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Abstract—Urban centers worldwide grapple with the intricate
challenge of traffic congestion, necessitating sophisticated solu-
tions grounded in real-time data analytics. This paper presents
a cutting-edge Digital Twin (DT) framework tailored for urban
traffic management, with a focus on the context of Singapore’s
technologically advanced landscape. By seamlessly integrating
live weather data and on-road camera information, the proposed
framework offers insights into traffic dynamics, enabling adaptive
decision-making. Leveraging a modular architecture and ad-
vanced artificial intelligence (AI) algorithms, the framework aims
to optimize traffic flow, mitigate accidents, and ensure resilient
commuting experiences, even amidst adverse weather conditions.
Evaluation of individual components showcases promising perfor-
mance metrics, albeit contingent upon data availability and user
engagement. Future research endeavors will explore scalability,
user-centric design enhancements, and the longitudinal efficacy
of the proposed framework, positioning it as a novel solution for
urban traffic management.

Index Terms—intelligent transportation system, artificial intel-
ligence, digital twin, image analysis, traffic management

I. INTRODUCTION

In today’s rapidly growing urban centers, traffic congestion
has become an increasingly critical challenge for city au-
thorities. Traffic management and forecasting are challenging
tasks affected by various factors such as weather patterns,
seasonal events, and rush hours. Therefore, traffic monitoring
for immediate decision-making based on tangible data is
crucial for ever-growing cities. Both pedestrian and vehicular
traffic constitute dynamic systems that can be modeled and
monitored [1]–[5]. Furthermore, the increasing frequency of
extreme weather phenomena, affecting traffic incidents [6],
makes it necessary to predict and address traffic congestion
spots. A helpful concept in this regard is the Digital Twin
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(DT), which can be used as a basis for system modeling,
monitoring, and simulation.

In the past years, Singapore has heavily invested in innova-
tive technologies to establish itself as a model smart city of the
future. Positioned in a disaster-prone area, the Asian coastal
megacity frequently confronts natural disasters, such as intense
flooding due to yearly monsoon rains [7]. This situation is
expected to worsen with more intense weather phenomena
due to climate change and population growth [8], leading to
a growing risk of hydrological hazards through uncontrolled
urban development and exposure to intensified storms. The
impact of natural disasters on people’s lives becomes a critical
point that could be minimized with digitalization [9] and
proper impact monitoring systems [10], [11]. Although human
casualties have remained low due to the state’s concentrated
monitoring efforts [12], costs associated with socio-economic
impact have steadily risen [13].

Bustling urban environments, like Singapore, present a
multitude of challenges, such as fluctuating traffic patterns,
infrastructural wear and tear, population movement, and dy-
namic environmental conditions. Incidents, accidents, as well
as extreme weather events [13] can occur independently across
the city, in a ”patchy” manner. Big data collections [14] require
point-by-point monitoring of individual locations to obtain a
complete picture of the circumstances of the entire city [15],
[16]. A comprehensive approach to address this issue is to
employ a multi-modular architecture for a DT of the target
city. DT [17] is based on the simple idea of linking a physical
object with its digital counterpart accurately and in real-time
[18]. In the context of a smart city platform, a DT is a digital
representation of real-world environments brought to life with
real-time data from sensors and other data sources [19]–[21].

A DT framework consists of three components: the digital
model describing the physical object, a knowledge base used
to build the framework, and an analytics component used to
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assess its performance. Utilizing real-time data, the system
should be able to communicate accurately, predict its state, and
react. Additionally, DT has been proposed for city information
visualization [22], urban climate simulation [23], energy con-
sumption modeling [24], building operation and maintenance
[25], and citizen-inclusive urban planning [26]. The influence
of weather conditions on traffic evolution using state-of-the-
art deep learning and neural networks has been previously
explored [27]. A common issue with DT implementations is
the integration of data from different sources [28].

This study proposes a novel DT framework for a traffic
monitoring platform that is human-centric and adaptive to ex-
treme weather disruptions. It goes beyond conventional traffic
cameras and sensors on fixed infrastructure, leveraging emerg-
ing technologies such as Artificial Intelligence (AI) processing,
and GPS-enabled dashcams to gather real-time information
from vehicles on the road. The modular architecture of the
DT produces an accurate and adaptable representation of a
smart city’s physical space. New modules can be incorporated
swiftly, and old modules can be retired, depending on the
monitoring authority’s requirements. Individual AI layers of
processing inform the DT constantly, updating its state and
information. Integration of live weather data provides a unique
and adaptive approach to traffic management, allowing the
system to respond dynamically to changing environmental
factors. It not only monitors the current state but also provides
predictions, enhancing decision-making capabilities for urban
authorities. This study serves as a proof of concept for a
DT framework, which provides accurate, adaptive, and real-
time solutions to the complex challenges of urban traffic
management.

II. METHODS AND MATERIALS

A. Data Sources

Datasets are recovered from Datamall [29], a collection
of dynamic datasets related to public transport and traffic
metrics maintained by the Singapore Government Agency.
Because the application takes into consideration weather data,
OpenWeather [30] is used for weather data collection for
Singapore. Data collection took place in irregular periods
between 2023-06-09 and 2023-09-10. From this dataset, 63%
of the samples were used for training, 27% for validation,
and 10% for testing of the various modules. Additional open
datasets from mobile dashcams [31] are utilized for the initial
proof of work. Furthermore, dashcam footage from Singapore
was sourced from YouTube.com, to customize models for the
specific Singapore use case. Examples of images from the
different camera sources are shown in Figure 1.

B. System Architecture

A DT is expected to be a copy of the objects, processes,
and physics in the physical space. Data from the physical
space influence the construction of a twin in the virtual space,
including digital representations, relationships, and analytics.
In turn, the twin influences the physical space, by providing
information or recommendations for decision making. This

(a) (b) (c)

Fig. 1: Example images from different camera sources, (a) ex-
pressway camera with high pedestrian traffic, (b) expressway
camera with high vehicle traffic, and (c) mobile dashcam.

Fig. 2: A schematic of the DT concept.

process is described in Figure 2. The proposed DT, should
take the information from live datasets as input, process it
and extract as output a description of the current situation as
well as predictions, as shown in Figure 3. The input layer
will handle data from live APIs and on-the-road dashcams
so that this information will inform the DT. A processing
layer of AI converts smart city data to create a user-friendly
DT. An Extract, Transform, Load (ETL) pipeline is prepared,
in order to first transform data on the server, and then load
them at a data warehouse for permanent storage and further
processing. An output layer represents the current state of
multiple monitoring locations in the city as a collection of
dynamic virtual points. An additional output layer represents
predictions for the upcoming state of the above monitoring
locations in the near future.

The AI Layer can be modular, including several components
that can be run in parallel, which can be enabled or disabled
according to requirements. Individual modules can be updated
while the system is live, either by re-training or fine-tuning
processing models periodically with updated datasets, or by
using reinforcement learning [32], [33]. A rule can be set
to update the models after fine-tuning with the latest data
every three months. Sustainability and adaptability are further
enhanced by the incorporation of mobile monitoring points
via the use of the smart dashcam. This way, current and
future state representation is not limited to the static locations
of expressway cameras but can be adjusted on the go by
dispatching a dashcam-equipped vehicle to the target location.

In the proposed framework care is taken to assist data



Fig. 3: The proposed system architecture.

integration from different sources in the DT. Therefore, sepa-
rate models are trained for classification and prediction tasks
where the source is either static expressway cameras or mobile
dashcams. Furthermore, different update times for the various
data sources cause issues with data synchronization. This can
be solved using interpolation and extrapolation with the latest
available data at each time point.

C. Individual Components

Developing a smart city platform, with the requirements
of the monitoring authority in mind, would involve several
goals and subprojects. The proposed architecture with the AI
processing layer allows for a modular selection of subtasks,
which can be developed as independent components. Modules
described in Table I have been included in our proposed
architecture, based on the available datasets and the context
of Singapore. This is not an exhaustive list, and modules can
be enhanced or increased as time goes by and requirements
change. In some cases, a standalone image is used as direct
input to a module, whereas in other cases time series features,
such as vehicle counts are extracted from a set of images.

• Data Anonymization: Human faces and license plates of
vehicles that are visible in the images should be blurred
before data processing and storage, to be compatible
with the EU General Data Protection Regulation (GDPR)
guidelines [34]. This is achieved by using a pair of
cascading classifiers [35] that detect first vehicles and
people and then faces and license plates.

• Vehicle Monitoring: The location, type, and count of
vehicles on the road at each time moment are detected
from an image. The YOLO-v7 model [36], which per-
forms on-the-fly object detection from the entire image,
was fine-tuned for vehicle and pedestrian detection.

• Taxi Congestion: Clusters of congested taxi vehicles
indicate locations of increased foot traffic. These clusters
can be detected using KMeans clustering [37] for n=10
clusters for the top-10 congested locations.

• Localized Weather Detection: This module extracts
weather phenomena from an image of a specific lo-
cation instead of a city-wide sensor network. This is
achieved with the application of transfer learning [38] on

an EfficientNet-b8 model to classify weather as [clear,
clouds, rain, thunderstorm].

• Road Surface Monitoring: The same process as the
previous module using a ResNet50 model is applied with
target classes [dry, wet, storm].

• Anomaly Incident Detection: Incidents such as road
works, accidents, or flooding should be detected so that an
alarm can be set. An anomaly label and heatmap can be
generated using the Reverse Distillation algorithm [39].

• Traffic Flow Prediction: Historical values and a look-
back window of actual traffic flow in the past few time
steps, as well as current weather, can be used to predict
future traffic flow in the next time step. This is achieved
using a single-step Convolutional Neural Network (CNN)
trained on historical traffic data and weather data.

D. Evaluation

There is an increased variety in the tasks being fulfilled by
the individual modules of the DT. For this reason, each module
is to be evaluated independently with appropriate metrics.
Object detection tasks are difficult to evaluate in terms of
accuracy due to a lack of labeled data. Therefore, a metric
describing the Average Detected (AD) objects per class across
all images is used. The AD for pedestrians in pedestrian
crossings and dashcam scenes should be increased compared
to expressway scenes. For classification tasks where labeled
data are available, metrics such as multi-class Accuracy and
F1Score, as well as training metrics such as ROC AUC,
Train Loss, and Test Loss [40] can be used. For predictive
tasks, Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) are used [41]. A smaller error of the trained
model against a baseline model indicates better performance.
In addition to the above evaluation measures, a demo tool that
runs all developed modules has been developed to test the DT
using random inputs from various time points. The insights
provided by the DT can then be evaluated both visually, as
well as against against the ground truth at the target time point.

III. RESULTS

In order to demonstrate the effectiveness of the proposed
architecture, a DT of Singapore based on the available datasets
was developed. Modules can be validated and tested individ-
ually, without loss of generality. This is appropriate because
each module addresses a different type of task and a variety
of evaluation metrics is required. A condensed table of evalu-
ation findings is presented in Table II. During development,
we experimented with various models and chose the most
suitable, based on performance, rapid implementation, and fast
response. An example of three independent modules is shown
in Figure 4.

The preliminary evaluation results for each module are
presented in Table II. In the Data Anonymization module, AD
values show that in dashcam images slightly more vehicles
were detected compared to pedestrians, as expected. For the
case of expressway cameras, the AD for vehicles was substan-
tially higher, with a lower value for a camera that displayed



TABLE I: Available Modules

Problem Type Module Function Data Type Implementation
Preprocessing Data Anonymization Image MobileNet v1+Cascading Classifiers
Description Vehicle Traffic Monitoring Image Yolo-v7+Fine-Tuning
Description Pedestrian Traffic Monitoring Image Yolo-v7+Fine-Tuning
Description Taxi Congestion Detection Time Series KMeans Clustering

Classification Localized Weather Detection Image EfficientNetb7+Transfer Learning
Classification Road Surface Monitoring Image ResNet50+Transfer Learning
Classification Anomaly Incident Detection Image Reverse Distillation

Prediction Predictive Modeling for Traffic Flow Image Series Single-step/Multi-step CNN

(a) Anonymization (b) Vehicle Flow Prediction (c) Taxi congestion

Fig. 4: Example outputs for individual modules

Fig. 5: Influence of using weather information and different
history time steps in predictive modeling.

vehicles passing through a pedestrian crossing. The module
for Localized Weather Detection, achieved a decent accuracy
of 86.2% considering its small training dataset. Road surface
detection achieved an 82.1% accuracy score. For Anomaly In-
cident Detection, the ROC AUC was 0.9526 and the F1 Score
was 85.41%. Predictive Modeling for Vehicle Flow performed
better than the equivalent for Pedestrian Flow, as expected
due to the increased availability of vehicle traffic data. These
results demonstrate the effectiveness of the developed modules
across various functionalists, with notable performance metrics
attained in each category.

Regarding traffic flow prediction, several factors in the
system architecture design face influence performance. The
inclusion of vehicle counts by type hinders performance and
increases the model’s error. In Figure 5, it is evident that when
the total number of vehicles and weather metrics are used as
features, then the RMSE decreases. Additionally, performance
improves as a moderate lookback period is used, in this case
5 time step which is equivalent to the last 25 minutes (for an
update rate of 5 minutes).

A demonstration of how the information board of the DT

Fig. 6: A demonstration of the proposed DT in action.

could be displayed to the end user is shown in Figure 6.
Using a live image at a specific location as input, as well
as a set of previously captured images, the information in
the DT for that location is updated and insights for decision-
making are provided. In this case, the following modules
are presented: vehicle detection, local weather detection, road
anomaly detection, and future traffic flow prediction.

IV. DISCUSSION

The implementation of the proposed architecture as an
innovative urban mobility and transport platform represents
a significant step forward in the field of traffic management.
Its modular approach, with individual modules functioning
independently and in parallel, offers a versatile and adaptable



TABLE II: Evaluation per Module

Module Function Test Size Performance during Testing
Data Anonymization from dashcam 4468 images ADperson = 0.92, ADface = 0.07, ADcar = 1.15,

ADplate = 0.08 a

Traffic Monitoring from expressway camera 5013 images ADvehicle = 37.71, ADpedestrian = 1.02
Traffic Monitoring from pedestrian crossing camera 5187 images ADvehicle = 12.41, ADpedestrian = 1.20

Traffic Monitoring from dashcam 4468 images ADvehicle = 10.78, ADpedestrian = 2.59
Taxi Congestion Detection 500 records not applicable

Localized Weather Detection from expressway camera 617 images Accuracy = 86.2%
Road Surface Monitoring from dashcam 6081 Accuracy = 82.1%

Anomaly Incident Detection 1550 images ROCAUC = 0.9526, F1Score = 85.41%
Predictive Modeling for Vehicle Flow 80 time steps MAE = 0.072, RMSE = 0.092, MAEbaseline = 0.114

Predictive Modeling for Pedestrian Flow 85 time steps MAE = 0.038, RMSE = 0.052, RMSEbaseline = 0.062
aAverage Detected (ADtarget) objects of class ’target’ per image.

system capable of rapid updates to meet evolving monitor-
ing requirements. One of the key distinguishing features is
its ability to incorporate real-time weather information and
dashcam-based on-the-ground info into its decision-making
process. Unlike conventional traffic monitoring systems that
rely primarily on historical data and predefined algorithms,
this system dynamically responds to changing environmental
factors, ensuring adaptive traffic management.

DT allows for the simulation of plans before implementing
them, exposing problems before they become a reality, as
well as allowing to address emergencies in real-time as they
arise. Not only will this solution empower traffic management
and optimize infrastructure planning, but it will also enhance
public safety, reduce commuting times, prevent disruptions
from natural disasters, and improve the overall quality of life
for residents and commuters alike. Moreover, the adaptability
and learning capabilities of the proposed architecture mean
that it can evolve to address the changing dynamics of urban
mobility and traffic management. As it accumulates more
data and experience, it is expected to become an increasingly
valuable tool for city authorities, offering invaluable insights
for informed decision-making and long-term planning. This
system stands to benefit city authorities, commuters, public
transport operators, and emergency services, making it an in-
dispensable tool for creating smarter, safer, and more efficient
cities.

This study is subject to several limitations. Due to time
constraints, models of each module were trained and tested
once, without any follow-up period. Data collection was lim-
ited to a few months, therefore year-round seasonality in traffic
and weather patterns was not explored to its full potential.
In regions with limited weather monitoring infrastructure or
unreliable data sources, the system’s performance may be
compromised. However, the module that detects road surface
and weather conditions from road images was prepared es-
pecially to provide accuracy in such cases. Additionally, the
success of the framework also depends on the willingness of
users to participate in data sharing through connected vehicles
and dashcams. Privacy concerns and data security issues may
hinder the adoption of such technologies, potentially limiting
the system’s access to valuable live data. However, this can be
overcome, by using state-authorized vehicles, such as police

or patrol vehicles for live traffic data collection. Furthermore,
the implementation of this framework requires significant
infrastructure and technological investments. Not all cities
may have the resources or capabilities to adopt this advanced
system, leading to disparities in urban traffic management
solutions.

During future work, the performance of the DT needs to
be evaluated in detail and for a long period, so that seasonal
patterns are visible. The proposed architecture can be consid-
erably enhanced with the implementation of Reinforcement
or Federated learning in order to constantly update the DT.
Additionally, the focus should be shifted to live data-driven
and self-learning models, so that the implication of engineers
to periodically update models can be minimized. Strategies
should be devised to make the system scalable and feasible
using lower processing requirements and for a broader range
of cities, including those with limited resources. Big data
handling, such as storing only extracted analytics from the
processed image instead of the entire captured image can
greatly improve storage and data throughput.

V. CONCLUSION

In summary, this study proposed a novel DT framework
as an innovative approach to urban traffic management in
Singapore. Its modular architecture, real-time weather inte-
gration, and reliance on live on-the-road image data signify
a departure from traditional traffic monitoring systems. The
framework’s adaptability and learning capabilities hold the
promise of improving traffic congestion, reducing accidents,
handling natural disasters, and ensuring safe commuting even
in adverse weather conditions. Future work should focus
on evaluating the framework’s real-time effectiveness and
addressing scalability and big data challenges.
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