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Abstract—Visible light-based positioning (VLP) is indispens-
able for integrated sensing and communication in optical wireless
networks. Conventional VLP methods require an accurate Lam-
bertian emission model (LEM) with fixed parameters. However,
this is hard to be met in practice due to inevitable measurement
errors, and thus a small LEM error will lead to serious VLP
performance loss. To solve this issue, a joint LEM calibration and
positioning (JCAP) scheme is proposed. As the JCAP problem
is non-convex in nature, a majorization minimization-based
joint optimization method is developed to exploit hidden-convex
substructures of the system model, thus yielding a tractable
JCAP scheme. Moreover, the impact of system parameters (e.g.,
carrier frequency, initial LEM error and noise) on the VLP
performance is revealed, which is useful for efficient VLP network
development. It is verified by simulations that the proposed JCAP
method outperforms the state-of-the-art VLP baselines due to our
problem-specific joint LEM calibration mechanism design.

Index Terms—Lambertian emission model, visible light-based
positioning, Integrated sensing and communication.

I. INTRODUCTION

W ITH rapid development of electronic information tech-
nologies, visible light communication-assisted posi-

tioning (VLP) using photodiodes has attracted widespread
research attentions from both academia and industry in re-
cent years [1]. Basically, the study of integrated VLP and
optical wireless communication (OWC) is driven by its great
potentials in boosting localization-aware applications for user
devices (UDs), such as intelligent robotic navigation and
autonomous vehicles [2], [3], where both data transmission
and accurate localization are required.

A number of VLP methods have been developed, e.g., using
received signal strength (RSS) [4]– [8], angle-of-arrival [9],
and time-of-flight [10]. The key idea of these VLP detection
approaches is to estimate UD location and orientation direction
from received visible light signals, by leveraging the mapping
from measurement signal space to UD location space [11].
Hence, a well-defined Lambertian emission model (LEM) with
fixed and accurate parameters, e.g., emitting powers of light-
emitting-diodes (LEDs), optical filtering gains of photodiodes
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Fig. 1. UD localization error versus LEM error [12]. error.

and large-scale path loss exponent, is required. However, due
to inevitable errors in optical filtering gain specification and
thermal noise, the LEM parameters are usually inaccurate,
and a small LEM error may lead to a serious localization
performance degradation [12], as shown in Fig. 1. Thus, it is
desired to develop a novel VLP method to efficiently deal with
LEM error for achieving an accurate localization solution.

In this paper, a OWC-based joint LEM calibration and posi-
tioning (JCAP) scheme is proposed to alleviate the disturbance
from LEM errors. The optimization of JCAP, however, is
challenging due to its non-convexity nature. In order to ad-
dress this challenge, we propose a majorization minimization
(MM)-based optimization method to exploit certain hidden-
convex substructures of the system model. This leads to an
efficient JCAP solution, where the overall problem is solved
by iterations of three subproblems including LEM calibration,
response gain estimate and UD localization. To quantify the
performance limits of the proposed JCAP method, the impact
of system parameters, e.g., subcarrier frequency, initial LEM
error, and signal-to-noise ratio (SNR), on the VLP perfor-
mance is revealed. It is verified by numerical experiments
that the proposed JCAP method outperforms the state-of-the-
art VLP baselines, due to our problem-specific joint LEM
calibration mechanism design.

II. SYSTEM MODEL

In this section, we elaborate the associated system setup and
the visible light signal propagation model.



Fig. 2. Illustration of OWC-based JCAP system.

A. System Setup

We consider a OWC-based JCAP system with a number of
LEDs and one UD receiver equipped with a photodiode (PD),
as shown in Fig. 2. Let M the number of LEDs. We assume
that LEDs are modulated on different subcarriers such that
their signals can be distinguished. Let pm ∈ R3 and vm ∈ R3

be the known location and orientation direction vectors of the
mth LED, respectively, where ∥vm∥2 = 1 for m = 1, · · · ,M .
Let xR ∈ R3 and uR ∈ R3 be the unknown location and
orientation vectors of the UD, subject to ∥uR∥2 = 1. Let
βR = [xR;uR] ∈ R6 be the joint vector of the UD state.

We adopt the received OWC signal waveform samples as
measurement data for VLP. LED emitters will act as beacons
to transmit visible lights, and the UD’s photodiode will sense
visible light signals for JCAP.

B. Measurement Model

Let z(t)m ∈ C be the waveform sample of the tth symbol from
the mth LED, for m = 1, · · · ,M and t = 1, · · · ,MS, where
MS denotes the number of symbols. This sample depends on
the LED-to-PD geometry. Given the UD location parameter
βR, the measurement sample zm is given by

z(t)m = a(t)m h′m exp
(
−2πιfmτm

)
+ ϵ(t)m , (1)

h′m = hR
(γ+1)

(
cos
(
ϕm

))γ
cos
(
θm
)

2π∥xR − pm∥α2
, (2)

τm =
∥xR − pm∥2

c
, (3)

where a
(t)
m ∈ C is the tth pilot symbol with E{∥a(t)m ∥22} = 1,

ϵ
(t)
m ∈ C is measurement noise, ι =

√
−1 is the unit imaginary

number, fm is the mth LED’s subcarrier frequency, and c
denotes the speed of light. In addition, hR ∈ C is a joint
parameter absorbing PD aperture and optical filtering gain, γ
is the LED Lambertian order, and α is the path-loss exponent,
which are unknown. Furthermore, ϕm is the radiation angle
of the mth LED emitter to the UD, and θm is the incidence
angle from the mth LED, where

ϕm = arccos
(
(em)⊤vm

)
, (4)

θm = arccos
(
− (em)⊤uR

)
, (5)

and em is given by

em =
xR − pm

∥xR − pm∥2
. (6)

For clarity, let ℘ ∈ C3 = [γ, hR, α] be the collection
of propagation parameters. It is nondeterministic in harsh
environments, and thus brings great challenges to VLP.

Let z ∈ CMSM = vec[z
(t)
m |∀m = 1 : M,∀t = 1 : MS].

Based on the above geometric relationship, z is cast as

z = g(℘;βR) + ϵ, (7)

where g(℘;βR) ∈ CMSM is the model function given by

g(℘;βR) = vec[g(t)m (℘;βR)|∀m = 1:M, ∀t = 1:MS],

g(t)m (℘;βR) = a(t)m h′m exp
(
−2πιfmτm

)
,

and ϵ ∈ CMSM is the zero-mean noise vector.

III. THE PROPOSED JCAP ALGORITHM

In this section, we first present the problem formulation of
JCAP, followed by our proposed solution.

A. Problem Formulation

JCAP aims to acquire the UD location parameter βR under
unknown propagation parameter ℘ using received visible light
signal samples z, via the following optimization process,

PJCAP : β̂R = argmin
βR

min
℘

∥z− g(℘;βR)∥2. (8)

Challenge: It is not easy to solve the above PJCAP problem
due to its non-convex problem nature arising from the complex
measurement model g(℘;βR). �

For achieving a tractable JCAP solution, we resort to an MM
method to address its challenge by exploiting hidden convex
substructures in the system model. Specifically, we observe
hidden convex substructures with respect to (w.r.t.) equivalent
response coefficient hR and UD orientation uR in the system
model (7), which is exploited to boost the JCAP algorithm,

For clarity, let µR = hRuR ∈ C3 be the equivalent response
gain vector, where its norm reflects the response coefficient hR
and its direction means the UD orientation direction uR. Let
ϑ = [γ, α] ∈ R2 be the collection of LEM parameters.

Based on the system model in (1)-(7), the measurement
sample vector z can be reformulated as

z = Ψ(xR,ϑ)µR + ϵ, (9)

where Ψ(xR,ϑ) ∈ CMSM×3 is a matrix function of ϑ and
xR. This matrix is dependent on xR and given by

Ψ(xR,ϑ) = mat
[(
φ(t)

m

)⊤|∀m = 1 : M, ∀t = 1 : MS

]
, (10)

φ(t)
m = φ̃(t)

m exp

(
−2πιfm

∥xR − pm∥2
c

)
, (11)

φ̃(t)
m = a(t)m

(γ + 1)((xR − pm)⊤vm)γ(pm − xR)

2π
∥∥xR − pm

∥∥γ+α+1

2

, (12)

where mat yields a matrix by stacking all row vectors.



As such, based on (9), the JCAP problem is recast as

P♯
JCAP : (x̂R, µ̂R, ϑ̂) = arg min

xR,µR,ϑ
∥z−Ψ(xR,ϑ)µR∥2.

We can observe that P♯
JCAP is linear w.r.t. µR, and hence

P♯
JCAP is convex in µR conditioned on (ϑ,xR). Based on

this, the overall JCAP problem P♯
JCAP can be partitioned into

three subproblems, i.e., the (convex) response gain estimate,
the (non-convex) LEM calibration, and the (non-convex) UD
localization subproblem. Then, given initial point of ϑ and
xR, these three subproblems can be alternately iterated, till
iterations of all parameters converge.

B. Algorithm Design

Let µ̂[j], ϑ̂[j] and x̂[j] be the jth iteration state of µR, ϑ and
xR, respectively. Then, at the (j + 1)th iteration of our JCAP
algorithm, each parameter is updated as follows.

1) Response Gain Estimate: For the (j + 1)th iteration of
µR, we assume that ϑ̂[j] and x̂[j] have been determined at the
previous iteration. Given ϑ̂[j] and x̂[j], µR is updated as

PRG : µ̂[j+1] = argmin
µR

∥z−Ψ(x̂[j], ϑ̂[j])µR∥2. (13)

As such, based on the linear structure w.r.t. µR, the next
iteration µ̂[j+1] is directly obtained as

µ̂[j+1] =
(
Ψ(x̂[j], ϑ̂[j])

)†
z, (14)

where •† is the pseudo-inverse. In such a case, we have

ĥ[j+1] = ∥µ̂[j+1]∥2, (15)

û[j+1] =
ℜ{µ̂[j+1]}
∥µ̂[j+1]∥2

, (16)

where ℜ{•} is the real part of a complex vector.
2) LEM Calibration: Once the response gain estimate µ̂[j]

is determined at the jth iteration, the LEM parameter ϑ is then
updated based on the following optimization subproblem,

PLEM : ϑ̂[j+1] = argmin
ϑ

∥z−Ψ(x̂[j],ϑ)µ̂[j]∥2︸ ︷︷ ︸
ηLEM(ϑ;x̂[j],µ̂[j])

. (17)

where ηLEM(ϑ; x̂[j], µ̂[j]) denotes the cost function w.r.t. ϑ.
We can see that the above problem PLEM is still non-convex

in ϑ, due to the nonlinear model Ψ(ϑ; x̂[j])µ̂[j] w.r.t. ϑ. To
address this challenge, we further resort to the MM approach
for facilitating algorithm design. Specifically, we exploit a
convex approximation (surrogate function) of the cost function
ηLEM(ϑ; x̂[j], µ̂[j]) of the original LEM calibration subproblem
PLEM, and optimize ϑ by successively minimizing the convex
approximation of the cost function of PLEM, as follows,

P♯
LEM : ϑ̂[j+1] = argmin

ϑ
η♯LEM

(
ϑ; ϑ̂[j], x̂[j], µ̂[j]

)
, (18)

where η♯LEM

(
ϑ; ϑ̂[j], x̂[j], µ̂[j]

)
is the convex surrogate function

of ηLEM

(
ϑ; x̂[j], µ̂[j]

)
around ϑ = ϑ̂[j], which is given by

(19), and R
(
ϑ̂[j];x[j], µ̂[j]

)
∈ C2×MSM is the derivative of

Ψ(ϑ,x[j])µ̂[j] over ϑ around ϑ = ϑ̂[j], given by

R
(
ϑ̂[j];x[j], µ̂[j]

)
= Q(ϑ̂[j], x̂[j])Û[j], (20)

where Û[j] ∈ R3MSM×MSM and Q(ϑ̂[j], β̂[j]) ∈ R2×3MSM is
respectively given by

Û[j] = IMSM ⊗ µ̂[j], (21)

Q(ϑ̂[j], x̂[j]) = [Q(t)
m,[j]|∀m = 1 : M,∀t = 1 : MS], (22)

where IMSM is the MSM -dimensional identity matrix, ⊗ is
the Kronecker product, and Q(t)

m,[j] = ∇ϑφ
(t)
m (x̂[j],ϑ)

∣∣
ϑ=ϑ̂[j]

∈ R2×3 is the derivative of φ
(t)
m (x̂[j],ϑ) over ϑ around ϑ =

ϑ̂[j], which is given by

Q(t)
m,[j] = [q

(t)
m,[j];ρ

(t)
m,[j]]

⊤, (23)

where q
(t)
m,[j] and ρ

(t)
m,[j] ∈ C3 are given by (24) and (25),

respectively. As a result, at the (j + 1)th iteration, the update
of LEM parameter ϑ̂[j+1] can be easily determined as per its
convex subproblem P♯

LEM, given by

ϑ̂[j+1] = ϑ̂[j] +
(
R(ϑ̂[j]; x̂[j], µ̂[j])

)†
z♯[j], (26)

z♯[j] = z−Ψ(ϑ̂[j]; x̂[j])µ̂[j]. (27)

In such a case, the estimate of Lambertain order γ and path
loss exponent α at current iteration is given respectively by

γ̂[j] = [ℜ{ϑ̂[j]}]1, (28)

α̂[j] = [ℜ{ϑ̂[j]}]2, (29)

where [•]1 means the first element of a vector.

3) UD Localization: At iterations of UD location xR, we
assume that ϑ̂[j] and µ̂[j] have been determined at the previous
iteration. Hence, given ϑ̂[j] and µ̂[j] at the jth iteration, the UD
location parameters x̂[j+1] can be determined as follows:

PLC : x̂[j+1] = argmin
xR

∥z−Ψ(xR; ϑ̂[j])µ̂[j]∥2︸ ︷︷ ︸
ηLC(xR;ϑ̂[j],µ̂[j])

, (30)

where ηLC(xR; ϑ̂[j], µ̂[j]) denotes the cost function w.r.t. xR.
Similar to PLEM, the subproblem PLC is also a non-

convex optimization problem w.r.t. xR, due to the nonlinear
measurement function Ψ(xR; ϑ̂[j])µ̂[j] w.r.t. xR. To address
this challenge, we still resort to an MM method. We optimize
xR via iteratively minimizing the convex surrogate of PLC:

P♯
LC : x̂[j+1] = argmin

xR

η♯LC(xR; x̂[j], ϑ̂[j], µ̂[j]), (31)

where η♯LC(xR; x̂[j], ϑ̂[j], µ̂[j]) denotes the convex surrogate
of ηLC(xR; ϑ̂[j], µ̂[j]) around xR = x̂[j], which is given by
(32), and Θ

(
x̂[j]; ϑ̂[j], µ̂[j]

)
∈ R3×MSM is the derivative of

Ψ(xR, ϑ̂[j])µ̂[j] over xR around xR = x̂[j], given by

Θ
(
x̂[j]; ϑ̂[j], µ̂[j]

)
= Λ(ϑ̂[j], x̂[j])Û[j], (33)

where Û[j] is given by (21), and Λ(ϑ̂[j], x̂[j]) ∈ C3×3MSM is



η♯LEM

(
ϑ; ϑ̂[j], x̂[j], µ̂[j]

)
= z−Ψ

(
ϑ̂[j], x̂[j]

)
µ̂[j] +

(
R
(
ϑ̂[j]; x̂[j], µ̂[j]

))H(
ϑ− ϑ̂[j]

)
. (19)

q
(t)
m,[j] = a(t)m

((x̂[j] − pm)⊤vm)γ̂[j](pm − x̂[j])

2π
∥∥x̂[j] − pm

∥∥γ̂[j]+α̂[j]+1

2

(
(γ̂[j] + 1) ln

(x̂[j] − pm)⊤vm∥∥x̂[j] − pm

∥∥
2

+ 1

)
exp

(
−2πιfm

∥xR − pm∥2
c

)
, (24)

ρ
(t)
m,[j] = −a(t)m

(γ̂[j] + 1)((x̂[j] − pm)⊤vm)γ̂[j](pm − x̂[j])

2π
∥∥x̂[j] − pm

∥∥γ̂[j]+α̂[j]+1

2

ln
(
∥x̂[j] − pm∥2

)
exp

(
−2πιfm

∥xR − pm∥2
c

)
. (25)

η♯LC(xR; x̂[j], ϑ̂[j], µ̂[j]) = z−Ψ
(
ϑ̂[j], x̂[j]

)
µ̂[j] +

(
Θ
(
x̂[j]; ϑ̂[j], µ̂[j]

))H(
xR − x̂[j]

)
. (32)

given by

Λ(ϑ̂[j], x̂[j]) = [Λ
(t)
m,[j]|∀m = 1 : M, ∀t = 1 : MS], (34)

in which Λ
(t)
m,[j] = ∇xR φ

(t)
m (xR, ϑ̂[j])

∣∣
xR=x̂[j]

∈ C3×3 is the

derivative of φ(t)
m (xR, ϑ̂[j]) over xR around xR = x̂[j], which

is given by (35).
As a result, the UD location is updated as follows,

x̂[j+1] = x̂[j] + ℜ
{(

Θ
(
x̂[j]; ϑ̂[j], µ̂[j]

))†
z♯[j]
}
, (36)

where z♯[j] is given by (27).

4) Initial Setup: Since the LEM calibration problem P♯
LEM

is non-convex in (γ, α), it is non-trivial to setup a good
initial point (γ̂[0], α̂[0]) close to the true value. In this paper,
we propose to use the coarse solution of an approximate
calibration method to act as the initial point.

We suppose that the initial point (x̂[0], û[0]) of UD location
parameters is already determined by a certain initialization
method in [9] and [13] or using inertial measurement units.
Then, we extract the strength of received visible signal z(t)m ,
as follows, ym = E{∥z(t)m ∥2 : ∀t = 1, · · · ,MS}. Then, the
received signal strength ym follows that (ignoring the noise
term temporarily) [1], [4]

ym ≈ hR
(γ+1)

(
cos
(
ϕm

))γ
cos
(
θm
)

2π∥xR − pm∥α2
. (37)

where the propagation angles ϕm and θm is determined by
(x̂[0], û[0]). Then, generally let y1 with m = 1 be the reference
sample, and let ỹm = ln

(
ym/y1

)
− κm be the difference-log

RSS, ∀m ̸= 1, where κm = ln

(
cos
(
θm
)

cos
(
θ1
) ). As such, based

on (37), we have ỹm ≈ λmγ + χmα, where λm and χm are
constants given below,

λm = ln

(
cos
(
ϕm

)
cos
(
ϕ1

) ), (38)

χm = ln

(
∥xR − p1∥2
∥xR − pm∥2

)
. (39)

Moreover, let wm = [λm, χm] ∈ R2, let W ∈ R(M−1)×2 =
mat[w⊤

m|∀m ̸= 1], and let y ∈ RM−1 = vec[ỹm|∀m ̸= 1].
Then, we have y ≈ Wϑ. Therefore, the initial LEM parameter

ϑ is determined based on least square as

ϑ̂ini = W†y, (40)

and thus the initial solutions of Lambertian order and path loss
exponent are given respectively by

γ̂[0] = [ϑ̂ini]1, (41)

α̂[0] = [ϑ̂ini]2. (42)

C. Summary of LEM Calibration Algorithm

As mentioned above, by exploiting hidden convex substruc-
tures of system models through using MM methods, the non-
convex JCAP problem is addressed, where JCAP is partitioned
into three subproblems, i.e., (i) response gain estimate, (ii)
LEM calibration and (iii) UD localization. Accordingly, given
an initial point (γ̂[0], α̂[0], x̂[0], û[0]), the three parameters µR,
ϑ and xR will be alternately optimized, as per their respective
optimization subproblem. As a result, an efficient MM-based
JCAP algorithm is achieved. Once iterations converge, the UD
location parameter and LEM parameter x̂R, ûR, ĥR, γ̂ and α̂
will be determined. The pseudo-codes of our MM-based LEM
calibration algorithm are given in Algorithm 1.

IV. NUMERICAL RESULTS

In this section, we provide simulation results to evaluate our
MM-based JCAP algorithm.

A. Simulation Settings

The simulation parameters are set as follows, unless spec-
ified otherwise. The room size is set as 5 m × 5 m × 3 m,

Algorithm 1: The proposed MM-based JCAP algorithm
Input : Received sample vector z.
Output: x̂R, ûR, ĥR, α̂ and γ̂.

1 Initialize x[0], u[0], γ̂[0] and α̂[0] as per (41) and (42).
2 While not converge do (iterating for j = 1, 2, 3, · · · )
3 Update response gain µ̂[j] as per (14).
4 Update LEM parameter ϑ̂[j] as per (26).
5 Update UD location x̂[j] as per (36).
6 End
7 Determine ĥ[j], û[j], α̂[j] and γ̂[j], as per (15), (16), (29)

and (28), respectively.



Λ
(t)
m,[j] =− a(t)∗m

γ̂[j](γ̂[j] + 1)

2π

(
(x̂[j] − pm)⊤vm

)γ̂[j]−1

∥x̂[j] − pm∥γ̂[j]+α̂[j]+1
2

vm(x̂[j] − pm)⊤ exp

(
2πιfm

∥x̂[j] − pm∥2
c

)
(35)

− a(t)∗m

(γ̂[j] + 1)

2π

(
(x̂[j] − pm)⊤vm

)γ̂[j]

∥x̂[j] − pm∥γ̂[j]+α̂[j]+1
2

exp

(
2πιfm

∥x̂[j] − pm∥2
c

)

+ a(t)∗m

(γ̂[j] + 1)(γ̂[j] + α̂[j] + 1)

2π

(
(x̂[j] − pm)⊤vm

)γ̂[j]

∥x̂[j] − pm∥γ̂[j]+α̂[j]+3
2

(x̂[j] − pm)(x̂[j] − pm)⊤ exp

(
2πιfm

∥x̂[j] − pm∥2
c

)

− ι a(t)∗m

(γ̂[j] + 1)fm

c

(
(x̂[j] − pm)⊤vm

)γ̂[j]

∥x̂[j] − pm∥γ̂[j]+α̂[j]+2
2

(x̂[j] − pm)(x̂[j] − pm)⊤ exp

(
2πιfm

∥x̂[j] − pm∥2
c

)
.

and we set MS = 10, and the number of LEDs is set to
be M = 16, where those LEDs are uniformly deployed on
the room ceiling, pointing downwards, i.e., vm = [0, 0,−1]⊤,
∀m = 1, · · · ,M . We set that the UD appears in the room
with a random location and a random orientation direction.
We set the ground-truth value of path loss exponent and
Lambertian order as α = 2 and γ = 2, respectively, and
the response coefficient is set as hR = 0.08, which follows
from a typical specification of LEDs and PDs [14], [15].
The LEDs’ subcarrier frequencies {fm|∀m = 1, · · · ,M}
are set to be around 35MHz, and their frequency spacing
is 1KHz. In addition, we consider the receiver side SNR for

fair comparison, given by SNR = 10 log
E{∥g(℘;βR)∥2}

E{∥ϵ∥2}
dB,

which is set as 20 dB, unless specified otherwise.
We adopt the following VLP methods as our baselines for

performance comparison with the proposed JCAP method.
• Baseline 1: RSS-based VLP method in [6], without

LEM calibration, where LEM parameter are determined
experimentally with a normalized error of 0.1.

• Baseline 2: RSS-based VLP method in [7], with joint
LEM calibration, where the initial LEM parameters are
is set with a normalized error of 0.1.

• Baseline 3: TOA-based VLP without LEM calibration in
[10], where LEM parameters are fixed with a normalized
error of 0.1.

B. Numerical Analysis

We demonstrate the efficiency of the proposed MM-based
JCAP method in two aspects: iteration convergence, and the
achieved VLP performance over different scenarios.

1) Iteration Convergence: The convergence of various VLP
methods is plotted in Fig. 3. We can see that the proposed
MM-based JCAP algorithm converges rapidly, and a lower
stationary UD localization error is achieved, compared with
diverse VLP baselines, which is resulted from our problem-
specific iteration design in (14)–(36). This result validates the
efficiency of our MM-based JCAP algorithm.

2) VLP Performance versus SNR: The achieved localization
error of various VLP methods under different SNR conditions
is plotted in Fig. 4. It is shown that our MM-based JCAP
method outperforms those VLP baseline methods. Moreover,

Fig. 3. Convergence of various VLP methods.

Fig. 4. VLP error versus SNR.

as SNR increases, each baseline method get saturated with
an error floor, which is caused by inevitable LEM error.
In contrast, our JCAP method’s localization error will be
gradually decreased with the increasing of SNR. This is
because the associated LEM error is reduced via our joint
optimization procedure, thus breaking the VLP error floor.
In addition, the performance gain of our JCAP method over
baseline methods tends to be enlarged as SNR increases,
meaning that LEM error will be a dominant error source in
high SNR regions. Hence, the associated performance gain



Fig. 5. VLP error versus initial LEM error.

Fig. 6. VLP error versus subcarrier frequency of LEDs.

from joint LEM calibration will be increased. This result
verifies the superiority of the proposed JCAP method.

3) VLP Performance versus LEM Error: The achieved UD
localization error versus LEM error is plotted in Fig. 5. We
can observe that, as LEM error increases, the UD localization
errors of baselines 1 and 3 get increased, while our MM-
based JCAP performance is not affected due to its joint LEM
calibration scheme. This verifies the contribution of joint LEM
calibration in suppressing LEM error.

4) VLP Performance versus Subcarrier Frequency: The
achieved UD localization performance of various VLP meth-
ods over different baseband subcarrier frequencies is plotted in
Fig. 6. It is shown that an enlarged VLP performance gain of
our JCAP method over RSS-based baseline methods 1 and 2
can be achieved, as baseband subcarrier frequency is increas-
ing. This is because phase information of received visibile light
signal waveforms is exploited by our JCAP method compared
with RSS-based VLP baseline 1 and 2, and hence a larger
subcarrier frequency leads to an increased spatial resolution
(via visible light waveform-based TOA extraction).

V. CONCLUSIONS

Lambertian emission model is indispensable for visible light
communication-based positioning. Conventional VLP method

usually needs an accurate Lambertian emission model with
fixed parameters, but this is hard to be met in practice. In this
paper, an efficient OWC-based JCAP scheme is proposed to
solve this problem. Due to the associated non-convex nature, a
novel MM-driven JCAP algorithm is proposed, where hidden
convex substructures of the system models are exploited. A
low-cost initialization method is proposed to offer a good
initial point for our iterative MM-based JCAP algorithm. It
is verified by simulation results that the proposed MM-driven
JCAP algorithm outperforms the state-of-the-art LEM-based
VLP baseline methods, due to our problem-specific joint LEM
calibration mechanism design.
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