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Abstract—In recent years, workload containerisation has been
extended to the edge, bringing with it the need for flexible overlay
networking. However, current container networking solutions
are generally designed for the cloud, aimed at relatively static
clusters with centralized generation of container subnet addresses
and assigning them to nodes. Added to that existing tunneling
solutions, such as Virtual Private Networks (VPN), also have
centralized components. Conversely, the network edge is geo-
dispersed and has a volatile topology,with edge nodes typically
hidden behind routers, in private networks. To enable large-
scale networking at the edge, there is need for decentralized
self-management of container network addresses and overlay
tunnels. This manuscript presents Warrens, a framework for fully
decentralized and self-organizing cloud-edge container networks.
Warrens enables communication between edge nodes in different
private networks by enabling connectionless tunnels, supported
by decentralized self-assignment of container IP addresses, with
the assignment scheme minimizing address conflict to a negligible
level. Warrens has been implemented in two variants using
kernel-level eBPF for processing speed, and user-level Golang
for wider compatibility. Warrens is shown to be highly scalable
compared to a typical VPN solution, and performance evaluations
demonstrate it can handle a full network load on both x64 devices
and a Raspberry Pi with ≈ 0.5% to 5% total CPU load, depending
on traffic direction and protocols used.

Index Terms—edge computing, container networking, decen-
tralization,

I. INTRODUCTION

In recent years, containerized cloud applications have been
extended to the edge by various frameworks, including differ-
ent flavours of Google’s widely adopted Kubernetes [1].

Each edge node maintains a limited number of autonomous
deployments of containers, communicating with each other
within the boundaries of the edge gateway, but not directly
with deployments outside it [2]. To enable edge container
networks at scale, there is a need for novel solutions that
transcends the boundaries of edge gateways and scales to
a large number of containers. Existing container networking
solutions are typically limited by the number of manageable
containers and compute nodes, in the case of Kubernetes this
is approximately 5.000 nodes and 150.000 containers [3]. As a
result, these solutions have generally been managed using IPv4
addressing schemes, either exclusively or by default, despite
Kubernetes IPv6 support. This approach implicitly reinforces
node limits with a limited address size, although exceptions
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exist such as Cilium [4] and cloud provider solutions [5].
Such limits stand in contrast to edge computing, where there
can be tens of thousands of nodes in a logical cluster (e.g.
containerizing smart residential areas), with each node only
able to run a small number of containers, and typically small
subsets of nodes communicating with each other at any given
time. Furthermore, cloud container networking solutions are
highly centralized; the control plane needs to generate subnet
addresses and assign them to worker nodes, while various
higher-level network functionalities are handled by plugins in
the control plane (e.g. service/ingress routing, DNS).

As edge networks steadily grow larger, integrating new
types of devices suitable for containerized edge computing,
such centralized networking approaches no longer suffice to
organize all edge devices in a cluster, and the containers they
run [6].

First, a centralised solution - e.g. based on a Virtual Private
Network (VPN) [7] - needs to maintain a large state of
address assignments that correspond to active nodes and con-
tainers in the edge. Additionally, there is the added challenge
of tracking and updating state as containers join or leave
networks. Second, having a central solution implies that all
traffic of a container network must pass through a central
server. Considering the potential scale of the edge, this will
likely induce a high number of concurrent flows at the server,
requiring an unrealistic service rate to avoid congestion. Third,
a VPN-link solution can lead to routing scalability and security
issues, because it enables full connectivity between all end-
points in the overlay at any point in time. In reality, however,
only a smaller subset of containers (i.e. those in the same
service architecture) need to communicate with each other at
any given time.

Hence, there is a growing need for a decentralized container
networking solution that offers a globally uniform network
structure across private network boundaries, which allows
communication between any pair of devices, while primar-
ily ensuring optimal communication with nearby nodes and
services.

To that end, this manuscript presents Warrens as a novel de-
centralized solution to container networking in the edge. War-
rens establishes lightweight, connectionless tunnels between
edge nodes, created as required. The name is derived from
rabbit warrens, which have a multitude of tunnels between lo-
cations rather than a single central hub. To discover nodes and
map their containers to network addresses, Warrens requires
an external discovery algorithm; one option is to use the node
discovery algorithm of SoSwirly [8], which discovers available



nearby edge nodes and their containerized deployments in
near real-time. Warrens has two implementations: one using
an eBPF program in kernel space for high performance; and
another using Golang in user space for broad compatibility
with a variety of edge devices. Furthermore, a custom IPv6
addressing scheme is proposed that allows each node to self-
assign an IP subnet for containers deployed on the node with a
negligible chance of collisions. As such, the solution is entirely
decentralized and shown to be highly scalable. We evaluate the
performance of both Warrens implementations for TCP and
UDP flows, under a range of edge scenarios and show both to
achieve superior scalability compared to VPN.

Concretely, the contributions of this manuscript are:
• C1 (Design): A decentralized and self-organising con-

tainer networking solution, consisting of an agent on each
node that uses a novel addressing scheme to generate
container addresses, and sets up communication with
remote containers.

• C2 (Implementation): A Proof-of-Concept (PoC) imple-
mentation in two variants: using eBPF for performance
and Golang for broad-compatibility. Both variants allow
devices behind NAT or firewalls to join a cluster, while
presenting options for near real-time node and service
discovery.

• C3 (Evaluation): Experimental evaluation to characterize
the feasibility and performance of the eBPF and Golang
implementations compared to a VPN-based solution.

The rest of this manuscript is organized as follows: Sec-
tion II presents related work, while Section III introduces all
the high level architecture aspects. Section IV discusses all
relevant implementation details. In Section V, the evaluation
setup, scenarios and methodology are detailed, while the re-
sults are presented in Section VI and discussed in Section VII.
Finally, Section VIII discusses ideas for future work, and
Section IX draws high level conclusions from the manuscript.

II. RELATED WORK

Various studies examine properties of Kubernetes CNI plu-
gins in edge scenarios, for example low latency edge ser-
vices [9] or a comparative analysis of CNI plugin performance
and network degradation [10].

Extended Berkeley Packet Filters (eBPF) can be used to
develop various networking functions which operate in kernel
space [11]. eBPF functionality is used extensively to improve
(container) network security [12], or for Kubernetes network-
ing [13], notably by Cilium [14] which provides a wide array
of eBPF functionality.

EdgeVPN [15] is a solution for self-organizing virtual
Ethernet-level edge networks, providing an overlay infras-
tructure that allows higher-level applications such as Kuber-
netes to run in the edge without modifying CNI plugins.
EdgeVPN.io [16], on the other hand, is a Kubernetes CNI
plugin with tunneling capabilities which allows integrating
devices behind NAT into a container network, although work-
ing from a Kubernetes perspective it lacks self-organizational
elements. Warrens on the other hand aims to combine these
elements into self-organization at the container network level.

KubeEdge [2] approaches edge networking by using Kuber-
netes in the cloud, but implementing KubeBus as an overlay
network to allow edge devices to communicate with the cloud.
Edge to edge communication is enabled by setting up tunnels
between nodes through KubeBus, routing traffic via the cloud.

A non-Kubernetes approach on interservice communication
in the edge [17] uses service-based fog Management And
Network Orchestrator (sbMANO) nodes, forming a decen-
tralized network which enables peer-to-peer communication
and allows the decentralized collection of service metadata to
optimize service call routing. Evaluation of this approach was
shown to work for a variety of parameters (e.g. inter-node
latency, resources) and nodes, ranging the entire edge-cloud
spectrum.

A review on the observability of distributed, container-based
edge systems [18] illustrates the difficulty of using classical
tools to analyze issues in the network edge, naming issues
such as a decentralized nature and heterogeneity.

Segment Routing (SR) [19] is a technique that manages a
middle ground between centralized and decentralized network
control for overlay networks by dividing a packet route into
segments and including the information for each segment
along the path, allowing for detailed traffic engineering, load
balancing and latency management. However, the focus of
Warrens is merely that individual endpoints can communicate
across private network borders, and that each node organizes
its own containers. Unlike SR, it is not aimed at traffic
optimization and thus needs no knowledge of intermediate
nodes, relying on the regular functioning of network routing
to manage traffic between nodes.

While IPv6 Stateless Address Autoconfiguration (SLAAC)
[20] can be used to generate unique link local IPv6 addresses
for individual devices (e.g. in IoT scenarios), the addressing
scheme used in Warrens is aimed at the coherent generation
of container subnets for each node in a cluster, minimizing
collisions only from a decentralized point of view.

Fowler-Noll-Vo based systems have previous been used for
key management in IoT devices [21] and IPv6 autoconfigura-
tion schemes for IoT devices [22]. However, this work aims
to use a similar Fowler-Noll-Vo approach for both IPv4 and
IPv6, in the context of container subnets per device rather than
individual IP addresses or keys.

Finally, a scalability analysis of various VPN solutions [23]
indicates that, excepting WireGuard, VPN software is only
suitable for connecting hundreds of containers (and by exten-
sion devices) in private networks to a cloud cluster, far below
the scale of many edge computing use cases.

III. WARRENS ARCHITECTURE

This section describes the architecture of Warrens as per
contribution C1, and the frameworks used to enable its op-
eration such as a suitable edge orchestration agent. Warrens
is a two-stage networking solution, supported by peer-to-peer
service discovery and self-assignment of IP subnet addresses
to enable decentralized overlay construction. The two-stage
networking involves container-node packet forwarding inter-
node flow tunneling, with either L3-over-L4 or L2-over-L4
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Fig. 1: Illustration of Warrens using connectionless “tunnels” between Clients and Services as required, exchanging service
information in the process Fig.1a - Fig.1e. Note that tunnels do not require explicit setup or teardown, and exist only as an
abstract concept allowing container traffic to cross private network borders. This method can use the full network throughput
between each pair of devices. Fig.1f shows the same communication channels going through a centralized component,
eliminating the need for information exchange between nodes, but causing a communication bottleneck in case of too many
clients.

tunnels. Tunnel establishment follows a decentralized ap-
proach, involving collaborative service discovery, address self-
assignment and local container orchestration.

A. Container Network Tunneling

Fig. 1 shows the high-level concept of inter-node/inter-
service communication using Warrens. Communication con-
sists of on-demand, point-to-point connectionless tunnels, es-
tablished between containers-hosting nodes and connected to
form an overlay network. Warrens bootstrapping is a decen-
tralized process, realised through peer-to-peer communication
among interested entities. Subfigures 1a - 1e show how
Warrens exchanges metadata to enable communication using
“tunnels” between services S1-S3 and clients C1-C2. Here,
both C1 and C2 are devices that require service S1, while
C2 also runs S3. The device hosting S1 knows the location
of S2, while C1 already knows S1. C2 has discovered the
device hosting S1 (Fig. 1a) with a suitable discovery solution
such as that summarised in Section III-E. Upon discovery,
both S1 and C2 obtain information of each other and Warrens
communication can be established, allowing C2 to call S1. C1
calls S1 and performs a discovery update (Fig. 1b), resulting
in transitive knowledge of S2, and C2/S3 through S1. C1
can now reach S2 as well as C2/S3 and establish Warrens
tunnels to call their respective services (Fig. 1c-1e). Subfigure

Fig.1f shows how this compares to the same service calls
facilitated by a centralised tunneling solution with a single
point of management, such as a VPN server node or KubeEdge
networking control plane.

To clarify, Warrens “tunnels” are only temporarily defined
in the sense that container traffic is routed between a pair
of nodes; no connection is established, and without container
traffic tunnels effectively seize to exist without the need
for teardown. To enable traffic flow, nodes merely need to
exchange their public IP addresses and self-assigned container
subnet address (as detailed in Section III-C), and traffic is
routed to the correct containers as required. This connec-
tionless approach allows for a lightweight implementation
with minimal memory use. However, connections may have
to be explicitly maintained in some cases, for example by
keeping a NAT mapping entry active with a periodic heartbeat
mechanism. This is particularly expected for nodes in private
networks, and can be integrated as part of node and service
discovery algorithms as explained in Sections III-D and III-E.

Fig. 2 shows two forms of tunneling on two separate nodes.
The tunneling approach depends on the implementation of
components required to set up tunnels on a single node,
further elaborated in Sections III-B through III-E. The con-
tainer orchestrator agent, container addressing and discovery
algorithms are identical on both nodes. In both cases, all



Fig. 2: Components and networking aspects of two different possible Warrens implementations, using either a TUN device
(Node 1) or kernel-level intercepts (Node 2).

Fig. 3: Network interfaces and stacks used in Warrens. Only the highest used OSI model level for each stack is shown. Note
that the eBPF intercepts “cross” each other; they bypass parts of the network stack of eth0 and cni0, emitting directly from
the outbound interface of the other.

container interfaces consist of virtual Ethernet interface pairs
between the host and container namespaces, with the host
ends connected to a bridge interface, cni0, specifically set
up to connect all local containers. At this point, the imple-
mentation at Node 1 uses Linux routing rules to forward
packets targeted at other container subnets to an IP-level tunnel
device, (TUN, for example tun0), where a userspace process
intercepts them, encapsulates them in UDP packets targeted
at port 31337 of the public IP address of the remote node,
and forwards them to the public-facing interface, for example
eth0, essentially forming an L3-over-L4 overlay network.
Incoming traffic at port 31337 is similarly routed to tun0,
decapsulated by the same userspace process and forwarded
to cni0, where Linux routing takes over to forward packets
to the destination container(s). This L3-over-L4 approach is
deliberately chosen for its comparability to a VPN; Warrens
traffic is easily distinguished from other incoming traffic at the
public-facing interface, with only port 31337 traffic needing
further processing. Moreover, the L3-over-L4 approach with
IP-in-UDP was chosen over an IP-in-IP counterpart because
many types of (home) routers can only effectively route traffic
for either UDP or TCP, by using NAT or explicit routing rules.

In the alternative approach, implemented at Node 2, a

tunneling program is attached directly to cni0 at the kernel
level, which examines all container traffic to determine which
packets have a remote destination, operating as L2-over-L4
encapsulation. In case of a remote destination, the packet is
encapsulated in a UDP packet targeted at the remote node.
This version bypasses several layers of the networking stack,
removing packets from the inbound stack of cni0, and emitting
them from the outbound stack of eth0, with no processing
or possible intercepts in between. A different kernel-level
program is attached to eth0 to examine incoming traffic, which
cuts off the UDP header of Warrens traffic at port 31337
and emits it directly from cni0, bypassing the rest of the
networking stack. At cni0, Linux routing takes over to send
the packet to the correct container interface.

Fig. 3 shows the same architecture on both nodes, from the
point of view of network interfaces and network stacks. At
Node 1, network traffic goes through the cni0 bridge at the
IP level, rerouted to tun0 as required. At tun0, a TUN device
picks up IP packets and the user space process encapsulates
them, forwarding them to a remote destination. At Node 2,
the process is slightly different for incoming and outgoing
traffic, but symmetric. In either case, traffic is processed by
a kernel space filter at the Ethernet level before it enters the



network stack of either eth0 or the cni0 bridge, encapsulated or
decapsulated as required, and then emitted from the outbound
stack of the other interface.

Although the kernel-level version is by far preferable in
terms of performance, it is useful to co-implement the first as
a universal option, for compatibility reasons detailed in Section
IV. Considering that neither implementation encrypts network
traffic for performance reasons, applications should secure
their network traffic whether they communicate over Warrens
or any other network, and the current approach does not
risk exposing device information other than Warrens container
addresses.

While the operational stability of Warrens on any individual
node depends on implementation, the decentralized network-
ing approach described results in a highly resilient container
network overall; if any single node fails, the rest of the network
keeps functioning, while a suitable node discovery algorithm
ensures stability when either the physical or logical network
topology changes.

B. Container Management

For establishing Warrens between containers in the edge,
a resource efficient orchestrator agent is needed to manage
containers on edge nodes. For the purposes of this manuscript,
Warrens is used in combination with FLEDGE [24], a
Kubernetes-compatible edge orchestration agent. The role of
FLEDGE in this architecture is that of a high-level container
runtime, receiving Kubernetes pod deployments and manag-
ing pod containers through containerd. Its default container
networking solution is substituted with Warrens, enabling
any containers deployed by FLEDGE to communicate with
other nodes through Warrens tunnels. Although FLEDGE is
a Kubernetes-oriented agent, Warrens itself is orchestrator
agnostic and could be implemented as a solution for other
edge computing architectures.

C. Container Network Addressing

Warrens is a decentralized networking solution in which
every node constructs its own container IP subnet address,
using only local information. Both IPv4 and IPv6 solutions
are devised, although the larger range of IPv6 naturally lends
itself to considerably lower IP range collisions across self-
assigned addresses. As Fig. 4 shows, in both cases the address
consists of a prefix, a global identifier to indicate a Warrens
address, a node identifier and a container address range. The
Warrens global identifier is derived from the hex representation
of the string literal “Swirl” for easy identification, while the
node identifier is derived from /etc/machine-id through a 64-
bit Fowler–Noll–Vo hash.

1) IPv6: IPv6 addresses are based on, but do not adhere
strictly to the unique local address structure [25]. The nec-
essary prefix and 40-bit random data components are kept,
the latter as the Warrens global identifier. As Warrens aims
to create a container network between large numbers of edge
devices, the sizes of the subnet identifier and interface iden-
tifier fields are swapped, allowing a maximum of 264 devices
and up to 65.520 containers per device, both sufficient by far

Fig. 4: Components and content of IPv6 and IPv4 Warrens
container addresses.

for container networks in current edge networks. Although
hashing a 128-bit machine id into 64 bits introduces an
increased risk of address collisions, the birthday problem [26]
shows that the risk is minimal even for millions of mutually
known devices, and mitigation measures are introduced in
network discovery algorithms.

2) IPv4: IPv4 options are severely restricted; assuming pri-
vate address types offering 24 freely assignable bits, the global
identifier is reduced to a single byte, while the remaining
bits offer room to assign 4096 nodes a subnet identifier, each
with 8 container addresses. The limited subnet identifier range
greatly increases the risk of collisions at only tens of mutually
known devices, which must be taken into account by network
discovery algorithms.

D. Node Discovery

Warrens holds a remote node registry in memory, mapping
self-assigned container subnets of remote nodes to their public
IP address. While this registry could technically be loaded
from a static configuration, an alternative approach would be
to incorporate a discovery protocol based on locality, with fast
reaction times to topology changes.

A suitable example of such an algorithm is a modified
version of the node discovery algorithm from SoSwirly [8],
which scales independently of the total number of nodes in an
edge cluster. Instead, scalability depends on local node density
and discovery distance. This algorithm is designed to find all
nodes within a certain logical distance (e.g. latency) that are
capable of providing specific servicesby crawling an edge clus-
ter transitively until it finds suitable nodes sufficiently close
to itself. To support Warrens operation, the algorithm can be
extended to provide node metadata. Using this algorithm, two
mutually unreachable nodes (e.g. in private home networks)
can still exchange metadata and set up a Warrens tunnel, given
the existence of a single publicly available node known to both
nodes as shown in Figs. 1a through 1c. The main limitation
of this approach is that it cannot have global knowledge of
all services, as that would result in too much network traffic
for real-time discovery, and only asymptotically approaches an
ideal situation. However, the SoSwirly algorithm ensures that
a service with an acceptable Quality of Experience (QoE) is
always nearby, essentially letting services self-organize around
user requirements.



Note that the SoSwirly algorithm is explicitly built around
volatility in edge networks; the algorithm periodically polls all
its neighbours to update their positions and services, and to
discover new nodes. As such, this algorithm implicitly keeps
NAT mappings active for nodes in private networks once it is
established.

E. Service Discovery

Recall in Figs. 1a-1e clients discover services around them.
This requires a service exposure and resolution solution, with
DNS being the intuitive one. While DNS is not explicitly
built into the architecture at this point, the SoSwirly algorithm
polls for any services running on a node in addition to node
information itself, as it tries to find the closest provider(s) for a
specific service name. As such, it is relatively straightforward
to compile service IP addresses and names into a node and
service catalog. Such a catalog can be implemented on the
node itself by maintaining a dedicated Warrens hosts file
to be mounted in containers, or by having some nodes run
CoreDNS-based servers [27].

F. Security

While this article focuses purely on a solution architecture
to enable decentralized container networks in the edge, there
are several important security aspects to consider:

• Network traffic should be suitably encrypted to hide both
unencrypted payload and any information about container
network structure from potential attackers. A suitable
encryption scheme and its likely performance impact are
discussed in Sections V-C and VI-A.

• Decentralized tunneling and trusted connections ideally
require decentralized methods to validate the integrity of
nodes, as well as (self-)generating trusted encryption keys
and certificates with minimal to no backing from central
authorities. While these topics are beyond the scope of
the article, they are highly relevant future work.

• At the tunnel level, Warrens implementations should be
as secure as possible. This aspect is explored in Section
IV-D.

IV. IMPLEMENTATION DETAILS

This section describes two Proof-of-Concept (PoC) imple-
mentations of Warrens; GoLang-based for compatibility and
eBPF-based for performance. Important implementation de-
tails are elaborated as required by contribution C2, especially
as they differ between the eBPF and Golang versions.

A. Addressing

The concrete addressing scheme is identical for both imple-
mentations, although some devices may not appear in either.
Table I summarizes static devices and ranges for IPv6 as
partially illustrated by Fig. 2.

TABLE I: Dedicated IP addresses and available IP ranges for
devices in the IPv6 version of Warrens.

Type Range Description
tun0 ::1 A TUN device, if required
cni0 ::2 The bridge connecting all local containers
reserved ::3 - ::f Future system devices
containers ::10 - ::ffff Assignable container IPs

B. Golang Implementation

The Golang implementation is based on the Node 1 setup in
Fig. 2. During startup, FLEDGE generates a container subnet
as described in Section III-C, sets up a cni0 bridge device,
and a tun0 device. Traffic routed from cni0 to tun0 is picked
up by a Goroutine in FLEDGE, encapsulating OSI level 3
packets (IP) into UDP packets and resending them from cni0
to the public interface. A secondary Goroutine listens on the
same port for incoming packets, cutting off the Ethernet and
UDP headers and resending them from cni0 towards container
interfaces. As this implementation is meant for compatibility
with all devices, it is highly straightforward but relatively slow;
the code does not need to consider Ethernet-level details such
as MAC addresses or checksums.

Container-side, every interface is attached to the cni0 bridge
through a virtual ethernet pair. However, as IPv6 is used,
both veth ends must be explicitly set as neighbours to avoid
ICMP discovery messages, which are not correctly answered
by default Linux mechanisms, and can not be intercepted and
faked by either Warrens implementation. Additionally, IPv6
forwarding must be explicitly enabled, and MTU is lowered
to 1420 to make sure packets fit a standard 1500 MTU once
encapsulated.

C. eBPF Implementation

Extended Berkeley Packet Filters (eBPF) enable the creation
of highly specific programs to act as kernel hooks for a variety
of functions. By acting at the kernel level, eBPF programs can
outperform similar (userspace) programs, although strict secu-
rity and memory requirements are imposed by the compiler
and interpreter. In the context of Warrens, the eBPF eXpress
Data Path (XDP) allows high-speed processing of packets,
which are intercepted before they enter the network stack of
the interface an eBPF program is attached to.

The eBPF implementation is based on Node 2 in Fig. 2,
and is meant for maximum performance if supported. While
most modern Linux kernel versions (> 4.16) support eBPF
to some degree, support libraries may have to be installed
for optimal functionality. eBPF programs operate directly on
memory addresses at the kernel level, but cannot allocate any
other memory or persist variables between executions; in this
case the entire programs are executed per packet.

Unlike the Golang implementation, the eBPF version only
creates cni0, loading two eBPF programs into the kernel and
attaching them to the eth0 and cni0 inbound stacks, respec-
tively. Both programs share a memory map with the Golang
program in which information about discovered nodes can be
added. However, as eBPF is highly restrictive in operations
and data types, this information is limited to primitive types.



The cni0 program examines all packets, comparing them to
known nodes in the memory map. If tunnel information for a
specific packet is found, it is encapsulated in new Ethernet, IP,
and UDP headers, with suitable IP and MAC addresses; the
latter requires extra metadata to be gathered by the SoSwirly
discovery algorithm. Local traffic packets are simply passed,
minimizing performance impact. Next, the packet checksum
must be recalculated, making this a relatively expensive oper-
ation. The packet is then sent directly from the eth0 outbound
stack. Importantly, this operation skips the entire network stack
of both cni0 and eth0, so packets move almost directly from
a container interface to the public interface. Similarly, the
eth0 program examines all incoming packets, relinquishing
any that are not explicitly Warrens traffic as soon as possible.
For Warrens packets, the Ethernet, IP and UDP headers are
removed, MAC addresses are modified to match local source
and target devices, and the packets are resent from the cni0
outbound stack.

D. Security Implications

As Warrens is designed to function in the edge across
networks, packet-based security issues warrant significant at-
tention compared to container networks operating entirely
in private networks. Both implementations hide the Layer 2
infrastructure of the container network on a node from the
view of potential attackers by removing local MAC addresses
from encapsulated packets. While the current state of the
implementations allows the interception of Warrens container
addresses, the implementation of an encryption scheme would
eliminate this option as well by encrypting the internal IPv6
header with container addresses, making it impossible for
attackers to map the structure of the container network and
inject packets targeted at specific services. Additionally, as
the eBPF implementation uses XDP, any malformed Warrens
packets are intercepted by the eBPF program before they can
exploit application or network stack security issues.

V. EVALUATION

This section describes the evaluation setup, evaluation
scenarios, methodology and any tools used. The code for
FLEDGE, Warrens, and the evaluation scenarios is made
available on GitHub1. Note that the evaluation will focus
exclusively on the performance of Warrens tunnels; the theo-
retical and practical performance characteristics of the decen-
tralized discovery algorithm SoSwirly are extensively covered
in prior work [8], showing both high scalability and over 95%
effectiveness in discovering edge node/service topologies.

A. Evaluation Setup

Most evaluations are performed on the IDlab Virtual Wall
[28], using baremetal machines, each with 2 Intel Xeon E5520
CPUs and 12GiB of RAM. Additional evaluations to gauge
performance on edge devices are run using a Raspberry Pi 3B+
(RPI), explicitly chosen over newer models to more realisti-
cally represent limited-resource edge hardware. All evaluations

1https://github.com/togoetha/cniwarrens

are performed using 1Gbps LAN connections, although the
RPI is hardware limited to 100Mbps. Due to kernel and library
compatibilities, Ubuntu 22.04 is required for eBPF evaluations,
while Ubuntu 20.04 is used for the rest. On the RPI, Ubuntu
Server 23.04 ARM 64bit is used.

B. Scenarios

Three basic topologies are used for the evaluations:
• Point-to-point (P2P): provides a performance baseline for

client-server traffic between two nodes. This topology is
evaluated for both x64 and ARM.

• Four-to-one Star: simulates a star topology with 4 client
nodes sending data to a single server. The scenario is
included to evaluate multi-client performance.

• Five-node Ring: simulates a ring topology in which each
node both sends and receives data, attempting maximum
throughput in both directions. This scenario evaluates
scalability and the ability to handle mixed traffic.

C. WireGuard: a VPN Alternative

A solution similar to Warrens can be achieved by organizing
the proposed container addressing and networking on top of
a VPN. While there are many VPN solutions, existing work
shows [23] that WireGuard provides excellent performance
for container network traffic. WireGuard is a VPN solution
which is integrated into the Linux kernel, and like Warrens
uses eBPF functionality, scaling to hundreds of VPN clients
with no noticeable increase in latency or packet loss.

To compare Warrens and WireGuard, each scenario is also
run with a WireGuard VPN set up across the nodes with a
single node acting as VPN server. In FLEDGE, a configuration
flag enables using an existing VPN interface for inter-node
container traffic rather than Warrens. Note that traffic encryp-
tion cannot be disabled in WireGuard; although this results
in an incomplete comparison, relative differences between
scenarios will illustrate the scalability of Warrens compared
to a classical VPN. Additionally, the performance impact
of adding similar encryption in Warrens can be estimated.
WireGuard uses ChaCha20 [29] for encryption, specifically for
its relatively small key size and high performance. Considering
a 20 round encryption over the entire payload of a packet,
and that the eBPF implementation of Warrens must calculate
a checksum over the same payload when sending packets,
Warrens performance would likely drop by a factor of 20 when
implementing ChaCha20.

D. Methodology

All evaluations use iperf3 to generate traffic between nodes.
Base throughput is set at 1Gbps, although for UDP lower
rates are used which asymptotically approach actual perfor-
mance starting from 1Gbps. CPU load, memory overhead and
network throughput are measured as the main metrics for
each alternative. These metrics are measured for both TCP
and UDP traffic, although UDP traffic was too unreliable to
measure for the star topology as some nodes would never
start sending traffic. Additionally, CPU-relative performance is
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Fig. 5: Point-to-point bulk TCP/UDP throughput.
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Fig. 6: Point-to-point bulk TCP traffic CPU load.

compared between nodes acting as senders (i.e. iperf3 clients)
and receivers (i.e. iperf3 servers).

Network throughput is taken directly from iperf3 output.
Memory overhead is determined by taking the memory use of
Warrens as reported by the “top” command, and adding any
memory used by kernel processes spawned by the evaluated
alternative. However, eBPF program memory use is reported as
a static 4096 bytes by “bpftool” (i.e. 8192 bytes for both eBPF
programs combined), while “top” reports 0 bytes of memory
for all kernel processes spawned by WireGuard, making the
latter factor negligible.

CPU use is determined differently for each evaluated al-
ternative. For eBPF evaluations, BPF stats are enabled in
the kernel and measured every second through “bpftool”.
For the Golang implementation, CPU use is taken directly
from the FLEDGE/Warrens process(es) as reported by “top”.
WireGuard spawns too many processes to track using “top”,
so CPU use is calculated based on total idle CPU reported by
“top”, and adding the CPU use of any iperf3 processes.

Each metric is measured for a continuous period of 65

seconds, ensuring at least a 60 second overlap between all
metrics of all nodes after starting an evaluation run. However,
the bash “sleep” command is found to run slow on the RPI,
resulting in only around 53 measurements per minute. As such,
those evaluations are cut off “earlier” despite running a full
minute.

VI. RESULTS

This section presents the results of the evaluations as per
contribution C3. Each step examines raw throughput, CPU
load, and CPU-relative throughput in order to discover all
performance nuances.

A. Point-to-point

Fig. 5 shows TCP and UDP bulk throughput speed for a
straightforward point-to-point connection between containers
on two nodes. Whereas for UDP, the eBPF program manages
to reliably saturate the gigabit connection, TCP traffic shows
some performance drops. This behavior is more pronounced in
the Golang tunnel due to being CPU limited. WireGuard shows
the inverse behavior, with UDP traffic being slower, although
official WireGuard benchmarks do not go into sufficient detail
to explain the difference2.

However, as Fig. 6 illustrates, the CPU load generated by
the various options varies by orders of magnitude. The eBPF
program can process a gigabit of traffic with only around 3%
of a single CPU core, as it only needs to modify a limited
amount of packet header information. Sending traffic requires
around 30%, caused by recalculation of packet checksums.
Golang shows a highly similar absolute difference, but because
of its userspace implementation generates 90% more CPU
load for only 45% of the throughput. Due to its encryption,
WireGuard generates 10 to 100 times more CPU load than the
Warrens eBPF program, showing that a full VPN is unlikely
to be an ideal solution for edge devices, as they have far less
powerful CPUs.

Finally, Fig. 7 shows UDP and TCP throughput relative
to CPU load. In both cases, the Golang implementation
performance is on par with WireGuard to send traffic, but twice
to several times faster to receive traffic. However, as Warrens
do not offer traffic encryption like WireGuard, this merely
indicates that the Golang implementation is an acceptable
fallback option from eBPF to enable up decentralized con-
tainer networking. The latter is orders of magnitude faster than
either the Golang implementation or WireGuard, achieving
tens to hundreds of Mbps/s per percent of a single CPU
core depending on traffic direction. Considering the earlier
estimate that ChaCha20 encryption would slow down Warrens
by a factor of 20, eBPF implementation performance would
be similar to WireGuard when encryption is implemented.

B. Star Topology

Fig. 8 shows the received traffic throughput of a server node
at the center of a star topology. As traffic depends on four
client nodes, throughput is not quite constant, however both

2https://www.WireGuard.com/performance/
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Fig. 7: Throughput per CPU core % for point-to-point bulk traffic.
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Fig. 8: Star topology server total TCP throughput. Note that
each of the four clients steadily produce around 25% of this
throughput.

eBPF and WireGuard manage to saturate a gigabit connection
in a star topology. UDP is not examined in this scenario as
the results are highly similar to the point-to-point scenario.
Golang performance in this scenario is only around 25%
slower than that of both alternatives. However, considering
the roughly 400Mbps Golang TCP throughput from Fig. 5,
the star topology results indicate this implementation is not
capable of fully serving two clients, much less four. As such,
the Golang implementation is a sufficient, but not excellent
fallback options for star topologies.

However, there are significant differences in node behavior
even within each alternative. Fig. 9 shows the CPU use of
each node throughout the scenario for eBPF, Golang and
WireGuard. For eBPF, client CPU use fluctuates between 4%
and 12% of a core over the course of the scenario. Server CPU
use, on the other hand, is quite stable at around 4.5% despite
fluctuating throughput. Relative performance between clients

and server reaffirms that Warrens servers with the eBPF imple-
mentation are highly efficient due to limited eBPF intervention
in received packets. The performance of the Golang imple-
mentation and WireGuard is highly similar, differing only in
absolute terms as WireGuard uses around twice as much CPU.
While the underlying reasons are different, the explanation
is simply that both options execute similar amounts of code
for both incoming and outgoing packets, resulting in a server
CPU use which is almost exactly the sum of client CPU use.
However, as the Golang implementation uses only two threads,
one for packet handling in either direction, server CPU use is
at its limit while client CPU use is reduced to what the server
is capable of handling.

The relative efficiency of the implementations is confirmed
by Fig. 10, with the eBPF implementation again handling
orders of magnitude more throughput per CPU load than the
Golang implementation and WireGuard. While eBPF send per-
formance is the same as in the point-to-point scenario, receive
performance drops by 50% as a result of being overloaded by
several clients. Similarly, Golang and WireGuard performance
is 30% to 50% lower due to star topology bottlenecks, although
their relative performance is nearly identical to the point-to-
point scenario.

C. Ring Topology

As shown in Fig. 11, this scenario is where the performance
benefits of decentralized Warrens become apparent. Using
Warrens, each pair of nodes can nearly saturate a gigabit
connection in both directions simultaneously when using the
eBPF implementation, while a VPN generally has need of
VPN server nodes that form bottlenecks. As a result, each of
the five nodes in the ring only gets 200 Mbps of throughput on
average. In more general terms, in a topology with n nodes
and v necessary VPN server nodes, the average throughput
for Warrens is O(1) while for a VPN it is O(v/n). Only
in the edge case where each node is its own VPN master
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Fig. 10: Throughput per CPU core % for TCP traffic in star
topology.
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Fig. 11: 5 node ring TCP/UDP throughput.

could a VPN technically approach Warrens performance, al-
though there would be a significant overhead factor for inter-
node synchronization of VPN metadata. UDP throughput is
included for illustrative purposes; both WireGuard TCP and
UDP performance are capped at 200 Mbps due to the server
bottleneck, unlike in the point-to-point scenario. For the same
reason, the Golang implementation achieves a significantly
higher throughput than WireGuard in this scenario, although
evidently it remains a fallback option compared to eBPF.

Fig. 12 shows the throughput and CPU use of each node
over the scenario runtime, illustrating the architectural differ-
ences in the networking solutions in more detail. Throughput
is measured at the sending node, although influenced by the
amount of simultaneously received traffic at any moment.
Both the Warrens eBPF and Golang implementations show
similar performance; each node has the same throughput (a
+ c) barring some spikes up to 20% for eBPF and noise up
to 10% for Golang. However, CPU use on each node (b +
d) follows traffic generation exactly, keeping throughput per
CPU constant and showing that the noise is more likely an
iperf3 artifact. Note that although the Golang has separate
threads for packet handling in both directions, resulting in a
slightly higher than 1 core CPU use. In relative terms, the
eBPF implementation remains around 14 times faster than
Golang for sending traffic. WireGuard throughput (e), on the
other hand, is capped throughout the scenario for node 2
(the first client to connect), while the remaining throughput
is chaotically divided among the rest of the nodes, varying
by up to 50% over a few seconds. WireGuard CPU use (f)
shows the disadvantage of a server node for ring (or otherwise
decentralized) topologies; it requires 4 CPU cores to handle
all traffic, while the other nodes in the “ring” consistently use
2 CPU cores due to network resource contention, which is
significantly more than in the straightforward star topology
scenario.

Finally, WireGuard UDP throughput (g) is included for
illustrative purposes. Due to the nature of UDP, for all alter-
natives the throughput for each node is almost exactly enough
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Fig. 12: Throughput and CPU use overview for all nodes in 5 node ring topology, for TCP traffic using each evaluated
alternative. WireGuard UDP is included as an example of resource contention.
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Fig. 13: Throughput per CPU core % in 5 node ring topology. Note that each node is simultaneously traffic sender and receiver,
averaging out the relative performance of both roles; “WireGuard Server” indicates the VPN server node.

to saturate a gigabit connection. In the case of WireGuard
however, this comes down to 220 Mbps per node, although de-
spite almost identical throughput per node, CPU use (h) varies
nearly 400% even between client nodes. This effect persists
throughout reruns of the scenario, likely making this another
manifestation of resource contention. UDP performance of the
eBPF and Golang implementations is unremarkable and nearly
identical to TCP performance, barring a slight scaling of CPU
use.

The average throughput per CPU use of all nodes is shown
in Fig. 13, illustrating that in decentralized topologies both
Warrens implementations pull ahead of (VPN) solutions based
on server nodes. Despite its userspace implementation, the
Golang implementation is around 3 times faster than the
WireGuard server node for TCP, and 5 times faster for UDP.

D. Cross Comparison
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Fig. 14: Cross-scenario TCP throughput comparison.
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Fig. 15: Cross-scenario comparison of TCP throughput per
CPU core % of traffic generators. “WireGuard Server” indi-
cates the VPN server node in the ring topology.

Fig. 14 shows the cross-scenario TCP throughput for all
alternatives. As with each individual scenario, relative dif-
ferences are most important. For point-to-point, WireGuard
throughput is consistently high, and more stable than the eBPF
implementation. Moving to the star topology, performance
differences are compressed as the server node becomes a
bottleneck, but in this scenario all alternatives are equally
stable. The advantage of decentralization becomes apparent
in the ring scenario, where the eBPF implementation returns
to nearly the same throughput as the point-to-point scenario,
while the Golang implementation throughput is halved due
to CPU limits. WireGuard, however, falls to the level of the
Golang implementation because its server node must handle
all traffic in the ring. This difference is even more pronounced
in Fig. 15 when comparing throughput per CPU use for traffic
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Fig. 16: Cross-scenario comparison of TCP throughput per
CPU core % of traffic receivers.

generating nodes; in the point-to-point scenario WireGuard is
more or less on par with the Golang implementation, whereas
its performance grows progressively worse throughout the sce-
narios, being only 20% as fast as the Golang implementation
in a ring topology. While the Golang implementation itself also
slows down around 30% in the star and ring scenarios, this is
solely because the evaluated version is double threaded (i.e.
one thread to send traffic and one thread to receive traffic) and
these scenarios on average generate more traffic per node. The
eBPF implementation has nearly identical performance in all
scenarios, showing no scaling effects or bottlenecks. Fig. 16
shows the CPU-relative performance for nodes which receive
traffic, albeit only for the point-to-point and star topologies.
However, as Golang and WireGuard performance is similar
to traffic generation, eBPF performance improves an order of
magnitude due to the more efficient inbound program.

E. ARM Performance
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Fig. 17: ARM point-to-point bulk TCP/UDP throughput.

This subsection presents the Raspberry Pi evaluation results
for the eBPF implementation, giving an indication of Warrens
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Fig. 18: ARM point-to-point bulk TCP/UDP connection CPU
load.

performance on edge devices. As Fig. 17 shows, Warrens can
saturate the Model 3B+ connection using both TCP and UDP,
although when sending UDP traffic there are periodic lapses
of around 20%. While the results seem to indicate slower
reception of UDP traffic, Fig. 18 shows this is not the case;
Warrens only uses around 14.5% of a single core to send UDP
traffic, and given a suitable traffic generator could saturate
the 100 Mbps interface. Taking into account the throughput
difference, TCP traffic uses slightly more CPU than UDP in
both directions, and receiving traffic is similarly efficient as it
is on x64 machines, using less than 1% for UDP and 1.9%
for TCP.

Fig. 19, directly compares CPU-relative performance be-
tween x64 and ARM. For both TCP and UDP, receiving traffic
is only around 5 times slower on the RPI than it is on the
x64 server, despite a far less powerful CPU. Sending traffic,
however, is slightly more CPU intensive and is 7-10 times
slower. However, edge devices generally do not generate large
amounts of traffic, and even when saturating the RPI interface
Warrens only requires 4-5% of the total CPU power. Finally,
the periodic UDP performance lapses are more pronounced
relative to CPU use, although no explanation was found in the
eBPF implementation.

F. Memory Use

Fig. 20 shows the memory use of each alternative on x64.
Note that nearly all of the memory use is because of container
management through containerd; the eBPF and WireGuard
options have essentially zero overhead during the entire sce-
nario runtime. Only the Golang implementation, running in the
same process, shows an elevated memory use. However, this is
limited to around 11 MiB to manage interfaces and traffic, and
due to decentralized implementation effectively scales O(1)
with the number of globally active Warrens nodes.

VII. DISCUSSION

The main performance characteristics of Warrens are illus-
trated by the point-to-point and IoT scenarios. As Warrens
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Fig. 20: Memory use during star topology evaluation. Note
that because WireGuard and the eBPF solution both run in
the kernel, their memory overhead is essentially zero.

does not encrypt traffic itself and is thus not directly com-
parable to WireGuard, the eBPF implementation is currently
up to two orders of magnitude faster than WireGuard, and
estimated to be on par if a comparable encryption scheme
is implemented. The current implementation requires as little
as 2% of total CPU power to saturate a gigabit connection.
The Golang implementation is significantly slower, requiring
up to 25% total CPU use for gigabit traffic. However, this
implementation is only included for compatibility reasons,
sacrificing performance to enable Warrens on older and limited
devices.

The comparison between a star topology and ring topology
illustrates the scalability of Warrens, showing that unlike a
network architecture with centralized components (i.e. Wire-
Guard server), Warrens performance does not drop with the
number of independent nodes in a decentralized container
network; only the local density, specifically the number of

nearby nodes that actually exchange traffic with a common
node, has an impact on the performance of that common
node. The evaluations reflect this, as not only WireGuard
server performance drops linearly with network size, but client
CPU use increases as a result of resource contention. Warrens
throughput, however, remains the same as in the point-to-point
scenario, barring a small reduction for simultaneously sending
and receiving traffic.

Evaluation results consistently show that the eBPF imple-
mentation is particularly efficient for received traffic, as it only
needs to cut off the headers of received packets in-memory. As
a result, the eBPF implementation server is the only one in the
star topology which is more efficient than its clients. Although
technically CPU load scales with O(n) for all options, nodes in
container networks that primarily receive traffic could benefit
greatly from running this implementation.

Warrens is shown to work on a Raspberry Pi 3B+, saturating
the hardware network interface with only 4-5% total CPU
power when sending data to other devices. While the Golang
implementation has a relatively high 11 MiB memory over-
head, it remains a fallback option. Additionally, this overhead
is measured on x64; it is likely to fall below 10 MiB on an
ARM device due to compiler differences. The 8 KiB overhead
of the eBPF implementation is negligible.

The evaluation does not cover setup times, as they are
essentially zero. Rather, Warrens examines every packet in-
dependently and determines ad-hoc where it should be sent,
assuming the target container is in a known subnet.

Finally, Warrens is edge-focused by design, allowing nodes
behind NAT or firewalls to join a cluster with minimal impact
on other traffic. By tracking public IP addresses, nodes can
connect through NAT and the SoSwirly discovery mechanism
can be used to keep NAT active. Both the Golang and eBPF
implementations only intercept incoming traffic on port 31337,
and other container traffic is limited to dedicated network
interfaces. Due to eBPF restrictions, the latter implementation
is technically more secure as it cannot manipulate memory



outside the packet or call unrelated system functions.

VIII. FUTURE WORK

Future work includes the integration of the service discovery
and DNS functionality mentioned in Sections III-D and III-E;
while the SoSwirly discovery algorithm has been proven to
work, the evaluations in this manuscript are performed with
static node catalogs as to not let node discovery interfere with
performance measurements.

A further challenge is evaluating how Warrens can be made
compatible with existing container networking standards, pos-
sibly for integration with Kubernetes. This includes possibly
running side-by-side with a classical CNI plugin, or allowing
centralized control to impose a certain structure on Warrens
while mostly maintaining the independence of node discovery
and IP range assignment.

To improve Warrens security both at the network and appli-
cation levels, an attestation mechanism should be devised to
periodically authenticate nodes after initial discovery, as well
as verifying their catalogs of hosted services. Parameters for
attestation can include device safety features (e.g. encryption
options, hardware security enclaves), (hardware) reliability and
past node behavior. Additionally, encryption options can be
added to secure Warrens traffic, which can be enabled between
a pair of nodes if they support the required hardware and
kernel options.

Finally, Warrens performance can be greatly improved by
removing the UDP header and thus the need for a checksum.
Ideally, only an IP-in-IP header would be required, although
compatibility with a wide range of routers should be consid-
ered in terms of routing options (i.e. NAT and port forwarding
in the current case of UDP).

IX. CONCLUSION

Existing container networking solutions are increasingly
demonstrating rigidity in meeting the needs of edge computing
environments. This manuscript presents Warrens as a solution
for decentralized, scalable container networking in the edge,
using connectionless tunnels. The architecture of Warrens
is described in depth, with possible additions for node and
service discovery. Warrens has been implemented in two
variants, one using Golang for wider-compatibility and another
using eBPF for better performance. Details of the Golang and
eBPF implementations are provided, highlighting the trade-
offs in their performance. Warrens has been evaluated experi-
mentally over four scenarios, comparing both implementations
to WireGuard, a centralized VPN alternative solution. Eval-
uation results show that although Warrens does not encrypt
traffic like WireGuard, the relative conclusions can be drawn
that the eBPF Warrens implementation is highly performant,
especially for received (i.e. downstream, response) traffic,
and that it would be on par with WireGuard performance
when implementing encryption. The Golang implementation
is shown to be a suitable, but significantly slower alternative
for devices that do not sufficiently support eBPF, while both
implementations are highly scalable compared to classical
VPN solutions such as WireGuard. Finally,future work has

been discussed, centered around DNS, standardization and
reconciliation with normal CNI operation, as well as security
enhancements and performance improvements.
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