deep neural network-based
server temperature forecasting model considering user job
heterogeneity is presented in [35]. The authors predict node
temperature using factors such as CPU utilization rate, CPU
capacity, server type, etc. However, the proposed design is
heuristic-based and depends on the accuracy of the prediction
model, which may not produce optimal results in environments
other than it has been trained for.

B. Minimizing Energy Consumption of Servers

To reduce the energy cost of DC at the server level. For
instance, Roy et al. [37] introduce SATORI, a novel strategy
designed for multicore systems to equitably and efficiently
allocate resources. The objective is to strike a balance be-
tween system performance and fairness among co-located user
workloads. To prevent hotspots, Kumar et al. [38] propose an
adaptive CPU control strategy based on Dynamic Voltage and
Frequency Scaling (DVFS). This control strategy utilizes a
prediction model to accurately forecast the temperature of the
computing node and adjust the CPU frequency accordingly.
However, the proposed approach may lead to SLA violations
due to adjusting the CPU frequency. Furthermore, the objective
of studies in [37, 38] is to attain energy-efficiency at the
server level, ignoring the dynamic thermal conditions at the
DC level due to various factors such as the ambient effect
of surrounding nodes, thermally overloaded computing nodes,
runtime of CPU-intensive jobs, etc.

C. Minimizing Energy Consumption of Servers

Researchers have offered various strategies to reduce the
energy cost of DC at the server level. For instance, Roy
et al. [37] introduce SATORI, a novel strategy designed
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for multicore systems to equitably and efficiently allocate
resources. The objective is to strike a balance between system
performance and fairness among co-located user workloads. To
prevent hotspots, Kumar et al. [38] propose an adaptive CPU
control strategy based on Dynamic Voltage and Frequency
Scaling (DVFS). This control strategy utilizes a prediction
model to accurately forecast the temperature of the computing
node and adjust the CPU frequency accordingly. However,
the proposed approach may lead to SLA violations due to
adjusting the CPU frequency. Furthermore, the objective of
studies in [37, 38] is to attain energy-efficiency at the server
level, ignoring the dynamic thermal conditions at the DC
level due to various factors such as the ambient effect of
surrounding nodes, thermally overloaded computing nodes,
runtime of CPU-intensive jobs, etc.

D. Joint Optimization of Computing and Cooling

Recently, researchers have explored joint optimization of
energy consumption at the computing and cooling system lev-
els. MirhoseiniNejad et al. [39] investigate joint optimization
in heterogeneous DCs, aiming to optimize energy consumption
while considering servers TCs. Unlike conventional strategies
that define a single temperature setpoint for all DC regions,
their approach sets different setpoints for distinct regions. Feng
et al. [34] introduce an energy-aware VM placement design to
optimize power consumption across servers, cooling systems,
and the network. Arroba et al. [40] propose heuristics and
meta-heuristic techniques based on simulated annealing (SA)
to jointly optimize cooling and computing energy.

Recently, Rostami et al. [41] introduce a novel approach to
jointly manage the DC workload and cooling system, focusing
on solving the typically nonlinear optimization challenges
associated with thermal management, converting them into
mixed integer linear programming problems that can be solved
with heuristic methods. The goal is to optimize workload
distribution to minimize cooling power consumption, taking
into account the ambient conditions and operational status of
servers. The proposed framework not only proactively adjusts
to anticipated changes but also reacts to real-time server
utilization and ambient temperature fluctuations, aiming to
reduce overall energy costs while maintaining optimal server
performance. However, the strategies in [39, 34, 40, 41] ignore
the thermal impact of long running CPU-intensive jobs in
large-scale DCs. Hence, the proposed approaches may lead to
thermally overloaded computing nodes as they do not adjust
the workload dynamically at runtime.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the DC, power consumption, and
thermodynamics model followed by the problem formulation.
Table II lists all the symbols with their meanings.

A. Data Center Model

DC constitutes a complex ecosystem comprising a multitude
of critical components, including servers, switches, and vari-
ous infrastructure elements. These components demand a sub-
stantial amount of power supply, particularly when executing

TABLE II: List of Notations

Notation Meaning

𝜁 Set of 𝑁 servers indexed by 𝑖

𝜁HS Set containing hotspots

𝜁OL Set of overloaded servers

𝜆 Set of 𝐽 number of user jobs indexed by 𝑗

𝜆MIG Set of user jobs to migrate

𝜆NEW Set of newly arrived jobs

𝜆CLUSTER Set of clusters created using K-means

𝜋𝑖 Set of jobs run by a computing node 𝑖

𝜌 Priority value of a user job

𝛾 Length of a user job

𭟋 Finishing time of a user job

Γ Deadline of a user job

𝛼 Boolean indicating task assignment

𝑃IDLE Power consumption rate at idle state

𝑃ACTIVE Power consumption rate at active state

CRAC Computer Room Air Conditioner

𝑃CRAC Power consumed by the CRAC

𝑃COMP Power consumed for computing

T SUP Supplied temperature from CRAC

CPUUTIL CPU utilization rate

𝐶𝑜𝑃 Coefficient of performance

𝑃DC Power consumed by the data center

𝑎𝑖𝑖 Ambient effect of node 𝑖 on its neighbor 𝑖

QOUT
𝑖

Heat dissipated by node 𝑖

QIN
𝑖

Heat recirculating into the node 𝑖

QEXT
𝑖

Heat extracted from node 𝑖

T IN
𝑖

Inlet temperature of node 𝑖

TOUT
𝑖

Outlet temperature of node 𝑖

Δ𝑇 Temperature rise

TH Temperature of the hottest node

TC Temperature of the coolest node
ˆ̂𝜏 Threshold temperature

K𝑡 Thermal conductivity constant

𝜚 Air density

H𝑐 Specific heat capacity of air

𝑓 Air-flow rate

D𝑖𝑖 Distance between node 𝑖 and 𝑖

TD Thermal difference

TI Thermal imbalance

A Set of agents/players

𝜐 Utility or payoff function

G = (A, 𝜐) Game with agents A and payoff function 𝜐

C ⊆ A Coalition of agents
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CPU-intensive tasks. Within the DC, servers are organized into
racks, with each rack having one or more switches designed
to facilitate inter-connectivity among the servers. The harmo-
nious integration and management of these intricate compo-
nents are critical to ensure uninterrupted and energy-efficient
DC operation. Understanding the interplay between power
consumption, thermal dynamics, and infrastructure design is
essential for optimizing DCs performance while minimizing
energy expenditure and environmental impact.

In the subsequent discourse, we delve deeper into the DC
intricate aspects, focusing on relationship between energy,
temperature, and operational efficiency in contemporary DCs.
We consider a typical DC, where a job scheduler receives
user requests and dispatches them to available computing
nodes. Consider a heterogeneous DC with 𝑁 number of
servers denoted by 𝜁 = {𝜁1, 𝜁2, . . . , 𝜁𝑁 }. Moreover, a server
may have more than one processing cores denoted as 𝜁𝑖 =

{𝜁𝑖1, 𝜁2, . . . , 𝜁𝑖𝐶 }. Each server may have a different comput-
ing capacity and power consumption rate depending on the
architecture, number of cores, and server enclosure.

B. Incoming User Jobs

Let 𝜆 = {𝜆1, 𝜆2, . . . , 𝜆𝐽 } denotes the set of incoming user
jobs. As depicted in Fig. 2, each user job 𝜆 𝑗 can be further
divided into multiple tasks that can run in parallel on the same
computing node or on different computing nodes. Mathemati-
cally, 𝜆 𝑗 = {𝜆 𝑗1, 𝜆 𝑗2, . . . , 𝜆 𝑗𝐾 }. Moreover, 𝛼 𝑗𝑘_𝑖𝑐 = 1 denotes
that the task 𝑘 of user job 𝑗 is assigned to the core 𝑐 of 𝑖𝑡ℎ

server, and 0 otherwise.

C. Power Consumption Model

We consider an air-cooled DC with raised floor as shown
in Fig. 3. According to literature [12], computing nodes and
CRAC units are the main contributors to the DC energy
cost, accounting for more than 95% of the DC total energy
consumption [42]. In this work, we quantify the DC total
energy consumption as the energy consumed by the computing
nodes and the cooling system. Let 𝑃𝐼𝐷𝐿𝐸

𝑖
and 𝑃𝐴𝐶𝑇𝐼𝑉𝐸

𝑖
be the

power consumption rate of server 𝜁𝑖 in its idle and active states,
respectively. Hence, Eq. (1) depicts the power consumed by
𝜁𝑖 based on its CPU utilization rate.

𝑃𝑖 = 𝑃
IDLE
𝑖 + CPUUTIL

(
𝑃ACTIVE
𝑖 − 𝑃IDLE

𝑖

)
(1)

Let 𝑃COMP denotes the total power consumed by all the
computing nodes in the DC and can be expressed as:

𝑃COMP =

𝑁∑︁
𝑖=1

𝑃𝑖 (2)

The power consumption rate of the CRAC (𝑃CRAC) directly
relates to the power consumed by the computing nodes and
can be computed using Eq. (3):

𝑃CRAC =
𝑃COMP

𝐶𝑜𝑃(T SUP)
(3)

where T SUP defines the supplied temperature from the CRAC.
𝐶𝑜𝑃 quantifies the efficiency of the heat recirculation system
of the DC environment and can be defined as:

𝐶𝑜𝑃(T SUP) = 0.0068 T SUP2 + 0.0008 T SUP + 0.4580 (4)

Now, using the above formulation, we can compute the DC
total power consumption rate as:

𝑃DC = 𝑃COMP + 𝑃CRAC (5)

𝑃DC =

(
1 + 1

𝐶𝑜𝑃(T SUP)

)
𝑃COMP (6)

D. Thermodynamics

Thermodynamics illustrates the heat dissipation of comput-
ing nodes and its effect on the surrounding nodes as shown
in Fig. 4. The T SUP from the cooling system and the heat
dissipated by one node affect the inlet temperature of others.
A rise in the temperature of a computing node affects the
thermal profile of the neighboring servers, also known as
the ambient affect. This phenomena is denoted by a cross-
interference coefficient matrix [31] as follows:

𝑎11 𝑎12 . . . 𝑎1𝑁

𝑎21 𝑎22 . . . 𝑎2𝑁
...

...
...

𝑎𝑁1 𝑎𝑁2 . . . 𝑎𝑁𝑁


where, 𝑎𝑖𝑖 is the (thermal) ambient-effect of node 𝑖 on its
surrounding nodes denoted by 𝑖. Let K𝑡 denotes the thermal-
conductivity constant of air and D𝑖𝑖 is the distance of node 𝑖
from 𝑖. Eq. (7) defines the ambient effect on each computing
nodes as follows:

𝑎𝑖𝑖 = T IN
𝑖 ∗ K𝑡/D𝑖𝑖 (7)

Let QIN
𝑖

and QOUT
𝑖

be the heat recirculating and heat dissipated
by node 𝑖.

QOUT
𝑖 = QIN

𝑖 + E𝑖 (8)

where E𝑖 denotes the node 𝑖 energy consumption. In terms of
inlet and outlet temperatures, we can calculate QOUT

𝑖
and QIN

𝑖

using Eq. (9) and Eq. (10), respectively.

QOUT
𝑖 = 𝜚 𝑓𝑖H𝑐TOUT

𝑖 (9)
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QIN
𝑖 = 𝜚 𝑓𝑖H𝑐T IN

𝑖 (10)

where 𝜚, H𝑐, and 𝑓𝑖 defines the density, specific heat capacity
and flow rate of air, respectively. Moreover, in terms of heat
re-circulation, the inlet, outlet, and supplied temperature to a
computing node 𝑖 can be written as:

QIN
𝑖 =

𝑁∑︁
𝑖,𝑖=1

𝑎𝑖𝑖QOUT
𝑖
+ QSUP

𝑖 (11)

QOUT
𝑖 =

𝑁∑︁
𝑖,𝑖=1

𝑎𝑖𝑖 𝜚 𝑓𝑖H𝑐QOUT
𝑖
+ QSUP

𝑖 + E𝑖 (12)

QSUP
𝑖 = 𝜚( 𝑓𝑖 − 𝑎𝑖𝑖 𝑓𝑖)H𝑐T SUP (13)

putting the value of 𝑄SUP
𝑖

from Eq. (13) into Eq. (11) and Eq.
(12), we get:

QIN
𝑖 =

𝑁∑︁
𝑖,𝑖=1

𝑎𝑖𝑖QOUT
𝑖
+ 𝜚( 𝑓𝑖 − 𝑎𝑖𝑖 𝑓 𝑗 )H𝑐T SUP (14)

QOUT
𝑖 =

𝑁∑︁
𝑖,𝑖=1

𝑎𝑖𝑖QOUT
𝑖
+ 𝜚( 𝑓𝑖 − 𝑎𝑖𝑖 𝑓𝑖)H𝑐T SUP + E𝑖 (15)

Finally, the heat extracted can be calculated as:

QEXT
𝑖 = 𝜚 𝑓𝑖H𝑐 (TOUT

𝑖 − T IN
𝑖 ) (16)

E. Problem Formulation

Without proper thermal management, thermal-imbalances
and hotspots may arise inside DCs. It is evident from the
literature [8] that the energy cost during the life-time of a
hotspot is higher than the energy-savings during its computa-
tions. In this work, the main objective of the proposed system
is to minimize the thermal imbalance, avoid hotspots, and
at the same time, keep the temperature values of servers to
lowest. In the following text, we highlight the relationship
between thermal uniformity and energy consumption. The
thermal difference between any two nodes 𝑎 and 𝑏 can be
defined as T𝑏 −T𝑎 where T𝑏 > T𝑎. We define the total thermal
difference as the sum of the temperature difference of each
computing node from the temperature of the hottest computing
node at any time interval. Mathematically:

TD =
∑︁
𝑖∈𝑁

(
TH − T𝑖

)
(17)

The higher the value of TD, the lower the thermal balance
inside DC environment and vice versa. However, the lower the
value of TD doesn’t necessarily mean the better the thermal
balance achieved and vice versa. This is because the optimal
thermal conditions also depend on how high the value of TH

is. To understand how the energy consumed by the CRAC
units increases with the increase in server temperature, Section
III-D depicts the relationship between the server temperature,
the supplied temperature from CRAC units, and the energy
consumed by the CRAC units for the supplied temperature.
The energy consumption of the CRAC units increases when

the supplied temperature is lowered, and vice versa. Moreover,
the supplied temperature from CRAC is lowered when the
temperature of servers is high. Hence, the thermal balance is
optimal if we attain lower values of TH and at the same time,
the value of TD is minimized. Therefore, in this paper, we
define thermal imbalance as:

TI =
(
TH + T C

)
TD (18)

Based on the above equation, the thermal imbalance is mini-
mized if the temperature value of the hottest, coolest comput-
ing node, and the value of TD are minimized at the same time.
Therefore, the objective of the proposed system is to minimize
the thermal imbalance inside DC environment as depicted in
the following equation:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (TI) (19)

Subject to:
𝑁,𝐽,𝐾∑︁
𝑖, 𝑗 ,𝑘=0

𝛼 𝑗𝑘_𝑖𝑐 = 1 (20)

𭟋 𝑗 ≤ Γ 𝑗 , ∀ 𝑗 ∈ 𝜆 (21)

T𝑖 ≤ ˆ̂𝜏𝑖 , ∀𝑖 ∈ 𝜁 (22)

According to Eq. (20), each task 𝑘 ∈ 𝜆 𝑗 should be assigned
to only one processing core at any time. The constraint in Eq.
(21) states that every user job finishing time 𭟋 𝑗 should be less
than its deadline Γ 𝑗 – enough resources must be assigned to
avoid SLA violations. In other words, in addition to the task
TP and CPU-time, the CGTAS also considers the deadline
of user jobs during the scheduling process. Hence, all user
jobs receive fair amount of resources. Finally, Eq. (22) depicts
that the computing nodes temperatures should not violate their
thermal constraints ˆ̂𝜏𝑖 .

IV. THE CGTAS DESIGN

Fig. 5 provides an overview of the proposed system high-
lighting the novel contributions. The proposed CGTAS has two
main components: (1) The Core-based task scheduler, and (2)
Job manager that clusters and sorts incoming user jobs based
on their thermal and temporal characteristics. The proposed
CGTAS model uses the Core [10, 16] solution concept from
CGT to distribute the incoming jobs among the computing
nodes based on their relative thermal performance within the
DC. The proposed design has the following differences com-
pared to existing TA designs: firstly, it considers the duration
of user jobs during task allocation and migration. Secondly,
it uses the Core solution concept to determine the optimal
proportion of user jobs to be assigned to each computing node
based on its marginal impact on the DC thermal performance.
Thirdly, it detects the thermally overloaded nodes using the
proposed Core solution. Finally, the proposed strategy is
adaptive as it adjusts the workload on each node by migrating
jobs from thermally overloaded nodes to underloaded ones.

The proposed CGTAS performs the following steps to attain
better thermal uniformity and minimize the DC energy cost.
Firstly, it partitions the set of incoming user jobs into clusters
based on their TPs and sorts them based on their length and
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Fig. 5: Architecture of the proposed system

TPs in each cluster. Secondly, it uses the Core solution concept
to find the proportion of workload to be assigned to each
computing node based on their relative thermal readings –
computing nodes with lowest temperature values receive more
jobs. Thirdly, using the Core solution concept, it identifies
overloaded computing nodes in a TA context and considers
migrations to optimize the DC thermal conditions. Finally, the
second and third steps are followed at both the DC level as
well as the rack level to achieve optimal thermal balance.

A. User Jobs Classification using K-means clustering

We obtain the workload trace from the "Center of Com-
putational Research (CCR), State University of New York
at Buffalo." The Buffalo dataset encompasses a substantial
corpus of 22,385 user jobs observed over a 30-day period.
Fig. 6 and 7 depict the distribution of jobs based on their
temperature rise and CPU time, respectively. Incoming jobs
can be classified based on their thermal consequences in terms
of temperature rise from very hot to very cold (very hot, hot,
warm, cold, very cold). In order to classify the incoming user
jobs, we use K-means clustering in our study.

K-means is a machine learning algorithm used to develop
a clustering model based on some input data points. The
main idea is to minimize the distance between data points in
each cluster and its center. There are different distance metric
available such as the Euclidean and the Manhatan distance to
calculate the distance between data points and cluster centers.
In this paper, we use the Euclidean distance as a measure
of similarity among data points and the cluster centers.
Algorithm 1 depicts the main steps of the K-means algorithm.
The algorithm takes data points (temperature data) and the
number of clusters represented by K as input. We provide
𝐾 = 5 for this study. The algorithm starts by randomly
choosing 𝐾 points as the centers of 𝐾 clusters/groups. After
choosing random centers, for each data point, the algorithm
computes distance between the data point (temperature value)
and the cluster centers. In step 3, the algorithm assigns each
data point to a cluster with minimum distance. In step 4, the
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Fig. 6: Distribution of jobs
based on their temperature

Fig. 7: Distribution of jobs
based on their CPU time

Algorithm 1: K-means

Input: Data points (Temperature values), 𝐾 (number
of clusters)

Output: K number of clusters

1 Randomly select k number of data points as the cluster
centers

2 For each data point, compute its distance from the
cluster centers

3 Assign each data point to a cluster with minimum
distance

4 Recalculate the cluster centers
5 Repeat step 2,3, and 4 until convergence or for

specified number of iterations

algorithm recalculates the center of each cluster by taking the
mean value within the cluster. Finally, the algorithm repeats
step 2, 3, and 4 until the it converges or the specified number
of iterations are performed.

Table III shows the results of K-means clustering applied
on the Buffalo dataset. After getting the clusters, the proposed
approach sorts the array of clusters based on their centers. In
other words, the proposed approach schedules the jobs in a
cluster with highest center value first. Furthermore, since we
consider the length of the incoming user jobs, the user jobs
within each cluster are sorted based on their priority 𝜌 from
highest to lowest value calculated using the following formula:

𝜌(𝜆 𝑗𝑘) =
𝛾(𝜆 𝑗𝑘) × Δ𝑇 (𝜆 𝑗𝑘)
𝛾(𝜆 𝑗𝑘) + Δ𝑇 (𝜆 𝑗𝑘)

(23)

where 𝛾(𝜆 𝑗𝑘) and Δ𝑇 (𝜆 𝑗𝑘) denotes the length and temperature
rise due to running a task 𝜆 𝑗𝑘 , respectively. Furthermore, the
k-means clustering takes 0.05 seconds to build the model.
However, increasing the number of parallel threads from 1
to 3 reduces the computation time from 0.05 to 0.03 seconds.
Number of threads higher than 3 does not improve the per-
formance of the k-means clustering for our dataset. Therefore,
we keep the number of threads to 3.

B. Coalitional Game-based TA Task Allocation

In a coalitional game (CG), the players make coalitions
to maximize their benefits. The Core provides a stable and
efficient way to distribute the payoff (user jobs) of any
coalition among its members (computing nodes).
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Cluster Centroid Instances Job Category

1 110.98 4029 (18%) Very hot

2 102.34 6491 (29%) Hot

3 95.24 6043 (27%) Warm

4 89.74 4253 (19%) Cold

5 84.00 1576 (7%) Very Cold

TABLE III: K-means clustering results

Definition: (Coalitional game with Transferable Utility) A
CG with TU is defined by a tuple G = (A, 𝜐), where A
is the set of 𝑁 agents/players and 𝜐 : 2A → 𝑅 defines
the utility function. 𝜐(C) assign each coalition C ∈ A a
real value payoff. Finally, A is a finite set. The main goal
of coalition formation games is to encourage and ensure
grand coalition among the agents. This can be achieved by a
payoff distribution mechanism that can define fair and efficient
allocation of payoff (cost or benefit) among the players of
the game to motivate the players towards the grand coalition.
There are two main solution concepts such as the Core and the
Shapley value used to achieve the said goal. In this paper, we
use the Core value as it offers stable cost/benefit distribution
compared to the Shapley value [16].

In the proposed CG, the set of agents/players A contains
all the computing nodes. The transferable utility in the game
is the incoming user jobs. Finally, the CG uses Eq. (24) to
allocate the incoming user jobs among the computing nodes.
Since the CGTAS uses the Core solution concept, we describe
the properties of the proposed game in general and the Core
solution in particular in the subsequent discourse.

𝜐(C) =



𝜆

𝑁
, 𝑖 𝑓 TH − T C = 0

0, 𝑖 𝑓 TH − 𝑚𝑖𝑛{T̆𝑖 | 𝑖 ∈ C} = 0∑ TH − {T̆𝑖 | 𝑖 ∈ C}∑
𝑖∈𝑁 TH − T𝑖

× 𝜆, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(24)

where TH and T̆𝑖 define the temperature of the hottest node in
the DC and the node 𝑖 in a coalition C, respectively. Similarly,
T𝑖 is the temperature of 𝑖𝑡ℎ node in 𝜁 , and 𝜆 is the set of user
jobs to be assigned to computing nodes in C.

Definition: (the Core) A payoff vector 𝑃 is in the Core of
the game G = (A, 𝜐) if the following two conditions are met:
(i)

∑
𝑖∈A P𝑖 = 𝜐(A), and

(ii) ∀ C ⊆ A,∑ 𝑗∈C P 𝑗 ≤ 𝜐(C)
Before discussing the non-emptiness of the Core for our
proposed workload distribution game, we first highlight some
of the important definitions related to the CGs with TU. Intro-
ducing these concepts will help us understand the properties
of our proposed game.

Definition: (Superadditive Game) G = (A, 𝜐) is a Super-
Additive game if ∀ C𝑖 , C𝑗 ⊂ A 𝑎𝑛𝑑 C𝑖 ∩C𝑗 = ∅, 𝑡ℎ𝑒𝑛 𝜐(C𝑖 ∪
C𝑗 ) ≥ 𝜐(C𝑖) +𝜐(C𝑗 ). Informally, the value of a grand coalition
is at least equal to the sum of payoffs of all non-overlapping set

of coalitions in a superadditive game. Hence, in superadditive
games, the grand coalition always provides maximum benefits
to its members. The proposed workload distribution game
with utility function defined in Eq. (24) is SuperAdditive as
for any two non-intersecting subsets C1 and C2 of A, the
𝜐(C1 ∪ C2) = 𝜐(C1) + 𝜐(C2).

Definition: (Additive Game) G = (A, 𝜐) is an Additive
game if ∀ C𝑖 , C𝑗 ⊂ A and C𝑖 ∩ C𝑗 = ∅, then 𝜐(C𝑖 ∪
C𝑗 ) = 𝜐(C𝑖) + 𝜐(C𝑗 ). Informally, in an additive game, the
non-overlapping coalitions C𝑖 and C𝑗 can never affect one
another. Since, all Additive games are SuperAdditive games
by definition, the proposed game is also Additive in nature.

Definition: (Constant-Sum Game) G = (A, 𝜐) is a
constant-sum game if ∀ C ⊂ A, 𝜐(C)+𝜐(A\C) = 𝜐(A). Since
the proposed workload distribution game with utility function
defined in Eq. (24) is an Additive game, the expression
𝜐(C) + 𝜐(A\C𝑖) = 𝜐(A) holds for any coalition C𝑖 as A\C𝑖
and C𝑖 are two non-overlapping subsets of A (Additivity
property).

Definition: (Convex Game) G = (A, 𝜐) is a convex game
if ∀ C𝑖 , C𝑗 ⊂ A, 𝜐(C𝑖 ∪ C𝑗 ) ≥ 𝜐(C𝑖) + 𝜐(C𝑗 ) − 𝜐(C𝑖 ∩ C𝑗 ). To
prove that the proposed game is a convex game, let us consider
A = {1, 2, 3} and C1 = {1, 2}, C2 = {2, 3} are two overlapping
subsets of A. Now, the C1 ∩ C2 = {2}. The proposed game is
a convex game if:

∀ C1, C2 ⊂ A, 𝜐(C1 ∪ C2) ≥ 𝜐(C1) + 𝜐(C2) − 𝜐(C1 ∩ C2)

Using the Additivity property (proved earlier), 𝜐(C1) =

𝜐({1}) + 𝜐({2}) and 𝜐(C2) = 𝜐({2}) + 𝜐({3}). Putting these
values in Eq. IV-B, we get:

𝜐({1, 2, 3}) ≥ 𝜐({1}) + 𝜐({2}) + 𝜐({2}) + 𝜐({3}) − 𝜐({2})

𝜐({1, 2, 3}) ≥ 𝜐({1}) + 𝜐({2}) + 𝜐({3}))

Hence the proposed game is a Convex game.

Theorem: The workload distribution game (A, 𝜐) with TU
is a convex game and therefore, it has a non-empty Core.

Proof: We have proved that the proposed workload distri-
bution game is a convex game. Proving every convex game
has a non-empty Core is well-studied in literature [11]. To
prove that the proposed game has a non-empty Core, we use
the concept of balanced game.

Definition: A vector 𝑊 is a balanced collection of weights
if it assigns a positive weight 𝑊C to each C ∈ A and ∀ 𝑗 ∈
A,∑C: 𝑗∈C𝑊C = 1.

Theorem: (Bondareva-Shapley) The proposed workload
distribution game G = (A, 𝜐) has a non-empty Core if:

∀𝑊C ,
∑︁
C⊆A

𝑊C × 𝜐(C) ≥ 𝜐(A)

Proof: Based on the above definition, the proposed game
(A, 𝜐) where 𝜐 is the utility function defined in Eq. 24
has a non-empty Core if and only if the linear program the
following equation yields exactly 𝜐(A).
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
∑︁
𝑗∈A
P 𝑗

𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 ∀C ∈ A :
∑︁
𝑗∈C
P 𝑗 ≤ 𝜐(C)

(25)

where P 𝑗 denotes the payoff of agent 𝑗 when it chooses not
to be part of any coalition. Using the strong linear program
duality, the following linear program results the same output:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑︁
C∈A

𝑊C × 𝜐(C)

𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 ∀ 𝑗 ∈ A :
∑︁
C: 𝑗∈C

𝑊C = 1, 𝑎𝑛𝑑

∀C ⊆ A : 𝑊C ≥ 0

(26)

Now, putting the value of 𝜐(C) from Eq. 24 into the Eq. 26,
we get

∑
C⊆A𝑊C × 𝜐(C) = 𝜐(A) for every balanced 𝑊C and

for all the three scenarios depicted in Eq. 24. Therefore, the
Core of the proposed game is non-empty.

C. Detecting overloaded nodes using the Core

Due to the heterogeneity of user jobs in terms of runtime,
it is possible that some computing nodes get overloaded
compared to others for a long period of time. In contrast to
the prior investigation in [9], our proposed approach suggests
a novel means of detecting overloaded computing nodes based
on the Core solution from CGT. After detecting the overloaded
computing nodes, the proposed approach migrates user jobs
from overloaded to the most appropriate computing node to
attain best thermal outcomes.

The proposed design identifies overloaded nodes by cal-
culating the difference between the number of jobs currently
running on these nodes and the number of jobs suggested by
the Core based on their current temperature readings. If the
number of jobs running on a computing node exceeds the
Core’s recommended allocation, it is deemed overloaded from
a thermal perspective. For instance, consider the following
scenario. A server 𝜁𝑖 is operating at temperature T𝑖 while
running 𝜋𝑖 workload. Assuming that the Core solution suggests
𝜆Core
𝑖

< 𝜋𝑖 number of user jobs to be assigned to 𝜁𝑖 based on
its temperature T𝑖 . Hence, the computing node is considered
as overloaded, denoted by 𝜁OL

𝑖
, in thermal-aware context.

Mathematically:

𝜁OL
𝑖 =

{
1, 𝑖 𝑓 𝜋𝑖 > 𝜆

Core
𝑖

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(27)

Hence, when 𝜁OL
𝑖

= 1, we need to migrate 𝜋𝑖 − 𝜆Core
𝑖

number
of user jobs from 𝜁𝑖 to enhance the thermal performance of
the system.

D. Proposed Scheduling Algorithm

In the following text, we present the proposed CGTAS algo-
rithm based on the Core solution concept presented in Section
IV-B. Algorithm 2 outlines the crucial steps undertaken by
the CGTAS to optimize the thermal consequences inside DCs.
The algorithm takes two primary inputs: the set of available

Algorithm 2: CGTAS

Input: 𝜁, 𝜆NEW

Output: Optimal Assignment Map for Tasks 𝜆 to 𝜁
1 𝜆 ← ∑𝑁

𝑖 𝜋𝑖 ∪ 𝜆NEW

2 𝜆Core ← FindCore(𝜆𝑡 , 𝜁)
3 𝜁HS ← GetHotspots(𝜁)
4 𝜆MIG ← GetTasksToMigrate(𝜁HS)
5 𝜁OL ← GetOverloadedServers(𝜁, 𝜆Core)
6 𝜆MIG ← 𝜆MIG ∪

GetCoolestTasksToMigrate(𝜁OL, 𝜆Core)
7 𝜆 ← 𝜆MIG ∪ 𝜆
8 𝜆CLUSTER ← classifySort(𝜆)
9 𝜁 ← 𝜁 − 𝜁OL − 𝜁HS

10 foreach 𝜆𝑐 ∈ 𝜆CLUSTER do
11 Δ𝑇 ← {}
12 while 𝜆𝑐 is not empty do
13 𝑗 ← first(𝜆𝑐)
14 while 𝑗 is not empty do
15 𝑘 ← first( 𝑗)
16 while 𝜁 is not empty do
17 𝑖 ← next(𝜁)
18 Δ𝑇 [𝑖] ← CalcTempRise(𝑘, 𝑖)
19 𝑖∗ ← argmin(Δ𝑇 )
20 assign(𝑘, 𝑖∗)
21 remove 𝑘 from 𝑗

22 remove 𝑗 from 𝜆𝑐

23 if 𝜋𝑖∗ >= 𝜆
Core
𝑖∗ then

24 remove 𝑖∗ from 𝜁

servers 𝜁 and the set of newly arrived user jobs 𝜆NEW. The
objective is to determine the most advantageous assignment
map, one that optimizes thermal consequences (temperature
rise) of assigning the workload 𝜆 to 𝜁 .

The algorithm begins by adding the number of jobs cur-
rently running on all the servers to the newly arrived jobs to
calculate the total workload to be run by the system (Line
1). Then, it calculates the payoff (workload proportion) for
each computing element 𝜁𝑖 ∈ 𝜁 using the Core solution
concept (Section IV-B for details) (Line 2). The workload
proportion recommended by the Core is denoted by 𝜆Core.
The algorithm then identifies all the servers exceeding their
thermal constraints, denoted by 𝜁HS at Line 3.

Subsequently, it gets suggested migrations from the
hotspots, aimed at keeping them below their predefined tem-
perature thresholds. The function GetTasksToMigrate chooses
the CPU-intensive jobs running on the selected computing
node for migration until the expected temperature of the
computing node is below the threshold temperature value.
These suggested task migrations are added to the set of
migrations to be performed denoted as 𝜆MIG.

Similarly, the algorithm identifies all overloaded servers
based on the proportions recommended by the Core (Section
IV-B) at Line 5. If the number of user jobs currently running
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on the selected server exceeds the suggested proportion, signi-
fying overload, the algorithm obtains suggested migrations by
calling the GetCoolestTasksToMigrate, which are again added
to the set of migrations to be performed 𝜆MIG (see Line 6). It is
important to note that the function GetCoolestTasksToMigrate
chooses 𝜋𝑖 − 𝜆Core

𝑖
number of coolest tasks running on the

selected server for migration so that the number of tasks
running is less than or equal to the Core’s recommended value
𝜆Core
𝑖

. 𝜆MIG is then added to the total number of jobs to be
scheduled 𝜆 at Line 7.

To classify user jobs based on their TP, the algorithm
invokes classifySort function at Line 8. It categorizes the
𝜆 into an array of 5 clusters (from very_hot to very_cold)
denoted by 𝜆CLUSTER using the K-means clustering approach.
Furthermore, the classifySort function sorts the jobs within
each cluster 𝜆𝑐 ∈ 𝜆CLUSTER based on their duration and TP
using Eq. (23) (Section IV-A). At Line 9, it removes hotspots
and overloaded servers from the set of available servers, as
these servers cannot accommodate additional jobs.

Next, the algorithm iterates through each cluster in 𝜆,
prioritized based on their thermal profiles, with the aim of op-
timizing thermal outcomes for all feasible assignments (refer
to Line 10 to 24). It initializes an empty map called ’utilities’
to store the corresponding utility values for various possible
assignments. The algorithm iterates through the selected user
jobs until the subset is empty (see Line 12). It selects the first
job 𝑗 in the subset (Line 13) and assigns all the tasks 𝑘 ∈ 𝑗
until no more tasks are left. To do so, it iterates through all
available servers in 𝜁 (Line 16), calculating the temperature
rise for possible assignments of the 𝑘 to each server 𝑖 and
storing the value in the Δ𝑇 map against the selected server 𝑖
(see Line 18). After computing temperature rise for all possible
allocations against the selected task 𝑘 , the algorithm identifies
the server 𝑖∗ that results in optimal thermal consequences in
terms of temperature rise, assigns the task to the server 𝑖∗, and
removes the selected task 𝑘 from 𝑗 (see Line 19 to 21).

The steps from 12 to 21 are related to optimal scheduling
of tasks. This is done by traversing each task within every job
arrived at the system, and the available servers. At the end of
traversal, the function basically creates an allocation map that
stores the thermal consequences for the selected task against
each computing node. The algorithm then chooses the optimal
allocation (that is the server with optimal thermal outcomes
denoted by 𝑖∗) based on the thermal readings in the allocation
map. These steps help identifying the impact of each task on
each server and its surrounding servers within the system,
then find the server with best thermal consequences among
all the servers leading to optimal allocation of user jobs to
the available servers. Lastly, after assigning all the tasks in
selected job 𝑗 to server(s), the selected job 𝑗 is removed from
the job cluster 𝜆𝑐. Finally, if the assigned workload exceeds
or equals the workload recommended by the Core, the server
𝑖∗ is removed from the set of available servers 𝜁 . This process
is repeated until all the jobs in each cluster are allocated.

The complexity of the CGTAS can be divided into two main
parts. First, the calculation of the exact Core for the proposed
CG. Calculating the exact Core of a CG is NP-hard. However,
approximating the Core is a well-studied problem – there is

TABLE IV: Server configurations

Enclosure (CPU) (Ghz) (Cores/Chips)

S1 Asus RS720-E9/RS8 (Xeon Platinum 8180)(2.5)(56/2)

S2 Acer AR580 F2 (Xeon E5-4607)(2.2)(24/4)

S3 Dell PowerEdge R7425 (AMD EPYC 7601)(2.2)(63/2)

S4 ThinkSystem SR650 (Xeon Platinum 8176)(2.1)(56/2)

S5 HP ProLiant DL110 (Xeon Gold 6314U)(2.3)(32/1)

TABLE V: The power usage of different configurations

0% 10% 20% 30% 50% 70% 90% 100%

S1 49 106 129 154 205 269 347 385

S2 109 155 170 184 211 252 324 368

S3 77 128 144 157 184 218 253 268

S4 58 119 139 159 197 242 314 357

S5 94 104 116 130 156 197 287 307

TABLE VI: The organization of servers in each setting

Racks Servers S1 S2 S3 S4 S5

15 300 75 25 75 100 25

20 350 75 125 25 75 50

20 400 50 75 125 25 125

25 450 75 50 150 100 75

25 500 100 100 100 100 100

a plethora of approaches such as [16, 43, 44] available in
the literature to efficiently calculate the Core. Moreover, it
is also important to note that the complexity of calculating
the core depends on the number of computing nodes and not
the number of user jobs. Second, the scheduling of user jobs
based on the Core value. The complexity of the second part is
𝐽×𝐾×𝑁 , where 𝐽, 𝐾, and 𝑁 denote the number of jobs, tasks
in each job, and computing nodes. Hence, the computational
complexity of the proposed algorithm mainly depends on the
complexity of the Core solution. However, in this paper, we
follow the approximation approach proposed in [16] due to the
availability of source code. Therefore, the proposed approach
can be easily scaled for large-scale hierarchically organized
DCs with thousands of servers and millions of task requests.

V. SIMULATION RESULTS AND DISCUSSION

To empirically validate the efficacy of our proposed CGTAS
design, we conduct a comprehensive comparative analysis
using simulations, contrasting its performance against several
TA designs (TASA [30], GTARA [8], and SW [9]). The TASA
prioritizes user jobs and computing units based on their TPs;
hottest jobs are assigned to coolest nodes first. However, there
is no mitigation strategy when servers reach their vendor-
specified TCs. In addition to performing migrations when a
server reaches its threshold value, the GTARA also considers
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GTARA CGTASSWTASA

Fig. 8: Comparison of DC thermal uniformity achieved by
each strategy over time

GTARA CGTASSWTASA

Fig. 9: Comparison of servers’ maximum temperature due to
each strategy over time

 CGTAS

Fig. 10: Comparing total energy
consumed by each scheduling design

 CGTAS

Fig. 11: Comaring the number of
migrations against each approach

 CGTAS

Fig. 12: Comparison of SLA violation
rate due to each scheduling strategy

ambient temperature of surrounding nodes during the task
scheduling process. Moreover, the GTARA uses cooperative
game with Nash equilibrium solution concept to attain optimal
thermal conditions. The SW strategy uses the Shapley value
from CGT to avoid thermal imbalance and hotspots by as-
signing user jobs to computing nodes based on their marginal
thermal performance inside DC. Similar to the GTARA, the
SW also considers task migrations to avoid hotspots.

Our evaluation includes the following critical metrics: ther-
mal uniformity attained over time, maximum server temper-
ature recorded over time, energy consumption, task migra-
tions, SLA violations, number of hotspots, maximum supplied
temperature, and minimum inlet temperature. We conduct
simulations using a real DC workload trace from the "Center
of Computational Research (CCR), State University of New
York at Buffalo". The dataset encompasses a substantial corpus
of 22,385 user jobs observed over a 30-day period. Finally,
we consider five server configurations in terms of computing
capacity and power usage as depicted in Table IV and Ta-
ble V, respectively. These settings have been adopted from
benchmark results [45]. Since 2007, the benchmark results
are quarterly updated every year. Lastly, servers are arranged
according to settings listed in Table VI.

To compare the efficacy of CGTAS in attaining thermal
efficiency, we compare thermal uniformity (TU) and the
maximum server temperature reached over time against the
TASA, GTARA, and SW. We calculate TU as "the temperature
difference between the hottest and the coolest pod at any
particular instance of time". Fig. 8 shows the TU achieved
over time. The proposed CGTAS technique attains better TU
as opposed to its TA counterparts due to the fact that it adapts
the workload on computing infrastructure at runtime based
on the dynamic thermal conditions of the DC environment.

During the entire simulation, the highest value recorded for
TU is 43.87, 47.14, 54.11, and 59.78 for the CGTAS, SW,
GTARA, and TASA, respectively. Similarly, the lowest TU
values recorded for the CGTAS, SW, GTARA, and TASA are
35.37, 40.57, 42.69, 47.86, respectively.

Fig. 9 shows the maximum server temperature values
recorded over time. As depicted in Fig. 9, the proposed CG-
TAS technique is effective in lowering the server temperature
readings due to the fact that it dynamically adapts the workload
running on the computing nodes using the Core solution.
Although the GTARA and the SW perform better than the
TASA, they result in significantly higher server temperature
values compared to the CGTAS. The highest value recorded
for the maximum server temperature is 193.78, 190.32, 187.81,
and 185.63 for the TASA, GTARA, SW, and CGTAS strate-
gies, respectively. Similarly, the lowest values recorded for
the TASA, GTARA, SW, and CGTAS are 187.91, 183.98,
182.12, and 181.24, respectively. In short, the proposed TA
strategy attains lower server temperature values, and at the
same time, effectively manages to minimize the thermal-
imbalance leading to lower cooling cost.

Fig. 10 compares the CGTAS with its TA counterparts in
terms of energy efficiency (total energy consumed). The total
energy used is calculated as the sum of energy consumed
by the computing nodes and the cooling system. It can be
observed that the CGTAS techniques results in lower energy
consumption compared to its TA substitutes for all the set-
tings. Specifically, the proposed TA strategy achieves 26.08%,
17.20% and 8.91% average energy savings compared to the
TASA, GTARA, and SW, respectively.

Fig. 11 depicts the total number of task migrations (the
sum of both interpod and intrapod migrations) against each
scheduling strategy. In our experiments, we assume that 50%
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of the CPU is utilized by the migration process. Fig. 11 does
not show any migrations for the TASA strategy – the TASA
allocates incoming user jobs in thermal-aware fashion and does
not perform any migrations to mitigate hotspots. It can be
observed that the proposed strategy performs the least number
of migrations compared to any other strategy; however, the
difference is not very significant when compared to the SW
strategy. In other words, the proposed approach attains better
thermal balance and lower server temperature values due to the
fact that the CGTAS is adaptive in nature, and it adjusts the
assigned load to each overloaded computing node at runtime
using task migrations. Overall, energy savings attained by the
CGTAS significantly outweighs the migration overhead.

Fig. 12 compares the SLA violation rate due to the TASA,
GTARA, SW, and CGTAS. SLA can be defined as "the least
amount of resources to be allocated to finish a job before its
deadline." Fig. 12 illustrates that the CGTAS design results
in lower SLA violation rate compared to the TASA, GTARA,
and SW due to the fact that it effectively avoids the creation of
hotspots. Also, we consider different settings by varying the
number of servers from 300 to 500 nodes. In all these settings,
the CGTAS strategy outperforms its counterparts.

Fig. 13 compares the number of hotspots arised due to each
strategy. We consider a computing node as a hotspot when it
reaches or exceeds its vendor-specified threshold temperature.
In this context, the TASA approach performs worst and results
in highest number of hotspots compared to any other strategy.
The number of hotspots due to the GTARA is slightly higher
than that of the SW strategy; however, the difference is very
negligible. Finally, the proposed CGTAS performs best and
effectively reduces the number of hotspots due to adaptively
adjusting the workload based on the relative thermal perfor-
mance of computing nodes using the Core solution from CGT.

Fig. 14 compares the maximum supplied temperature 𝑇𝑆𝑈𝑃
from the cooling system for each scheduling strategy. It can
be observed that the 𝑇𝑆𝑈𝑃 for the TASA strategy is very
low leading to extremely high energy costs. The supplied
temperature for the GTARA and the SW strategy are also
very low compared to the CGTAS; however, the SW strategy
performs slightly better than the GTARA. Moreover, it can be
observed that the difference between the supplied temperature
due to CGTAS and the rest of the strategies increases with the
increase in number of running servers. Overall, the proposed
CGTAS design performs better than any other strategy and
leads to higher 𝑇𝑆𝑈𝑃 value for all server configurations.

Fig. 15 shows the minimum inlet temperature recorded
against each scheduling strategy (TASA, GTARA, SW, and
CGTAS). We compare the inlet temperature with respect to
the utilization rate (between 0 and 1) of the DC where 1
indicates 100% utilization and 0 indicates 0% utilization of
the whole capacity. For lower utilization rates, the difference
between the inlet temperature readings for all the strategies
is not very significant. However, as the utilization rate of
the DC increases, the inlet temperature difference increases
gradually, reaching the highest values at 90% utilization rate.
The CGTAS results performs better than its counterparts and
effectively manages to keep the inlet temperature higher.

In summary, the proposed coalitional game-based TA task
allocation outperforms its TA substitutes. It attains better
temperature values and energy savings compared to the TASA,
GTARA and SW.

VI. CONCLUSION

This work introduces a Coalitional Game-based Ghermal-
aware Adaptive Scheduler (CGTAS). The CGTAS considers
both the CPU time of user jobs and their thermal profiles. It
intelligently allocates lengthy CPU-intensive task to a server
offering optimal thermal performance. Additionally, using the
Core solution concept from CGT, the proposed TA design dy-
namically adapts the proportion of workload across computing
nodes based on their relative temperatures in real-time. Also,
it identifies the overloaded computing nodes using the Core
and considers tasks migrations to lower server temperatures,
avoid hotspots, and optimize thermal consequences. In other
words, the CGTAS reduces the thermal difference among the
computing nodes and at the same time, it effectively manages
to keep the servers temperatures lower.

The CGTAS employs K-means clustering approach to opti-
mize thermal consequences of allocating long CPU-intensive
tasks. After creating clusters based on the thermal profiles
of the incoming user jobs, the proposed approach sorts the
user jobs in each cluster based on their duration and thermal
consequences. By considering the duration of incoming user
jobs during scheduling and dynamically redistributing the
tasks across computing nodes based on their real-time thermal
profiles using the Core solution from CGT, the CGTAS consis-
tently demonstrates superior effectiveness in achieving optimal
thermal performance compared to existing TA methods.

Extensive simulations using a real-world dataset as input to
a TA simulator show that our proposed scheduling strategy
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outperforms its TA counterparts. The results indicate an aver-
age energy savings of 26.08%, 17.20%, and 8.91% compared
to the TASA, GTARA, and SW, respectively. In conclusion,
the proposed coalitional game-based strategy enhances thermal
efficiency and reduces energy costs for DC operations, pro-
moting sustainable and high-performance computing infras-
tructure.
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