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Abstract—Modulation scheme and power control simultane-
ously impact the performance of integrated data and energy
transfer (IDET). Therefore, some efforts have been invested in
deep reinforcement learning (DRL) algorithms to realize adaptive
modulation (AM) and adaptive power control (APC), in order
to achieve long-term performance improvement. However, the
optimal DRL algorithm design for the long-term performance
optimization having long-term constraints is still a challenge,
while the optimal patterns of IDET-oriented joint AM and APC
are not fully understood. This paper aims to maximize the long-
term performance of energy harvesting (EH), while satisfying the
long-term constraints of spectrum efficiency, bit-error-rate and
transmit power, by jointly optimizing the modulation selection
and transmit power allocation. Then, a novel DRL algorithm,
named constrained parameterized action deep deterministic pol-
icy gradient (C-PADDPG), is proposed to find the feasible policy
of joint AM and APC for the transformed constraint satisfaction
problem. Meanwhile, the optimal policy is searched for via bi-
section method. Simulation results demonstrate that our solution
can achieve significant gain on the long-term EH performance,
compared to the traditional genetic algorithm-based solution and
other DRL benchmark. Moreover, the communication-efficient
and EH-efficient patterns of joint AM and APC generated by the
C-PADDPG algorithm are explicitly illustrated and analyzed.

Index Terms—Integrated data and energy transfer (IDET), in-
telligent link adaptation, joint adaptive modulation and adaptive
power control, deep reinforcement learning (DRL), long-term
constraints.

I. Introduction
A. Backgrounds and Motivations

Radio frequency (RF)-based wireless energy transfer (WET)
enables the network to provide flexible, on-demand and contin-
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uous energy supplement remotely for the massively connected
low-power devices [1], which is considered as a prospective
technology in future sixth generation (6G) communication
systems. Along with traditional wireless data transfer (WDT),
WET requires additional radio resources such as time, fre-
quency and antennas, which degrades the performance of its
counterpart. Coordinating WDT and WET yields the concept
of integrated data and energy transfer (IDET)1 [2], where
some pioneering works focus on the design from physical
layer to network layer, such as signal processing, coding and
modulation, access control design, and protocol design [3].
Moreover, modulation scheme and power control sensitively
impact both WDT and WET performance, so that link adap-
tation incorporating adaptive modulation (AM) and adaptive
power control (APC) has been investigated to optimize the
statistical average IDET performance or the IDET performance
within a finite time horizon.

Unfortunately, highly-dynamic wireless environments and
non-linear hardware modules are posing challenges for the
design of transceiving mechanism in future 6G communication
systems, where conventional approaches are unable to help
the systems achieve optimal performance. Therefore, artificial
intelligence (AI) is relied upon to design transceivers, due to its
strong capabilities of feature extraction and self-adaptability.
With the aid of AI, both transmitters and receivers are capable
of intelligently adapting themselves to dynamic wireless envi-
ronments, which has spurred considerable research interests.
For instance, deep learning has been widely investigated for
intelligent physical layer, including channel estimation [4],
channel representation and prediction [5], end-to-end system
[6], as well as source and channel coding [7], [8]. Deep
reinforcement learning (DRL) also enables efficient decision-
making strategies for long-term performance optimization,
while it has been extensively exploited for intelligent resource
and network management [9]–[11].

Furthermore, the flexibility of long-term performance opti-
mization is increased by incorporating long-term constraints.
For example, involving long-term constraint of transmit power
allocation can enable more efficient optimization, since trans-
mit power can fluctuate among different transmission frames.
However, traditional DRL framework can only optimize a

1In physical layer, IDET and simultaneous wireless information and power
transfer (SWIPT) are the same concept. However, IDET is an extended
concept for upper layers, including medium access control layer and network
layer, while SWIPT mainly focuses on the physical layer design.
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single long-term objective, while some works exploit sliding
time window to design reward function, in order to deal
with extra long-term objectives, i.e., long-term constraints. In
fact, the method of sliding time window extremely relies on
the selection of hyper parameters, which is unable to help
DRL obtain optimal long-term performance. Fortunately, some
pioneering works [12], [13] have explored to resolve this
dilemma in reinforcement learning with low-dimensional state
space and discrete action space. This motivates us to apply
the similar idea to redesign conventional DRL algorithms,
in order to solve the long-term performance optimization
problem having long-term constraints.

Under such a context, some research efforts have been
invested in using DRL approaches to design AM, APC or joint
AM and APC, in order to optimize long-term performance
of IDET systems in time-varying wireless channels. However,
the optimal DRL algorithm design for long-term performance
optimization having long-term constraints is still a challenge,
while the optimal patterns of IDET-oriented joint AM and APC
are not fully understood. In particular, these existing issues
deserve further investigations.

B. Related Works

By exploiting RF signals, wireless data and energy are trans-
ferred simultaneously to massively connected low-power de-
vices, which can potentially realize energy self-sustainability.
Plenty of works focus on the transceiving design of IDET
for achieving performance trade-off between WDT and WET.
For instance, Garg et al. [14] proposed a systematic method
using chordal distance decomposition to obtain the balanced
precoding, which achieves the rate-energy trade-off for IDET.
Zhao et al. [15] investigated a time index modulation-assisted
IDET system to deliver additional data information by acti-
vating different symbol durations for either WDT or WET
in time domain, which can substantially increase the IDET
performance. Lee et al. [16] jointly optimized time switch-
ing factor as well as source and relay precoding matrices
of the IDET transceiver, in order to maximize the mutual
information between source and destination nodes. Li et al.
[17] jointly optimized transmissive reconfigurable metasurface
coefficient, transmit power allocation and power splitting ratio
of IDET transceiver for maximizing the system sum-rate,
while considering the non-linear energy harvesting (EH) model
and outage probability criterion. While some research efforts
designed algorithms for the transceiving mechanism of IDET,
others explored to implement IDET prototype on low-power
receivers. For instance, Zheng et al. [18] implemented a
prototype that integrated the RF-based WET function in a
Zigbee-based communication network. Fan et al. [19] provided
a complete design and implementation of a fully functioning
IDET system with the support of an unmanned aerial vehicle.
Kobuchi et al. [20] implemented an IDET system operating at
5.8 GHz for spacecraft health monitoring.

Moreover, different schemes of modulation and power con-
trol have distinct WDT performance, e.g., the bit-error-ratio
(BER) and the spectrum efficiency. As a result, adaptively
selecting an appropriate modulation scheme and allocating

suitable transmit power under different wireless channel con-
ditions may help communication systems achieve a better
BER/spectrum efficiency performance overall. For instance,
Svensson [21] designed an AM with a constant BER for
every channel signal-to-noise ratio (SNR). Specifically, the
pattern of SNR boundary-based AM and waterfilling-aided
APC was proposed to achieve this goal, in order to increase
the spectrum efficiency with the same BER constraint. Later in
[22], [23], different modulation schemes, such as quadrature-
amplitude-modulation (QAM) and phase-shift-keying (PSK),
have different WET performance in various channel conditions
when non-linear energy harvesters are taken into account2.
Obviously, transmit power control also impacts WET perfor-
mance [24]. By considering the impact of modulation scheme
and power control on both WDT and WET, some research
efforts have been invested in designing AM and APC to
achieve the performance trade-off, contributing to improve the
performance of IDET systems. For instance, Hu et al. [25]
studied an AM scheme to achieve the performance trade-
off of rate-energy-reliability in an IDET system. Zouine [26]
investigated a system consisting of independent EH nodes
that transmit status updates to a non-EH sink over a fading
channel. Specifically, the transmitting sensor node adjusts the
M-ary modulation level and transmission power based on both
the channel state and the battery level, in order to minimize
the number of violations of inter-delivery time over a finite
time horizon. Ma et al. [27] optimized the channel threshold,
adaptive modulation levels and corresponding power alloca-
tions in an IDET system, in order to maximize the throughput
within a finite horizon. Liu et al. [28] proposed a QAM order
selection scheme for EH nodes by using Bayesian decision
theory, thereby improving the total system throughput.

Nevertheless, all these works above adopted conventional
algorithms, which only optimized the statistical average per-
formance or the performance within finite horizon. In a mean-
while, some research efforts also explored to enable intelligent
link adaptation via DRL methods, in order to achieve the long-
term performance improvement of various communication
systems. For instance, Han et al. [29] combined the deep Q-
network (DQN) and interior-point method to solve the problem
of joint sub-channel and power allocation, in order to achieve
the energy efficiency fairness among users in a device-to-
device IDET network. Dong et al. [30] exploited DQN to
jointly schedule the transmit power, modulation order and
coding rate for achieving the performance trade-off between
throughput and energy consumption in underwater acoustic
communication. Shui et al. [31] designed a double parameter-
ized DQN to optimize access point classification on a large
time-scale and beamforming power allocation of the access
point on a small time-scale, in order to simultaneously satisfy
the IDET requirements of data users and energy users. Sun et
al. [32] combined deep deterministic policy gradient (DDPG)
algorithm with unsupervised learning to enable channel alloca-
tion and power control, in order to maximize energy efficiency
of the centralized cellular networks. Guo et al. [33] proposed a

2For example, in Fig. 4 of [22], 16-QAM modulation scheme achieves a
better WET performance than the counterpart of 16-PSK modulation scheme,
when a receive power threshold is required for activating the EH circuit.
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TABLE I
Literature Review onWireless Link Adaptation

[21] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] Our work
Wireless data transfer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Wireless energy transfer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adaptive modulation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adaptive power control ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Statistical average performance optimization ✓ ✓ ✓
Finite horizon performance optimization ✓ ✓ ✓
Long-term performance optimization ✓ ✓ ✓ ✓ ✓ ✓ ✓
Perfectly tackle long-term constraints ✓
Illustrate joint AM and APC pattern ✓ ✓

DDPG-based algorithm to optimize the dynamic uplink access,
working mode selection and continuous power allocation, in
order to maximize long-term uplink throughput in an EH-
powered cognitive internet of thing network. Li et al. [34]
proposed a DQN-based policy to allocate transmission power
and adjust multi-ary modulation level, in order to maximize
the system throughput.

C. Contributions

We compare the closely-related works [21], [25]–[34] about
wireless link adaptation to ours in TABLE I. Some drawbacks
in the existing works are summarized as below:
• None of the existing works studied long-term IDET

performance optimization having long-term constraints by
jointly incorporating AM and APC. The works [21], [25]
optimized the statistical average performance, while the
works [26]–[28] optimized the the performance within a
finite time horizon. Moreover, the works [29]–[34] used
DRL approaches to optimize long-term system perfor-
mance, but the works [29]–[33] did not consider joint
AM and APC in IDET system, and the work [34] did not
involve long-term constraints.

• Existing DRL-based methods are weak in solving the
long-term performance optimization problem having
long-term constraints. Specifically, the works [29]–[31]
used sliding time window to tackle the long-term con-
straints, i.e., the reward function is set to be positive
when the average constraints in current time window are
satisfied, otherwise it is set to be negative. However, the
method of sliding time window extremely relies on the
selection of hyper parameters, which is unable to help
DRL obtain optimal long-term performance. Moreover,
the works [32]–[34] only considered instantaneous peak
constraints.

• None of the existing works explicitly illustrated and
analyzed the patterns of joint AM and APC for IDET
system. The works [25]–[34] only demonstrated that
their strategies of AM, APC or joint AM and APC can
achieve better WDT/IDET performance than the baseline
schemes, while the work [21] proposed and illustrated
a classic WDT-oriented pattern of SNR boundary-based
AM and waterfilling-aided APC.

Against this background, it is essential to redesign conven-
tional DRL algorithms for the long-term IDET performance

optimization having long-term constraints, while it is impera-
tive to reveal the optimal patterns of IDET-oriented joint AM
and APC. Our contributions are summarized as follows:

• We study the long-term performance optimization having
long-term constraints in a point-to-point IDET system,
by designing joint AM and APC. Specifically, by select-
ing modulation order and controlling transmit power of
the IDET transmitter according to instantaneous channel
state information (CSI), long-term performance of EH is
maximized, while satisfying the long-term constraints of
spectrum efficiency, BER and transmit power.

• In order to solve the long-term IDET performance opti-
mization problem having long-term constraints, we trans-
form the original optimization problem into a series of
constraint satisfaction problems by setting target objective
values. Then, we propose a novel constrained param-
eterized action deep deterministic policy gradient (C-
PADDPG) algorithm to find the feasible policy of joint
AM and APC for a constraint satisfaction problem, while
the optimal target objective value, namely the optimal
long-term EH performance is searched for via bisection
method. In this way, the optimal policy of joint AM and
APC can be found correspondingly.

• Simulation results demonstrate that the DRL-based solu-
tion is able to achieve significant gain in terms of EH
performance, compared to traditional genetic algorithm
(GA)-based solution and other DRL benchmark. More-
over, the proposed C-PADDPG algorithm can accommo-
date different wireless environments by adaptively giving
communication-efficient or EH-efficient patterns of the
joint AM and APC, while the intrinsic mechanisms of
the patterns are also revealed.

The rest of the paper is organized as follows: Our system
model is introduced in Section II, which is followed by the
GA solution for joint AM and APC in Section III. Then, the
DRL solution for joint AM and APC is studied in Section IV.
After presenting the simulation results in Section V, our paper
is concluded in Section VI.

Notations: A and a denote a matrix and a vector, re-
spectively; aH and AH represent the conjugate transpose of
a and A, respectively; aT denotes the transpose of a; a[k]
represents the k-th element of a; E{·} denotes the expectation;
⌈·⌉ represents the round up for a number; (·)+ denotes the larger
one between the input number and zero.
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Fig. 1. Intelligent link adaptation architecture for a point-to-point IDET
transceiver.

II. SystemModel

A. Architecture of Intelligent Link Adaptation

1) IDET Transceiver: The point-to-point intelligent trans-
mitter and low-power receiver are portrayed in Fig. 1, which
are equipped with Nt and Nr antennas respectively. In the t-
th transmission frame, the input information bits are modu-
lated by the GA solution/DRL solution-assisted link adapta-
tion module, which operates joint AM and APC strategies.
Specifically, given the instantaneous CSI obtained by channel
estimation, the modulation order M(t) of the M-QAM scheme
is adaptively selected and the transmit power Ptx(t) is obtained
by the link adaptation module. Afterwards, the base-band
signal is transmitted to the wireless channel by the a digital
beamforming module.

After the propagation in a wireless channel, the signal is
then received by the low-power receiver. The received signal
is processed by the analog combining module3. It is then
divided into two portions in the power domain [35] via a power
splitting ratio ρ. Specifically, one portion ρ of the received
signal flows into the non-linear rectifier for energy harvesting,
while the harvested energy is stored in the battery for powering
the digital demodulation. The other portion (1 − ρ) of the
received signal is converted from passband to baseband for
digital demodulation. Finally, the transmitted information bits
are recovered and then sent to the information destination.

In particular, the power splitting ratio is not optimized in
this architecture. The reason lies in the fact that the DRL
agent sequentially makes dynamic decisions, resulting in a
time-varying power splitting ratio. Firstly, the receiver is low-
power and energy-hungry. If incorporating the power splitting
ratio into DRL decision, the power splitting ratio must be
delivered to the receiver in every transmission frame, since
the decision is made on the transmitter in our architecture.
This interactive signaling overhead causes energy cost for the
low-power receiver. Secondly, in practice, the power splitting
ratio is fixed when some types of power splitter hardware
are produced. For instance, the power splitting ratio of the
Power Splitter XQY-PS6-0.5/6-SE is fixed to be 1/6, and
that of the Power Splitter XQY-PS10-DC/3-SER is fixed to
be 1/10, while they can not be changed once manufactured.

3Digital combining can only be used in the baseband. However, the energy
of the baseband signal can not be harvested. Only analogue combining can
be used in the passband. Hence, the non-linear rectifier can benefit from it.

This property decides that the power splitting ratio can not
be adjusted in frame-level transmission. Thirdly, this paper
mainly focuses on revealing the mechanism about how the
modulation scheme and the transmit power control affect the
IDET performance. Once the power splitting ratio is involved,
the IDET performance may fluctuate with it unsteadily, thereby
weakening the impact of the joint AM and APC. However,
the power splitting ratio can be easily involved into the
decision by adding one dimension in the action space of DRL
algorithm, if needed. Under such a context, the power splitting
ratio should be selected carefully, since the selection directly
decides whether the minimum requirement of WDT can be
satisfied, thereby deciding whether the feasible policy of joint
AM and APC exists. Normally, the power splitting ratio should
be close to 1, because WET requires more power than WDT.
For example, according to [36], the minimum power to activate
EH circuit is -10 dBm, while that to activate information
decoding circuit is -50 dBm.

2) Deployment of joint AM and APC strategy: The DRL
solution and the GA solution are practical and easy to be
deployed, since both of them can output the modulation order
selection and transmit power allocation with low delay and
complexity. For the DRL solution, the deployment is divided
into an online training stage and an executing stage. In the
online training stage, the DRL agent is deployed on the
transmitter. It interacts with the IDET transceiver and the
wireless channel, in order to update the parameters of neural
networks based on the reward function. After the convergence
of training, the DRL agent is relied upon to make joint AM
and APC decision by inputting the state in every transmission
frame. Note that the neural networks in the well-trained DRL
agent are able to give the action in polynomial complexity.
As for the GA solution, the deployment is divided into an
offline optimization stage and an executing stage. In the offline
optimization stage, the SNR thresholds are offline optimized
via GA for the pre-designed pattern of joint AM and APC
strategy. After the optimization, the strategy is deployed on
the transmitter to generate joint AM and APC decision by
inputting instantaneous reference SNR in every transmission
frame. In particular, the closed-form formulae in the optimized
strategy are able to give the decision in polynomial complexity.

B. Temporally-Correlated Channel Model

Temporally-correlated Rayleigh block fading channel is
conceived based on the 3rd generation partnership project
(3GPP) technical report (TR) 38.901 [37]. The wireless chan-
nel model consists of two parts, namely small-scale fading and
large-scale fading.

1) Small-scale Fading: According to clustered delay line
(CDL)-C protocol in 3GPP TR 38.901, the channel is de-
scribed with geometric Saleh-Valenzuela channel model [38].
Under this model, the complex channel coefficient matrix in
the t-th transmission frame is depicted as

H(t) =

√
NtNr

NclNray

Ncl∑
i=1

Nray∑
l=1

αilar

(
ϕr

il, θ
r
il

)
at

(
ϕt

il, θ
t
il

)H
e− j2π( filtT f ),

(1)
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where Ncl is the number of clusters, Nray is the number of
propagation rays in each cluster and T f is the transmission
frame period. In addition, αil, fil, ϕUE

il , θUE
il , ϕBS

il and θBS
il are

the complex channel coefficient following complex Gaussian
distribution, the Doppler shift, the azimuth angle of arrival
(AoA), the elevation AoA, the azimuth angle of departure
(AoD) and the elevation AoD of the l-th ray in i-th cluster,
respectively. Moreover, ar

(
ϕr

il, θ
r
il

)
and at

(
ϕt

il, θ
t
il

)
represent the

receive and transmit array steering vectors. In this paper,
the uniform linear arrays with

√
N ×

√
N antenna elements

are considered, while the array steering vector a (ϕil, θil) with
regard to the l-th ray in i-th cluster is presented by

a(ϕil, θil) =
1
√

N

[
1, · · · , e j 2π fc

c ∆a(p sin ϕil sin θil+qcosθil),

· · · , e j 2π fc
c ∆a

(
(
√

N−1) sin ϕil sin θil+(
√

N−1) cos θil

)]T
,

(2)

where ∆a is the antenna spacing, N is the number of antenna
element of the base station or the user, 0 ≤ p<

√
N and 0 ≤

q<
√

N are the antenna indices, fc is the carrier frequency and
c is the light speed.

The channel coefficient matrix H(t) of the block fading
channel keeps unchanged within the each transmission frame
but varies from one frame to another4. In the t-th transmission
frame, the beamforming and the combining need to be con-
ducted on the transmitter and the receiver, respectively. Then,
the optimal precoder v and decoder u are comprised of the
first column of the unitary matrices V and U respectively,
which are derived from the singular value decomposition of
the channel coefficient matrix H(t), i.e., H(t) = UΣVH . While
the digital beamforming module in the transmitter adopts v
as precoder, the analog combining module in the receiver
exploits ū = 1

√
Nr

( u[1]
|u[1]| ,

u[2]
|u[2]| , · · · ,

u[Nr]
|u[Nr]| )

T as decoder because
of the hardware limitation, i.e., the unit modulus constraints
of phase shifters. Therefore, the equivalent channel coefficient
is expressed as h(t) = ūHH(t)v, while the equivalent channel
power gain is expressed as {ν(t) = |h(t)|2|∀t}.

Moreover, the statistical properties of the equivalent channel
power gain need to be analyzed, in order to achieve CSI
availability for optimization design. Firstly, the distribution
property of the equivalent channel power gain v(t) is described
with the probability density function of Gamma distribution by
omitting time index, i.e., f (v) = 1

ψαΓ(α) v
α−1e−

v
ψ , where α and

ψ are the parameters, and Γ(α) =
∫ ∞

0 vα−1e−vdv = (α − 1)!
is the Gamma function. Secondly, the temporally-correlated
property of the equivalent channel power gain v(t) is efficiently
described with partial auto-correlation function (PACF) [40].
With the aid of the PACF analysis, v(t) is approximated as
a function with respect to npac f previous highly-correlated
v(t − 1), v(t − 2), · · · v(t − npac f ), which is expressed as

v(t) ≈ λ1v(t − 1) + λ2v(t − 2) · · · + λnpac f v(t − npac f ), (3)

where λ1, λ2, · · · λnpac f are partial auto-correlation coefficients.
Note that the parameters α, β and npac f are all estimated from
the collected channel dataset.

4Given the maximum Doppler shift fd , the channel coefficient matrix is
considered to be unchanged within the channel coherence time Tc ≈

1
2 fd

[39],
which is usually longer than the transmission frame T f .

2) Large-scale Fading: According to 3GPP TR 38.901, the
non-line of sight pathloss of urban microcell-street canyon
scenario is conceived to be the large-scale fading, since we
adopted the Rayleigh fading channel as the small-scale fading.
In this paper, the 2-dimension (2D) distance d2D between
the transmitter and the receiver is set to be shorter than 10
meters, since long-distance transmission results in huge path
loss, making transmit energy inefficient. Therefore, the path
loss is expressed as Ω = 32.4+ 31.9 log10 (d3D)+ 20 log10 ( fc),
d2D<10 m, where fc is the carrier frequency, and d3D is the
3-dimension (3D) distance between the transmitter and the
receiver, which is calculated by d3D =

√
d2

2D + (hTx − hRx)2.
Note that hTx and hRx are the heights of the transmitter and
the receiver, respectively.

Therefore, the equivalent receive power at the low-power
receiver side is formulated as Prx = νPtx10(G−Ω)/10, where Ptx

is the transmit power and G is the total antenna gain from both
the transmitter and the receiver. In our simulation settings, the
receive RF power is in the magnitude of milliwatt, which is
sufficient to power the hardware modules of the low-power
receiver. This will be shown in the following sections in detail.

C. Performance Characterization

1) Signal-to-Noise Ratio Characterization: Given the trans-
mit power Ptx, the effective SNR for the information decoding
is expressed as

γid =
(1 − ρ)νPtx10(G−Ω)/10

(1 − ρ)σ2
a + σ

2
cov

≈
(1 − ρ)νPtx10(G−Ω)/10

σ2
cov

, (4)

where σ2
a is the white Gaussian noise (AWGN) power at the

receive antenna, σ2
cov is the AWGN power arisen from the

circuit of passband-to-baseband converter. Usually, we have
σ2

a ≪ σ2
cov [35], since the noise arisen from the hardware is

much larger.
2) Spectrum Efficiency Characterization: M-QAM modu-

lator is conceived in the transmitter, where all the modulated
symbols are assumed to have identical transmitting probabil-
ities. Given the effective SNR γid, the spectrum efficiency
of WDT is characterized by the discrete-input-continuous-
output mutual information [41], which is expressed as Eq.
(5) shown at the bottom of next page, where X represents
the constellation of M-QAM, while xm or xm′ represent an
arbitrary modulated symbol in X.

3) Bit-Error-Rate Characterization: Given the effective
SNR γid, the BER of the M-QAM modulator [39] is expressed
as

BERM =
4

log2 M
QGuss


√

3γid

M − 1

 , (6)

where QGuss(·) is the Gaussian Q function, which is expressed
as

QGuss(x) =
∫ +∞

x

exp
(
−0.5t2

)
√

2π
dt. (7)
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4) Energy Harvesting Characterization: Given the average
transmit power Ptx, the actual transmit power Ptx,m of the sym-
bol xm in the constellation X of M-QAM [42] is formulated
as Eq. (8) shown at the bottom of this page. When the symbol
xm is transmitted, the EH amount of the non-linear rectifier5

[43] in the receiver is formulated as

Peh,m =

[
Pmax

exp (−τP0 + φ)

(
1 + exp (−τP0 + φ)

1 + exp
(
−τρPrx,m + φ

) − 1
)]+

,

(9)

Prx,m = νPtx,m10(G−Ω)/10, (10)

where Prx,m is the received power when the symbol xm is
transmitted, Pmax is the EH saturation power, P0 is the power
threshold for activating the EH circuit, φ and τ are the constant
parameters of the non-linear EH model.

Without loss of generality, all the modulated symbols are
assumed to have identical transmitting probabilities. There-
fore, the average EH amount of all the M-QAM symbols is
formulated as

Peh,M =
1
M

∑
xm∈X

Peh,m. (11)

III. GA Solution for Joint AM and APC

A. WDT-oriented Pattern of Joint AM and APC

Traditional pattern of SNR boundary-based AM and
waterfilling-aided APC [21] is chosen to be the benchmark,
which is actually oriented to WDT. The SNR boundary-
based AM aims to improve the spectrum efficiency given the
BER constraint, and the waterfilling-based APC aims to lower
the BER, both of which are designed to improve the WDT
performance. In order to measure the quality of the wireless
channel, a reference SNR γre f is introduced as a metric by
fixing a reference power as Pre f , which is expressed as

γre f =
(1 − ρ)νPre f 10(G−Ω)/10

σ2
cov

≜ νγre f , (12)

where γre f =
(1−ρ)Pre f 10(G−Ω)/10

σ2
cov

is the average reference SNR.
For the SNR boundary-based AM, a higher reference SNR

γre f represents a better channel condition, which indicates that

5According to [43], the non-linear EH model is fitted from Powercast
energy harvester P2110 at 915 MHz and has the following properties: 1)
The input power should exceed a threshold P0, in order to activate the EH
circuit. 2) The EH model function is monotonically increasing with respect
to the input power. 3) The EH model function has “S” shape, which indicates
that it is convex when the input power is small and it is concave when the
input power is large. 4) The EH power is saturated when the input power is
much higher.

a higher order modulation scheme can be adopted to improve
the spectrum efficiency without violating the BER constraint.
Given the modulation order space6 M = {0, 4, 16, 64, 256} of
the M-QAM modulator, the total SNR range is separated as
{Γ0 = [0, γ0],Γ4 = (γ0, γ1],Γ16 = (γ1, γ2],Γ64 = (γ2, γ3],Γ256 =

(γ3,∞]}. Different modulation orders are selected when γre f

falls in different SNR intervals, while a higher order modula-
tion order corresponds to a higher SNR interval.

For the waterfilling-aided APC, a lower reference SNR γre f

represents a worse channel condition, which indicates that
more transmit power should be reserved for such condition
to lower the BER. In this way, the SNR intervals are extended
under the same BER constraint, so as to improve the spectrum
efficiency. For each SNR interval ΓM , the actual transmit power
Ptx,M (M ∈ M) is generated according to γre f , which is
expressed as

Ptx,M(γre f ) =


Pre f

γre f
BER−1

M

(
B̃ER0

)
, γre f ∈ ΓM ,

M ∈ {4, 16, 64, 256},

0, M = 0,
(13)

where BER−1
M (·) is the inverse function of BERM(·), and B̃ER0

is the BER constraint. Note that the instantaneous BER is a
constant that is equal to B̃ER0 for every channel condition, by
adopting this waterfilling-aided APC.

B. Statistical Average Performance Optimization Problem

Transmit power constraint P̃tx,0 is set to be the reference
power Pre f . Then, by exploiting the waterfilling-aided APC
for generating actual transmit power, i.e., generating transmit
power via Eq. (13) and then substituting Ptx in Eq. (4)
and Eq. (8) with the generated power, CM(γre f ), Peh,M(γre f ),
BERM(γre f ) and Ptx,M(γre f ) are all functions with respect to
the reference SNR γre f . Since γre f = νγre f is linear with
the equivalent channel power gain v, the probability density
function of γre f is derived as

f (γre f ) =
1

(ψγre f )αΓ(α)
(γre f )α−1e

−
γre f
ψγre f . (14)

We aim to maximize the the statistical average EH perfor-
mance, while satisfying the statistical average constraints of
spectrum efficiency, BER and transmit power. Therefore, the
boundaries γ = {γ0, γ1, γ2, γ3} of the SNR intervals {ΓM}

6 M = 0 indicates that no transmission occurs.

CM = log2 M −
1
M
×

∑
xm∈X

log2[1 + (M − 1) exp(−
γid

M − 1

∑
xm′∈X

|xm − xm′ |
2)]. (5)

Ptx,m =
3Ptx

2(M − 1)

2

∣∣∣∣∣∣
⌈

m
√

M

⌉
−

√
M − 1

2

∣∣∣∣∣∣

2

+

mod(m,
√

M) −

√
M − 1

2

 − 1
2 ,∀xm ∈ X. (8)
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(M ∈ M) need to be jointly optimized for both AM and APC.
Then, the optimization problem is formulated as

(P1) max
γ

P̃eh =
∑

M∈M

∫
γre f ∈ΓM

Peh,M(γre f ) f (γre f )dγre f , (15)

s. t. C̃ =
∑

M∈M

∫
γre f ∈ΓM

CM(γre f ) f (γre f )dγre f ≥ C̃0, (15a)

B̃ER =

∑
M∈M

∫
γre f ∈ΓM

BERM(γre f ) f (γre f )dγre f

1 −
∫
γre f ∈Γ0

f (γre f )dγre f
≤ B̃ER0,

(15b)

P̃tx =
∑

M∈M

∫
γre f ∈ΓM

Ptx,M(γre f ) f (γre f )dγre f ≤ P̃tx,0,

(15c)

0 ≤ BERM(γre f ) ≤ 5B̃ER0, M ∈ M, (15d)

0 ≤ Ptx,M(γre f ) ≤ 2P̃tx,0, M ∈ M, (15e)
M = {0, 4, 16, 64, 256}. (15f)

In (P1), (15a) indicates that the statistical average spectrum
efficiency C̃ should be higher than the constraint C̃0, while
(15b) and (15c) respectively indicate that the statistical average
BER B̃ER and the statistical average transmit power P̃tx

should not exceed the BER constraint B̃ER0 and the transmit
power constraint P̃tx,0. Moreover, (15d) and (15e) provide the
peak constraints of the instantaneous BER BERM(γre f ) and
transmit power Ptx,M(γre f ) respectively, while (15f) constrains
the legitimate range of modulation order.

C. Genetic Algorithm Solution

Unfortunately, the function of the non-linear rectifier is non-
convex, which makes (P1) unable to be solved by convex op-
timization methods. Therefore, we exploit heuristic algorithm
to solve this problem. Specifically, GA toolbox is exploited to
obtain the optimized SNR boundaries γ∗ = {γ∗0, γ

∗
1, γ
∗
2, γ
∗
3} of-

fline. Then, the joint AM and APC decision is made according
to instantaneous reference SNR γre f .

However, our effort to solve the statistical average optimiza-
tion problem via GA is imperfect: 1) The adopted pattern
of joint AM and APC is designed by expert knowledge to
improve traditional WDT performance (e.g., BER, spectrum
efficiency), which is not originally designed for IDET sys-
tems; 2) This optimization problem can not be solved with
convex optimization methods, causing that the optimized SNR
boundaries may not be the optimal ones. In fact, these defects
motivate us to turn for the assistance of DRL approach, since
optimizing average performance in long term is equivalent to
optimizing statistical average performance. Specifically, we
rely upon the DRL to solve the equivalent long-term per-
formance optimization problem, and learn the optimal IDET-
oriented patterns of joint AM and APC automatically, which
will be detailedly illustrated in the following sections.

IV. DRL Solution for Joint AM and APC
A. Problem Formulation and Transformation

1) Long-term Performance Optimization Problem: The
long-term IDET performance optimization problem is evolved

from (P1). It aims to maximize the long-term EH performance,
while satisfying the long-term constraints of spectrum effi-
ciency, BER and transmit power. The optimization problem is
then formulated as

(P2) max
M(t),Ptx(t)

P̃eh = lim
T→∞

1
T

T∑
t=1

Peh(t), (16)

s. t. C̃ = lim
T→∞

1
T

T∑
t=1

C(t) ≥ C̃0, (16a)

B̃ER = lim
T→∞

1
T

T∑
t=1

BER(t) ≤ B̃ER0, (16b)

P̃tx = lim
T→∞

1
T

T∑
t=1

Ptx(t) ≤ P̃tx,0, (16c)

0 ≤ BER(t) ≤ 5B̃ER0, (16d)

0 ≤ Ptx(t) ≤ 2P̃tx,0, (16e)
M(t) ∈ {0, 4, 16, 64, 256}. (16f)

In (P2), given the instantaneous equivalent channel power gain
ν(t) in the t-th transmission frame, the DRL agent directly
makes the joint AM and APC decisions {M(t), Ptx(t)}. The
long-term constraints of spectrum efficiency, BER and transmit
power are expressed from (16a) to (16c). Moreover, (16d) and
(16e) provide the peak constraints of the instantaneous BER
BER(t) and transmit power Ptx(t) respectively, while (16f)
constrains the legitimate range of the modulation order M(t).

2) Problem Transformation: (P2) is modelled as a con-
strained Markov decision process (CMDP)7 [12] without re-
quiring the statistical channel distribution information. Ac-
cordingly, (P2) is reformulated as

(P3) max
π

Eπ

(1 − β)
∞∑

t=1

βt−1Peh(st, at)

 , (17)

s. t. Eπ

(1 − β)
∞∑

t=1

βt−1(C(st, at) − C̃0)

 ≥ 0, (17a)

Eπ

(1 − β)
∞∑

t=1

βt−1(B̃ER0 − BER(st, at))

 ≥ 0, (17b)

Eπ

(1 − β)
∞∑

t=1

βt−1(P̃tx,0 − Ptx(st, at))

 ≥ 0, (17c)

5B̃ER0 − BER(st, at) ≥ 0, (17d)

where Peh(st, at), C(st, at), BER(st, at) and Ptx(st, at) represent
the instantaneous EH, spectrum efficiency, BER and transmit
power by taking the action at at the state st, respectively.
In order to maximize the expected long-term discount EH

7CMDP is described as a tuple (S,A,P,R, β), where S is the state space,
A is the action space, P is the transition probability function among different
states, R : S × A → R is the expected reward function and β ∈ (0, 1) is
the discount factor for calculating the long-term discount reward. The state
transition between adjacent transmission frames obeys the Markov rule, which
is expressed as P (st+1 = s′ |st = s, st−1, · · · , s0) = P(st+1 = s′ |st = s) =
P (s′ |s) ∈ [0, 1], where P(st+1 |st) is the transition probability between the
state st and st+1 in the t-th and (t + 1)-th transmission frame, respectively. In
CMDP, the policy π : S → A is defined as a mapping from the state space S
to the action space A. Given the state st at the t-th transmission frame, the
action is obtained by the policy at = π(st), while the reward is then expressed
as rt(st , at).
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performance, the optimal joint AM and APC policy π∗ is
searched for by guaranteeing the constraints of expected long-
term discount spectrum efficiency, BER and transmit power as
expressed from (17a) to (17c). Moreover, the peak constraint
of the instantaneous BER BER(st, at) needs to be satisfied
as expressed in (17d), while the peak constraint of transmit
power and the legitimate range constraint of modulation order
in (P2) are omitted in (P3), since they are naturally satisfied
by constraining the output range of the policy π in DRL
algorithms. Note that if the discount factor β becomes close
to 1, (P3) can approximate (P2).

However, it’s hard to directly find the optimal policy π∗

for the CMDP by considering the expected long-term dis-
count constraints [13]. Therefore, (P3) needs to be further
transformed into constraint satisfaction problem. The objective
function of (P3) is maximized if we are able to obtain the
maximum value of the intermediate variable δ satisfying

Eπ

(1 − β)
∞∑

t=1

βt−1Peh(st, at)

 ≥ δ. (18)

By transforming (18) into

Eπ

(1 − β)
∞∑

t=1

βt−1(Peh(st, at) − δ)

 ≥ 0, (19)

(P3) is then reformulated as

(P4) max
π

δ (20)

s. t. Eπ

(1 − β)
∞∑

t=1

βt−1(Peh(st, at) − δ)

 ≥ 0, (20a)

Eπ

(1 − β)
∞∑

t=1

βt−1(C(st, at) − C̃0)

 ≥ 0, (20b)

Eπ

(1 − β)
∞∑

t=1

βt−1(B̃ER0 − BER(st, at))

 ≥ 0, (20c)

Eπ

(1 − β)
∞∑

t=1

βt−1(P̃tx,0 − Ptx(st, at))

 ≥ 0, (20d)

5B̃ER0 − BER(st, at) ≥ 0. (20e)

In order to solve (P4), we exploit bisection method to find the
maximum value of δ, where at least a feasible policy π can
be found by satisfying the constraints (20a) to (20e). Suppose
that δ∗ is the optimal objective value of (P4), the corresponding
feasible policy π∗ is also the optimal policy of (P4).

Given a target objective value δ̄ during running the bisection
method, the feasible policy π̄, if it exists, can be obtained by
solving the equivalent zero-sum Markov-Bandit game [13],
where the DRL agent solves a MDP problem and its opponents
tackle a Bandit optimization problem. It is described by a
tuple (S,A,O,P,R, β), where S, A, P and β have the same
definition as CMDP. O = {0, 1, 2, 3} is the space of the DRL
agent’s opponents, which are defined as the expected long-
term discount constraints of (P4). In addition, the state value

function of the zero-sum Markov-Bandit game with the policy
π under the state st is defined as

Vπ(st) = min
o∈O

Eπ [Q(st, at, o)] = min
o∈O

Eπ

 ∞∑
t=1

βt−1rt (st, at, o)

 ,
(21)

where rt (st, at, o) (o ∈ O) represents the reward function
corresponding to the expected long-term discount constraints
in (P4). The reward function rt (st, at, o) (o ∈ O) should be
defined in order to unveil the satisfaction of each constraint,
while a larger long-term discount reward

∑∞
t=1 β

t−1rt (st, at, o)
results in a better satisfaction of constraint o. Vπ(st) > 0 means
that all the long-term constraints in (P4) are well satisfied. In
order to obtain the feasible policy π̄ of (P4) given a target
objective value δ̄, we should firstly obtain the optimal policy
π̄∗ of the zero-sum Markov-Bandit game via

π̄∗ = arg max
π

min
o∈O

Eπ

 ∞∑
t=1

βt−1rt (st, at, o)

 , ∀st ∈ S. (22)

Then, the feasible policy π̄ of (P4) is obtained by

π̄ =

π̄∗, if Vπ̄∗ (st) > 0,∀st ∈ S,

∅, otherwise.
(23)

B. Deep Reinforcement Learning Solution

The action space A is a discrete-continuous hybrid space,
which consists of the discrete modulation order M(t) ∈
{0, 4, 16, 64, 256} and the continuous transmit power Ptx(t) ∈
[0, 2P̃tx,0]. Inspired by the pioneering works [12], [13], we
redesign the framework of parameterized action deep deter-
ministic policy gradient (PADDPG) approach [44] to search
for the feasible policy of the zero-sum Markov-Bandit game,
which yields a novel constrained PADDPG (C-PADDPG)
algorithm.

1) DRL Definitions: The states, actions, reward functions
and discount factor are defined for the C-PADDPG algorithm
as follows:
• State: It is constructed by the observation of the

temporally-correlated wireless channel. According to Eq.
(3), the equivalent channel power gain v(t) is regarded as
a function with respect to npac f previous highly-correlated
counterparts v(t−1), v(t−2), · · · , v(t−npac f ). By invoking
the latest npac f channel power gains as a state, the Markov
property then exists among different states. Therefore, the
state vector8 in the t-th transmission frame is defined as

st = [v(t), v(t − 1), · · · , v(t − npac f + 1)]. (24)

• Action: In the t-th transmission frame, the C-PADDPG
algorithm simultaneously provides the transmit power
Ptx(t) as well as the selecting probabilities pmod(t) =
{pM(t)} of each modulation order M ∈ M =

{0, 4, 16, 64, 256}. Then, the instantaneous modulation or-
der in the t-th transmission frame is obtained by M(t) =
arg maxM pmod(t). Accordingly, the action is designed as

8Note that we substitute st with state vector st in the following context.
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a 6-dimension vector9 at = [pmod(t), Ptx(t)] by satisfying
pM(t) ∈ [0, 1],∀M ∈ M and Ptx(t) ∈ [0, 2P̃tx,0]. In particu-
lar, the elements in the output layer of the actor network
are all restricted to range [−1, 1] by adopting Tanh as
activation function. Then, with linear manipulations, the
first five elements are mapped to range [0, 1], and the sixth
element is mapped to range [0, 2P̃tx,0]. In this way, the
range constraint of the modulation selecting probability
and the peak constraint of the transmit power are naturally
satisfied.

• Reward Function: According to Eq. (21), the reward
functions rt(st, at, o) for the constraints (20a) to (20e) in
(P4) are defined as

rt(st, at, o) =



Peh(st, at) − δ̄, o = 0,
C(st, at) − C̃0, o = 1,
B̃ER0 − BER(st, at)
−100I

(
5B̃ER0 − BER(st, at)<0

)
, o = 2,

P̃tx,0 − Ptx(st, at), o = 3,
(25)

where o ∈ O = {0, 1, 2, 3} is the space of the agent’s
opponents, δ̄ is the target objective value of (P4) and I(·) is
the indicator function. Note that rt(st, at, 2) will be a large
negative number once the peak constraint of instantaneous
BER is violated.

• Discount Factor: A larger discount factor β results in
a more far-sight C-PADDPG agent. For the sake of
guaranteeing the equivalence between (P2) and (P3), β
should be set close to 1, so that the agent can capture the
long-term characteristics of the wireless environment and
would not fall into the local optimum.

2) Framework of the C-PADDPG Algorithm: As illustrated
in Fig. 2, the actor-critic framework is conceived in the C-
PADDPG algorithm, in order to search for the feasible joint
AM and APC policy of the zero-sum Markov-Bandit game
within discrete-continuous action space.

The actor network in the C-PADDPG algorithm has the
same architecture with classic deterministic policy gradient
(DPG) algorithm [45]. In order to relief from over-estimations
and enhance learning stability [46], two kinds of deep neural
network (DNN), namely actor evaluate network µ(s; θµ) and
actor target network µ(s; θµ

′

), are embedded into the actor
network, where θµ and θµ

′

are their DNN weights, respec-
tively. Given the state st ∈ S, the actor evaluate network
µ(s; θµ) : S → A directly outputs an action vector at. The actor
network is responsible for making real-time joint AM and APC
decision for the transmitter. Different from the counterpart of
the classic DPG, the objective function of the actor network
in our C-PADDPG algorithm is redefined as

J (θµ) = min
o∈O

Es∼ρs [r (s, a, o))] = min
o∈O

∫
s∈S

ρs(s)r (s, µ(s; θµ), o) ds.

(26)

In Eq. (26), Es∼ρs [·] denotes the expected value of the re-
ward function with respect to the discounted state distribution

9Note that we substitute at with action vector at in the following context.

ρs(s′) =
∫

s∈S
∑∞

t=1 β
t−1 pint(s)p (s′ | s, t) ds, where pint(s) repre-

sents the probability of the initial state s ∈ S and p(s′ | s, t)
represents the probability density of a state transition from s
to s′ in the t-th transmission frame.

The critic network in the C-PADDPG algorithm is extended
from the classic DQN architecture [30], where an additional
input dimension is required for handling the opponents in
the zero-sum Markov-Bandit game. Similar with the actor
network, the critic network also consists of two DNNs, namely
critic evaluate network Q(st, at, o; θQ) and critic target network
Q(st, at, o; θQ′ ) having the DNN weights of θQ and θQ′ , respec-
tively. Given the state st, the action at and the opponent o,
the critic evaluate network Q(st, at, o; θQ) : S × A × O → R
outputs the Q value, which is defined as Q(st, at, o; θQ) =
Eµ[

∑∞
t=1 β

t−1rt(st, µ(st; θµ), o)]. The critic network is responsi-
ble for judging whether the actor policy is great enough. The
objective function of the critic network in our C-PADDPG
algorithm is critic loss, namely temporal difference error [47],
which is formulated as

L
(
θQ

)
= Eµ[r(st, at, o) + βQ(st+1, µ(st+1; θµ

′

), o; θQ′ )

− Q(st, at, o; θQ)]. (27)

3) Updating Process of the C-PADDPG Algorithm: A first-
input-first-output queue is required as the experience replay
buffer, in order to store the experiences at all the transmission
frames. During each training epoch, Bs experience items
(si, ai, oi, ri, s′i)(i = 1 · · · , Bs) are randomly extracted from the
buffer for updating the C-PADDPG agent. The experience
replay mechanism is able to increase the training diversity
and improve the generalization of both the actor and the critic
networks. Ornstein-Unlenbeck noise [48] is also exploited for
the action exploration during the training phase of the C-
PADDPG algorithm.

In each transmission frame, the DNN weights θQ
t , θQ′

t , θµt ,
θ
µ′

t of the critic evaluate network, the critic target network, the
actor evaluate network and the actor target network should
be updated iteratively according to the Bs experience items
extracted from the buffer:
• The critic evaluate network is updated by performing

gradient-descent method to minimize the objective func-
tion L

(
θQ

)
, namely the critic loss. The sampled critic loss

gradient is formulated as

∇θQ L
(
θQ

)
=

1
Bs

Bs∑
i=1

∇θQ

[
yi − Q

(
si, ai, oi; θ

Q
t−1

)]2
, (28)

where we have

yi = ri + β · Q
(
s′i , µ

(
s′i ; θ

µ′

t−1

)
, oi; θ

Q′

t−1

)
. (29)

Note that yi is jointly generated by the actor target
network and the critic target network having the DNN
weights of θ

µ′

t−1 and θQ′

t−1, respectively. The weight of
the critic evaluate network is then updated by θQ

t ←

θQ
t−1 + λc∇θQ L

(
θQ

)
with the learning rate λc. The critic

evaluate network is updated in order to estimate the Q
values of all the opponents o ∈ O more accurately under
a current actor policy.
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Fig. 2. The schematics of the C-PADDPG algorithm for joint AM and APC in the point-to-point IDET transceiver.

• The actor evaluate network is updated by performing
gradient-ascent method to maximize the objective func-
tion J(θµ). The sampled policy gradient is expressed as

∇θµ J(θµ) ≈
1
Bs

Bs∑
i=1

∇a min
o∈{0,1,2,3}

Q(s, a, o; θQ
t )

∣∣∣∣∣∣∣
s=si,s=µ(si;θ

µ
t−1)

·∇θµµ(s; θµt−1)
∣∣∣
s=si

.

(30)

Note that ∇a mino∈{0,1,2,3} Q(s, a, o; θQ
t )|s=si,a=µ(si;θ

µ
t−1) is the

gradient which is provided by the critic evaluate network
with the latest DNN weight θQ

t . The weight of the actor
evaluate network is then updated by θµt = θ

µ
t−1−λa∇θµ J(θµ)

with the learning rate λa. The actor evaluate network
is updated in order to find the optimal actor policy
for maximizing the minimum Q value among all the
opponents o ∈ O.

• The actor target network and the critic target network
should be updated according to the corresponding evalu-
ate networks. In order to enhance the training stability of
C-PADDPG algorithm, the target networks are updated
partially by exploiting the soft update method, which are
expressed as

θQ′
t ← ηθQ′

t−1 + (1 − η)θQ
t ,

θ
µ′

t ← ηθ
µ′

t−1 + (1 − η)θµt , (31)

where η is the soft update factor.
The C-PADDPG algorithm for finding feasible policy of

joint AM and APC is detailed in Algorithm 1, while the

bisection method for solving (P4) is detailed in Algorithm
2. Note that the optimal policy π∗ of joint AM and APC is
obtained by running Algorithm 2.

4) Complexity Analysis: The complexity of the proposed
C-PADDPG algorithm is analyzed from two aspects, i.e.,
executing complexity and training complexity. Both the actor
networks and critic networks of the C-PADDPG algorithm are
composed of DNN, whose executing complexity is measured
by the Big-O notation [49]. Specifically, the executing com-
plexity of the actor networks is O(L(1)

a · L(2)
a · · · L

(m)
a ), while

that of the critic networks is O(L(1)
c · L(2)

c · · · L
(n)
c ), whereas

L(i)
a is the DNN units in layer i for actor networks, L( j)

c
is the DNN units in layer j for critic networks, and m, n
are the layer numbers. Therefore, once the optimal policy
π∗ is found, the joint AM and APC decision is made in
polynomial computational complexity by the actor networks.
Then, the training complexity is provided by counting the
training times. Specifically, due to exploiting bisection method,
the C-PADDPG algorithm is trained for ⌈log2

(δmax−δmin)
ϵ
⌉ times.

V. Simulation Results
Our C-PADDPG algorithm operates on the platform of

Keras 2.1.6, while the actor networks and the critic networks
have 4 × 80 × 30 × 6 and 11 × 110 × 20 × 1 DNN units,
respectively. ReLU function is conceived for the hidden layers
of both the networks, while the Tanh and Linear functions
are conceived for the output layers of the actor networks
and the critic networks, respectively. The gradient-descent
and gradient-ascent optimizers are based on adaptive moment
estimation (Adam). The wireless channel in the simulations
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TABLE II
Parameter Settings

C-PADDPG Hyper Parameter Value IDET System Parameter Value
Experience replay buffer length Lbu f f er 20000 EH circuit power settings Pmax, P0 4.927 mW, 64 µW [43]

Batch size Bs 256 EH circuit parameter settings τ, φ 274, 0.29 [43]
Discount factor β 0.99 Carrier frequency fc 915 MHz [43]

Maximum training epoch number Tmax 7000 Power splitting ratio ρ 0.9
Actor network learning rate λa 1e-4 2D Distance d2D 4 m
Critic network learning rate λc 1e-3 Heights of transmitter and receiver hT x, hRx 3 m, 2 m

Soft update factor η 5e-2 Transmission frame period T f 1 ms [50]
Spectrum efficiency constraint C̃0 3 bit/(s·Hz) Maximum Doppler shift fd 50 Hz

BER constraint B̃ER0 1e-3 Total antenna gain G 10 dBi [51]
Transmit power constraint P̃tx,0 10 W Antenna numbers Nt , Nr 8, 2

Algorithm 1 C-PADDPG Algorithm for Searching Feasible
Policy of Joint AM and APC
Require: EH target objective value δ̄.
1: Initialize experience replay buffer length Lbu f f er , batch size Bs, learning

rates λc, λa of the critic network and the actor network, discount factor
β, soft update factor η and maximum training epoch number Tmax.

2: Randomly initialize the critic evaluate network Q(s, a, o; θQ) and the
actor evaluate network µ(s; θµ) with the weights θQ

0 and θ
µ
0 , respectively;

Initialize the critic target network Q(s, a, o; θQ′ ) and the actor target
network µ(s; θµ

′
) as θQ′ ← θQ

0 , θ
µ′ ← θ

µ
0 .

3: Initialize Ornstein-Unlenbeck noise N according to [48].
4: for t = 1 to Tmax + 10Bs transmission frames do
5: Generate action at = µ(st; θ

µ
t−1) + N = {pmod(t), Ptx(t)}+N ; Ob-

tain the transmit power Ptx(t) and the modulation order M(t) =
arg maxM pmod(t).

6: Transmit the M(t)-QAM symbol with transmit power Ptx(t); Calculate
the EH reward rt,0 = rt(st , at , 0), the spectrum efficiency reward rt,1 =
rt(st , at , 1), the BER reward rt,2 = rt(st , at , 2) and the transmit power
reward rt,3 = rt(st , at , 3) according to Eq. (25); Observe the next state
st+1 according to the wireless channel.

7: Store four transitions (st , at , o, rt,o, st+1) for all o ∈ {0, 1, 2, 3} into the
experience replay buffer.

8: if t>10Bs then
9: Extract Bs samples of the transitions (si, ai, oi, ri, s′i )(i = 1, · · · , Bs)

from the experience replay buffer.
Compute the gradient on the critic loss ∇θQ L

(
θQ

)
according to Eq.

(28) and Eq. (29).
Update the weight of the critic evaluate network θQ

t ← θQ
t−1 +

λc∇θQ L
(
θQ

)
.

Compute the sampled policy gradient ∇θµ J(θµ) according to Eq.
(30).
Update the weight of the actor evaluate network θ

µ
t ← θ

µ
t−1 −

λa∇θµ J(θµ).
10: Soft update the weights of the target networks according to Eq.

(31).
11: end if
12: end for
13: return The optimal actor evaluate network µ(s; θµ∗), which outputs the

optimal policy π̄∗ under the EH target objective value δ̄.

is generated by 5G toolbox, while we obtain the parameters
of channel distribution α = 2.56888, ψ = 1.49054, and the
parameter of channel correlation npac f = 4 by estimating from
the generated channel dataset. Other parameter settings about
the C-PADDPG algorithm and the IDET system are detailed
in TABLE II according to [43], [50], [51].

Four different schemes are compared in the simulation,
which are described as follows:
• Fixed modulation (FM) + APC with GA: The pattern of

SNR boundary-based FM and waterfilling-aided APC is
exploited, while the single SNR boundary γ∗0 is optimized
via GA. After offline optimization, if the reference SNR

Algorithm 2 Bisection Method for Solving (P4)
Require: Maximum EH target objective value δmax, minimum EH target

objective value δmin and bisection searching accuracy ϵ.
1: while |δmax − δmin | ≥ ϵ do
2: Run Algorithm 1 by setting δ̄ = (δmax − δmin)/2 and return the optimal

policy π̄∗.
3: if The average values of harvested power, spectrum efficiency, BER

and transmit power in 2500 transmission frames satisfy the constraints
δ̄, C̃0, B̃ER0 and P̃tx,0 under the policy π̄∗, respectively. then

4: Set δmin = δ̄.
5: else
6: Set δmax = δ̄.
7: end if
8: end while
9: return Optimal EH target objective value δ∗ ← δmin and the correspond-

ing optimal policy π∗.

γre f falls within [γ∗0,∞], 16-QAM modulator is conceived
in the transmitter. Otherwise, the IDET system suffers
from an outage. The transmit power is generated by the
waterfilling-aided APC based on [γ∗0,∞] and instanta-
neous γre f .

• AM + APC with GA: The pattern of SNR boundary-
based AM and waterfilling-aided APC is exploited, while
the SNR boundaries γ = (γ∗0, γ

∗
1, γ
∗
2, γ
∗
3) are optimized

via GA. After offline optimization, the modulation order
M ∈ M is selected when the reference SNR γre f falls
within the corresponding SNR interval ΓM . Moreover, the
transmit power is generated by the waterfilling-aided APC
based on ΓM and instantaneous γre f .

• AM + APC with DDPG: Traditional DDPG algorithm
is exploited. Specifically, the actor-critic structure and
the updating process of the DDPG algorithm follows
these in the work [52]. Moreover, the settings of state,
action and discount factor follow these in Section IV-
B of this paper. In particular, the reward function is
design with the method of sliding time window, which
is detailded in Appendix A. After online training, the
modulation order and the transmit power are obtained by
the actor network of the DDPG algorithm, according to
instantaneous equivalent channel power gain.

• AM + APC with C-PADDPG: Our proposed C-
PADDPG algorithm is exploited. After online training, the
modulation order and the transmit power are obtained by
the actor network of the proposed C-PADDPG algorithm,
according to instantaneous equivalent channel power gain.
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Fig. 3. Convergence evaluation on normalized rewards of EH (a), BER (b), spectrum efficiency (c), and transmit power (d).

A. Convergence Evaluation

In Fig. 3, we evaluate the online convergence of our
proposed C-PADDPG algorithm in the wireless environment
with AWGN power σ2

cov = -25 dBm. By setting δmax = 2
mW, δmin = 0.1 mW and bisection searching accuracy ϵ = 0.1
mW for Algorithm 2, we demonstrate the online convergence
of the optimal policy π∗. For comparison, we reshape the
performance of EH, BER, spectrum efficiency and transmit
power of the other three schemes into the form of the reward
functions rt(st, at, o)(o = 1, 2, 3, 4) in Eq. (25). In order to
mitigate fluctuations and show trends clearly, the simulation
results are smoothed by Savitzky-Golay (SG) filter [53].

In the first 2560 transmission frames, which is called the
experience collecting stage, the networks of actor and critic of
the C-PADDPG algorithm are not updated, while the policy
of joint AM and APC is outputted with the initialized DNN
weights. Then, the networks of actor and critic are updated
iteratively in the following 7000 transmission frames, which
is called the training stage. Finally, the decision of joint AM
and APC is made by the well-trained C-PADDPG algorithm
in the consequent 2500 transmission frames, which is called
the executing stage. Observe from Fig. 3 that the SG filter-
smoothed rewards rapidly change in the experience collecting
stage and at beginning of the training stage. For instance,

the SG filter-smoothed BER reward in Fig. 3 (b) is fast-
changing and always lower than zero within this duration,
which indicates that the long-term BER constraint is not
satisfied. With the training process going on, the C-PADDPG
algorithm captures the temporally-correlated property of the
wireless channel and intelligently adapts itself to the wireless
environment. After the 9000-th transmission frame, i.e., in the
later training stage and the executing stage, all the four SG
filter-smoothed rewards fluctuate around the zero line, which
verifies the convergence of our proposed scheme of AM +

APC with C-PADDPG. Moreover, the convergence of the
scheme of AM + APC with DDPG is similar with that of our
proposed scheme. However, the SG filter-smoothed EH reward
of the DDPG algorithm fluctuate below the zero line in the
executing stage, which indicates that its ultimate policy will
not outperform the policy π∗ of the C-PADDPG algorithm. By
contrast, the schemes of FM+APC with GA and AM+APC
with GA do not experience the online convergence, since their
optimized strategies are obtained offline.

B. EH Performance and Constraints Satisfaction Evaluation

In Fig. 4, we evaluate the EH performance as well as the
satisfaction of the constraints of BER, spectrum efficiency and
transmit power in the wireless environments with different
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Fig. 4. Performance evaluation on average harvested power (a) and constraints satisfaction evaluation on average BER (b), average spectrum efficiency (c),
and average transmit power (d).

AWGN power10. After online convergence of the DRL-based
schemes and offline optimization of the GA-based schemes
in different wireless environments, the average values of
harvested power, BER, spectrum efficiency and transmit power
in 5000 transmission frames are obtained by running the four
schemes.

Observe from Fig. 4 (a) that the proposed AM + APC
with C-PADDPG scheme outperforms the other three schemes
in terms of the average harvested power. As the AWGN
power of the wireless environment reduces from σ2

cov = -
25 dBm to σ2

cov = -37 dBm, the values of average harvested
power of the DRL-based schemes increase gradually, while the
counterparts of the GA-based schemes decrease. For instance,
with σ2

cov = -25 dBm, the value of average harvested power
of the AM+APC with C-PADDPG scheme is 1.3508 mW,
which is 10.25%, 11.85% and 89.83% higher than these of
the schemes of AM+APC with DDPG, AM+APC with GA

10In this paper, the AWGN is mainly caused by passband-to-baseband
circuits. However, different types of circuits are manufactured by different
technologies, leading to different power spectral density of AWGN. For
example, in [35], the information receiver noise is assumed to be white
Gaussian with power spectral density -120 dBm/Hz. Therefore, under a
specific bandwidth, the different settings of AWGN power are due to the
distinct power spectral density of circuits. Note that the DRL agent consider
the wireless channel and the hardware modules of the transceiver together as
wireless environment, as shown in Fig. 2.

and FM+APC with GA, respectively. Moreover, with σ2
cov

= -37 dBm, the value of average harvested power of the
AM+APC with C-PADDPG scheme is 1.502 mW, which
is 8.03% higher than that of the AM+APC with DDPG
scheme, while the EH performance gaps between the DRL-
based schemes and the GA-based schemes are tremendous.
This is because the pattern of SNR boundary-based AM and
waterfilling-aided APC of the GA-based schemes is designed
for WDT by expert knowledge, which can only accommodate
communication-efficient region. By contrast, the DRL-based
schemes can accommodate both communication-efficient and
EH-efficient regions11 by adaptively learning different patterns
of joint AM and APC, which will be detailed in Section V-
C. However, the proposed C-PADDPG algorithm has stronger
capability to handle long-term constraints than the traditional
DDPG algorithm using sliding time window, thereby resulting
in better EH performance. Observe from Fig. 4 (b) to Fig. 4
(d) that the average spectrum efficiency of the four schemes is
always higher than the constraint of spectrum efficiency, while
the average BER and the average transmit power are lower
than their corresponding constraints, which indicate that all

11Note that the communication-efficient region refers to the wireless envi-
ronment with large AWGN power, while the EH-efficient region refers to that
with small AWGN power.
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(b) APC policy of C-PADDPG algorithm (σ2
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(d) APC policy of C-PADDPG algorithm (σ2
cov=-37 dBm)

Fig. 5. Communication-efficient pattern (a), (b) and EH-efficient pattern (c), (d) of joint AM and APC generated by the C-PADDPG algorithm.

the schemes can satisfy the long-term constraints well. Note
that the BER values of the DRL-based schemes are negligible.
This is because the peak constraint of BER is involved, causing
that no instantaneous BER reaches a extremely high value.

C. Joint AM and APC Pattern Evaluation
In Fig. 5, we investigate the patterns of joint AM and APC

generated by the C-PADDPG algorithm in communication-
efficient and EH-efficient regions. In the cases of AWGN
power σ2

cov = -25 dBm and σ2
cov = -37 dBm, we record the

transmit power and the M-QAM modulation order over the
equivalent channel power gain in 5000 transmission frames.

Fig. 5 (a)-(b) illustrates the pattern of joint AM and APC
in the environment with a high AWGN power. Observe from
Fig. 5 (a) that the higher order modulation scheme 16-QAM is
selected under a better wireless channel, while the lower one
4-QAM is selected under a worse wireless channel. Note that
no transmission occurs in the IDET system when the channel
is in deep fading. Observe from Fig. 5 (b) that more transmit
power is allocated for the worse channel cases. This is because
the BER constraint is strict in the case of σ2

cov = -25 dBm. In
order to satisfy the BER constraint, the lower order modulation
scheme should be selected and more transmit power should be
allocated under the worse channel condition. This pattern of
joint AM and APC is similar with the traditional counterpart of

SNR boundary-based AM and waterfilling-aided APC, which
is actually a communication-efficient pattern.

By contrast, when the AWGN power reduces to σ2
cov = -37

dBm, the joint AM and APC pattern are reversed, which is
illustrated in Fig. 5 (c)-(d). Observe from Fig. 5 (c) that the
higher order modulation scheme 16-QAM is selected under
a worse wireless channel, while the lower one 4-QAM is
selected under a better wireless channel. Observe from Fig.
5 (d) that less transmit power is allocated under a worse
wireless channel. This is because the BER constraint is easy
to be satisfied when the AWGN power is σ2

cov = -37 dBm,
while the EH performance dominates the decision-making.
When the equivalent channel power gain is high, the EH
model function is concave with respect to the input power.
Therefore, the average EH power of all the symbols in 4-
QAM is higher than that of 16-QAM. Conversely, when the
equivalent channel power gain is low, the EH model function is
convex, so that 16-QAM outperforms the 4-QAM in terms of
EH performance. Furthermore, when the equivalent channel
power gain is high, the gradient of the EH model function,
namely the EH efficiency is higher than that in the situation
of low equivalent channel power gain. Therefore, the allocating
more transmit power in the better channel condition can
improve the EH performance drastically. However, since the
high order modulation scheme 16-QAM is selected in the bad
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Fig. 6. Average harvested power (a), average spectrum efficiency (b) and average BER (c) over different power splitting ratios.

channel condition, the transmit power can not be too low, in
order to satisfy the BER constraint. This joint AM and APC
pattern is oriented to improving WET performance, which is
actually an EH-efficient pattern.

D. Evaluation on the impact of power splitting ratios

In Fig. 6, we evaluate the impact of different power split-
ting ratios on both WDT and WET performance for the C-
PADDPG algorithm. In the cases of AWGN power σ2

cov = -25
dBm and σ2

cov = -37 dBm, we record the performance of WET
and the constraints satisfaction of WDT over different power
splitting ratios in 5000 transmission frames.

Observe from Fig. 6 (a) that the average harvested power
increases as the power splitting ratio grows. This is because a
larger power splitting ratio enables more RF power to flow into
the rectifier, resulting in better WET performance. Observe
from Fig. 6 (b)-(c) that the constraints of WDT can not
be satisfied once the power splitting ratio is too large. For
instance, the average spectrum efficiency is lower than the
constraint C̃0 and the average BER is much higher than the
constraint B̃ER0, when the power splitting ratio is ρ = 0.999
and the AWGN power is σ2

cov = -25 dBm or -37 dBm. This
indicates that no feasible policy of joint AM and APC can
be found, since we aim to maximize the WET performance
while satisfying the minimum requirements of WDT in this
paper. Therefore, the power splitting ratio needs to be selected
appropriately, in order to guarantee the satisfaction of the
minimum WDT requirements.

VI. Conclusion and Future Directions

The joint AM and APC is investigated to maximize the
long-term EH performance, while satisfying the long-term
constraints of spectrum efficiency, BER and transmit power.
Then, the novel C-PADPPG algorithm is proposed to find
the feasible policy for the transformed constraint satisfaction
problem, while the intermediate variable is introduced for the
transformed problem, in order to search for the optimal policy
via bisection method. Simulation results demonstrate that our
proposed DRL-based solution outperforms the traditional GA-
based solution and the DDPG algorithm with sliding time

window in terms of long-term EH performance. Moreover,
the C-PADDPG algorithm can accommodate different wireless
environments by adaptively giving communication-efficient
and EH-efficient patterns of joint AM and APC.

However, there are some limitations in our proposed C-
PADDPG algorithm in terms of implementation and complex-
ity. Firstly, the issue of robustness arises when implementing
the C-PADDPG agent on the transmitter. Specifically, the prop-
erties of distribution and correlation of the wireless channel
may change after the training is finished at the agent, so
the gap between the training environment and the executing
one occurs. Under such a context, it is hard for the agent to
generalize on the dynamic wireless channels, inevitably lead-
ing to performance degradation of the transceiver. Secondly,
the training complexity of the C-PADDPG agent is relatively
high. Specifically, the bisection method is exploited to search
for the optimal intermediate variable and the corresponding
optimal policy, directly increasing more training times of the
agent. Fortunately, some research efforts have been invested in
improving the robustness by introducing adversarial learning
[54] and reducing the training times by updating intermediate
variable whilst training the DRL agent [55]. In particular, the
potential solutions will be considered in future works.

Appendix A
Sliding TimeWindow to Design Reward Function

In the t-th transmission frame, we firstly calculate the
average values of spectrum efficiency, BER, and transmit
power in previous W transmission frames, namely the sliding
time window. Then, we decide whether these average values
satisfy the constraints, which are expressed as

1
W

t∑
i=t−W+1

C(si, ai) ≥ C̃0, (32)

1
W

t∑
i=t−W+1

BER(si, ai) ≤ B̃ER0, (33)

1
W

t∑
i=t−W+1

Ptx(si, ai) ≤ P̃tx,0, (34)

where the length of the sliding time window W is set to be
10 in this paper.
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Subsequently, the reward function of the traditional DDPG
algorithm is defined as

rt(st, at) =


Reh(st, at), (32), (33), (34) all hold,
Rc(st, at) + Rber(st, at) + Rtx(st, at)
−100I

(
5B̃ER0 − BER(st, at)

)
, otherwise,

(35)

where Reh(st, at) is reward, and Rc(st, at),Rber(st, at),Rtx(st, at)
are penalties (negative rewards), which are expressed as

Reh(st, at) = ξ0Peh(st, at),
Rc(st, at) = −ξ1

(
C̃0 −C(st, at)

)+
,

Rber(st, at) = −ξ2

(
BER(st, at) − B̃ER0

)+
,

Rtx(st, at) = −ξ3

(
Ptx(st, at) − P̃tx,0

)+
,

(36)

where the hyper parameters ξ0, ξ1, ξ2, ξ3 are the constants,
which are designed to guarantee that the values of Reh(st, at),
Rc(st, at), Rber(st, at), and Rtx(st, at) are in the same magnitude,
in order to enhance the training stability of the traditional
DDPG algorithm. Note that all the hyper parameters should
be carefully selected, while we set ξ0 = 1e3, ξ1 = 1/3, ξ1 =

1/3, ξ2 = 2.5e4, and ξ3 = 1/10 in this paper.
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