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Coverage Analysis of Single-swarm mmWave UAV
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Abstract—Millimeter wave (mmWave)-based unmanned aerial
vehicle (UAV) communication is susceptible to blockages, even
from humans. Previous studies that primarily focused only on
static blockage may not accurately characterize the system per-
formance. This paper investigates the coverage performance of
mmWave UAV networks by jointly considering multiple types of
blockages under finite homogeneous Poisson point process and Bi-
nomial point process, which are commonly employed in finite area
scenarios with random and fixed number of UAVs, respectively.
Particularly, we derive the average line-of-sight probability and
coverage probability under static, dynamic, and self blockages.
Simulations verify our theoretical results, demonstrating that:
the above system performance predominantly depends on self-
blockage if UAVs are at high altitudes. Conversely, at relatively
low altitudes, all three types of blockages impact them, with static
blockage being the dominant factor. To avoid self-blockage, UAV
height should satisfy h>hR+

ri
tanφb

, where hR is the height of the
user equipment (UE), ri is the two-dimensional distance of the
UAV-UE link, φb is the elevation angle between UE and UAV. The
required height is proportional to ri and increases as distance d
between the user and UE decreases, as φb is proportional to d.
The findings help on designing the network parameters. To our
best knowledge, this is the first work to analyze the coverage of
mmWave UAV networks under multiple types of blockages.

Index Terms—Millimeter wave, unmanned aerial vehicle com-
munications, human blockages, coverage probability.

I. INTRODUCTION

A. Motivation

Unmanned aerial vehicles (UAVs) are increasingly rec-
ognized as crucial components of wireless communications,
particularly as aerial base stations (BSs) [1]. Compared to
traditional BSs, UAVs have high mobility and low costs [2],
[3]. These facilitate dynamic deployment based on real-time
demands and lightweight deployment with lower geograph-
ical requirements [4], [5]. Therefore, UAVs are promising
candidates to deal with wireless coverage issues, especially
for hot spots or disasters [6]. Since UAVs are often used for
emergency and temporary communications, most UAVs need
fast responses and high transmission rates [7], [8]. Therefore,
millimeter wave (mmWave) with large bandwidth is a suitable
carrier frequency for UAV communications [8], [9].
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Nevertheless, mmWave UAV communications encounter
serious blockages since mmWave are sensitive to obstacles and
typically encounter three types of blockages: static blockage
due to buildings, dynamic blockage due to moving blockers,
and self-blockage due to the user’s body [10]–[15]. These
blockages pose challenges to the reliability of mmWave UAV
communications [5]. Existing research in this field has taken
part of these blockage effects into account [7], [10], [16]–[18].
Particularly, the work in [16] focused on enhancing air-to-
ground transmission by utilizing intelligent reflecting surface.
However, existing works on the coverage performance of
mmWave UAV networks primarily considered static blockage,
the dynamic and self blockages have not been jointly consid-
ered yet. This is unreasonable and will result in considerable
deviations from actual performance. Particularly, mmWave are
not only sensitive to blockages of buildings, but also sensitive
to those of humans, which can lead a signal strength reduction
as large as 20 dB [11], [12], [14], [19]. Moreover, since UAVs
are typically deployed in hot spots that contain a large number
of humans [12], [20], the possibility of blockage caused by
humans is further increased. Therefore, it is crucial to jointly
considering all three types of blockages. This will provide a
better understanding of the coverage performance and ensure
more accurate assessment of the network deployment.

Stochastic geometry is widely used to evaluate the system
performance and the impact of key parameters on the system
performance [21]–[23]. Most existing works in this field
models the positions of UAVs using the homogeneous Poisson
point process (HPPP). However, when a fixed number of
UAVs is deployed, the HPPP model is unsuitable, and the
Binomial point process (BPP) is considered as a reasonable
model [24]. The system performance varies in different modes
since various point processes comprise different numbers of
UAVs. Thus, it is necessary to explore the system performance
under these two models for different numbers of UAVs, which
leads to a variety of challenging mathematical analysis. Con-
sequently, one of our objective is to investigate the coverage
performance of air-to-ground mmWave UAV networks under
these two different UAV distribution modes to determine UAV
distribution models suitable for different scenarios.

B. Related Works

The evaluation of UAV networks performances using ran-
dom point processes has garnered increasing attention. Most
of these studies focus on analyzing the signal-to-interference-
plus-noise ratio (SINR) coverage performance and revealing
the impact of key parameters on the performance. For instance,
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based on HPPP, the work in [25] investigated the impact of
path loss on the coverage performance of UAV communica-
tions. A tractable UAV model with three-dimensional (3D)
static blockage was presented in [26] to characterize the
coverage. The work in [27] and [28] analyzed the coverage
performance of UAV-enabled cellular networks. Meanwhile,
[29] considered the coverage performance of vertical hetero-
geneous networks (VHetNets). The authors in [30] proposed a
multi-tier UAV network, where the positions of UAVs in each
layer obey a HPPP. For the clustered distribution scenarios, the
coverage probability was studied in [8] and [31], respectively,
where the cluster center was modeled as a HPPP. For mmWave
UAV networks, the impacts of UAV density, height, and
antenna elements, on the coverage performance were discussed
in [32] by considering static blockage. In addition, there has
been increased attention to the use of finite HPPP (FHPPP)
for modeling the positions of BSs in finite areas [33]–[35].

Even though HPPP/FHPPP has been widely used to model
the position of UAVs, it is not well suited for some scenarios,
especially when deploying a fixed number of UAVs for typical
missions. In such cases, BPPs are suitable models to represent
the location of UAVs. [36] was the first work to model the
UAV networks based on BPP, and [37] studied the outage
probability of UAV network based on BPP. However, the
results of [36], [37] were obtained conditioned on the line-of-
sight (LoS) paths, overlooking the effects of the NLoS portion.
Considering the combined impacts of LoS/NLoS components
due to static obstacles, a probabilistic channel model was
introduced in [22] to study the coverage probability of UAV-
assisted network. [38] performed a similar analysis by com-
bining the trajectory of UAVs. Based on the LoS/NLoS model,
the coverage performance of VHetNets was studied in [39].
Considering mmWave UAV communications, the authors in
[40] evaluated the coverage probability of a large-scale hybrid
aerial-terrestrial network, where a BPP is used to generate the
positions of UAVs. Recently, a tractable model for multiple-
swarm mmWave UAV communications was developed in [7].

While existing studies provide valuable insights, certain
research gaps persist regarding the coverage performance of
air-to-ground mmWave UAV networks, mainly reflected in two
aspects: 1) the blockage effects has not been fully considered,
especially the human blockages; 2) the spatial distribution
of UAVs has not been adequately characterized, especially
the disparities between FHPPP and BPP. The main difference
between FHPPP and BPP lies in the distribution of the number
of UAVs. However, as more UAVs are deployed, both models
tend to exhibit similar conclusion [41]. It is necessary to
conduct a uniform analysis of the system performance under
these two models to obtain distribution models suitable for
networks with varying numbers of UAVs, leading to more
effective results. However, theoretical research in this area is
lacking although both models are widely used. Therefore, we
aimed to examine how various types of mmWave blockages
and UAV distribution models influence the coverage perfor-
mance. To achieve this, we analyze the coverage probability
by jointly considering static, dynamic and self blockages,
and incorporate these two distribution modes. Additionally,
we introduce an average LoS/NLoS probability model and

analyze the average path loss to better reflect the effects arising
from various blockages. Our previous research [42] focused
on the impact of user location changes on coverage perfor-
mance under the FHPPP model and excludes self-blockage.
Consequently, it fell short in evaluating the effects of various
mmWave blockages and UAV distribution models on system
performance. Further investigation is required to thoroughly
assess the impact of these factors on the system performance.

C. Contributions

Our work differs from the state-of-the-art literature [7],
[22], [25]–[30], [32], [34]–[40], in three aspects. First, unlike
[22], [25]–[30], [34], [36]–[39] that focused on traditional
microwaves, our research focuses on mmWave UAV net-
works. Second, existing works on the coverage performance of
mmWave UAV networks primarily considered static blockage,
whether it is for single-swarm [35], multiple-swarm [7], or
hybrid networks [32], [40]. We study the coverage perfor-
mance of single-swarm mmWave UAV networks while jointly
considering multiple types of blockages. Third, the current
research lacks a unified framework to investigate the system
performance under FHPPP and BPP modeling. Therefore, the
main contributions of this paper are:

(1) We develop a general and tractable analytical model to
characterize the coverage performance of single-swarm air-
to-ground mmWave UAV networks while jointly considering
multiple types of blockages. Unlike existing studies that pri-
marily considered static blockage, the static, dynamic, and self
blockages on the system performance are jointly considered.
Therefore, our results are more general and closer to realistic,
which will provide more accurate and in-depth insights into the
parameter design of air-to-ground mmWave UAV networks.

(2) To provide more design guidelines for UAV networks,
we treat BPP as a special case of FHPPP and investigate the
coverage performance under both models. We first calculate
the distributions of distances from a typical user equipment
(UE) to its serving and interfering UAVs, along with the
Laplace transform of interference for FHPPP modeled UAVs.
Based on these, we derive a tractable expression for the cover-
age probability. Then, we extend the analysis to scenarios with
BPP modeled UAVs. Additionally, we conduct an analysis of
the average path loss to further reflect the effects arising from
various blockages. To our best knowledge, this is the first work
to study the system performance of mmWave UAV networks
under different UAV distribution models and blockages.

(3) We validate the above results through Monte Carlo
simulations, and the results show that: 1) mmWave block-
ages significantly impacts the performance of mmWave UAV
networks. Particularly, static blockage and self-blockage exert
predominant influence on the coverage probability, average
LoS probability, and average path loss for UAVs at relatively
low and high altitudes, respectively, while dynamic blockage
cannot be ignored, especially when UAVs operate at lower
heights and buildings are sparsely distributed; 2) to avoid self-
blockage, the UAV should be sufficiently high. The required
height is proportional to the two-dimensional (2D) distance of
the UAV-UE link and increases as the distance between the
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Fig. 1. The system model, where the UE is served by its nearest UAV,
buildings, moving humans, and the user himself can potentially block UAV-
UE links. Particularly, the vertical self-blockage zone is defined by the area
represented by the elevation angle φ(φ > φb) between the UAV and the UE.

user and UE decreases; 3) BPP is more suitable for deploying
a fixed number of UAVs to cover a small-scale area, while
FHPPP is preferable for large-scale deployments; 4) there exist
optimal parameters that maximize the system performance,
which helps in designing key parameters such as UAVs height.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider mmWave-based UAVs
as aerial BSs for ground users. The UAVs are distributed
uniformly over a disk D(o,R) with center o and radius R,
and hover at the same height h. Following [26], [28], [32],
[34], [35], we select the UE at the origin as the typical UE,
with its position denoted as (0, 0, hR), where hR represents
its height, and the UE will connect to the nearest UAV.

A. UAV Models

When modeling UAVs, the following two-fold factors are
considered: 1) in real-world deployments, it is not uncommon
to allow UAVs to fly from one area to another to perform
typical missions [7]. This results in a significant variation
in the number of UAVs within the considered area, as the
number of UAVs fluctuates randomly. Additionally, for large-
scale deployments, determining the specific number of UAVs
required can be a challenging task; 2) in others, a fixed number
of UAVs is employed to cover a given area. As a result, the
spatial distribution of UAV locations is assumed separately as:

1) FHPPP modeled UAVs: We assume that the positions of
UAVs on the plane follow a FHPPP of parameter λT . Thus, the
distribution of the number of UAVs N within the disk D(o,R)
follows a Poisson distributed with parameter λTπR

2, i.e.,
PN (n) = [λTπR2]

n

n! exp
(
−λTπR

2
)
. Moreover, the probability

density function (PDF) of the 2D distance Ri, i= 1, · · · , N
between the i-th UAV and the typical UE is independently and
identically distributed (i.i.d.) with distribution [12], [18]

fRi
(ri) =

2ri
R2

; 0 < ri ≤ R,∀i = 1, · · · , N. (1)

2) BPP modeled UAVs: We assume that the positions of
UAVs follow a uniform BPP. Therefore, a fixed number of N
UAVs are i.i.d. within the disk D(o,R). The distribution of
the distance from the typical UE to UAV is the same as (1).

B. Blockage Models

1) Static Blockage: Following [43], we adopt a probabilis-
tic blockage model to describe the static blockage and define
an indicative random variable Ls

i to indicate that the i-th UAV-
UE link is not blocked by buildings. Then, the non-blockage
probability of the link conditioned on h and ri is given by

P(Ls
i |h, ri) =

1

1 + a exp (−b(arctan(h−hR

ri
) 180π − a))

, (2)

where a and b are the parameters related to the environment.
(2) can be used to various scenarios by setting different a and
b, e.g., (a, b) = (6.7309, 0.4434), (a, b) = (9.6117, 0.1581)
and (a, b) = (12.0810, 0.1139) correspond to the scenarios of
suburban, urban, and dense urban, respectively [43].

2) Dynamic Blockage: We assume humans of height hB

are distributed throughout the disk, forming a FHPPP of
density λB . These humans move randomly at speed v. The
dynamic blockage of link can be treated as an exponential
on-off process, characterized by blocking and non-blocking
parameters ηi and ω, respectively [12], [18]. We define Ld

i to
indicate that humans do not block the i-th link, and then,

P(Ld
i |h, ri) =

ω

ηi + ω
=

ω(h− hR)

ρri + ω(h− hR)
, (3)

where ρ = 2λBv(hB − hR)/π, ηi = ρri/(h−hR), and ω can
be simplified to a constant [12].

3) Self-Blockage: We consider a 3D self-blockage model,
as shown in Fig. 1, where self-blockage occurs if and only if
the UAV falls within both horizontal and vertical self-blockage
zones. The horizontal self-blockage zone is denoted as a sector
of disk D(o,R) making an angle θ behind the UE [12]. The
vertical self-blockage zone is denoted by the area represented
by the elevation angle φ(φ > φb) [15]. We define Lsel

i to
indicate that the i-th link is not self-blocked. Then, we have

Lemma 1. The conditional probability of the i-th UAV-UE
link without self-blockage can be expressed as

P(Lsel
i |h) = 1− θ

2π

(
1− d2

R2

(h− hR)
2

(hB − hR)2

)
. (4)

Proof. The probability of the UAV falling into the horizontal
self-blockage zone is obviously equal to θ

2π [12], and only
when the height h of the UAV is lower than the height
hc = hR+

ri
tanφb

of the boundary line, i.e., φ > φb, the UAV is
in the vertical self-blockage zone, where φb = arctan d

hB−hR

and d denotes the horizontal distance between the user and the
UE [15]. In this way, the probability of the UAV falling into the
vertical self-blockage zone can be calculated as P(φ > φb) =

P(arctan ri
h−hR

> arctan d
hB−hR

) = P(ri > d(h−hR)
hB−hR

),
where the last step follows from the fact that arctan(·) is an
increasing function. Moreover, according to (1), we can get

P(ri > d(h−hR)
hB−hR

) = 1−
∫ d(h−hR)

hB−hR
0

2ri
R2 dri = 1− d2

R2

(h−hR)2

(hB−hR)2 .
Therefore, P(Lsel

i |h) can be obtained as shown in (4).

C. Channel and Antenna Models

1) Large-scale Path Loss Model: Since UAV-UE links can
be either LoS or NLoS, the large-scale path loss of the i-
th UAV-UE link is represented by a discrete random variable
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ℓk(h, ri), where k ∈ {L,N} denotes the LoS (L) or NLoS (N)
case. The large-scale path loss can be expressed as [7]

ℓk(h, ri)=


(√

r2i +(h−hR)2
)−αL

w.p. PL(h, ri),(√
r2i +(h−hR)2

)−αN

w.p. PN(h, ri),

(5)

where αL and αN represent the path loss parameter for LoS
and NLoS link, respectively.

2) Small-scale Fading Model: We employ a Nakagami
fading since it is a commonly used fading model that can accu-
rately represent various channel environments [44]. Therefore,
the small-scale fading gain, denoted as ζk, k ∈ {L,N} follows
a Gamma distribution with shape and scale factor of mk and
1/mk, respectively [7]. The PDF of ζk is expressed as

fζk(ζk) =
mmk

k ζmk−1
k

Γ(mk)
exp (−mkζk), k ∈ {L,N}, (6)

where Γ(·) denotes the Gamma function.
3) Antenna Model: We assume that each UAV is mounted

with a uniform planar square antenna array (UPA) and the
UE has a single antenna. For tractability, the sector antenna
pattern mentioned in [7], [45] is adopted, which can provide
the main lobe gain Gm within half power beam width (θa in
the azimuth plane and θe in the elevation plane) and the side
lobe gain Gs in other directions, above, θa = θe =

√
3√
M

for a
UPA with M antenna elements, Gm and Gs are given as

Gm = M and Gs =

√
M −

√
3

2π M sin(
√
3

2
√
M
)

√
M −

√
3

2π sin(
√
3

2
√
M
)

, (7)

respectively. Let us further assume that the UE and its serving
UAV will adjust their antenna directions to perfectly align with
each other to achieve the antenna gain Gm. For interfering
UAVs, we assume that the antenna gain Gu, u ∈ {m, s} of
any UAV-UE link is a random variable as [7]

Gu=

{
Gm w.p. Pm = θa

2π
θe
π/2 ,

Gs w.p. Ps = 1− θa
2π

θe
π/2 ,

(8)

where Pu, u ∈ {m, s} represents the probability that Gu oc-
curs. Under the above settings and assuming that the horizontal
distance between the typical UE and its serving UAV is rc,
the SINR at the typical UE can be expressed as

SINR =
PtGmζkℓk(h, rc)

N0 +
∑

j∈I PtGuζkℓk(h, rj)
, (9)

where Pt denotes the transmit power of UAVs, N0 denotes the
noise power, and I represents the set of all interfering UAVs.

III. ANALYSIS OF AVERAGE LOS/NLOS PROBABILITY

This section employs an average LoS/NLoS probability
model and conduct an analysis on the average path loss of
UAV-UE link. The primary objective is to provide insight into
the influence of various types of mmWave blockages on the
performance of air-to-ground mmWave UAV communications.

According to Section II-B, the LoS probability PL(h, ri) of
the i-th UAV-UE link can first be expressed as follows

PL(h, ri) = P(Ls
i |h, ri)P(Ld

i |h, ri)P(Lsel
i |h), (10)

and the NLoS probability is PN(h, ri) = 1−PL(h, ri). In this
case, the average LoS probability can be calculated as follows

PAL =

∫ R

0

PL(h, ri)fRi(ri)dri, (11)

where fRi
(ri) is given in (1). The average NLoS probability

can be denoted as PAN = 1 − PAL. Particularly, in the
specific case of open areas without buildings, (10) and (11)
can be simplified by setting P(Ls

i |h, ri) = 1. Similarly,
in the situation without moving blockers or self-blockage,
(10) and (11) can be simplified by setting P(Ld

i |h, ri) and
P(Lsel

i |h) equal to 1, respectively. Therefore, the blockage we
considered is more practical and general. Additionally, here
we focus more on the blockage of the link between the UE
and the serving UAV, i.e., the average LoS/NLoS probability
of the serving link. Consequently, next, we will first focus on
deriving the PDF of the 2D distance of the serving link.

A. Analysis of Distance Distributions

We refer to the 2D distance from the UE to its serving UAV
as the serving distance, and define Rp and Rb as the serving
distance when the locations of UAVs follow the FHPPP and
BPP, respectively. Then, we can get the following Lemmas.

Lemma 2. When the locations of UAVs follow a FHPPP, the
PDF of the serving distance Rp is given by

fRp(rp) = 2πλT rp exp
(
−λTπr

2
p

)
, 0 ≤ rp ≤ R. (12)

Proof. To obtain the PDF of the serving distance Rp, we first
calculate the cumulative distribution function (CDF) of Rp, de-
noted as FRp

(rp) = P(Rp ≤ rp). Since the UE communicates
with the nearest UAV, the serving distance is equal to rp if and
only if there are no other UAVs closer than rp. In other words,
P(Rp ≤ rp) also indicates the probability of having at least
one UAV located within the disk D(o, rp). Since the locations
of UAVs on the plane are modeled as a FHPPP, the number Np

of UAVs in the disk D(o, rp) follows a Poisson distribution,

i.e., PNp(np) =
[λTπr2p]

np

np!
exp

(
−λTπr

2
p

)
. Given this, we have

FRp(rp) = P(Rp ≤ rp) = 1 − PNp(0) = 1 − exp
(
−λTπr

2
p

)
.

Finally, we can obtain the PDF of Rp by differentiating
FRp

(rp) with respect to rp, as shown in (12).

Lemma 3. When the locations of UAVs follow a uniform BPP,
the PDF of the serving distance Rb is given by

fRb
(rb) =

2rb
R2

N

(
1− r2b

R2

)N−1

, 0 ≤ rb ≤ R. (13)

Proof. Let FRb
(rb) denote the CDF of Rb. According to the

proof of Lemma 2, FRb
(rb) = P(Rb ≤ rb) also means the

probability that at least one UAV within the disk D(o, rb).
Since the number of UAVs N is fixed, we can derive

FRb
(rb) =1− P(R1 > rb, · · · , RN > rb)

=1− (1− P(Ri ≤ rb))
N , (14)
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where P(R1 > rb, · · · , RN > rb) represents the probability of
having no UAVs within the disk D(o, rb). The last step follows
from the fact that Ri, i=1, · · · , N , are i.i.d. distributed. Since
P(Ri ≤ rb) is the CDF of Ri, we can use (1) to obtain

P(Ri ≤ rb) =

∫ rb

0

2ri
R2

dri =
r2b
R2

. (15)

Substituting (15) into (14) and differentiating (14) with respect
to rb, we can finally get fRb

(rb), as shown in (13).

Finally, by substituting fRi
(ri) in (11) with fRc

(rc), c ∈
{p,b}, we can obtain the average LoS probability PAL,c of the
serving link. In addition, using (5) and (11), we can investigate
the average path loss PLc, c ∈ {p,b} of the serving link. The
expression for PLc can be calculated as follows

PLc=

∫ R

0

∑
k∈{L,N}

Pk(h, rc)ℓk(h, rc)fRc(rc)drc, c ∈ {p,b}.

(16)

According to (11) and (16), we can delve deeper into assessing
the impact of various types of blockages on the consid-
ered mmWave UAV network. Particularly, the expressions
we provided can be applied to various scenarios by flexibly
adjusting PL(h, rc), as detailed in the description of (11). In
the subsequent section, we will illustrate the variation trends
of PAL,c and PLc in various scenarios, thereby demonstrat-
ing the necessity of jointly considering multiple types of
mmWave blockages. Additionally, intuitively, Lemma 2 and 3
are different. However, for the BPP model we considered, the
number Nb of UAVs in the disk D(o, rb) follows a binomial
distribution with parameter r2b/R

2, i.e., the probability that
there are nb UAVs in D(o, rb) is PNb

(nb) =
(
N
nb

)( r2b
R2

)nb
(
1−

r2b
R2

)N−nb [24], [41]. In this way, (14) can also be calculated as
FRb

(rb) = 1− PNb
(0), which is similar to the calculation of

FRp(rp). Furthermore, as N larger, the Poisson distribution
and binomial distribution will be consistent [41], i.e., as N
increases, Lemma 2 and 3 will become the same, resulting in
similar trends and conclusions in terms of system performance
under both models. This prompts us to consider the BPP as
a special case of the FHPPP to establish a unified analytical
framework under these two models, and to explore the system
performance under both models for different values of N .

Similarly, we can obtain the PDF of the interfering distance
to evaluate the average LoS/NLoS probability of the interfering
link. Specifically, since the UE is served by its nearest UAV,
given serving distance rc, c ∈ {p,b}, interfering UAVs are
distributed outside the disk D(o, rc). We define I as the set
of all interfering UAVs, and {Rj}j∈I as the distances from
the UE to its interfering UAVs, hereinafter referred to as the
interfering distance. Then, the PDF of Rj can be obtained.

Lemma 4. Conditioned on the serving distance rc, c∈{p,b},
the PDF of the interfering distance Rj from the typical UE to
its j-th interfering UAV is given by

fRj (rj |rc) =
2rj

R2 − r2c
, rc ≤ rj ≤ R. (17)

Proof. First, we calculate the conditional CDF of Rj , de-
noted as FRj

(rj |rc). As mentioned above, conditioned on

rc, c ∈ {p, b}, the interfering UAVs are distributed outside
the disk D(o, rc). Therefore, we have rc ≤ rj ≤ R, and then,
FRj (rj |rc) = P(Rj ≤ rj) can be calculated as

FRj
(rj |rc) =

∫ rj
rc

2rj
R2 drj∫ R

rc

2rj
R2 drj

=
r2j − r2c
R2 − r2c

. (18)

Finally, the PDF of Rj , denoted as fRj
(rj |rc) can be obtained

as fRj
(rj |rc) =

∂FRj
(rj |rc)

∂rj
, as shown in (17).

By substituting fRi(ri) in (11) with fRj (rj |rc), c ∈ {p,b},
we can obtain the average LoS probability of the interfering
links under the FHPPP and BPP models, respectively.

IV. ANALYSIS OF COVERAGE PROBABILITY

This section focus on evaluating the coverage probability of
air-to-ground mmWave UAV communication by jointly con-
sidering multiple types of blockages. The coverage probability,
denoted as Pcov, is defined as follows

Pcov ≜ P (SINR > T ) , (19)

which represents the probability that the SINR is larger than a
given threshold T . Next, we first provide the Laplace transform
of the interference signal, which is a key intermediate step in
obtaining the tractable expression of Pcov.

A. Analysis of Interference Power

According to (9), the interference signal I is given by

I =

Na∑
j=1

PtGuζkℓk(h, rj), (20)

where k ∈ {L,N}, u ∈ {m, s}, Na = |I| denotes the number
of interfering UAVs. Then, the Laplace transform of I in our
cases is given by Theorem 1 and Corollary 1, respectively.

Theorem 1. For the case of FHPPP modeled UAVs, condi-
tioned on the serving distance rp, the Laplace transform of
aggregate interference I can be expressed as

LI(s|rp) = exp

(
− 2πλT

∫ R

rp

rj

(
1

− EΨ

[
exp

(
−sPtGuζkℓk(h, rj)

)])
drj

)
, (21)

where EΨ

[
exp

(
−sPtGuζkℓk(h, rj)

)]
=

∑
k∈{L,N}

Pk(h, rj)

×
∑

u∈{m,s}

Pu

(
mk

mk+sPtGuℓk(h, rj)

)mk

.

Proof. The proof is given in Appendix A.

Theorem 1 describes the statistical properties of interference
and plays a vital role in the coverage analysis below. It is
evident that parameters such as link blockage and antenna
configuration will affect the interference signal and thus affect
the coverage performance. After all, it is necessary to evaluate
the impact of various parameters on establishing reliable
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communications in terms of achieving maximum coverage.
Similar to Theorem 1, we obtain Corollary 1 as follows.

Corollary 1. For the case of BPP modeled UAVs, conditioned
on the serving distance rb, the Laplace transform of aggregate
interference I can be expressed as

LI(s|rb)=

[
2

R2−r2b

∫ R

rb

rj
∑

k∈{L,N}

Pk(h, rj)
∑

u∈{m,s}

Pu

×
(

mk

mk+sPtGuℓk(h, rj)

)mk

drj

]N−1

. (22)

Proof. The proof is given in Appendix B.

Based on the distance distributions and the Laplace trans-
form of interference, we can derive the coverage probability
to evaluate the coverage performance of the considered com-
munication system. The specific details are given as follows.

B. Analysis of Coverage Probability

According to (19), (12) and (13), the coverage probability
averaged over the distribution of the serving distance can be
represented as follows

Pcov =

∫ R

0

P (SINR > T |rc) fRc
(rc)drc, (23)

and for convenience of express, we denote Pcov,p and Pcov,b as
the coverage probability for the case of FHPPP modeled and
BPP modeled UAVs, respectively. Subsequently, the tractable
expressions of Pcov,p and Pcov,b are obtained as shown in
Theorem 2 and Corollary 2, respectively.

Theorem 2. For the case of FHPPP modeled UAVs, the
coverage probability Pcov,p can be approximated as

Pcov,p ≈ 2πλT

∫ R

0

∑
k∈{L,N}

Pk(h, rp)

mk∑
m=1

(−1)m+1Cm
mk

× exp

(
−mξkTN0

PtGmℓk(h, rp)

)
exp

(
−λTπr

2
p

)
× LI

(
mξkT

PtGmℓk(h, rp)

∣∣∣∣rp) rpdrp, (24)

where PL(h, rp) is the LoS probability of the serving link,
PN(h, rp)=1− PL(h, rp), ξk = mk(mk!)

−1/mk , ℓk(h, rp) =(√
r2p+(h−hR)2

)−αk

, and LI

(
mξkT

PtGmℓk(h,rp)

∣∣∣∣rp) can be

obtained according to Theorem 1.

Proof. The proof is given in Appendix C.

According to Theorem 2, we can evaluate the effects of key
parameters such as UAVs height, density, mmWave blockages
on the coverage, and reveal hidden trade-offs in designing
UAV networks. Since the LoS probability in this paper jointly
considers multiple types of blockages, the evaluation of the
performance is more closer to reality and general, specifically
refer to the description of (11). When the positions of UAVs
follow a BPP, the converge probability is obtained as follows.

Corollary 2. For the case of BPP modeled UAVs, the coverage
probability Pcov,b can be approximated as

Pcov,b ≈
2N

R2

∫ R

0

∑
k∈{L,N}

Pk(h, rb)

mk∑
m=1

(−1)m+1Cm
mk

× exp

(
−mξkTN0

PtGmℓk(h, rb)

)(
1− r2b

R2

)N−1

× LI

(
mξkT

PtGmℓk(h, rb)

∣∣∣∣rb) rbdrb. (25)

Proof. The proof is given in Appendix D.

Considering a special situation where the serving UAV is
hovering right above the UE, we can obtain Corollary 3.

Corollary 3. Under the special situation, the coverage prob-
ability Pcov,p and Pcov,b can be uniformly represented as

Pcov ≈
mL∑
m=1

(−1)m+1Cm
mL

exp

(
−mξLTN0

PtGmℓL(h, 0)

)
× LI

(
mξLT

PtGmℓL(h, 0)

∣∣∣∣rc = 0

)
, c∈{p,b}. (26)

Proof. It is clear that the serving distance is rc = 0, c∈{p,b}
and the serving link is LoS, i.e., Pk(h, rc) = PL(h, 0) = 1
when the serving UAV is hovering directly above the UE.
Therefore, (24) and (25) are simplified as shown in (26).

Algorithm 1 Optimal UAVs Height Search Based on PSO
Initialize: Generate the initial height {h0

j}Jj=1 under the con-
straints of (27a) and initial velocity {Vj}Jj=1 with uniform
distribution in the range of [Hmin, Hmax], calculate the
fitness f(h0

j ) for each particle according to (24) or (25),
and set f∗(h∗

j ) = f(h0
j ), f

△(h△) = maxj f
∗(h∗

j ).
Repeat:

1: for each particle j ∈ [1, J ] do
2: update Vj and hj using (28) and (29), respectively.
3: if f(hj) > f∗(h∗

j )
4: Update individual best position: h∗

j ← hj .

5: for each particle j ∈ [1, J ] do
6: if f∗(h∗

j ) > f△(h△)
7: update global best position: h△ ← h∗

j .

Until: UAVs height do not change or the procedure reaches
the maximum number of iterations.

Based on the derived expression, we can demonstrate the
variation trends of the coverage probability under various
design parameters to identify the optimal parameters, such as
the optimal UAVs height, that maximize the coverage perfor-
mance. Additionally, we can explore the optimal parameters
through numerical optimization algorithms. The problem of
maximizing the coverage probability can be formulated as

max
h

f(h) = Pcov (27)

s.t. Hmin ≤ h ≤ Hmax, (27a)
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TABLE I
SIMULATION PARAMETER VALUES

Parameter Description Value
αL/αN Path loss parameter for LoS/NLoS link 2/4 [8]
mL/mN Fading parameter for LoS/NLoS link 3/2 [8]
hR/hB Height of the UE/humans 1.4/1.8 m [12]
h Height of UAVs 50 m
v Velocity of the moving humans 1 m/s [12]
θ Horizontal self-blockage angle π/3 [12]
d Horizontal distance from user to UE 0.15 m [15]
λB Density of the moving blockers 0.01 bl/m2

λT PPP modeled density of UAVs 2× 10−4/m2

M Number of antenna elements 16

R Communication range of UAVs 100 m
T Threshold of SINR 3 dB
Pt Transmit power of UAVs 20 dBm [7]
N0 Noise power −110 dBm

where (27a) confines the search region of UAVs height. Sub-
sequently, we develop a particle swarm optimization (PSO)-
based algorithm to solve (27) due to its fast computation speed,
high efficiency, and fewer parameters [46], [47].

We assume there are J particles, where each particle rep-
resents a candidate solution of the optimal height, denoted as
{hj}Jj=1 for convenience. Each particle also has a velocity
Vj to update its height. Therefore, we first generate a set
{h0

j}Jj=1 to represent the initial UAVs height. Then, random
initial velocity {Vj}Jj=1 with a uniform distribution over
[Hmin, Hmax] are generated. The fitness of each particle at
current height can be evaluated by (24) or (25), depending on
the distribution of UAVs. All particles store their individual
best heights {h∗

j}Jj=1 that achieve optimum fitness values so
far. Subsequently, the global optimal fitness can be obtained
through the global optimal height {h△}Jj=1 of all the particles
so for. In each iteration, the velocity is refined as follows [46]

Vj ← ϖVj + ξ1η1
(
h∗
j − hj

)
+ ξ2η2

(
h△ − hj

)
, j = 1, · · · , J,

(28)

where ϖ is the inertia factor, ξ1 and ξ2 are the individual and
social learning factors. η1 and η2 are uniformly distributed
variables within [0, 1]. The height is updated by

hj ← hj + Vj , j = 1, · · · , J. (29)

Details of the PSO algorithm are provided in Algorithm 1.
This algorithm can be applied to optimize other parameters
by replacing the height with the desired optimized parameter.

V. SIMULATION AND DISCUSSION

This section performs extensive Monte Carlo simulations to
validate the theoretical results. Unless stated otherwise, Table
I presents the values for some typical simulation parameters,
and the urban scenario is considered.

A. Analysis of coverage probability for FHPPP modeled UAVs

Fig. 2 shows the coverage probability Pcov,p versus the
height h of UAVs for three different scenarios and SINR
thresholds T . The difference between the scenarios lies in a
and b, as explained in subsection II-B. As expected, Pcov,p
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Fig. 2. Coverage probability Pcov,p versus the height of UAVs h.

20 40 60 80 100 120 140
0.2

0.4

0.6

0.8

1

With buildings

Without buildings

Optimal heights

Fig. 3. Comparison of the effects of different types of blockages on Pcov,p.
When λB = θ = 0, Pcov,p can serve as a benchmark for the coverage
probability of terrestrial BSs in the existing work [48], [49]. Additionally, the
diamond indicates the optimal UAVs height obtained by Algorithm 1.

decreases as T increases, and there is an optimal h that
maximizes Pcov,p, which is due to two factors. On the one
hand, increasing h results in an increase in LoS probability
PL(h, rp), leading to an increase in signal power. On the
other hand, increasing h also leads to a longer transmission
distance and a significant path loss, even in scenarios with
high PL(h, rp), thus preventing successful communication.
Furthermore, we observe that the optimal h increases with
the number of buildings (the number of buildings in urban
is higher than that in suburban). Therefore, compared to
deploying UAVs in suburban areas, when deploying UAVs in
urban areas, we need to place them at relatively high altitudes.

Fig. 3 studies the effects of mmWave blockages on Pcov,p.
It is observed that when h is relatively high, Pcov,p is mainly
dominated by self-blockage, while the impact of static and
dynamic blockage on the Pcov,p is negligible. Specifically, the
difference in Pcov,p between urban scene with buildings and
open scene without buildings, as well as between scenes with
λB of 0 and 0.2/m2, can be ignored. However, changes in
θ will have a meaningful impact on Pcov,p. The main reason
is that at such heights, UAVs can already bypass static and
dynamic blockages. However, since the user and the UE are
usually very close, the UAV needs to be high enough to
bypass self-blockage. In this way, the coverage performance
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Fig. 4. Average LoS probability PAL,p versus the height of UAVs h for
different types of blockages (static, dynamic, and self blockages).

is dominated by self-blockage. As detailed below: as shown
in Fig. 1, only when h satisfies h>hc=hR+

ri
tanφb

, can UAVs
bypass vertical self-blockage. Since φb = arctan d

hB−hR
,

hc ≈ 1.4 + ri
0.37 by using Table I. Assuming ri = 50 m,

we can get hc ≈ 137 m. However, in our considered system,
UAVs are uniformly distributed in a disk with radius of 100 m.
Therefore, most UAVs need to have a height greater than 137
m to bypass self-blockage. At such height, UAVs can already
bypass other blockages since the curves with and without
buildings/humans basically coincide when other parameters
are consistent if h>70 m. For UAVs at relatively low heights,
the three blockages will affect the coverage performance, with
static blockage having a greater influence than other blockages.
This is reasonable since the size of humans is much smaller
than that of buildings, so the blockage is mainly caused by
buildings, and the coverage performance is mainly affected by
static blockage. It is also obvious that Pcov,p decreases with the
increase of λB , especially for the case of low UAV heights and
sparse or no buildings. This happens because an increase in
human blockers leads to a decrease in LoS probability, thereby
reducing Pcov,p. All in all, our results indicate that each block-
age leads to a deviation in coverage performance. Compared
to terrestrial BSs, our solution is also more accurate because
existing works on the coverage performance of terrestrial BSs
did not consider human blockages [48], [49].

Fig. 3 also illustrates the existence of optimal UAVs de-
ployment height that maximizes the coverage probability. The
reasons for this phenomenon can be found in the analysis
of Fig. 2. Particularly, the diamond in Fig. 3 represents the
optimal height obtained through Algorithm 1 based on PSO,
where we assume ϖ = 0.8, ξ1 = 0.5, ξ2 = 0.2, and J = 10.
Obviously, the optimal deployment height of UAVs obtained
from theoretical formula (24) and PSO-based algorithm 1 is
almost consistent, although they used different methods, which
further demonstrates the correctness of our analysis results.

Fig. 4 and 5 illustrate the variation trends of average
LoS probability PAL,p and path loss PLp with UAVs height
h under different blockages conditions, respectively. These
visualizations help to further elucidate the influence of diverse
blockages on the system performance. First, it is evident from
Fig. 4 that PAL,p increases with the increase of h but decreases
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Fig. 5. Average path loss PLp versus the height of UAVs h for different
types of blockages (static, dynamic, and self blockages).
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Fig. 6. Coverage probability Pcov,p versus the density of UAVs λT for
different blocker densities λB and number of antenna elements M . The
diamond indicates the optimal density obtained by Algorithm 1 for M = 16.

with the increase of blockers. Particularly, at greater h, PAL,p

is predominantly impacted by self-blockage, while the effects
of static and dynamic blockages can be negligible. This obser-
vation corresponds to the results in Fig. 3 and 5. For a detailed
analysis, please refer to Fig. 3. Then, Fig. 5 also demonstrates
the presence of an optimal UAVs height that minimizes the
average path loss. This phenomenon arises from two primary
factors. Firstly, as UAVs height increases, the probability of
LoS communication also increases, resulting in a decrease
in signal attenuation and reduced PLp. However, elevated
heights can lead to excessive transmission distances, causing
heightened path loss and subsequently raising PLp. All in
all, Fig. 3-5 intuitively reflect the impact of various blockages
on mmWave UAV communication system, highlighting the
necessity of considering all three types of mmWave blockages
simultaneously in the system performance analysis.

Fig. 6 demonstrates the trend of Pcov,p when varying UAVs
density λT and antenna elements M . It is clear that there is
an optimal density that maximizes Pcov,p for the following
reasons. First, when λT is small, UAVs are sparsely dis-
tributed, the desired signal power dominates Pcov,p. Therefore,
the increase in λT will make the distribution of UAVs becomes
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Fig. 7. Coverage probability Pcov,p versus the density of UAVs λT .

denser so that the UE will get a better link. However, for
larger λT , interference becomes the primary limiting factor for
Pcov,p, and the increase of λT will lead to more interference.
Therefore, optimal density exists to maximize Pcov,p. Then,
it is observed that when λT is large, Pcov,p increases more
obviously with M . This is because interference dominates
Pcov,p at this time, and large antenna arrays are conducive
to reducing interference. In addition, Fig. 6 shows that it
is possible to perform a trade-off between λT and M . For
instance, for λB = 0.01/m2 and θ = π/3, to achieve
Pcov,p = 0.75, the required λT is 100/km2 when M = 16.
However, the required λT will be significantly (about 80/km2)
reduced when M = 32. Fig. 6 also presents the optimal
UAVs density obtained by Algorithm 1 based on PSO, where
we consider M = 16. It is evident that the optimal density
obtained through Algorithm 1 is almost identical to the results
obtained through theoretical formulas. This indicates that the
tractable expression for the coverage probability we obtained
can effectively demonstrate the trend of the system coverage
performance with various deployment parameters and explore
the optimal parameters to maximize the coverage performance.

Fig. 7 illustrates the trade-off between the height h and
the density λT of the UAVs that need to be deployed, where
R = 60 m. It can be observed from Fig. 7 that by deploying
UAVs at a higher height, the required density of UAVs can be
reduced without changing the coverage probability Pcov,p. For
example, to meet the demand of Pcov,p = 0.6, the minimum
UAV density λT required is λT > 350/km2 when h = 15
m. However, the required UAV density can be reduced to
λT = 100/km2 when the height of UAVs increases to h = 30
m. Therefore, increasing the height of UAVs is an effective
solution to enhance the coverage performance of the system,
which can not only reduce the cost but also simplify the dense
network compared to deploying more UAVs.

Fig. 8 shows the impact of the communication range R
on Pcov,p. It is evident that there exists an optimal R that
maximizes Pcov,p, and this optimal R is affected by the
density of UAVs. These are caused by two factors. On the one
hand, when R is small, a larger λT corresponds to a larger
number of UAVs since the number of UAVs follows a Poisson
distribution with mean λTπR

2. Therefore, increasing λT can
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Fig. 8. Coverage probability Pcov,p versus the communication range of UAVs
R.
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Fig. 9. Coverage probability Pcov,b versus the height of UAVs h.

increase the average number of UAVs so that the typical UE
may get a better communication link to improve the coverage
probability. Similarly, a modest increase in R can also improve
the coverage probability. However, when R becomes too large,
excessive increases in the number of UAVs will result in severe
interference. Therefore, at this point, a smaller λT helps reduce
interference and improve the coverage probability.

B. Analysis of coverage probability for BPP modeled UAVs

Fig. 9 and Fig. 10 illustrate the relationship between the
coverage probability Pcov,b and the height h of UAVs for
various parameters. In both figures, it is evident that there
exists an optimal h that maximizes Pcov,b. This highlights the
crucial role of the height of UAVs as a design parameter in
UAV communication systems. By flexibly adjusting the height,
better communication quality can be achieved.

Similar to Fig. 2, Fig. 9 shows the impact of the com-
munication scenario and SINR threshold on Pcov,b. It can
be seen that Pcov,b decreases with the increase of T and
obstacles. This is reasonable because the increase of T means
tighter constraints on the channel quality. The probability of
satisfying this requirement decreases as T increases. Similarly,
the increase of obstacles will reduce the LoS probability of
the link and deteriorate the channel quality and the coverage
performance. However, for higher h, Pcov,b exhibits minimal
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Fig. 10. Comparison of the effects of different types of blockages on Pcov,b.
When λB = θ = 0, Pcov,b can serve as a benchmark for the coverage
probability of a single-warm UAV network mentioned in [7].
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Fig. 11. Average LoS probability PAL,b versus the height of UAVs h for
different types of blockages (static, dynamic, and self blockages).

change with variations in the environment. This is because at
higher heights, PL(h, rb) remains high regardless of environ-
mental changes, and the dominant factor influencing Pcov,b

becomes the transmission distance between the UE and UAV.
Fig. 10 plots Pcov,b as a function of h for various blockages.

When λB = θ = 0, Pcov,b can be considered as the coverage
probability of single-warm UAV network case mentioned in
[7], which we use as a benchmark. We compare the coverage
performance of our solution against the benchmark. The
results indicate that human blockages do indeed affect the
performance of such networks, which is expected due to the
susceptibility of mmWave to blockages, even human bodies
can reduce mmWave signal strength by 20 dB [19]. There-
fore, jointly considering multiple types of blockages helps to
accurately assess system performance. Specifically, it is clear
that Pcov,b significantly decreases when λB and θ are not equal
to 0, especially for open-area scenes without buildings. More
importantly, misrepresenting the performance can affect the
evaluation of key design parameters. For example, in an urban
environment with buildings, setting h ≥ 40 m can achieve
the demand of Pcov,b ≥ 0.8 when θ = 0 (i.e., without self-
blockage). However, self-blockage does exist in practice and
it will lead to Pcov,b < 0.8 at the same height. Consequently,
to meet the same needs, other parameters such as UAVs
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Fig. 12. Average path loss PLb versus the height of UAVs h for different
types of blockages (static, dynamic, and self blockages).

density and antenna configuration need to be well-designed.
The impact of moving humans is also inevitable. Therefore,
analyzing coverage performance by jointly considering the
three types of blockages can lead to more accurate results and
provide in-depth insights. Fig. 11 and 12 provide additional
insights into the impact of mmWave blockages on the system.
They depict the trends of this influence on the average LoS
probability PAL,b and path loss PLb. The results are similar to
the findings in Fig. 4 and 5, respectively. Particularly, the av-
erage LoS probability is primarily influenced by self-blockage
when UAVs at higher altitudes. Consequently, PLb during
these instances predominantly arises from self-blockage.

It seems that Fig. 9 and 10 have similar trends and con-
clusions to Fig. 2 and 3, respectively. This is because Fig. 9
and 10 depict Pcov,b versus h, while Fig. 2 and 3 plot Pcov,p

versus h. Pcov,p and Pcov,b are the coverage probabilities under
FHPPP and BPP models, respectively. The difference between
these two models is that for FHPPP, the number of UAVs N
is Poisson distributed, while for BPP, N is fixed, as detailed
in Section II. A. For the simulation, the number of UAVs
under both models is approximately the same, determined by
λTπR

2 ≈ 6 and N = 6, respectively. Hence, Pcov,p and Pcov,b

may yield similar performance. Similarly, Fig. 4, 5 and Fig.
11, 12 show similar trends and conclusions, respectively.

Fig. 13 demonstrates the impact of the number of UAVs N
and of antenna elements M on Pcov,b. It is evident that when
N is small, Pcov,b changes slightly with the increase of M ,
because the interference is weak at this time. The transmission
distance between the UE and the UAV mainly limits Pcov,b.
However, when N is large, Pcov,b increases significantly with
the increase of M , because Pcov,b is primarily determined
by interference, and a larger M is conducive to reducing the
interference. Therefore, densely deployed mmWave UAV net-
works require large antenna arrays to overcome interference.
According to Fig. 13, we further observe that there is an
optimal N that maximizes Pcov,b, which is influenced by a
combination of two factors. This observation aligns with the
description of Fig. 6. Moreover, it is possible to perform a
trade-off between N and M without affecting Pcov,b.

Fig. 14 demonstrates the trade-off that can be achieved
between the height h and the number N of UAVs to achieve
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Fig. 13. Coverage probability Pcov,b versus the number of UAVs N for
different blockers and number of antenna elements M .
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Fig. 14. Coverage probability Pcov,b versus the number of UAVs N .

the typical coverage probability. Similar to the analysis of Fig.
7, the results in Fig. 14 indicate that increasing the height
of UAVs can significantly reduce the required UAVs with-
out affecting the coverage probability. Regarding deployment
costs and network complexity, even if UAVs are deployed at
higher altitudes, deploying fewer UAVs is more advantageous.
However, higher UAVs altitudes may result in faster energy
consumption. As a result, it is necessary to perform a trade-
off between UAVs height and density when designing UAV.

Fig. 15 presents the variation of the coverage probability
Pcov,b with the communication range R for different numbers
of UAVs N . As illustrated, there is an optimal R that maxi-
mizes Pcov,b. This is because when R is small, the UAV is in
close proximity to the UE, resulting in significant interference
in the channel. In such case, increasing R or reducing N can
both mitigate interference and thereby increase the coverage
probability. However, when R exceeds a certain range, the
long transmission distance leads to serious path loss, thereby
constraining Pcov,b. Therefore, there exists an optimal R that
maximizes Pcov,b. Meanwhile, when R is large, increasing the
number of UAVs can improve the probability of the serving
UAV approaching the UE, thus shortening the communication
distance and improving the coverage probability.
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Fig. 15. Coverage probability Pcov,b versus the communication range of
UAVs R.

20 40 60 80 100 120

0.5

0.55

0.6

0.65

0.7

0.75

0.8

60 70

0.76

0.78

0.8

(a) Number of UAVs is small
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Fig. 16. A comparison of Pcov,b (blue curve) and Pcov,p (red curve).

In Subsection V-A and V-B, the variation trends of Pcov,p

and Pcov,b for different system design parameters are pre-
sented, respectively. The theoretical results agree well with
the simulation results, which demonstrates the accuracy of our
analysis model. After all, the coverage probability we derived
can be used to evaluate and comparison the performance of
mmWave UAV communication systems in various scenarios.

Fig. 16 presents a comparison between Pcov,b and Pcov,p

from two UAVs models. To make a fair comparison, we
assume that the density of UAVs under the two modes is
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Fig. 17. A comparison of Pcov,b (blue curve) and Pcov,p (red curve) for
different number of UAVs.

the same, i.e., λT = N
πR2 . Fig. 16(a) compares the coverage

probabilities with N = 8, showing that Pcov,b is higher for the
BPP mode compared to Pcov,p for the FHPPP mode. However,
when N = 18, the difference between Pcov,b and Pcov,p

becomes small and can be ignored, as shown in Fig. 16(b). The
reason is that the main difference between these two models
is that for FHPPP, the distribution of the number of UAVs N
in disk D(o,R) and its subregion is Poisson distributed, while
for BPP, the number of UAVs N in D(o,R) is fixed and in
its subregion is binomial distributed [24], [41]. Furthermore,
for large N , the binomial distribution can be approximated as
a Poisson distribution [41]. Thus, for Fig. 16(b), Pcov,p and
Pcov,b exhibit similar performance due to the consideration
of a larger N . While for Fig. 16(a), the small N make it
possible for there to be no UAVs at all in the actual Poisson
process [24], resulting in Pcov,p being equal to 0. Thus, the
value of Pcov,p is inferior to that of Pcov,b. Additionally, as
h increases, the difference in coverage performance between
the three scenarios becomes negligible due to the ability of
the link to avoid static blockages. Fig. 17 further compares
the trend of coverage probability under these two models, and
the results are as expected. In summary, our results provide
a theoretical basis for obtaining suitable UAV distribution
models in different scenarios. Specifically, the BPP model
is more suitable for covering a small-scale area with fewer
UAVs, while the FHPPP model is advantageous for large-scale
network deployment due to its tractability and not requiring
knowledge of the specific number of UAVs required.

All the aforementioned finding indicate that human block-
ages do indeed affect the performance of air-to-ground
mmWave UAV networks. Therefore, jointly considering multi-
ple types of blockages helps to better design and evaluate such
networks. Our study provides new insights into the evaluation
of such networks. The results can be viewed as the coverage
performance for mobile UAV scenarios at a specific moment.
The UAV distribution model and LoS link model considered in
this paper can also be applied to scenarios with more complex
user distribution, access strategies, or multi-antenna systems.
The relevant investigations will be included in our future work.

VI. CONCLUSIONS

This paper investigated the coverage performance of
mmWave UAV networks by jointly considering dynamic,
static, and self blockages, and incorporate two UAV distribu-
tion models. Consequently, our results enable the evaluation of
the system performance under various scenarios. The tractable
expression for the average LoS probability and coverage prob-
ability is obtained and verified by simulations. Our findings
indicate that: (1) the coverage probability, average LoS proba-
bility, as well as average path loss are primarily influenced by
static blockage and self-blockage at relatively low and high
UAVs heights, respectively, while dynamic blockage cannot
be ignored, especially when UAV is at relatively low heights
and buildings are very sparse; (2) to avoid self-blockage, the
UAV should be sufficiently high and the required height is
proportional to the 2D distance of the UAV-UE link, and
increases as the distance decreases; (3) BPP is more suitable
for deploying a given number of UAVs to cover a small-
scale area while FHPPP is more advantageous for large-
scale deployments; (4) optimal deployment parameters exist
to maximize the system performance.

APPENDIX A
PROOF OF THEOREM 1

According to (20), the Laplace transform of aggregate
interference I can first be expressed as

LI(s|rp) = E

exp
−s Na∑

j=1

PtGuζkℓk(h, rj)

∣∣∣∣∣rp
 . (30)

In the scenario we are considering, (30) can be rewritten as

LI(s|rp)
(a)
= ENa,Rj ,Ψ

Na∏
j=1

exp
(
−sPtGuζkℓk(h, rj)

)∣∣rp


(b)
= EΦ̂

∏
rj∈Φ̂

EΨ

[
exp

(
−sPtGuζkℓk(h, rj)

)]∣∣rp


(c)
= exp

(
− 2πλT

∫ R

rp

(
1−EΨ

[
exp

(
−sPtGuζkℓk(h, rj)

)])
× rjdrj

)
, (31)

where step (a) performs the expectations of
Na∏
j=1

exp
(
−

sPtGuζkℓk(h, rj)
)

over the distributions of the number of
interfering UAVs Na, interfering distance Rj , path loss
ℓk(h, rj), Gamma variable ζk, k ∈ {L,N}, and antenna gain
Gu, u ∈ {m, s}. We define an indicator random variable Ψ to
represent the channel statistical information, which includes
the path loss ℓk(h, rj), small-scale fading ζk, and antenna
gain Gu. Step (b) depends on all UAVs are independent, and
Φ̂ = {r1, · · · , rj , · · · , rNa

} is used to indicate the set of
interference distances, which also follows the PPP model. Step
(c) depends on the probability generating functional (PGFL) of
PPP [32], i.e., E

[∏
x∈Φ f(x)

]
= exp

(
−
∫
Φ
(1− f(x))Λdx

)
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[48], [50], the integration from rp to R since interfering UAVs
are outside D(o, rp). Using (6), (7) and (8), we can get

EΨ

[
exp

(
−sPtGuζkℓk(h, rj)

]
(a)
=

∑
k∈{L,N}

Pk(h, rj)Eζk,Gu

[
exp

(
−sPtGuζkℓk(h, rj)

)]
(b)
=

∑
k∈{L,N}

Pk(h, rj)
∑

u∈{m,s}

Pu

(
mk

mk+sPtGuℓk(h, rj)

)mk

,

(32)

where Pk(h, rj), k ∈ {L,N} indicate the LoS/NLoS prob-
ability of the UAV-UE link. Therefore, step (a) follows the
law of total probability, step (b) performs the expectation over
the distributions of Gamma variable ζk, and antenna gain Gu

according to [7], [32]. Finally, substituting (32) into (31), we
can get the desired result, as shown in Theorem 1.

APPENDIX B
PROOF OF COROLLARY 1

In this case, the number of interfering UAVs is fixed, i.e.,
Na = N − 1. Then, with the aid of (31), we have

LI(s|rb) = E

N−1∏
j=1

ERj ,Ψ

[
exp

(
−sPtGuζkℓk(h, rj)

)]∣∣rb


=
[
ERj ,Ψ

[
exp

(
−sPtGuζkℓk(h, rj)

)]∣∣rb]N−1

, (33)

where the last step follows from the fact that UAVs are i.i.d..
With the aid of (17), (32), and conditioned on rb, we have

ERj ,Ψ

[
exp

(
−sPtGuζkℓk(h, rj)

)]
=

∫ R

rb

EΨ

[
exp

(
−sPtGuζkℓk(h, rj)

)
|rj
]
fRj

(rj |rb)drj

=

∫ R

rb

∑
k∈{L,N}

Eζk,Gu

[
exp

(
−sPtGuζkℓk(h, rj)

)
|rj
]

× Pk(h, rj)
2rj

R2 − r2b
drj

=
2

R2 − r2b

∫ R

rb

∑
k∈{L,N}

Pk(h, rj)
∑

u∈{m,s}

Pu

×
(

mk

mk+sPtGuℓk(h, rj)

)mk

rjdrj . (34)

APPENDIX C
PROOF OF THEOREM 2

In this case, the PDF of the serving distance is denoted as
fRp

(rp). Therefore, (23) can be rewritten as

Pcov,p=

∫ R

0

P (SINR > T |rp) fRp
(rp)drp

=

∫ R

0

∑
k∈{L,N}

Pk(h, rp)P (SINR>T |rp, k) fRp
(rp)drp,

(35)

where PL(h, rp) is the LoS probability of the link, which
can be obtained according to (10), PN(h, rp)=1−PL(h, rp).

Therefore, step (a) follows the law of total probability. With
the aid of (5), (6), (7), (8), (9), and (20), we first can obtain∫ R

0

PL(h, rp)P (SINR>T |rp,L) fRp
(rp)drp

(a)
=

∫ R

0

PL(h, rp)EI

[
P

(
ζL>

T (N0 + I)

PtGmℓL(h, rp)

∣∣∣∣∣rp, I
)]

× fRp
(rp)drp

(b)

≥
∫ R

0

[
1− EI

[(
1− exp

(
−ξLT (N0 + I)

PtGmℓL(h, rp)

))mL
∣∣∣∣∣rp
]]

× PL(h, rp)fRp(rp)drp

(c)
=

∫ R

0

[
1−EI

[
mL∑
m=0

(−1)mCm
mL

exp

(
−mξLT (N0+I)

PtGmℓL(h, rp)

)∣∣∣∣∣rp
]]

× PL(h, rp)fRp
(rp)drp

(d)
=

∫ R

0

PL(h, rp)

mL∑
m=1

(−1)m+1Cm
mL

exp

(
−mξLTN0

PtGmℓL(h, rp)

)
× LI

(
mξLT

PtGmℓL(h, rp)

∣∣∣∣rp)fRp
(rp)drp, (36)

where step (a) follows the law of total probability, step (b) re-
lies on a tight upper bound of the Gamma random variable ζL,
i.e., P(ζL < χ) ≤ (1 − e−ξLχ)mL and ξL = mL(mL!)

−1/mL

[51], mL denotes a parameter of the Gamma distribution
according to (6), step (c) depends on the Binomial theorem that

(1− x)n =
∑n

i=0(−1)iCi
nx

i, and LI

(
mξLT

PtGmℓL(h,rp)

∣∣∣∣rp) can

be obtained by plugging s = mξLT
PtGmℓL(h,rp)

into (21). Similarly∫ R

0

PN(h, rp)P (SINR>T |rp,N) fRp(rp)drp

≈
∫ R

0

PN(h, rp)

mN∑
m=1

(−1)m+1Cm
mN

exp

(
−mξNTN0

PtGmℓN(h, rp)

)
× LI

(
mξNT

PtGmℓN(h, rp)

∣∣∣∣rp)fRp
(rp)drp, (37)

where ξN = mN(mN!)
−1/mN . Substituting (12), (36), and (37)

into (35), Pcov,p can be obtained.

APPENDIX D
PROOF OF COROLLARY 2

In this case, (23) can first be rewritten as follows

Pcov,b=

∫ R

0

∑
k∈{L,N}

Pk(h, rb)P (SINR>T |rb, k) fRb
(rb)drb,

(38)

following the same step as shown in (36), we can obtain∫ R

0

Pk(h, rb)P (SINR>T |rb, k) fRb
(rb)drb

≈
∫ R

0

Pk(h, rb)

mk∑
m=1

(−1)m+1Cm
mk

exp

(
−mξkTN0

PtGmℓk(h, rb)

)
× LI

(
mξkT

PtGmℓk(h, rb)

∣∣∣∣rb)fRb
(rb)drb, k ∈ {L,N}.

(39)
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Substituting (13) and (39) into (38), Pcov,b can be obtained.
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