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Abstract—To address the performance limitations caused by
the insufficient computing capacity and energy of edge internet
of things devices (IoTDs), we proposed a multi-unmanned aerial
vehicles (UAV)-assisted mobile edge computing (MEC) application
framework in this article. In this framework, UAVs equipped with
high-performance computing devices act as aerial servers deployed
in the target area to support data offloading and task computing
for IoTDs. We formulated an optimization problem to jointly op-
timize the connection scheduling, computing resource allocation,
and UAVs’ flying trajectories, considering the device offloading
priority, to achieve a joint optimization of energy consumption and
latency for all IoTDs during a given time period. Subsequently,
to address this problem, we employed deep reinforcement learn-
ing for dynamic trajectory planning, supplemented by optimiza-
tion theory and heuristic algorithm based on matching theory to
assist in solving connection scheduling and computing resource
allocation. To evaluate the performance of proposed algorithm,
we compared it with deep deterministic policy gradient, particle
swarm optimization, random moving, and local execution schemes.
Simulation results demonstrated that the multi-UAV-assisted MEC
significantly reduces the computing cost of IoTDs. Moreover, our
proposed solution exhibited effectiveness in terms of convergence
and optimization of computing costs compared to other benchmark
schemes.

Index Terms—Computing resource allocation, connection
scheduling, deep reinforcement learning (DRL), mobile edge
computing (MEC), trajectory optimization, unmanned aerial
vehicles (UAVs).

I. INTRODUCTION

THE rapid development of internet of thing (IoT) tech-
nologies has had a tremendous impact on people’s lives

and production. Although these various devices bring us more
convenience, their performance improvement has been greatly
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hindered due to the limitation of computing resources and avail-
able energy.

Mobile edge computing (MEC) [1], a novel distributed com-
puting paradigm, aims to deploy computing, storage, and net-
work resources at the edge locations close to the end devices,
in order to provide faster, more reliable, secure, and flexible
service experience. It has a wide range of applications and is con-
sidered a forward-looking solution to address the performance
limitations of internet of things devices (IoTDs) [2]. Meanwhile,
unmanned aerial vehicles (UAVs) [3], with their maneuverabil-
ity, portability, and height advantage, have garnered significant
attention in the field of wireless communication when combined
with MEC.

Compared with traditional ground edge nodes, UAVs as
mobile edge nodes have three main advantages [4], [5]. First,
UAVs can quickly and conveniently be deployed in target areas,
breaking through the influence of terrain factors and height
limitations that ground edge nodes face. Second, UAVs can
dynamically adjust their coordinates, making it more suitable
for real-time communication scenarios. Finally, UAVs can carry
more powerful computing devices and sensors, that can process
more data and more complex algorithms. In addition, compared
to a single UAV, multiple UAVs can improve the overall per-
formance and efficiency through collaboration. Therefore, the
use of multiple UAVs is an important topic for research and
exploration in the field of MEC.

As a powerful tool, computational intelligence (CI) [6], [7]
has been widely applied in various disciplines and fields in
recent years. Among them, deep reinforcement learning (DRL)
constructs an understanding of the target environment using
powerful deep neural networks in situations with limited or
no prior knowledge. DRL is particularly suitable for address-
ing complex, challenging, and rapidly changing problems that
require long-term planning. Currently, many researchers have
started to model communication problems in MEC as Markov
decision processes (MDPs) [8] and use DRL methods to solve
them.

In simple terms, leveraging edge nodes with available com-
puting resources to enhance the performance of edge networks
has become a growing trend. Exploring the use of multiple UAVs
as aerial servers to support MEC is a promising avenue for
research. In addition, employing intelligent tools such as DRL
to solve communication issues in MEC represents a novel and
promising idea. Based on the above observations, we propose
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a DRL-based multi-UAV supported MEC architecture, where
multiple UAVs equipped with high-performance computing
devices assist IoTDs in offloading. Our goal is to minimize
energy consumption and latency of all IoTDs while considering
device offloading priority (DOP). In this case, it is crucial to
study methods for connection scheduling, resource allocation
and UAVs’ trajectories.

II. RELATED WORK

There are now some studies that have investigated issues
related to UAV-based edge computing systems in depth. Based
on the solving methods, we roughly classify these research
works into two categories: those solved via optimization theory
and those solved via DRL methods.

Hu et al. [9] studied an architecture in which UAVs and access
points (APs) collaborate to assist MEC. The results show that
using UAVs as computing servers to assist user equipment (UE)
in carrying out their tasks, or as relays to further offload their
computing tasks to APs, can greatly improve the computing
performance of the system. Tang et al. [10] conducted research
on a UAV-supported wireless power transfer and communica-
tion network. An alternate optimization algorithm is proposed
and the idea of bottleneck awareness is employed to reduce
problem complexity. Lin et al. [11] utilized a synergistic ap-
proach combining heuristic algorithms and optimization theory
to reduce problem complexity and achieve the minimization
of energy consumption and latency. Wang et al. [12] modeled
UAV trajectory as a traveling salesman problem, significantly
reducing UAV energy consumption while achieving appropriate
load balancing.

Looking back at these works [9], [10], [11], [12], we found
that they mostly focused on the placement of a single UAV, and
generally used optimization theory or metaheuristic algorithms
to solve the problem. Although research on algorithms [13],
[14] such as block coordinate descent and successive convex
approximation has made it possible for nonconvex problems
to converge and be solved through multiple iterations, there is
undoubtedly these methods may have some impact on solution
accuracy.

Abegaz et al. [15] introduced how to utilize a cluster of
multiple UAVs to provide services for IoTDs. Its results show
that compared to heuristic algorithms, the DRL-based method
has significant advantages in many aspects. Wang et al. [16]
proposed a multi-UAV trajectory control algorithm based on
DRL. Simulation results show that, the DRL-based algorithm
can quickly adapt to different takeoff points of UAVs. In addi-
tion, Gao et al. [17] combined game theory with multiagent deep
deterministic policy gradient (MADDPG) to simultaneously
achieve obstacle avoidance and minimize offloading latency.
Li et al. [18] effectively tackled the problem of connection
scheduling and UAV trajectory using the double DQN (DDQN).
Qian et al. [19] conducted experiments using DRL under differ-
ent channel conditions, demonstrating the advantages of non-
orthgonal multiple access (NOMA)-assisted multitasking over
traditional orthogonal multiple access schemes. Guo et al. [20]

took into account the data security issue in eavesdropping envi-
ronments while achieving a joint optimization of system energy
consumption and latency.

We have found that DRL-based optimization methods are
less sensitive to the convexity of mathematical models and
constraints of problems, and exhibit stronger adaptability, ro-
bustness, scalability, and efficiency. This provides us with more
possibilities to solve complex optimization problems in wireless
communication scenarios, making it a promising solution for
issues such as dynamic trajectory control of UAVs.

The main contributions of this article can be summarized as
follows.

1) A framework for multi-UAV-assisted MEC was proposed,
which involves deploying multiple UAVs with a certain
coverage range as airborne servers in edge IoT networks
to assist in offloading and computing data tasks for IoTDs.
Considering the vast number and diverse distribution of
IoTDs, we achieve a joint optimization of energy con-
sumption and latency of IoTDs by optimizing the dy-
namic trajectories of UAVs, connection scheduling, and
allocation of computing resources through collaborative
optimization in the environment.

2) Given the heterogeneity of resources, we introduced the
concept of DOP to differentiate the various computing
task attributes generated by different IoTDs. The value of
DOP is primarily related to the confidentiality, timeliness,
and data volume of the tasks generated by the device.
Simulation results have demonstrated that IoTDs with a
high degree of DOP are given priority when it comes to
offloading.

3) To tackle the complex mixed integer nonlinear problems
(MINLP), we have developed a dynamic trajectory control
scheme based on DRL. At the same time, we incorpo-
rated convex optimization theory and heuristic algorithm
based on matching theory to assist in solving connection
scheduling and computing resource allocation.

4) We compared DDPG, particle swarm optimization (PSO),
random moving (RM), and local execution (LE) schemes
through extensive simulations, evaluating the algorithm
performance in terms of convergence, trajectory, UAVs’
workload, computing overall cost, energy cost, and delay
cost. The simulation results showed that our proposed
algorithm had significant advantages in many aspects of
performance compared to the other comparison schemes.

The rest of this article is organized as follows. Section III
describes the system model in detail and formulates the related
problems. Section IV simplifies the problems and introduces the
DRL-based solution method. Section V presents the experimen-
tal results and numerical analysis. Finally, Section VI concludes
this article.

III. SYSTEM MODEL

As illustrated in Fig. 1, we introduce a MEC system assisted
by multiple UAVs. The system consists of N UAVs and K
IoTDs, all equipped with communication circuits and computing



Fig. 1. System model.

TABLE I
LIST OF SYMBOLS

processors. The DOP of IoTDs, which had been broadcasted be-
fore the system optimization took place, can be divided into three
levels: high, medium, and low. We assume that time slot size is
τ , and during a continuous duration of T time slots, each IoTD
generates a randomly sized computing task in every time slot.
These tasks can be computed locally by the IoTD or offloaded
to a UAV for computation. Meanwhile, UAVs communicate
with multiple IoTDs within their coverage simultaneously, using
orthogonal frequency division multiplexing [10], to assist with
task offloading and computing.

We introduce N = {1, 2, . . ., N} to present the collection of
UAVs, K = {1, 2, . . .,K} to denote the group of IoTDs, T =
{1, 2, . . ., T} to represent the set of time slots. For clarification of
the important symbols used in this article, detailed explanations
are provided in Table I.

It is worth noting that each IoTD can only be connected to at
most one UAV in each time slot due to the single antenna config-
uration. Additionally, each UAV can be connected to a maximum

of Cmax IoTDs in each time slot due to the limited number
of antennas. Therefore, we have the following constraints for
connection scheduling in each time slot:

ck,n(t) ∈ {0, 1},∀k ∈ K, ∀n ∈ N ′, ∀t ∈ T (1)∑N

n=0
ck,n(t) = 1, ∀k ∈ K, ∀t ∈ T (2)∑K

n=1
ck,n(t) ≤ Cmax, ∀n ∈ N , ∀t ∈ T . (3)

whereN′ = {0, 1, . . ., N}. It should be noted ck,0(t) = 1means
that in time slot t, the kth IoTD performs local computing
without any offloading, while ck,n(t) = 1, n �= 0 suggests that
in time slot t, the kth IoTD offloads its data tasks to the nth UAV
for collaborative computing.

A. Mobility Model

We use a 3-D Euclidean coordinate system [9] with units in
meters. The task area is a rectangular region with a length of
Xmax and a width of Y max.

Assuming that the coordinates of all IoTDs are fixed and ran-
domly distributed on the ground within the task area, the location
of the kth IoTD is represented by qI

k = (xk, yk, 0), k ∈ K.
All UAVs are deployed in the airspace above the task area at

a fixed altitude of H > 0, which is adapted to the task terrain
to avoid frequent descending and ascending of UAVs during the
period of task performance. The initial coordinate of the nth
UAV is represented by qU

n (0) = (xn(0), yn(0), H), n ∈ N .
To describe the motion of UAVs, we introduce the flying angle

0 ≤ θn(t) ≤ 2π, n ∈ N , t ∈ T (4)

as well as the flying speed

0 ≤ vn(t) ≤ vmax, n ∈ N , t ∈ T . (5)

Here, θn(0) and vn(0) are the initial flying angle and speed
of the nth UAV, respectively, and vmax is the maximum flying
speed that UAV can achieve. Let Δθn(t) and Δvn(t) denote
the changes in angle and speed for the nth UAV in the tth time
slot, then its flying angle and speed for ∀n ∈ N , ∀t ∈ T can
be expressed as θn(t) = θn(t− 1) + Δθn(t), vn(t) = vn(t−
1) + Δvn(t).

Based on the above information, we can represent the
coordinate of the nth UAV at time slot t as qU

n (t) =
(xn(t), yn(t), H), ∀n ∈ N , ∀t ∈ T , where{

xn(t) = xn(t− 1) + vn(t) sin θn(t)τ

yn(t) = yn(t− 1) + vn(t) cos θn(t)τ
. (6)

Each UAV is restricted to move within the task area, thus for
n ∈ N , t ∈ T , the following constraints are obtained:

0 ≤ xn(t) ≤ Xmax (7)

0 ≤ yn(t) ≤ Y max. (8)

Furthermore, each UAV must keep a certain distance from
other UAVs to avoid collisions. Therefore, for ∀i, j ∈ N , i �=



j,∀t ∈ T , we have

dUU
i,j (t) =

√∥∥∥qU
i (t)− qU

j (t)
∥∥∥2 ≥ dsafe (9)

wheredsafe represents the minimum distance that each UAV must
maintain to ensure safe flying.

B. Communication Model

As the altitude of UAVs remains fixed during flying, there
is no need to consider their elevation changes. Therefore, we
assume that the coverage range of UAVs is a circular area
centered on their location with a radius of dlink. In other words,
during the tth time slot, if the horizontal distance dGk,n(t) =√
(xn(t)− xk)2 + (yn(t)− yk)2 between thekth IoTD and the

nth UAV satisfies the condition that dGk,n(t) ≤ dlink, then the kth
IoTD will be within the coverage range of the nth UAV in the
tth time slot. Taking into account connection scheduling, we
have

ck,n(t)d
G
k,n(t) ≤ dlink, ∀k ∈ K, ∀n ∈ N , ∀t ∈ T . (10)

We assume the adoption of millimeter-wave communication
between UAVs and UEs. According to [21], the channel gain
between them in time slot t can be expressed as

hk,n(t) = hlk,n(t)h
fhm (11)

where hlk,n(t) represents path loss, hf denotes multipath fading,
and hm corresponds to misalignment fading.

1) Path loss: hlk,n(t) primarily consists of propagation loss

and molecular absorption: hlk,n(t) = hlpk,n(t)h
la
k,n(t). Ac-

cording to Friis equation, we have hlpk,n(t) =
c
√
GtGr

4πfdIU
k,n(t)

.

Here, c represents the speed of light, Gt and Gr are
the transmit and receive gains, respectively, f denotes
the frequency band occupied by millimeter waves, and

dIUk,n(t) =
√
(dGk,n(t))

2 +H2 is the distance between the

nth UAV and the kth IoTD in the tth time slot. Addition-
ally, hlak,n(t) = e−

1
2κα(f)dIU

k,n(t), where κα(f) represents
the absorption coefficient describing the relative area per
unit of volume. Please refer to [21] for its computing
details.

2) Multipath fading: Rayleigh distribution is commonly used
to describe the probability characteristics of multipath
fading in wireless communication. As referred in [21], its
probability density function can be expressed as: fhf =

2x

(ĥf )2Γ(1)
e
− x2

(ĥf )2 . Here, ĥf denotes the fading channel

envelop with root mean value ε = 2.
3) Misalignment fading: Similar to [21], we assume r rep-

resents the radius of the IoTD detection beam, while
R(0 ≤ R ≤ Rm) denotes the radius of the UAV beam.
The maximum radius of the beam within the UAV cover-
age area is denoted asRm, and the pointing error between
the UAV beam center OUAV and the IoTDs beam center
OIoTD is represented by l. Based on [22], we can derive

hm = P0e
− 2 l2

R2
q . Here, P0 represents the received power

when l = 0, and Rq is the equivalent beamwidth. Refer-

ring to [22], we have P0 = erf(ζ)2, Rq =
√
πerf(ζ)

2ζe−ζ2
R2

m,

where erf(·) denotes the Gaussian error function, and
ζ =

√
πr√

2Rm
.

Therefore, the corresponding signal-to-noise ratio received
from the kth IoTD to the nth UAV can be modeled as

γk,n(t) =
P offhk,n(t)

δ2
(12)

where P off is the transmission power of IoTDs, and δ2 is
the power of Additive White Gaussian Noise. According to
Shannon’s formula [9], [23], if B is the bandwidth of each
communication channel, the achievable offloading rate Rk,n(t)
(bits/second) from the kth IoTD to the nth UAV in the tth time
slot can be expressed as

Rk,n(t) = B log2(1 + γk,n). (13)

C. Computing Task Model

The computing task generated by the kth IoTD in the tth time
slot can be donated as Sk(t) = {Dk(t), Tk(t)}, where Dk(t)
represents the data size of the task (in bits);Tk(t)means the max-
imum tolerable delay (in seconds) for the task to be executed.
In this article, for the sake of convenience in computation and
expression, similar to [9], [16], we set Tk(t) = τ (∀k ∈ K, ∀t ∈
T ) uniformly. It is worth noting that due to the small size of
the computing result, the time and resources required for the
computing result to be transmitted back are not considered [17],
[18].

1) Data Computed Locally at the IoTDs: Let f com
k (t) (cy-

cles/second) present the CPU frequency and tcomk (t)(second)
denote the computing time of the kth IoTD during the tth time
slot. Then its local computing time is tcomk (t) = Ck

Dk(t)
fcom
k (t) ,

where Ck (cycles/bit) represents the amount of CPU cycles
required by the kth IoTD to process 1 b of task data. For
∀k ∈ K, ∀t ∈ T , we can obtain expression

0 ≤ tcomk (t) ≤ Tk(t) (14)

0 ≤ f comk (t) ≤ fmax
k . (15)

Similar to [24], for ∀k ∈ K, ∀t ∈ T , the energy consumption
of the kth IoTD for task computing in the tth time slot can be
expressed as ecomk (t) = tcomk (t)κk(f

com
k (t))3, where κk is the

effective capacitance coefficient of the k − thIoTD.
2) Data Computed Remotely at the UAVs by Offloading: We

employ a full offloading approach, whereby when the kth IoTD
decides to offload in the t-th time slot, it incurs only offloading
energy without any computing energy in that slot. We can obtain
the time, toff

k,n(t) =
Dk(t)
Rk,n(t)

, it takes for offloading. By referring
to [10], [25], we can then derive the corresponding offloading
energy consumption eoff

k,n(t) = toff
k,n(t)P

off.
We assume that UAVs can perform parallel computing, pro-

cessing data offloaded by multiple IoTDs simultaneously. Let
f comk,n (t)(cycles/second) and tcomk,n (t)(second) denote the CPU
frequency and computing time allocated by the nth UAV to



the kth IoTD in the tth time slot, respectively. Then, we have
tcomk,n (t) = Cn

Dk(t)
fcom
k,n (t) .

It is important to note that the sum of offloading time toff
k,n(t)

and computing time tcomk,n (t) should not exceed the maximum
tolerable delay of the task Tk(t). In addition, the sum of the
CPU frequencies allocated by UAV to IoTDs cannot exceed the
maximum CPU frequency of UAV. Therefore, for ∀n ∈ N , ∀t ∈
T , we have the following constraint:

0 ≤ tcomk,n (t) + toff
k,n(t) ≤ Tk(t), ∀k ∈ K (16)

0 ≤ f comk,n (t), ∀k ∈ K (17)∑K

k=1
ck,n(t)f

com
k,n (t) ≤ fmax

n . (18)

D. Problem Formulation

Our objective is to minimize the overall energy consumption
and task execution delay of all IoTDs, taking into account
the existence of DOP. Therefore, we can incorporate DOP as
a weight for local computing energy consumption and task
execution delay in the objective function, i.e., the larger the DOP
of an IoTD, the higher its local computing cost, and the more
inclined it is to offload. In this article, we use Pk to represent
the DOP value of the kth IoTD.

According to [11], [20], we denote the local computing cost
of the kth IoTD in the tth time slot as

ψlocal
k (t) = Pk(e

com
k (t) + tcomk (t)) (19)

and the cost of offloading the kth IoTD’s computing task to the
nth UAV in the tth time slot is

ψoff
k,n(t) = eoff

k,n(t) + toff
k,n(t) + tcomk,n (t). (20)

Thus, for ∀k ∈ K, ∀n ∈ N , ∀t ∈ T , the cost of the kth IoTD
completing its task in the tth time slot can be expressed as

ψk,n(t) = ck,0(t)ψ
local
k (t) + ck,n(t)ψ

off
k,n(t). (21)

LetC={ck,n(t), ∀k ∈ K, ∀n ∈ N ′, ∀t ∈ T },F ={f comk (t),
f comk,n (t), ∀k ∈ K, ∀n ∈ N , ∀t ∈ T }, Q = {θn(t), vn(t), ∀n ∈
N , ∀t ∈ T }, then in mathematics, our optimization problem can
be expressed as

(P1) : min
C,F,Q

∑T

t=1

∑N

n=0

∑K

k=1
ψk,n(t) (22)

s.t.

ck,n(t) ∈ {0, 1},∀k ∈ K, ∀n ∈ N ′, ∀t ∈ T (22a)∑N

n=0
ck,n(t) = 1, ∀k ∈ K, ∀t ∈ T (22b)∑K

n=1
ck,n(t) ≤ Cmax, ∀n ∈ N , ∀t ∈ T (22c)

0 ≤ θn(t) ≤ 2π, n ∈ N , t ∈ T (22d)

0 ≤ vn(t) ≤ vmax, n ∈ N , t ∈ T (22e)

0 ≤ xn(t) ≤ Xmax, n ∈ N , t ∈ T (22f)

0 ≤ yn(t) ≤ Y max, n ∈ N , t ∈ T (22g)

dUU
i,j (t) ≥ dsafe, ∀i, j ∈ N , i �= j,∀t ∈ T (22h)

ck,n(t)d
G
k,n(t) ≤ dlink, ∀k ∈ K, ∀n ∈ N , ∀t ∈ T (22i)

0 ≤ tcomk (t) ≤ Tk(t), ∀k ∈ K, ∀t ∈ T (22j)

0 ≤ tcomk,n (t) + toffk,n(t) ≤ Tk(t), ∀k ∈ K, ∀n ∈ N , ∀t ∈ T
(22k)

0 ≤ fcomk (t) ≤ fmax
k , ∀k ∈ K, ∀t ∈ T (22l)

0 ≤ f comk,n (t), ∀k ∈ K, ∀n ∈ N , ∀t ∈ T (22m)∑K

k=1
ck,n(t)f

com
k,n (t) ≤ fmax

n , ∀n ∈ N , ∀t ∈ T . (22n)

IV. ALGORITHMS DESIGN

It is evident that problem (P1) is not only composed of
continuous variables F and Q, but also includes discrete vari-
able A, making it a MINLP that is difficult to solve directly.
Therefore, in this section, we employed DRL for dynamic
trajectory planning, supplemented by optimization theory and
heuristic algorithm based on matching theory to assist in solving
connection scheduling and computing resource allocation.

A. Preliminary Work

1) DRL Background Knowledge: DRL uses deep neural net-
works to approximate value or policy functions, which en-
ables adaptive learning and generalization. It has demonstrated
good performance in solving practical problems with high-
dimensional and continuous state and action spaces.

In DRL, the agent starts from a current state st, selects an
action at from the action space based on the policy π, and
executes it. Then, the agent observes a new state st+1 and obtains
a reward rt. This process is repeated until a terminal state is
reached or a certain time stepT is exceeded. During this process,
the agent aims to maximize the cumulative reward, and therefore
our objective is to find the policy π∗ = argmaxπ E[

∑T
t=0 γ

trt],
that maximizes the expected reward. In this equation, γ ∈ (0, 1)
is the discount factor.

SAC [26], whose main idea is to use soft Q-learning in the
actor–critic framework to learn the policy, and employ an en-
tropy regularization term to promote exploration, is a commonly
used algorithm in DRL. In addition to maximizing cumula-
tive rewards, it also aims to make the policy more stochastic.
We use entropy H(π(·|st)) = Eπ[− log π(·|st)] to measure the
level of randomness of the policy π. Therefore, the optimal
policy of SAC can be donated as π∗ = argmaxπ E[

∑T
t=0 rt +

αH(π(·|st))]. Here, α is a regularization coefficient used to
control the importance of the entropy, and its loss function can
be represented as

L(α) = E [−α log(a′t|st)− αH0] (23)

where a′t represents the action obtained by inputting st into
the actor network according to the current policy, rather than
sampled from the replay buffer.

Based on the idea of DDQN, SAC uses two Q-networks, but
only selects the one with lower Q-value during each use in order



to alleviate the problem of overestimation of Q-values. Let’s first
review the Soft Bellman equation for the action-value function
Q(st, at) = rt + γE[V (st+1)], where the state-value function
is represented as V (st) = E[Q(st, at) +H(π(·|st))]. Then, we
can define the target value of the critic network as

yt = rt + γ

(
min
i=1,2

Qω−i
(st+1, a

′
t+1)− α log πθ(·|st+1)

)
,

(24)
where ω−i is the parameter of the target Q-network.

Both two critic networks are updated by minimizing their loss
function to learn the Q-value function, which can be expressed
as

LQ(ωi) = E

[
1

2

(
Qωi

(st, at)−
(
rt + γVω−i (st+1

)
))2]

.

(25)
The actor network, on the other hand, is updated by maxi-

mizing the Soft Q function to learn the policy πθ, and its loss
function is obtained from the Kullback–Leibler divergence and
can be simplified to

Lπ(θ) = E [α log(πθ(a
′
t|st))−Qωi

(st, a
′
t)] . (26)

2) Computing Resource Allocation: Since CkDk(t) is
known at the t-th time slot, it is obvious that ψlocal

k (t) is a convex
function with respect to tcomk (t). We first take its derivative to
obtain its slope

dψlocal
k (t)

dtcomk (t)
= Pk

[
1− 2κk

(CkDk(t))
3

(tcomk (t))3

]
(27)

and then obtain its stationary point tbest
k (t) = CkDk(t)

3
√
2κk.

It is evident thatψlocal
k (t) is monotonically non-increasing over

interval tcomk (t) ∈ [0, tbeast
k (t)] and monotonically nondecreas-

ing over interval tcomk (t) ∈ [tbest
k (t),+∞]. Therefore, tbest

k (t)
represents the optimal local computing time of the kth IoTD
in the tth time slot without considering constraints.

Based on constraint (22l), we can obtain the minimal time
required for the kth IoTD to complete local computation in the
tth time slot as tmin

k (t) = CkDk(t)
fmax
k

. In conjunction with constraint
(22k) that limits the task completion time, we can determine the
optimal local computing time for the kth IoTD in the tth slot as

tcomk (t)∗ =

⎧⎨⎩t
best
k (t), if tmin

k (t) ≤ tbest
k (t) ≤ Tk(t)

tmin
k (t), if tbest

k (t) ≤ tmin
k (t) ≤ Tk(t)

Tk(t), if tmin
k (t) ≤ Tk(t) ≤ tbest

k (t).
(28)

Then, we can obtain the optimal local CPU frequency as
f comk (t)∗ = CkDk(t)

tcomk (t)∗ .

In the tth time slot, given the connection schedule ck,n(t)
(∀k ∈ K, ∀n ∈ N ′) and the coordinates qU

n (t) (∀n ∈ N ) of
UAVs, the channel gain hk,n(t) between the kth IoTD and the
nth UAV can be determined, and thus the offloading time toffk,n(t)
can be considered as known. At this point, the size of ψoff

k,n(t)
is only related to f comk,n (t), and we only need to find the optimal
CPU frequency allocated to the kth IoTD by the nth UAV to
obtain the minimal offloading cost in the tth time slot for the kth
IoTD.

Lemma 1: Based on the connection schedule, we can obtain
the set of IoTDs, denoted asMn = {1n, 2n, . . ., kn, . . .,Mn},

that the nth UAV is connected to during the tth time slot. Then,
in order to minimize the total offloading cost of these IoTDs, the
optimal CPU frequency allocated to each IoTD can be denoted
as

f comkn,n
(t)∗ = fmax

n

√
CnDkn

(t)∑Mn

mn=1n

√
CnDmn

(t)
. (29)

Proof: For the nth UAV, the total offloading cost of all the
connected IoTDs during the tth time slot can be denoted as

Mn∑
mn=1n

ψoff
mn,n

(t)=

Mn∑
mn=1n

⎛⎜⎝toffmn,n
(t)
(
1+P off

)︸ ︷︷ ︸
known

+Cn
Dk(t)

f commn,n
(t)

⎞⎟⎠.
(30)

Combining constraints (22l) and (22m), we can formulate this
problem as

(P1.1) : min
f

∑Mn

mn=1n

(
Cmn

+
Dmn

fmn

)
(31)

s.t. 0 ≤ fmn
, ∀k ∈ K, ∀n ∈ N , ∀t ∈ T , (31a)∑Mn

mn=1n
fmn

≤ fmax
n , ∀n ∈ N , ∀t ∈ T , (31b)

where Cmn
= toffm,n(t)(1 + P off), Dmn

= CnDk(t), fmn
=

f comm,n (t). If we ignore the constraint (31a) first, then the La-
grangian dual function of (31) can be expressed

L(f ,λ)=
Mn∑

mn=1n

(
Cmn

+
Dmn

fmn

)
+λ

(
Mn∑

man=1n

fmn
− fmax

n

)
,

(32)
where λ(λ �= 0) is the Lagrange multiplier. Based on the com-
plementary relaxation condition and stability condition in the
Karush–Kuhn–Tucker (KKT) condition [27], we have f ∗mn

=

fmax
n

√
Dmn∑Mn

mn=1n

√
Dmn

, ∀mn ∈Mn.

Obviously, for ∀mn ∈Mn, 0 ≤ f ∗mn
must be established, so

the constraint (31a) must is undoubtedly satisfied. Therefore, the
Lemma 1 is proved. �

3) Connection Scheduling: We introduce a heuristic algo-
rithm based on matching theory for solving the connection
scheduling problem given the coordinates of UAVs. The details
are presented in Algorithm 1.

As demonstrated in lines 1–23, we first initialize all IoTDs to
be computed locally (line 1). Next, we iterate through all IoTDs
and check their coverage by UAVs (lines 5–10). If the kth IoTD
is not covered by any UAV, its task can only be computed locally.
If thekth IoTD is covered by only one UAV, we tentatively assign
the task to that UAV (lines 1119), as usually, the local computing
cost of IoTDs is much higher than the offloading cost, whether
in terms of energy consumption or task execution delay. If the
kth IoTD is covered by multiple UAVs, we temporarily record
its ID in the set MI and determine its connection scheduling after
completing one round of traversal (lines 20–22).

For each IoTD in set MI (lines 24–33), whether it is from
the perspective of load balancing of multiple UAVs or in order
to obtain more computing resources, it is preferred to choose a
UAV with minimal total assistive computing load (MTACL) for



offloading. If there are multiple UAVs connected to the IoTD
with MTACL, then for better channel quality, it is more inclined
to choose the UAV that is closer to it.

As shown in lines 14–18, every time we make a decision on
IoTD scheduling, we need to check if constraint (22c) is satisfied.
If not, we sort the IoTDs connected to the UAV and change the
IoTD with minimal product of DOP and task size (MPDTS) to
perform local computing. This is because the larger the task size
of an IoTD, the more cost savings can be achieved by offloading
the task for computing, and we also have to take into account
the existence of DOP

We can quickly obtain a suboptimal solution for connec-
tion scheduling based on the coordinates of the UAVs using
Algorithm 1. Although this solution may be not optimal, its
low complexity ensures that it will not have a significant impact
on the training time of DRL. Moreover, in our simulation, this
algorithm has achieved good optimization results.

B. Overall Algorithm Design

In this section, we will design the SAC based MOC algorithm
to solve problem P1. First, we define the state, action, and reward
in DRL as follows:

1) State: st = (xn(t), yn(t), ∀n ∈ N} is the agent’s obser-
vation of the environment, where xn(t), yn(t) are the
abscissa and ordinate of the nth UAV respectively. The
set of all possible states forms the state space.

2) Action: at = {Δθn(t),Δvn(t), ∀n ∈ N} describes the
agent’s behavior, where Δθn(t) and Δvn(t) are the incre-
ments of the UAVs’ flying angle and speed, respectively.
The set of all possible actions forms the action space.

3) Reward:

rt = −
∑N

n=0

∑K

k=1
ψk,n(t)− p(t) (33)

evaluates the feedback that the agent receives when it
executes action at in state st. As we aim to minimize cost
while DRL maximizes reward, we take the negative of the
cost here. The penalty signal p(t) is imposed on the agent
when it violates constraints.

According to [28], the algorithm architecture presented in
this article is illustrated in Fig. 2, which consists of an actor
network πθ, two critic networks Qω1

and Qω2
, and two critic

target networks Qω−1
and Qω−2

. πθ learns a policy function that
maps the current state to an action. Qω1

and Qω2
learn two

value functions that evaluate the goodness of the current state
and action. The purpose of them is to reduce estimation errors
and improve the stability of the algorithm.Qω−1

andQω−2
provide

a stable target Q value for calculating the temporal difference
(TD) error of the critic networks, which in turn updates the policy
of actor network. For reducing the magnitude of the target Q
value changes and increasing the stability of the algorithm, the
parameters of these two critic target networks are updated from
the parameters of the critic networks through soft update[

ω−i ← λωi + (1− λω−i )
]
i=1,2

(34)

where λ is the soft update parameter. We describe the specific
algorithm flow as the pseudocode shown in Algorithm 2.

Algorithm 1: Connection Schedule Algorithm.

Input: qU
j (t), ∀j ∈ N ;

Output: ci,j(t), ∀i ∈ K, ∀j ∈ N′;
1: Initialize c with ci,j(t) = 0, ∀i ∈ K, ∀j ∈ N ,

ci,0(t) = 1, ∀i ∈ K;
2: Initialize MI = {}, LU

j = {}, ∀j ∈ N ;
3: for IoTD i in K do
4: Initialize LI

i = {};
5: for UAV j in N do
6: Calculate dGi,j(t) according to qU

j (t)

7: if dGi,j ≤ dlink then
8: Store [j, dGi,j(t)] into LI

i ;
9: end if

10: end for
11: if only one item [l, dGi,l(t)] in LI

i then
12: Store [i, Pi, Di(t)] into LU

l ;
13: ci,0(t) = 0, ci,l(t) = 1;
14: if the length of LU

l > Cmax then
15: Push [m,Pm, Dm(t)] with MPDTS from LU

l ;
16: Remove item [l, dGml(t)] from LI

m;
17: cm,0(t) = 1, cm,l(t) = 0;;
18: end if
19: end if
20: if the length of LI

i > 1 then
21: Store i into MI;
22: end if
23: end for
24: for IoTD i in MI do
25: if multiple UAVs with MTACL in LI

i then
26: j = the UAV with MTACL closest to IoTD i in LI

i

27: else
28: j = the UAV with MTACL in LI

i

29: end if
30: Store [i, Pi, Di(t)] into LU

j ;
31: ci,0(t) = 0, ci,j(t) = 1;
32: Do steps 14–18 again for LU

j

33: end for
34: return ci,j(t), ∀i ∈ K, ∀j ∈ N′;

First, the agent interacts with the environment to generate
action at based on the current state st and policy πθ. After exe-
cuting at, the coordinates of all UAVs are updated, and the envi-
ronment transitions from st to st+1. Based on the coordinates of
the UAVs, we use Algorithm 1 to solve the connection schedule
problem, and then solve the resource allocation problem based
on the connection scheduling, resulting in a reward rt. We then
store the tuple (st, at, rt, st+1) in the replay buffer. Once the
number of tuples in the cache pool reaches the set minimal size,
we can use mini-batch sampling to collect J tuples for updating
the neural network. The specific update process is given in lines
14–21. As we have already discussed the relevant knowledge of
SAC updates in the earlier section, we will not elaborate on it
again here.



Fig. 2. Structure of MOC algorithm.

C. Algorithm Analysis

We can analyze the computational complexity of MOC in
three parts.

When dealing with the connection scheduling problem, it is
necessary to determine for each IoTD which UAVs cover it. For
IoTDs covered by multiple UAVs, the optimal UAV needs to
be selected for connection. Therefore, the worst computational
complexity for this problem is O(2KN).

For the resource allocation problem, according to (29), after
determining the connection scheduling, it is necessary to first
calculate the square root sum of the task loads of all IoTDs
connected to the same UAV in order to determine the computing
resources allocated to each IoTD. Therefore, the worst compu-
tational complexity for this problem is O(2K).

For the SAC algorithm, we can estimate its computational
complexity through the neural network architecture. Since we
use a basic multilayer perceptron to construct the actor network,
critic network, and critic target network, these networks are
isomorphic.

Let nam be the number of neurons in the mth layer of the
actor network, and nc

l be the number of neurons in the lth
layer of the critic network, where m ∈ {0, 1, . . .,Ma} and
l ∈ {0, 1, . . ., Lc}. Here, Ma and Lc represent the number of
layers in the actor and critic networks, respectively. Accord-
ing to [29], [30], the computational complexity of the SAC
neural network is approximately O(TE(

∑Ma−1
m=0 namn

a
m+1 +∑La−1

l=0 ncln
c
l+1 + J)) after T time slots and E epochs of

convergence.
Based on the previous discussion, it can be concluded that

the overall computational complexity of MOC is approximately

Algorithm 2: MOC Algorithm.
1: Initialize Critic networks Qω1

and Qω2
with

parameters ω1 and ω2, respectively, and Actor network
πθ with parameter θ.

2: Initialize target networks Qω−1
and Qω−2

by parameters
ω−1 ← ω1 and ω−2 ← ω2;

3: Initialize the experience replay buffer R;
4: for epoch e in E do
5: Initialize the state of environment st;
6: for time slot t in T do
7: Select an action based on current policy

at = πθ(st)
8: All UAVs execute at;
9: Obtain new state st+1;

10: Solve connection scheduling by Algorithm 1;
11: Solve resource allocation by (28) and (29);
12: Calculate reward rt by (33);
13: Store (st, at, rt, st+1) into R;
14: if min_size elements in R then
15: Sample a mini-batch

{(sj , aj , rj , sj+1)}j={1,...,J} from R;
16: For each tuple, compute yj by (24) with target

network;
17: Update both Qω1

and Qω2
by minimizing (25);

18: Sampling a′j with the reparameterization trick;
19: Update πθ by minimizing (26);
20: Update entropy regularization coefficient α by

(23);
21: Update Qω−1

and Qω−2
by (34).

22: end if
23: end for
24: end for

O(2K(N + 1)TE(
∑Ma−1

m=0 namn
a
m+1 +

∑La−1
l=0 ncln

c
l+1 +

J)).

V. SIMULATION RESULTS

This section presents the comprehensive performance eval-
uation of SAC-based MOC deployed on AMD R7-5800H,
NVIDIA RTX 3060, Python 3.10, Pytorch 2.0.0, and Gym
0.25.2.

A. Scenario Configuration

In our simulation experiments, we assume that the task area
has a length of Xmax = 400 and a width of Y max = 400. The
area is a densely distributed region of IoTDs, with 100 IoTDs
randomly and uniformly distributed, including 20 high-DOP
IoTDs with Pk = 3, 25 medium-DOP IoTDs with Pk = 2, and
55 low-DOP IoTDs with Pk = 1. In each time slot, each IoTD
generates a task that needs to be completed within one time slot
τ = 1s, with a data size of Dk(t) ∈ [1200, 1600] Kb. There are
also 4 UAVs deployed in this field as edge servers, which need to
adjust their flying trajectories to assist these IoTDs in offloading
computation.



TABLE II
SIMULATION PARAMETERS

For the neural network part, we set the learning rate of the
Actor la to 3e-4, the learning rate of the critic lc to 3e-3,
and initialize the entropy regularization coefficient α to 3e-4.
In both the actor and critic networks, we deploy three fully
connected hidden layers, each containing 800, 600, and 400
neurons, respectively.

The details of parameter settings used in the simulation ex-
periments are based on the works in [21], [31], and presented in
Table II.

To evaluate the performance of MOC, by referring to [10],
[16], we proposed several algorithms for comparison, which are
listed as follows.

1) DDPG: DDPG learns the optimal policy by approximating
the Q-function and policy function. Its parameter settings
are the same as actor and critic networks in MOC.

2) PSO: All the actions of UAVs within an epoch (T time
slots) are concatenated to form the velocity of a particle in
PSO. Then, the fitness of the velocity is calculated based
on the execution cost and penalty of these actions.

3) Random Moving RM: Each UAV will take random flying
angles and distances to move in each time slot.

4) LE: All IoTDs complete their computing tasks locally
without offloading.

It should be noted that the connection scheduling and resource
allocation in DDPG, PSO, and RM are the same as that in MOC.

B. Results and Performance Evaluation

1) Convergence Analysis: Fig. 3 compares the reward con-
vergence of MOC with other algorithmic approaches. PSO has
excellent global search capability and can achieve convergence
in approximately 500 epochs. In contrast, both MOC and DDPG
showed unsatisfactory initial performance. However, as they
gained experience through interactions with the environment,
their performance gradually improved and ultimately converged.
This is because both MOC and DDPG use experience replay to
improve sample utilization and use gradient descent to update
neural network parameters. As long as the learning rate is
appropriate, they can reach convergence after a limited number
of iterations, thus ensuring the convergence of the algorithm. It
can be seen that MOC achieved convergence in approximately
800 epochs, while DDPG required approximately 1100 epochs

Fig. 3. Convergence comparison of different algorithms.

Fig. 4. Convergence comparison of different numbers of UAVs with MOC.

to achieve convergence. We can conclude that although MOC
may not be as fast as PSO in terms of convergence speed, it
appears to be more efficient and stable with faster convergence
speed and higher cumulative rewards compared to DDPG, which
is also a DRL algorithm.

Fig. 4 compares the reward convergence of MOC in scenarios
with different numbers of UAVs. It shows that the algorithm
converges fastest in the scenario with 2 UAVs, around 300
epochs, while it takes about 700 epochs to converge with 3
UAVs. From this figure, we can observe that MOC exhibits
good convergence performance in different scenarios. Moreover,
after convergence, the algorithm rarely shows oscillations or
overfitting except for some exploratory actions. This is attributed
to the advanced techniques employed in MOC, such as “soft
update” and “entropy regularization.”

2) Trajectory Analysis: Fig. 5 shows the trajectories of UAVs
obtained by MOC, with the blue dashed line representing the
coverage range of UAVs in the last time slot. It can be observed
that in order to cover more IoTDs faster, all UAVs flew towards
the dense area of IoTDs and maintain a relatively fast flying
speed and stable flying angle in the initial time slots. In the
later time slots, considering the constraints of UAVs’ maximum
number of connected users and load balancing among UAVs,
it was not only necessary to increase the number of covered
users, but also to expand the overlapping coverage area between
UAVs to give IoTDs more choices. So, UAVs began to adjust
their coordinates while maintaining a safe distance. Finally, in
the last time slot, UAVs successfully covered almost all IoTDs.



Fig. 5. Trajectories of UAVs with MOC.

Fig. 6. Number of connected IoTDs with MOC.

Fig. 7. Comparison of overall cost with different number of UAVs.

To visually and conveniently observe the trajectory changes
of UAVs, we show in Fig. 6 the number of different DOP IoTDs
connected by UAVs in each time slot. It can be seen that the total
number of IoTDs connected by UAVs generally increased as the
time slots increased. In the 11-th time slot, UAVs connected to all
IoTDs with high DOP, and in the 15-th time slot, all IoTDs with
medium DOP were also connected, indicating that the trajectory
optimized by MOC did consider serving the IoTDs with higher
DOP while reducing the overall cost of IoTDs.

3) Performance Analysis: First, we analyzed the overall cost
of MOC, DDPG, PSO, RM, and LE in scenarios with different
number of UAVs in Fig. 7. As we can observe, MOC performed
the best among these schemes, reducing the overall cost to the
minimum compared to other compared schemes. DDPG was
only second to MOC, while PSO, RM, and LE showed poorer

performances. In addition, we can also find that the total cost
of LE does not change with the number of UAVs because there
is no assistance from UAVs, which is in line with expectations.
Meanwhile, the overall costs consumed by MOC, DDPG, PSO,
and RM all showed a decreasing trend as the number of UAVs
increased. This is because with the increase in the number of
UAVs, there are more computing resources available in the
scenario, and UAVs have a larger coverage range, which enables
them to provide better services to more IoTDs. This is beneficial
in reducing the cost of energy consumption and task execution
delay of IoTDs.

Fig. 8(a)–(c), respectively, illustrate how the cost of IoTD
changes over time slots in scenarios with different numbers of
UAVs. The overall trend is consistent with that in Fig. 7. LE
performs the worst among all algorithms since all IoTDs execute
their computing tasks locally without the assistance of UAVs,
resulting in inevitably higher costs of energy consumption and
task execution delay. The performance of RM is better than
LE, but its cost fluctuated as the number of assisted IoTDs
varied due to the UAVs’ completely random flying angles and
distances in each time slot. MOC achieves the best optimization
effect in all three scenarios, followed by DDPG, which ranked
between MOC and PSO. PSO performs worse than these two
DRL-based algorithms. We also observed that, except for LE,
the overall trend of other algorithms was a decrease in cost as
the number of time slots increased, which indicates that UAVs
were gradually flying toward better coordinates to assist more
IoTDs in offloading, thereby reducing the local cost of IoTDs
and achieving better optimization effects in these algorithms.

Fig. 9(a) and (b), respectively, display the performance of the
energy cost and delay cost of IoTDs consumed by different al-
gorithms in the scenario with four UAVs. The trends observed in
these figures are consistent with those in Fig. 8(c) and are related
to the number of IoTDs connected to UAVs in the given scenario.
In terms of energy consumption optimization, the effectiveness
of different algorithms is quite apparent, and MOC achieving
the greatest improvement by reducing the cost from around 35 J
to nearly 1 J. This is because in the last few time slots, almost
all IoTDs have been connected by UAVs, causing most users
to consume only offloading energy, and their tasks’ computing
energy costed in UAVs, which is much higher. However, in
terms of latency optimization, the numerical improvements are
not as significant. Even with the best-performing MOC, the
optimization effect was less than half as it only reduced the cost
from around 72 s to around 39 s. This is because although UAVs
have much higher computing performance than IoTDs, they also
require a considerable amount of time to complete the task of
offloading to them. Additionally, according to Lemma 1, the
UAVs’ load conditions can affect the allocation of computing
resources for IoTDs, further affecting their latency during the
offloading process. In summary, the greater the load gap between
UAVs, the worse the optimization effect on latency.

Fig. 10 compares the variation of task loads among four UAVs
in MOC over time slots. It can be observed that the overall trend
is an increase in task loads with time slots. This is because
at the beginning, the UAVs were deployed in the edge area,
covering fewer IoTDs. In subsequent time slots, the UAVs began



Fig. 8. Comparison of cost over time slots with different numbers of UAVs. (a) Cost of IoTDs with 2 UAVs. (b) Cost of IoTDs with 3 UAVs. (c) Cost of IoTDs
with 4 UAVs.

Fig. 9. Comparison of energy and delay cost with 4 UAVs. (a) Energy
consumption of IoTDs with 4 UAVs. (b) Delay of IoTDs with 4 UAVs.

Fig. 10. Comparison of loads of UAVs with MOC.

to search for more optimal coordinates to assist more IoTDs
in offloading computations to save overall costs, leading to an
increase in their task loads. Additionally, we found that there
was a significant difference in the task load of the 2-nd UAV
compared to the others from time slots 9–12, but this difference
began to decrease from the 13-th time slot. This is because the
area near the 2-th UAV had a higher density of IoTDs than other
areas, and it was able to connect to more IoTDs from the 9-th
time slot, covering this area earlier than other UAVs. However,
by the 13-th time slot, the coverage areas of multiple UAVs
overlapped significantly, and some IoTDs were possibly covered
by multiple UAVs simultaneously. To obtain more computing
resources, these IoTDs would choose UAVs with smaller task
loads for offloading. It can be seen that from the 13-th time slot,
the difference in task loads among UAVs was not significant,
which also reflects the good performance of our connection
scheduling algorithm.

VI. CONCLUSION

In this article, in order to minimize the energy consump-
tion and delay of IoTDs while considering the DOP, we com-
prehensively consider factors such as connection scheduling,
computing resource allocation, and UAVs’ flying trajectories,
and then propose an optimization method MOC that combines
convex optimization with DRL. Specifically, we developed a
dynamic trajectory control scheme based on DRL and incorpo-
rated convex optimization theory as well as heuristic algorithm to
assist in solving computing resource allocation and connection
scheduling respectively. Simulation results show that, compared
to other comparison schemes, MOC has significant advantages
in many aspects of performance.

In future work, we will extend our work to consider the flying
height variation of UAVs and study the optimization of more
complex wireless communication problems in 3-D scenarios.
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