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Abstract—This paper explores the application of machine
learning for practical applications in the context of Beyond 5G
(B5G) communications. A variety of machine learning techniques,
including neural networks, was applied on a labeled dataset about
network slicing. Neural network models demonstrate superior
performance in optimizing virtual network slices, crucial for
enhancing Internet of Things (IoT) connectivity and efficiency.
The findings can assist telecommunications professionals and
policymakers, offering practical perspectives on Al technologies
that can be applied in BSG scenarios for large communications
networks.

Index Terms—neural networks, network slicing, 6G communi-
cations, IoT communications, beyond 5G

[. INTRODUCTION

This paper investigates possible applications of Artificial
Intelligence (AI) for resource management procedures for
Beyond 5G (B5G) networks. It highlights the complex nature
of B5G networks and demonstrates how Al-driven solutions,
leveraging neural network techniques, enhance efficiency and
adaptability in resource allocation. Additionally, the study
emphasizes the critical role of intelligent resource management
in femtocell-based communications and Cloud-RAN environ-
ments. Big data applications assume larger throughput and
speeds from the transmission network [Igbal et al., 2020al],
[Igbal et al., 2020b]. Network slicing has the potential to
customize network capabilities for specific requirements, par-
ticularly in the context of highly-connected networks and
Internet of Things (IoT) applications. This automation is a
crucial factor in enhancing network capacity and coverage,
particularly benefiting IoT devices with constant connectivity
and high data throughput needs, such as those used in smart
cities and health monitoring systems.

The upcoming sixth-generation wireless technology, 6G
[Latva-aho and Leppidnen, 2019, is currently under develop-
ment, aiming to succeed 5G. Expected characteristics include
ultra-wideband and ultra-low latency communication with a
target of one microsecond latency, significantly higher data
rates, improved network reliability and accuracy, a pivotal
role for Al in infrastructure and optimization, a human-centric
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focus with enhanced security and privacy features [Wahid
et al., 2018]], energy efficiency considerations [Qureshi et al.,
2017]], support for diverse applications beyond current mobile
use scenarios (such as Internet of Things), and the adoption
of flexible decentralized business models by mobile network
operators [Letaief et al., 2019], [Docomo, 2020], [Tataria
et al., 2021], [Alsharif et al., 2020]]. The first 6G Wireless
Summit was held in Levi, Finland in 2019 [University of
Oulu, 2019] and the deployment of 6G systems is expected
by 2028, although universally accepted standards defining its
components do not yet exist.

Al is poised to play a pivotal role in the evolution of 6G
technology, offering a range of transformative applications
[Shi et al., 2023], [Yang et al., 2020]], [Guo, 2020]. AI and
communications convergence is expected to bridge the gap
between digital and physical realms, introducing novel sensory
experiences for users [Ji et al., 2021]]. Intelligent IoT is another
facet, suggesting that IoT devices in 6G will not only connect
but also possess learning and decision-making capabilities.
Al is anticipated to be integrated into networking equipment,
empowering networks to autonomously learn and manage
themselves, potentially reducing operational costs. Although
an evolving field, various Al methodologies have been investi-
gated for the advancement of B5G networks. Several deep neu-
ral networks (DNN) have been proposed for the optimization
of 6G communication networks. [She et al., 2020] proposed a
DNN multi-level architecture that enables device intelligence,
edge intelligence, and cloud intelligence for URLLC. Addi-
tionally, DNNs can assist transmission impairement mitigation
[Maniak et al., 2022]. [Wang et al., 2021]] has investigated the
process of designing robust deep learning models that can be
deployed on resource-constrained IoT devices. Furthermore,
dynamic DNN have been proposed in order to automatically
optimized network parameters according to device usage [Ma
et al., 2022]|. Deep learning [Zhai et al., 2022|| and graph-based
[Wang et al., 2022]] approaches have been used for location
optimization of UAV device networks. Finally, edge computing
on interconnected devices has been investigated as a base for
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federated learning [Sirohi et al., 2023].

Cellular communications and the impending deployment
of 5G mobile networks demand strict adherence to high-
reliability standards, ultra-low latency, increased capacity, en-
hanced security, and rapid user connectivity, with a focus on
sustainability [Lv et al., 2018]]. Mobile operators are actively
seeking programmable solutions that allow for the concurrent
accommodation of multiple independent nodes on the same
physical infrastructure. The advent of 5G networks introduces
Network Slicing (NS) as a pivotal capability, facilitating
the partitioning of the network into distinct virtual slices
[Khan et al., 2020]. Each network slice caters to specific
needs, allowing diverse services like smart parking meters
and driverless cars to coexist with tailored resource alloca-
tion, rendering the one-size-fits-all service delivery approach
obsolete. Three example slices are the Mobile Broadband
(eMBB), the Ultra-Reliable Low Latency Communication
(URLLC) and the Massive Machine Type Communication
(mMTC) slice [Thantharate et al., 2020]. The eMBB refers
to data-heavy operation with high-bandwidth and high-speed
data transmission, for activities such as video streaming and
online gaming. URLLC provides stability and low-latency
for applications such as autonomous vehicles and industrial
automation [[Ahmed et al., 2022|, [Hijj et al., 2023]. On the
other hand, mMTC supports large, multi-node IoT device and
sensor networks. In the realm of 5G and 6G, network slicing
facilitates the customization of network services to cater to
specific use cases, guaranteeing optimal performance, efficient
resource utilization, and enhanced user experiences aligned
with the distinct requirements of applications like eMBB,
URLLC, and mMTC.

The paper introduces a novel approach to virtual resource
management within intricate BSG networks, leveraging ML/AI
algorithms for the dynamic allocation of resources based
on real-time network conditions, traffic patterns, and user
demands. This includes the goal of automating network slicing
using Al-based algorithms. This research not only contributes
to the progression of BSG technologies but also showcases the
practical application of Al in achieving intelligent resource
management and optimization. The findings are expected to
significantly influence future innovations in B5G and beyond.

II. METHODS AND MATERIALS

A. Data Sources

The ’Network Slicing’ dataset utilized in this research
originates from the CRAWDAD project [Thantharate et al.,
2022]. The dataset encompasses a comprehensive set of obser-
vations, comprising 466,739 instances and 8 feature columns.
The features are 'Use Case Type’, 'LTE/SG UE Category’,
"Technology Supported’, ’Day’, *Time’, ’QCI’ (Quality of Ser-
vice Class Identifier), "Packet Loss Rate’, and ’Packet Delay
Budget’. The dataset’s primary objective is to investigate and
model various aspects of B5G converged Optical Wireless
Networks, with a specific focus on deep-slice scenarios. The
histograms of the values for the different input features are

shown in The "Slice Type’ column serves as the tar-
get variable, indicating the classification of network slices into
three distinct classes eMBB, URLLC and mMTC. Categorical
variables were converted to integers using one-hot encoding.
In order to solve a non-trivial problem, the *Use Case Type’
column was ignored. The end task was the classification of a
device to the appropriate slice type, considering an unknown
use case.
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Fig. 1: Histograms
Dataset.

of the values for the Network Slicing

B. Experiment

In order to facilitate experimentation, the dataset was split
in two separate train and test subsets with a 20% ratio. An
additional 20% of the train data was held out for model
validation during training. The split was applied in a stratified
manner, in order to preserve class distribution of the output
labels.

For the network slicing dataset, a Support Vector Machine
(SVM), a Random Forest Classifier (RFC) and a Fully Con-
nected Neural Network (FCNN) were employed to predict the
target network slice based on the input features. Exploratory
analysis was performed to identify the characteristics of the
datasets. A random forest model was used to assess feature
importance within the train dataset.

The investigated methodologies are staple methods in ma-
chine learning, used in various domains and applications
[Boateng et al., 2020], [Ren et al., 2016]. A Support Vec-
tor Machine (SVM) is a supervised machine learning algo-
rithm which finds the hyperplane that best separates the data
into different classes while maximizing the margin between
classes. SVM is effective in high-dimensional spaces and is
particularly useful when the data has clear separations between
classes. A Random Forest Classifier (RFC) is an ensemble
learning method that builds diverse decision trees using ran-
dom subsets of the data and features, and then combines their
predictions to improve accuracy and generalization. Random
Forests are robust, handle high-dimensional data well, and
are less prone to overfitting compared to individual decision
trees. A Fully Connected Neural Network (FCNN) is a type of
artificial neural network architecture where each node in one
layer is connected to every node in the subsequent layer. This
architecture allows for complex learning and representation



of patterns in data. As baselines, logistic regression (LR) and
Gaussian Naive Bayes (GaussianNB) were also used.
In this experiment, the following models were used:

o LR with an L2 penalty score and Ibfgs solver,

o GaussianNB with a le-9 smoothing term,

e an SVM with Radial Basis Function (RBF) kernel,

¢ a RFC with 100 estimators and Gini criterion, and

« a FCNN with 3 FC layers and a total of 167 trainable
parameters.

III. RESULTS

In this study, two independent experiments were performed,
in order to demonstrate the effectiveness of Al approaches
for B5SG-related applications. The first experiment targeted the
classification of the optimal virtual network slice depending on
the usage characteristics of a device. The second experiment
targeted the identification of proposed locations for a small
cell node deployment based on the existing network of small
cells.

For the network slicing dataset, three different machine
learning models were employed: SVM, RFC and FCNN.
Initially, exploratory analysis was performed on the network
slicing dataset. visually represents the importances
of input features obtained through random forest impurity
analysis on the Network Slicing dataset. The impurity-based
analysis conducted by the random forest model is a method to
assess the contribution of each feature to the predictive accu-
racy of the model. Higher importance scores suggest that the
corresponding features play a more crucial role in the model’s
decision-making process. This information is valuable for
understanding which features have a more substantial impact
on the model’s ability to discriminate and classify different
instances in the dataset. Packet-related features, namely packet
loss rate and delay budge demonstrated the highest importance.
Supported technology also plays an important role. Day, time
and quality features do not have a large influence.

The results of classification of the inputs to the optimal
network slice are shown in [Table 11 The FC neural network
showed considerably improved performance, with 97.88%
testing accuracy, in classifying the input sample to each of
the eMMB, URLLC and mMTC slices. This indicates that
Neural Network approaches, even with simple networks, can
be used to automatically determine the optimal slice for
the usage characteristics of a connected device. The lower
performance of LR and GaussianNB in this context could
be attributed to their simplicity and limitations in handling
the high dimensionality of complex network data. In complex
network scenarios, patterns and nonlinear relationships are
better captured by more sophisticated models like neural
networks, as also demonstrated by the experimental results.

IV. DISCUSSION

In this study, we conducted experiments to demonstrate
Al’s effectiveness in B5G applications, focusing on classi-
fying optimal virtual network slices based on device usage
characteristics. Three machine learning models (SVM, RFC,
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Fig. 2: Importances of the input features based on random
forest impurity analysis.

TABLE I: Table Type Styles

Model Train Acc (%) | Test Acc (%)
LR 67.79 67.83
GaussianNB 55.15 55.16
RFC 90.99 91.16
SVM 92.21 92.19
FCNN 98.43 97.88

FCNN) were used, with the FC neural network outperforming,
highlighting neural network effectiveness. While promising,
limitations include the need for generalization to diverse real-
world scenarios, limited model optimization, and potential
dataset biases impacting broader context applicability.

The results underscore diverse machine learning method-
ologies’ applicability in structured B5G data, with varying
effectiveness. Neural network models showed superior per-
formance, but their ’black-box” nature raises interpretability
concerns. Static datasets may not fully emulate dynamic B5G
networks, impacting adaptability and scalability. Future re-
search should address interpretability, dataset diversity, and Al
robustness. Evaluating models in real-world deployments and
exploring ensemble or hybrid models could enhance practical
utility, contributing to resilient, efficient, and interpretable Al
solutions for BSG technologies. The study’s relevance extends
to telecom professionals, network engineers, architects, and
policymakers, offering insights into AI’s impact on B5G
network performance.

V. CONCLUSION

In summary, this research showcases progress in resource
management techniques for B5G networks, emphasizing the
integration of Al into virtual resource management. Tradi-
tional AI methodologies, such as SVM and FCNN, were
applied on a labeled dataset to optimize network slicing.
The outcomes highlight the superior performance of neural
network approaches. The consistent efficacy of neural network



models underscores the potential of Al to adeptly address
the inherent complexities of advanced network systems. These
advancements directly enhance network capabilities for highly
connected information systems by bolstering flexibility and
efficiency. Subsequent research efforts should focus on ad-
dressing recognized limitations, delving into ensemble models,
and evaluating real-world deployment scenarios. The practical
implications derived from the study provide insights for pro-
fessionals within the telecommunications sector, elucidating
the concrete application of Al in BSG scenarios.
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