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Abstract—This paper presents a novel approach that integrates
deep compressed sensing (DCS) into joint source-channel coding
(JSCC) for efficient image transmission. Leveraging the capabil-
ities of DCS, the proposed method offers enhanced compression
and resilience to channel noise in wireless image transmission
systems. A key component of the method is the utilization of
a convolutional neural network (CNN) structure to implement a
block-based DCS technique for image compression. The proposed
encoder utilizes a well-designed CNN-based structure to capture
structural information and then map it to complex-valued signals.
The proposed decoder deals with channel noise and reconstructs
the original image. Using the CNN-based sampling matrices and
reconstruction capabilities helps the proposed algorithm enhance
image compression and reconstruction in wireless transmission
systems. The CIFAR-10 and Kodak datasets are used to evaluate
the performance of the suggested technique, showing a significant
improvement in terms of Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM), across different channel
Signal-to-Noise Ratios (SNRs) and channel bandwidth values in
comparison with state-of-art JSCC frameworks. Experimental
evaluations demonstrate the effectiveness of the proposed method
in achieving superior compression ratios and maintaining image
quality under varying channel conditions.

Index Terms—Wireless image transmission, joint source-
channel coding, compressed sensing, deep learning

I. INTRODUCTION

Wireless image transmission faces challenges in compres-
sion, transmission resilience, and quality preservation [1],
[2]. Conventional methods employ separate source and chan-
nel coding, but there is a need for alternatives to improve
performance in noisy and bandwidth-limited scenarios [3].
Joint source-channel coding (JSCC) integrates statistical image
properties with channel characteristics to enhance compression
efficiency and resilience to noise [4]. Incorporating com-
pressed sensing (CS) into JSCC offers an opportunity to
further enhance wireless image transmission [5], [6]. While CS
has shown promising results in recovering sparse signals, its
reliance on sparsity assumptions and expensive reconstruction
process prompts the need for more efficient methods. Deep
learning (DL) provides a solution by addressing these limita-
tions and improving efficiency [7].

Various techniques and frameworks have been proposed
for JSCC, offering innovative wireless image transmission
solutions. DL-based methods introduce encoder and decoder

network models that learn from input images, with the encoder
output forming the transmitted code-word and the decoder
aiming to reconstruct the source image from the received noisy
code-word [8], [9]. Early contributions to DL-based JSCC
[10], built the foundation for employing neural networks to
address the challenges of encoding and decoding information
in the presence of additive white Gaussian noise (AWGN).
Inspired by advancements in variational learning and gradient
estimation, Zhang et al. [11] proposed a JSCC model that
leverages discrete latent variable models to enhance the ef-
ficiency and robustness of wireless communication systems.
Building upon these foundations, Kurka et al. introduced a
JSCC scheme offering unique advantages such as graceful
degradation with varying signal-to-noise ratios (SNR) and
utilisation of channel output feedback [12].

Applying CS to wireless image transmission offers practical
advantages, evident in solutions like SoftCast and Sparse-
Cast [13], [14]. SoftCast uses a Discrete Cosine Transform
(DCT) on images and transmits coefficients directly through
a dense constellation, while SparseCast optimizes bandwidth
with frequency domain sparsity [13], [14]. Additionally, Song
et al. proposed a distributed CS for scalable cloud-based image
transmission, improving reconstruction using cloud resources
and enhancing resistance to channel impairments [15]. How-
ever, these methods may be sensitive to channel changes and
are subject to potential disruptions, impacting image quality
and transmission errors. Despite these challenges, the inte-
gration of CS and DL-based methods into JSCC frameworks
holds promise for addressing the demands of wireless image
transmission.

This paper presents a novel JSCC algorithm combining
DL-based block-based CS (BCS) for improved compression
rates and resilience to channel noise. Using a CNN-based
structure, it integrates a BCS module into a DL-based source
and channel encoder, capturing structural information and
mapping it to complex-valued signals. At the receiver, a CNN-
based decoder handles channel noise and reconstructs the
original image. Leveraging DL-based sampling matrices and
reconstruction capabilities, the proposed algorithm enhances
image compression and reconstruction in wireless transmis-
sion systems. Numerical evaluations show that the proposed



scheme significantly outperforms existing DL-based JSCC
methods such as Deep JSCC (DJSCC) [8] and Attention DL
based JSCC (ADJSCC) [16] with respect to various metrics.

II. SYSTEM MODEL

Let us consider a point-to-point image transmission system
depicted in Fig. 1. Here, an input image of dimensions H
(height) ×W (width) ×C (number of channels) is denoted by
a vector x ∈ Rn, where n = H×W×C, and R represents the
set of real numbers. The joint source-channel encoder operates
by encoding x through the function fθ : Rn −→ Ck, resulting
in a vector of complex-valued channel input symbols z ∈ Ck.
This encoding process is mathematically expressed as:

z = fθ(x) ∈ Ck (1)

where k signifies the number of channel input symbols,
θ represents the parameter set of the joint source-channel
encoder, and C denotes the set of complex numbers.

To adhere to the average power constraint at the joint
source-channel encoder, an additional condition 1

kE (zz∗) ≤
P is enforced, where z∗ denotes the complex conjugate of
z and P stands for the average power constraint. These
encoded symbols z are transmitted across a noisy channel,
which is modelled by the function η : Ck → Ck. Our work
primarily considers the presence of additive white Gaussian
noise (AWGN). Consequently, the channel output symbols
ẑ ∈ Ck received by the joint source-channel decoder are
described by:

ẑ = η(z) = z + ω (2)

where ω ∈ Ck comprises independent and identically dis-
tributed (i.i.d) samples with the distribution CN

(
0, σ2I

)
.

Here, σ2 represents the average noise power, and CN(., .)
signifies a circularly symmetric complex Gaussian distribution.
Moreover, our proposed method can be adapted to other
channel models that can be represented by a differentiable
transfer function. For decoding, the joint source-channel de-
coder utilizes a function gφ : Ck → Rn to map ẑ to an
estimation of the original image, given as:

x̂ = gφ(ẑ) = gφ (η (fθ(x))) (3)

where x̂ ∈ Rn is the reconstructed image at the receiver,
and φ represents the parameter set of the joint source-channel
decoder. In this study, we propose a novel approach to model
fθ and gφ through a DL-based structure, considering the ad-
vantages of CS, with further details described in the following
section.

III. DCS-JSCC

Fig. 2 illustrates the end-to-end architecture of the encoder
and decoder networks of the proposed DCS-JSCC. This model
consists of a sampling network, integrated with an encoding
network as the encoder, and a decoding network, integrated
with the initial and deep reconstruction network as the decoder
which are introduced next.

Fig. 1. Components of the system model [8]

A. Encoder Design

The encoder shown in Fig. 2 comprises a BCS sampling
network, followed by an array of processing blocks, which
encode the image by further compressing it and adding re-
silience to noise. The CS sampling method, outlined in [17],
begins by partitioning the image into non-overlapping blocks
of size B × B × C, where C represents the number of
color channels and B denotes the block size. Compressed
measurements are obtained using a sampling matrix φB with
dimensions nB×CB2, or sampling−ratio×B in scenarios
where a sampling ratio like 0.1 is applied (see [17] for further
details). The sampling process is mathematically expressed
as yj = φBxj , meaning that each row of jth measurement
in φB acts as a filter. To implement the described sampling
process using a neural network module, a convolutional layer
is employed, with filter dimensions matching the size of image
blocks. For non-overlapping sampling, the convolutional layer
adopts a stride of B × B. No biases or activation functions
are used, resulting in nB feature maps, each containing nB

measurements from an image block. The learning process
involves optimizing the sampling matrix alongside other net-
work parameters through end-to-end training, as detailed in
subsequent sections.

Following the sampling network, the data flow proceeds
through a series of convolutional layers, PReLU activation
functions, and a Generalized Divisive Normalization (GDN)
layer which constitute the encoding structure. These layers,
except for the power normalization layer, are organized into
five modules. Each of the first four modules comprises a
convolution layer, a GDN layer, and a PReLU layer, while the
fifth module consists of only a convolution layer and a GDN
layer. This sequence of convolutional layers extracts essential
features from the compressed image, which are then combined
to produce the channel input samples. The incorporation of
nonlinear activation functions, such as PReLU, plays a crucial
role in learning a nonlinear mapping from the source signal
space to the coded signal space, enabling the network to
capture complex relationships within the data. Also, GDN
layer employs local divisive normalization, which is highly
effective for tasks like image compression by capturing statis-
tical dependencies within the image.

As the final step within the encoder, the output of the last
convolutional layer is subjected to a normalization process as
follows:

z =
√
kP

z̃√
z̃∗z̃

(4)

where z̃∗ is the conjugate transpose of z̃, such that the channel
input z satisfies the average transmit power constraint P .

After encoding, the joint source-channel coded sequence is
transmitted over the communication channel by directly send-



Fig. 2. Architecture of the proposed model

ing the real and imaginary parts of the channel input samples
via the I and Q components of the digital signal. The channel
introduces random corruption to the transmitted symbols. To
optimize the end-to-end wireless image transmission system,
the communication channel is included in the architecture as
a non-trainable layer, represented by the transfer function in
Eq. (2).

B. Decoder Design

As shown in Fig. 2, the designed decoder has three consec-
utive stages: decoding and initial recovery from noises, initial
reconstruction and deep reconstruction. In the first stage, the
decoder maps the signals which are corrupted and compressed
complex-valued ones to an estimation of the original channel
input. In other words, it reverses the encoding stage operations
of the encoder. This process involves passing the received
corrupted coded inputs through a sequence of transpose con-
volutional layers with PReLU activation functions and Inverse
GDN (IGDN).

The reconstruction network comprises initial I and deep
networks D, ensuring accurate recovery of the original image
from the CS encoded measurements. For the initial recon-
struction stage, similar to the compressive sampling process,
a convolutional layer is employed with a specific kernel size
and stride. As can be seen in Fig. 2, lB2 convolution filters
of dimensions 1 × 1 × nB are applied to generate each
initial reconstructed block. Subsequently, a combination layer
is utilized, comprising a reshape function and a concatenation
function, to obtain the initial reconstructed image. This layer
first reshapes each 1 × 1 × lB2 reconstructed vector into
a B × B × l block, followed by concatenating all blocks
to form the initial reconstructed image. This initial phase
allows considering reconstruction of the entire image rather
than individual blocks, enabling comprehensive utilization of
both intra-block and inter-block information for improved
reconstruction. As there is no activation layer in the initial

reconstruction network, it functions as a linear signal recon-
struction network.

Following the initial reconstruction, a deep network based
on residual learning is employed to enhance the non-linear
signal reconstruction process for improved performance. This
network encompasses three main operations: feature extrac-
tion, non-linear mapping, and feature aggregation. The feature
extraction operation utilizes a convolutional layer followed
by a ReLU activation layer to generate high-dimensional
features from the local receptive field. Subsequently, the deep
reconstruction network alternates between residual blocks,
convolutional layers, and activation layers, augmenting the
network’s non-linearity and expanding its receptive field. To
produce the final output, a feature aggregation operation is
employed to reconstruct the image from the high-dimensional
features. Additionally, a skip connection is incorporated be-
tween the initial reconstructed image and the output of the
deep reconstruction network to expedite network convergence.

C. Loss Function

The proposed encoder and decoder networks are optimized
jointly in an end-to-end manner. Given the input image x, the
goal is to obtain z by using the encoding network fθ, and then
recover the original input image x accurately from x̂ by using
the decoding network gφ. The mean square error is adopted
as the cost function of the model. To do so, two objectives
are considered to be minimized: the initial and final versions
of the reconstructed image. For the initial reconstruction, the
loss function would be:

Lint (θ, φ) =
1

K

K∑
i=1

∥Iφ (η (fθ(xi)))− xi∥22 (5)

where θ and ϕ are the parameters of the encoding and decoding
networks to be trained, respectively. Also, K represents the
number of samples or data points in the dataset. Moreover
Iφ(η(fθ(xi)) is the initial reconstructed output with respect
to image xi. For the final output gφ(η(fθ(xi)), the following
function is considered:



Ldeep (θ, φ) =
1

K

K∑
i=1

∥gφ (η (fθ(xi)))− xi∥22 . (6)

Training is carried out by optimizing the mentioned functions,
simultaneously using a summation between them considering
the same weights. It should be noted that we train the encoder
and decoder networks, jointly, but they can be utilized in the
model, independently.

IV. RESULTS AND DISCUSSIONS

The proposed model is implemented using TensorFlow and
optimized utilizing the Adam algorithm. The compression
ratio, denoted as k

n , where k represents the channel bandwidth
and n signifies the source bandwidth, is varied across exper-
iments, ranging from 0.05 to 0.45. Additionally, the channel
signal-to-noise ratio (SNR), as formulated in [8], is adjusted
during different trials. The performance of the algorithm is
evaluated based on the peak signal-to-noise ratio (PSNR) of
the reconstructed images. PSNR is calculated as the ratio of
the peak signal power to the mean squared error between
the original and reconstructed images, as mentioned in [8].
To train the proposed DCS-JSCC architecture, CIFAR-10 and
Imagenet datasets are chosen [8], [18]. Then, the proposed
model is tested on CIFAR-10 and Kodak datasets [19], and
the results are compared with state-of-the-art DL-based JSCC
methods, namely DJSCC [8] and ADJSCC [16].

A. Evaluation on CIFAR-10 Dataset

The training dataset consists of 60, 000 images, each with
dimensions of 32 × 32 × 3, alongside randomly generated
realizations of the communication channel. To evaluate the
effectiveness of our technique, it is tested on a separate set of
10, 000 images from the CIFAR-10 dataset, distinct from those
used in training. Initially, a learning rate of 10−3 is utilized,
which is then reduced to 10−4 after 500, 000 iterations.
Training is performed using mini-batches, each containing 64
samples until there is no further improvement observed on the
test dataset. The experiments for this dataset consider values
of B = 8 and l = 3. Also, The parameter c in the encoder’s
last CNN layer is responsible for defining the dimension of
the channel input. It is noteworthy to mention that the test set
images are not utilized for tuning network hyperparameters.
To address the impact of channel-induced randomness, each
image is transmitted 10 times during performance evaluation.
The study assesses the performance of the proposed algorithm
within an AWGN environment, adjusting the SNR to varying
levels.

Figure 3 illustrates the PSNR of the reconstructed images
plotted against the SNR of the channel while maintaining
a fixed compression ratio of 1/6. Each curve in the plot
represents the performance of the proposed end-to-end system
trained at a specific channel SNR value, denoted as SNRtrain.
Subsequently, the learned encoder/decoder parameters are
evaluated using test images under various SNR conditions,
labeled as SNRtest. Essentially, each curve demonstrates how
well the proposed approach performs when optimized for a

Fig. 3. CIFAR-10 dataset: performance of different methods with compression
ratio 1/6, versus varying channel SNRs over an AWGN channel

Fig. 4. Kodak dataset: performance of different methods with compression
ratio 1/6, versus varying channel SNRs over an AWGN channel

particular channel SNR (SNRtrain) and tested under different
channel conditions (SNRtest). These results provide insights
into the algorithm behavior in varying channel conditions,
showcasing its resilience to changes in channel quality. The
findings reveal that the proposed method consistently out-
performs the trained DJSCC approach. Additionally, both
the proposed method and ADJSCC demonstrate adaptabil-
ity to changing SNR levels, as evidenced by their gradual
performance degradation with decreasing SNR. Notably, the
proposed method exhibits superiority over ADJSCC, demon-
strating better performance as SNRtest increases, surpassing
ADJSCC (SNRtrain = 13dB) by up to 1.2dB.

B. Evaluation on Kodak Dataset

With almost 1.2 million images, the Imagenet dataset is
a well-known dataset in our field of study. The images in
our study are cropped to produce patches with dimensions



Fig. 5. Example of reconstructed images produced by the proposed method
with compression ratio of 1/6 and SNR value of 4dB

of 224 × 224. These patches are subsequently processed
by the network in batches of 32 samples. In this series of
experiments, B = 32 and l = 3 are fixed. The training
process is carried out until convergence is attained, with the
model learning rate fixed at 10−4. The proposed technique
uses SNRtrain values ranging from 0dB to 20dB to train the
model on this dataset. To do this, the dataset is divided into
training and validation groups using a 9 : 1 ratio. The Kodak
dataset is then used to evaluate the model, and throughout
this procedure, each image is transmitted 100 times, allowing
the performance to be averaged over several random channel
instances. The AWGN channel is taken into consideration in
the evaluation scenario. During performance evaluation, each
image is broadcast 10 times to account for the influence of
channel-induced randomness.

Figure 4 illustrates the comparison of average PSNR against
SNR for a compression ratio of 1/6 with DJSCC and AD-
JSCC. The findings depicted in Figure 4 reveal that our ap-
proach surpasses DJSCC and ADJSCC by preserving essential
visual details in compressed images, leading to enhanced
reconstruction quality. These results indicate consistently ele-
vated PSNR values across different SNR levels, emphasizing
improved image fidelity and reduced channel-induced dis-
tortions. The proposed method demonstrates excellence in
delivering superior image quality, even at higher compression
levels and under noisy conditions.

In Figure 5, a visual comparison of the reconstructed images
is presented, showcasing the performance of the proposed
scheme trained on Imagenet in AWGN channels, contrasted
with DJSCC and ADJSCC. For each reconstruction, both
PSNR and Structural Similarity Index Measure (SSIM) values
were calculated. The results indicate that the proposed method
demonstrates superior visual reconstruction capabilities by
accurately restoring the details of the original image while
achieving a high compression ratio.

V. CONCLUSION

This study introduces a novel deep JSCC algorithm that
combines CS and DL to enhance image transmission efficiency
over wireless channels. By integrating block-based CS with
a CNN-based model, the method constructs a JSCC encoder
and decoder. Through joint training, it minimizes two loss
functions to ensure superior image reconstruction quality.

Evaluation on CIFAR-10 and Kodak datasets demonstrates its
superiority over existing DJSCC and ADJSCC frameworks,
consistently outperforming in terms of PSNR and SSIM across
varying SNRs and compression ratios. This integration of
CS principles and DL-based techniques promises significant
advancements in wireless image transmission.
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