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Abstract— We present a novel genetic programming (GP)
algorithm that combines physical time and event-based time
indicators to trade on the stock market. Rather than only using
data in fixed intervals (e.g. daily closing prices), we use direc-
tional changes to transform physical time into events and allow
the GP to make trading decisions based on when significant
price movements have occurred. We use a two-objective fitness
function, which simultaneously optimizes return and risk. To
overcome challenges with the convergence ability of the multi-
objective GP, we apply an α-dominance strategy, which is able to
relax the strict Pareto dominance criteria. We run experiments
on 110 stocks from 10 international markets and compare
results against a single-objective GP, as well as strategies based
on technical analysis indicators and buy-and-hold. Results show
that the proposed GP algorithm offers statistically significant
improvements when compared to the above benchmarks.

Index Terms—Directional Changes, Algorithmic Trading, Ge-
netic Programming, Multi-Objective Optimization

I. INTRODUCTION

Algorithmic trading refers to the process of executing fi-
nancial transactions using algorithms that follow predefined
rules. In recent years, applications of machine learning to
algorithmic trading have gained popularity [1]. While algo-
rithms usually view data from a physical-time perspective
(e.g., daily closing prices, hourly data) [2], [3], event-based
approaches have also been used. Directional changes (DC)
is an event-based technique which summarises physical
time into a series of events. These events are defined as
the price movement over a user-defined threshold θ, such
as a price change of 0.5%.

The first work that introduced the concept of directional
changes (DC) in financial markets was [4] and was sub-
sequently formalised by [5]. Since then, there’s been a lot
of works that have employed DC in trading, such as [6],
[7], which developed trend following and contrarian DC
strategies, and [8] which was applied to the foreign ex-
change market. There has also been several works that have
combined machine learning with directional changes, e.g.
[9], [10] applied classification and regression algorithms to
forecast trend reversals, and [11] considered simultaneous
recommendations from different DC thresholds under a
genetic algorithm framework. In addition, [12] used a con-
volutional neural network long short-term memory (CNN-
LSTM) model to predict DC events, and [13] demonstrated

the advantages of combining DC indicators with technical
analysis indicators. More recently, [14] used directional
changes under a reinforcement learning environment.

While multi-objective optimisation has been used before
for algorithmic trading, it has not been considered under a
DC framework. The only exception to this is [15], which
used the well-known NSGA-II algorithm [16] alongside
genetic programming to optimise returns and risk. Us-
ing such multi-objective optimisation algorithms has the
advantage of identifying trading strategies that consider
multiple objectives simultaneously, rather than optimising
a single aggregate objective, such as the Sharpe ratio, which
is a common approach in the literature.

In this study, we present a novel two-objective (re-
turn, risk) optimisation GP that uses (i) features from
DC and technical analysis, and (ii) α-dominance strategy
[17] to compare solutions. While Pareto-based algorithms
are very effective in optimising multiple objectives, they
often cannot find a single solution that optimally satisfies
all objectives simultaneously. With the introduction of α-
dominance strategies, we are able to consider trade-offs
between the conflicting objectives. We conduct experiments
on 110 stocks from 10 different international markets and
benchmark our results against a non-α-dominance multi-
objective optimisation GP, as well as strategies from techni-
cal analysis and buy-and-hold. Our aim is to show that the
proposed α-dominance multi-objective optimization DC
algorithm is able to perform strongly in the stock market
in terms of both return and risk.

The rest of this study is as follows. Section II presents
relevant background information, while Section III presents
our methodology. Section IV presents the experimental set
up, and Section V the results of our experiments. Lastly,
Section VI concludes this article and discusses future work.

II. BACKGROUND

A. Overview of directional changes

Directional Changes form an event-based approach for
summarising market price movements, as opposed to a
fixed-interval-based approach. A DC event is identified only
when the price moves towards one direction by a user-
defined threshold. Depending on the direction of price



movement, DC events could be categorized as upturn or
downturn events. Frequently, after the confirmation of a
DC event, an overshoot (OS) event follows; the OS event
ends when a new price movement starts in an opposite
trend, eventually leading to a new DC event. Algorithm 1
presents the pseudocode of DC.

Algorithm 1 Pseudocode for generating directional changes
events.

Require: Initialise variables (event is Upturn event, ph =
p l = p(t0),∆xdc (F i xed) ≥ 0, t dc

0 = t dc
1 = t os

0 = t os
1 = t0)

1: if event is Upturn Event then
2: if p(t ) ≤ ph × (1−∆xdc ) then
3: event ← Downtur nEvent
4: p l ← p(t )
5: t dc

1 ← t // End time for a Downturn Event
6: t os

0 ← t+1 // Start time for a Downward Overshoot
Event

7: else
8: if ph < p(t ) then
9: ph ← p(t )

10: t dc
0 ← t // Start time for Downturn Event

11: t os
1 ← t −1 // End time for an Upward Over-

shoot Event
12: end if
13: end if
14: else
15: if p(t ) ≥ p l × (1+∆xdc ) then
16: event ←Uptur nEvent
17: ph ← p(t )
18: t dc

1 ← t // End time for a Upturn Event
19: t os

0 ← t +1 // Start time for an Upward Overshoot
Event

20: else
21: if p l > p(t ) then
22: p l ← p(t )
23: t dc

0 ← t // Start time for Upnturn Event
24: t os

1 ← t − 1 // End time for an Downward
Overshoot Event

25: end if
26: end if
27: end if

The advantage of DC is that it offers traders a new
perspective on price movements: focus on significant events
and ignore other price movements that could be considered
as noise. Directional changes have also led to the creation of
DC-based indicators (similar to technical indicators), which
allow traders to create novel trading strategies. We discuss
some of these indicators in Section III.

B. NSGA-II

NSGA-II (Non-dominated Sorting Genetic Algorithm II)
stands as an advanced genetic algorithm for multi-objective
optimization [16], and is the algorithm we use in this
paper. Its non-dominated sorting approach, which groups

solutions into distinct fronts based on their dominance
relationships, ensures a diverse range of solutions. Con-
sequently, within each front, no single solution prevails
over others. Dominance, according to the Pareto dominance
principle, occurs when one solution outperforms another in
at least one objective without deteriorating in any other.
Given multiple fronts, individuals in lower-ranked fronts
dominate those in higher-ranked ones (e.g., individuals in
front 1 dominate those in front 2). To uphold diversity
within each front, NSGA-II uses a crowding distance, which
promotes solution dispersion by considering the solution
density around each candidate.

During selection, NSGA-II initially prioritizes individuals
based on their Pareto front rank, favoring those with lower
ranks. In cases where individuals share the same Pareto
front rank, preference is given to those with higher crowd-
ing distance. Subsequently, after the formation of a new
population via genetic operators, both the original parent
and new population undergo evaluation and ranking.

C. α-dominance strategy

While NSGA-II has been very successful, its strict Pareto
dominance criterion can lead to some solutions dominating
others even when they exhibit extreme superiority in one
objective, but perform poorly in others—this was something
we also observed in previous experiments [15]. To overcome
this, in this paper we use an α-dominance strategy [17].
This relaxes the strict dominance criteria, by introducing a
parameter α that controls the trade-offs among objectives.
This strategy allows for weak trade-offs between objectives,
providing a more flexible way to compare solutions. Equa-
tion 1 presents the α-dominance strategy:

Gi (A,B) = fi (A)− fi (B)+
1...m∑
j ̸=i

αi j ( f j (A)− f j (B)) (1)

where Gi (A,B) represents the evaluation of the comparison
between solutions A and B with respect to an objective
‘i’, fi (A) and fi (B) represent the values of objective ‘i’ in
solutions A and B, f j (A) and f j (B) represent the values of
objective ‘j’ in solutions A and B, and αi j is the parameter
controlling the trade-offs.

The key change here is that α-dominance considers
not only the differences in objective values, but also the
weighted trade-offs (αi j ) for each pair of objectives. When
αi j is set to 0, the traditional strict Pareto dominance is
observed. On the other hand, by adjusting the values of αi j ,
we can allow for weaker dominance relationships, capturing
more diverse and potentially valuable solutions.

Choosing an appropriate αi j is crucial and three adapta-
tion schemes have been proposed [17] to determine suitable
values. These adaptation schemes include linear, sigmoid,
and cosine functions, each defined as follows:
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where C is a sufficiently large constant.
In our work, we will use each one of these adaptation

schemes. We will further discuss this in our methodology
section (Section III).

III. METHODOLOGY

We employ a genetic programming (GP) algorithm to
create trading strategies. The GP’s terminals use indicators
from directional changes, as well as technical analysis. The
GP simultaneously optimises returns and risk by using
NSGA-II with α-dominance.

A. Representation

The Function set consists of the following logic operators:
AND, OR, >, <. The Terminal set consists of 28 DC indica-
tors (listed in Table I), 28 physical time technical analysis
indicators (listed in Table II), and an ephemeral random
constant (ERC), which takes values between 0 and 1. All
indicators are normalized in this range. Figure 1 shows a
sample tree that can be produced by the GP. Note that
only Part 1 is evolved by the GP, while Part 2 remains the
same throughout the evolutionary process. The root note
is always an If-Then-Else (ITE) function. The first branch
checks if the physical analysis OSV indicator is greater than
0.22 and if the N DC _10 DC indicator (total number of DC
events of the last 10 days) is greater than -0.68. If both
statements are true, then the tree returns a true statement,
and the second branch of the ITE statement is invoked. In
that case, a signal of 1 is generated, which denotes a ‘buy’
action, and hence one amount of stock is bought. If the
first branch of the ITE returns false, then the third branch
is invoked, and a ‘hold’ (0) action takes place.

Sell actions are not part of the GP tree. To decide when a
‘sell’ action will occur, we use the GP tree’s output (buy or
hold signal) to answer the following question: “Is the stock
price going to increase by r % within the next n days?”.
To sell a previously bought stock we wait until one of the
following two cases occur: (i) the stock price increases by
r % within the next n days, or (ii) n days have passed since
our initial purchase of the stock. Note that short-selling is
not allowed in this trading strategy. Whenever a trade is
completed (a buy action and a sell action are achieved),
we calculate and record the buy and sell prices, Pb and
Ps , respectively. All buy and sell actions factor in a 0.025%
transaction cost.

B. Model evaluation

Following the initialization of the population, the next
step involves the assessment of each individual. To evaluate
each individual’s performance, we consider two different
financial metrics: rate of return (ROR), and risk. The former

Fig. 1: Sample GP tree. If OSV is greater than 0.22 and NDC

for 10 days is greater than −0.68, then we get a signal for
a buy action; otherwise, we hold; 0.22 and −0.68 are two
random values generated by ERC.

is a maximisation objective, and the latter a minimisation.
Equations 3 - 4 present the three metrics.

ROR= (1− c) ·Ps − (1+ c) ·Pb

(1+ c) ·Pb
·100% (3)

Risk=
√
Var(RoR) (4)

where Ps refers to the sell price, Pb refers to the buy price,
and c is the transaction cost.

For completeness, we also introduce in Equation 5 an
aggregate metric, namely the Sharpe ratio. We will use the
Sharpe ratio in our experiments as the fitness function
of a single-objective GP algorithm, which will act as a
benchmark to our multi-objective GPs.

Sharperatio= E(RoR)−R f

Risk
, (5)

where E(RoR) stands for the sample mean of the list of the
rate of returns for a given stock and R f is the risk-free rate,
which in our experiments is equal to 0.022%.

C. Selection and Genetic operators

We use tournament as the GP selection method. To select
the winner of a tournament, NSGA-II considers the Pareto
front rank and the crowding distance. Hence, after obtaining
a k number of individuals for the tournament, we first
compare the Pareto front rank—the individual with a lower
rank survives. For individuals with equal Pareto front rank,
the one with a higher crowding distance is selected.

With regards to genetic operators, we use subtree
crossover and point mutation.



TABLE I: DC indicators; see also [18]

Indicator Description Periods (days)

TMV TMV is the price movement between the extreme point at the beginning and end of a trend, normalized
by the threshold θ.

N/A

OSV OSV is defined as the percentage difference between the current price and the last directional changes
confirmation price divided by the threshold θ.

N/A

Average OSV This is the average value of OSV over the selected period. 3, 5, 10
RDC RDC represents the time-adjusted return of DC. It could be calculated as TMV times threshold θ

divided by the time intervals between each extreme point.
N/A

Average RDC This is the average value of RDC over the selected period. 3, 5, 10
TDC This is the time spent on a trend. N/A
Average TDC This is the average value of TDC over the selected period. 3, 5, 10
NDC NDC is the total number of DC events over the selected period. 10, 20, 30, 40, 50
CDC CDC is defined as the sum of the absolute value of TMV over the selected period. 10, 20, 30, 40, 50
AT AT represents the difference between the time DC spends on the up trends and down trends over the

selected period.
10, 20, 30, 40, 50

TABLE II: Physical time (technical analysis) indicators; see also [19]

Indicator Description Periods (days)
MA Moving average for a given period. 10, 20, 30, 40, 50
CCI Commodity Channel Index, which measures the deviation of an asset’s price from its statistical average. 10, 20, 30, 40, 50
RSI Relative Strength Index, which is a momentum oscillator to measure the magnitude of recent price

changes and determine overbought or oversold conditions of an asset.
10, 20, 30, 40, 50

William’s %R Measures oversold or overbought conditions of an asset by comparing the closing price of an asset to
its price range over a set period of time.

10, 20, 30, 40, 50

ATR Average True Range, which measures the volatility of an asset by calculating the average of the true
range over a set period of time.

3, 5, 10

EMA Exponential Moving Average, which calculates a weighted average of a series of prices over a set period
of time, where more recent prices are given greater weight in the calculation.

3, 5, 10

OBV On Balance Volume, which measures buying and selling pressure, by calculating the cumulative total
of an asset’s volume, where positive volume is added to the total of an up day and negative volume
is subtracted on a down day.

N/A

PSAR Parabolic Stop and Reverse, which identifies potential reversals in the direction of an asset’s price
movement by placing dots on a chart that indicate potential stop and reverse points for a long or
short position.

N/A

D. α-dominance strategy

As previously mentioned, to overcome problems with
Pareto’s strict dominance criterion, we use the α-dominance
strategy, which was introduced in Equation 1. The proposed
multi-objective optimization GP algorithm has two objec-
tives: rate of return (ROR) and risk. Hence, the objectives i
and j from the original Equation 1 now become ROR and
risk, respectively; in addition, because the two objectives
are conflicting (one maximization, one minimization), the
sign in front of the α parameter from Equation 1 needs
to change from positive (+) to negative (-). Hence, the α-
dominance strategy for rate of return is:

GROR (A,B) = fROR (A)− fROR (B)−αROR,Ri sk ( fRi sk (A)− fRi sk (B))
(6)

Similarly, the α-dominance strategy for risk is:

GRi sk (A,B) = fRi sk (A)− fRi sk (B)−αRi sk,ROR ( fROR (A)− fROR (B))
(7)

Furthermore, as mentioned in Section II-C, there are
three adaptation schemes to determine the value of αi , j ,
namely fl i near , fsi g moi d , and fcosi ne (see Equation 2). In
our experiments, we apply each one of these three adap-
tion schemes to Equations 6 and 7. Hence, we end

up with six different α-dominance strategy configura-
tions: (i) ROR with sigmoid adaptation (αMOO2Si g

ROR ), (ii)
ROR with cosine adaptation (αMOO2Cos

ROR ), (iii) ROR with
linear adaptation (αMOO2Li n

ROR ), (iv) Risk with sigmoid

adaptation (αMOO2Si g
Ri sk ), (v) Risk with cosine adapta-

tion (αMOO2Cos
Ri sk ), and (vi) Risk with linear adaptation

(αMOO2Li n
Ri sk ). ‘MOO2’ refers to the fact that each algorithm

is a two-objective optimization algorithm.

IV. EXPERIMENTAL SET UP

A. Data

The data used in this experiment comprises daily price
data from 10 arbitrarily selected stocks for each of 10
international markets, namely DJIA, NASDAQ, NYSE, the
Russell 2000 Index, and S&P500 in the United States, NIFTY
50 in India, TSEC in China (Taiwan), DAX index in Germany,
Nikkei 225 in Japan, and FTSE 100 index in the UK.
Data was selected for the 10-year period from 25/11/2010-
24/11/2020. This resulted in a total of 110 datasets (10
markets × 10 stocks + 10 indices). The data was sourced
from Yahoo! Finance. Our evaluation methodology involved
dividing each dataset into three separate parts: the initial
60% of the data being the training set, the subsequent 20%
being the validation set and the final 20% being the testing
set. During parameter tuning, algorithms are trained using



the training set and evaluated on the validation set. Once
the optimal set of parameters has been determined, the
GP is trained one final time in the combined training and
validation set, and subsequently applied to the test set to
assess the performance of the model. More information
about tuning is provided in Section IV-C.

B. Benchmarks

As the proposed αMOO2 algorithms are using the α-
dominance strategy, we benchmark them against a MOO2
without this dominance strategy (i.e. a GP algorithm using
NSGA-II to optimize rate of return and risk). We also
benchmark them against a single-objective optimization
(SOO) GP-based approach that employs the Sharpe ratio
as its fitness function.

Furthermore, we benchmark the αMOO2 algorithms
against trading strategies derived from three popular techni-
cal analysis indicators, as representatives of a physical time
setup: moving average convergence divergence (MACD), on
balance volume (OBV), and momentum (MTM). For MACD
and OBV, a buy signal is produced when their long-term
moving average (50 days) has a higher value than their
short-term moving average (10 days); and vice versa for
a sell action. For MTM, a buy signal is generated when the
current price is higher than the price 10 days ago, and vice
versa for the sell action. All of the above values (10 and 50
days for MACD and OBV; 10 days for MTM) were selected
through grid search.

Lastly, we also compare the proposed αMOO2 algorithms
against the passive trading strategy of buy-and-hold, which
is a popular benchmark against active trading strategies,
such as the GPs utilized in this paper.

C. Parameter tuning

We performed a grid search to decide on the optimal GP
parameters, and tuning took place on the validation set.
Table III shows the parameters’ values after tuning.

TABLE III: Parameters of the GP algorithm

Parameters Value
Max depth 6
Population size 500
Crossover probability 0.95
Tournament size 2
Numbers of generation 50

Regarding the trading strategy, recall that there are
three parameters, two parameters derived for the question
“whether the stock price will increase by r % during the
next n days ?” and one parameter is the threshold on DC.
Rather than tuning the above parameters and then selecting
the best set across all datasets (which is what we did for
the GP), we decided to allow for tailored values for each
dataset.

V. RESULT AND ANALYSIS

We run all GP algorithms for 50 independent runs and
report the results below.

A. Pareto front

Figure 2 shows the Pareto front for the αMOO2cos
ROR

algorithm, along with the best model (highest Sharpe ratio)
from the SOO GP, which was selected across the 50 inde-
pendent GP runs. The αMOO2cos

ROR algorithm was selected
as a representative example - results are similar for the
other multi-objective GPs. As we can observe from the
two plots, there are several solutions on the Pareto front.
For Accenture (Figure 2a), the majority of solutions have
a higher rate of return than the one by SOO. There are
also several solutions that dominate the SOO’s model, as
they have both higher return and lower risk. For Experian
(Figure 2b) the results are even better for αMOO2cos

ROR , as
the majority of its solutions dominate the SOO solution.

(a) Accenture plc (S&P500)

(b) Experian plc (FTSE100)

Fig. 2: Comparison of the Pareto front solutions with the
best single objective optimization GP.

B. Best model results

Although multi-objective optimization algorithms are
able to find solutions in the Pareto front that dominate
solutions from the SOO GP, in the real world a trader would



be interested in identifying a single trading strategy to use
in the market. Hence, this section provides a comparison
between the best model from SOO and the ‘best’ model
from the MOO2 algorithms. To select the best model from
SOO we look into the 50 independent runs in training,
find the best model (in terms of Sharpe ratio) and report
its test set value. With regards to the MOO2 algorithms,
although we cannot strictly talk about a ‘best’ solution in
the Pareto front, we needed to define a way of selecting a
single solution to compare it with the SOO. Given that the
two objectives of MOO2 are rate of return and risk, which
are also the components of SOO’s fitness function of Sharpe
ratio, we decided to look into the 50 independent GP runs’
Pareto fronts from the final generation in the training set
and select the model with the best Sharpe ratio; we then
report the model’s Sharpe ratio in the test set.

Table IV presents the performance of the SOO, MOO2,
and αMOO2 algorithms. We can observe that αMOO2Cos

ROR
achieves the best average (1.84%) and median (1.68%) value
for rate of return, while SOO observes the worst average
(0.98%) and median (0.82%) values. Regarding risk (middle
part of Table IV), SOO is the top performer, followed by
the αMOO2 algorithms, which exhibit similar risk levels;
MOO2 has slightly worse risk figures across all statistics.
Lastly, the bottom part of the table presents the Sharpe ratio
of the portfolio of 110 stocks (assuming equal weight) per
algorithm. Note that this is a single value for the portfolio,
hence no summary statistics are presented for Sharpe ratio.
As we can observe, αMOO2Si g

ROR has the highest value (0.76).
This figure is double that of the benchmark SOO algorithm.

We also conduct pairwise comparisons between SOO and
the MOO2 algorithms using the Kolmogorov-Smirnov (KS)
non-parametric statistical test to assess the significance of
the observed results. Our focus was on understanding the
enhancements brought about by each MOO2 algorithm over
the SOO. The null hypothesis is that the two distributions
originate from the same continuous distribution. Given the
seven pairwise comparisons, we apply the Holm-Bonferroni
correction to account for these multiple comparisons. Con-
sequently, the minimum acceptable p-value for achieving
statistical significance at a 5% level is determined by α(rank)
= 0.05, where rank ∈ {1, 2, 3, 4, 5, 6, 7}, and 7-rank+1,
which varies for different ranks of the p-values found. The
rank denotes the order of magnitude of the p-values, with
1 representing the smallest and 7 the largest. The ranked
p-values reveal significant differences between the samples:
the first p-value should be less than 0.0071, the second less
than 0.0083, the third less than 0.01, the fourth less than
0.0125, the fifth less than 0.0166, the sixth less than 0.025,
and the seventh less than 0.05.

Table V presents the KS test results for rate of return (Va)
and risk (Vb). As observed, all multi-objective optimization
algorithms are statistically and significantly outperforming
SOO’s rate of return. In terms of risk, MOO2’s poor per-
formance is statistically outperformed by SOO. No other
statistical differences among the αMOO2 algorithms and

SOO are observed, which confirms our earlier observation
that the αMOO2 algorithms have similar risk performance
with SOO. We can thus conclude that the αMOO2 algo-
rithms have statistically and significantly improved the rate
of return over the SOO algorithm, while they maintained
similar risk levels.

C. Comparison of αMOO2 algorithms to technical analysis
trading strategies

In this section we are interested in selecting the best
performing αMOO2 algorithms to bring forward for com-
parison with technical analysis indicators. Looking back at
Table IV, we can observe that αMOO2Cos

ROR had the highest

average and median rate of return, while αMOO2Si g
ROR had

the highest Sharpe ratio. In terms of risk, all algorithms
showed very similar performance. Given that the above
two algorithms had the best performance in terms of
rate of return and Sharpe ratio, we will use both in the
comparisons with trading strategies derived from technical
indicators.

Table VI compares the performance of the two MOO2
algorithms and the technical indicators. Both αMOO2Si g

ROR
and αMOO2Cos

ROR have high average and median rate of
return values. MACD appears to be competitive when
looking at its average value (1.71%), but this is only be-
cause of outliers; its median value is only 0.14%. The two
αMOO2 algorithms also have the lowest risk values for
both average (0.07) and median (0.06), which are almost
50% lower than the risk values of MACD, OBV, and MTM.
Lastly, αMOO2Si g

ROR has the highest Sharpe ratio value (0.76),
closely followed by αMOO2Cos

ROR , while the highest value by
a technical indicator is 0.28 (MTM).

In order to compare the performance among the different
algorithms (rather than doing pairwise comparisons as
earlier)1, we run the Friedman non-parametric test, where
we calculate the average rank of each algorithm in terms
of return and risk—the lower the rank, the better the
algorithm’s performance. We also perform the Bonferroni
post-hoc test, and present both in Table VII. For each
algorithm, the table shows the average rank (first column),
and the adjusted p-value of the statitsical test when that
algorithm’s average rank is compared to the average rank
of the algorithm with the best rank (control algorithm)
according to Bonferroni’s post-hoc test (second column)
[20], [21]. As we can observe, for both return and risk
αMOO2Cos

ROR ranks first and statistically outperforms all
technical indicators’ strategies.

D. Buy and hold

We now compare the two αMOO2 algorithms with the
buy-and-hold strategy. A critical aspect to note is that the

1In Section V-B, we were interested in reporting how each MOO2
algorithm compared to the SOO GP. We thus used pairwise Kolmogorov-
Smirnov comparisons. On the other hand, when comparing to the three
technical indicator results, we were more interested in identifying the best
algorithm. For this reason, we resorted to the Friedman test.



TABLE IV: Comparison between SOO and MOO2 algorithms. Best values per row appear in boldface.

Measurement Rate of Return

Algorithm SOO MOO2 αMOO2
Si g
Ri sk

αMOO2
Si g
ROR αMOO2Cos

Ri sk
αMOO2Cos

ROR αMOO2Li n
Ri sk

αMOO2Li n
ROR

Average 0.98% 1.64% 1.65% 1.67% 1.81% 1.84% 1.49% 1.65%
Median 0.82% 1.55% 1.66% 1.66% 1.55% 1.68% 1.46% 1.50%
Standard deviation 0.01 0.04 0.02 0.01 0.02 0.02 0.02 0.02
Max 6.00% 29.91% 8.22% 7.98% 11.35% 7.21% 8.28% 9.24%
Min -3.12% -6.04% -5.22% -1.91% -2.34% -2.18% -2.54% -4.45%

Measurement Risk

Algorithm SOO MOO2 αMOO2
Si g
Ri sk

αMOO2
Si g
ROR αMOO2Cos

Ri sk
αMOO2Cos

ROR αMOO2Li n
Ri sk

αMOO2Li n
ROR

Average 0.06 0.09 0.07 0.07 0.07 0.07 0.07 0.07
Median 0.05 0.07 0.06 0.06 0.06 0.06 0.06 0.06
Standard deviation 0.04 0.06 0.05 0.05 0.04 0.05 0.04 0.06
Max 0.32 0.45 0.32 0.33 0.28 0.29 0.24 0.46
Min 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Measurement Sharpe ratio

Algorithm SOO MOO2 αMOO2
Si g
Ri sk

αMOO2
Si g
ROR αMOO2Cos

Ri sk
αMOO2Cos

ROR αMOO2Li n
Ri sk

αMOO2Li n
ROR

0.38 0.40 0.76 0.61 0.71 0.70 0.71 0.59

TABLE V: Kolmogorov-Smirnov tests between SOO (control) and MOO2 algorithms (first column) for ROR and risk. p-
values (second column) below the adjusted significance level (third column) appear in boldface to indicate statistical
significance at 5% level. The calculation of the adjusted significance level is shown in brackets in the third column.

(a) Rate of Return

Algorithm p-value Adj. significance level

αMOO2
Si g
ROR 1.29E-04 0.0071 (0.05/7)

αMOO2Cos
ROR 1.29E-04 0.0083 (0.05/6)

αMOO2
Si g
ROR 4.14E-04 0.010 (0.05/5)

αMOO2Li n
ROR 7.22E-04 0.013 (0.05/4)

MOO2 0.0034 0.017 (0.05/3)
αMOO2Cos

Ri sk
0.0055 0.025 (0.05/2)

αMOO2Li n
Ri sk 0.0137 0.05 (0.05/1)

(b) Risk

Algorithm p-value Adj. significance level

MOO2 2.33E-04 0.0071 (0.05/7)

αMOO2
Si g
ROR 0.0461 0.0083 (0.05/6)

αMOO2Li n
ROR 0.0461 0.010 (0.05/5)

αMOO2
Si g
ROR 0.0944 0.013 (0.05/4)

αMOO2Cos
Ri sk

0.0944 0.017 (0.05/3)

αMOO2Li n
Ri sk 0.0944 0.025 (0.05/2)

αMOO2Cos
ROR 0.1312 0.05 (0.05/1)

buy-and-hold strategy involves a single transaction over the
entire period under study, where we buy one unit of stock
on the first day of trading and sell it on the last day; hence,
the risk metric cannot be calculated. Furthermore, due to
buy-and-hold making only a single trade (while the MOO2
GPs make several), it is fairer to compare them across the
total return over the test set period rather than in terms of
rate of return.

Table X presents the performance metrics of the MOO2
algorithms alongside the buy-and-hold strategy. Buy-and-
hold has the highest average value, but this is only because
of outliers. When looking at the median, the two MOO2
algorithms have around 7% higher total return. We again
use the non-parametric Friedman test to support the analy-
sis. αMOO2Cos

ROR ranks first and statistically and significantly
outperformed buy-and-hold, as it can be see from Table XI.

VI. CONCLUSION

To conclude, this paper presented a novel multi-objective
genetic programming algorithm, which incorporates fea-
tures from the event-based concept of directional changes.
Our results showed that the proposed α-dominance algo-
rithms are able to statistically and significantly outperform

the single-objective GP in terms of rate of return, without
compromising on risk. In addition, they were able to out-
perform trading strategies derived from technical analysis
indicators, as well as the common passive investment
benchmark of buy-and-hold. Future work will focus on
exploring different multi-objective setups, e.g. considering
more than the two objectives presented in this paper.
We will also explore different multi-objective optimization
algorithms.
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