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Abstract—Owing to the heterogeneous computation and com-
munication capabilities among clients, the synchronous model
aggregation in wireless federated learning (FL) is susceptible to
the straggler effect and exhibits low learning efficiency, while
asynchronous aggregation encounters delayed gradients that lead
to convergence errors and learning performance degradation. To
address these obstacles, this work proposes an adaptive semi-
asynchronous FL (ASAFL) approach to incorporate the strengths
of synchronous and asynchronous FL while mitigating their
inherent drawbacks. Specifically, the edge server dynamically
adjusts the synchronous degree, i.e., the number of local gradients
aggregated in each round, to strike a balance between learning
latency and accuracy. Recognizing that data heterogeneity among
clients may induce biased global model updating, we propose
calibrating the global update by leveraging historical gradients
received at the edge server from clients. Following that, we
theoretically investigate the impact of synchronous degrees in
different rounds on the convergence bound of ASAFL. The
results imply that allocating more learning time to the later
learning stages to increase the synchronous degree contributes
to better learning performance. Based on this, we develop an
adaptive synchronous degree control and resource allocation
algorithm to enhance the learning performance of FL while
adhering to the overall learning latency and wireless resources
constraint. Numerical results on the MNIST and CIFAR-10
datasets demonstrate that the proposed approach is capable of
attaining faster convergence speed and higher learning accuracy
compared to the benchmark FL algorithms.

Index Terms—Data heterogeneity, federated Learning, semi-
asynchronous update

I. INTRODUCTION

Federated learning (FL) is a promising distributed learn-
ing framework for exploring the massive data generated in
wireless networks to support intelligent applications, such as
autonomous driving and healthcare [2], [3]. In FL, one edge
server orchestrates multiple clients to collaboratively learn a
global model through iterative exchanges of model parameters
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among clients and the server without disclosing client data.
This distinctive nature ensures data privacy for clients and
reduces the communication overhead compared to centralized
learning methods [4], [5].

Despite the advantages of FL, its deployment in wireless
networks confronts the following bottlenecks: 1) Resource
Constraints: The limited wireless resources restrict the par-
ticipating client number in each round of FL, which sub-
stantially restrains the performance of FL [6], [7]. 2) Device
Heterogeneity: In practical systems, clients typically exhibit
substantial diversity in computation and communication ca-
pabilities, which induces varied local training time among
clients [8], [9]. The conventional synchronous FL approach
may suffer from the straggler effect in this presence. 3) Data
Heterogeneity: The local data distribution among clients are
usually non-independent and identically distributed (non-IID).
This may induce biased global model updating and learning
performance degradation [10]. To enable highly efficient FL,
it is important to design innovative FL solutions to conquer
the aforementioned challenges.

Existing FL research can be categorized into synchronous
FL, asynchronous FL, and semi-asynchronous FL according
to the aggregation mechanism. In synchronous FL, the edge
server is compelled to wait for all participating clients to
complete the local training process before executing the global
model update in each round. Consequently, the training speed
of FL is dragged by the slowest client [11]. To boost the
learning efficiency of synchronous FL, existing studies have
primarily concentrated on optimizing resource allocation [12],
client selection policies [13]–[15], and their collaborative
design [16], [17]. Specifically, in [12], the multi-dimensional
optimization in bandwidth allocation, power control, and com-
putation frequency achieved significant energy consumption
reduction and ensured the learning performance for FL. By
measuring the importance score of clients by the gradient
norms, the probabilistic client selection method in [13] ef-
fectively improved the convergence speed of FL. In [14],
the joint channel and gradient norm-aware client selection
approach has been demonstrated to be superior to the selection
schemes based on either channel conditions or gradient norms
individually. In [15], the client representativity-aware selection
approach mitigated the data heterogeneity in FL and captured
the trade-off between learning accuracy and latency. The co-
design of user selection and resource allocation approach in
[16], [17] effectively reduced the FL convergence time and im-
proved the learning accuracy. Although the above approaches
effectively tackle resource constraints for FL, the synchronous
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aggregation nature impedes clients from resuming their local
training until all participating clients’ local updates are ag-
gregated into the global model. Consequently, synchronous
FL may pose scalability and learning efficiency challenges,
especially in modern wireless networks with massive clients.

To mitigate the straggler effect, asynchronous FL has been
developed to enable the server to promptly update the global
model upon receiving one local update from an arbitrary client
without waiting for the completion of all participating clients
[18], [19]. In asynchronous FL, each client seamlessly re-
sumes its local training process after incorporating its gradient
into the global model, independent of the training progress
of other clients. This characteristic significantly diminishes
single-round latency and achieves a fast learning speed [20].
Nevertheless, asynchronous FL suffers from delayed gradients,
i.e., clients may return stale gradients that were computed
based on an older version of the global model. This may
slow down the convergence of asynchronous FL and make
the learning process unstable [21]. Moreover, under the data
heterogeneity scenarios, the adverse effect of delayed gradients
on convergence may be intensified. This is because the global
model changes more significantly in adjacent rounds when
the data heterogeneity is high [22]. As a result, the delayed
gradients become more outdated and inconsistent with the
current gradients, exacerbating the overall model convergence.

To avoid the long waiting time caused by the straggler
effect in synchronous FL and alleviate the adverse impacts of
delayed gradients in asynchronous FL, semi-asynchronous FL
has been proposed to strike a balance between learning latency
and accuracy. Specifically, in [23], the authors proposed a
clustered semi-asynchronous FL framework to mitigate the
straggler effect, which classifies clients according to their
local training delay and model update directions, and then
the clients in each group asynchronously update the group
model. The model distribution and client scheduling method in
[24] effectively alleviated the impacts of stragglers and model
staleness on semi-asynchronous FL. The semi-asynchronous
FL approach in [25] employed adaptive learning rate adjust-
ments to balance the contribution of local updates in the global
model, thereby effectively reducing the learning time under
resource constraints. While demonstrably effective, the above
semi-asynchronous FL schemes in [23]–[25] adopt the fixed
synchronous degree, i.e., the number of local updates in each
round, in the entire learning process, which may not well
balance the learning latency and accuracy. To this end, a deep
reinforcement learning-based asynchronous FL approach has
been proposed in [26], which intelligently varies the number
of locally updated models for global model aggregation to
minimize the learning time while satisfying the learning per-
formance requirement.

Although the aforementioned semi-asynchronous FL
schemes in [23]–[26] effectively address the straggler effect
and delayed gradients, the impacts of data heterogeneity have
not been considered. In FL, data heterogeneity may result
in biased global model updating and significant learning
performance degradation. To this end, we propose leveraging
clients’ historical gradients received at the edge server to
calibrate the global update for addressing the adverse impact

of non-IID data on FL. The efficacy of this calibration method
has been demonstrated in our simulations. In addition, the
fixed synchronous degree design in [23]–[25] may not balance
the training latency and accuracy well. The reinforcement
learning-based synchronous degree control in [26] would
increase the learning costs of FL, as it necessitates training
an extra reinforcement learning algorithm. Moreover, the
relationship between the per-round synchronous degree and
the learning performance remains undisclosed. The main
differences between our work and the existing works are
summarized in Table I. Motivated by this, we theoretically
analyze how the synchronous degree in different rounds
affects the learning performance. Note that, unlike the
existing works, e.g., [18]–[26], which assume the staleness
of local gradients is bounded, the convergence analysis in
this work mitigates this assumption and investigates the
impact of different local gradients’ staleness on the learning
performance. In addition, our convergence analysis involves
the proposed gradient calibration mechanism and reveals
that progressively increasing the synchronous degree as
the learning progresses contributes to enhanced learning
performance. Building on this insight, we develop an adaptive
synchronous degree control and resource allocation approach
to enhance the learning performance of wireless FL. The
primary contributions of this work contain:

• We propose an adaptive semi-asynchronous FL frame-
work, i.e., ASAFL, which dynamically controls the syn-
chronous degree in each learning round to balance the
learning accuracy and latency. In addition, to mitigate the
negative effect of non-IID data among clients, we propose
a gradient calibration mechanism which calibrates the
global update by adopting clients’ historical gradients to
avoid biased global model updating.

• We conduct a theoretical analysis to investigate how the
synchronous degree control policy affects the conver-
gence bound of ASAFL, which indicates that augmenting
the synchronous degree in each round helps diminish the
convergence error. Note that a higher synchronous degree
would also result in increased latency. In cases where
the time budget for the entire learning process is fixed,
our convergence analysis result suggests allocating more
learning time to the later rounds to raise their synchronous
degree for improving the FL performance.

• According to the convergence findings, we formulate
a synchronous degree control and resource allocation
problem considering learning latency and wireless band-
width constraints. To address this long-term stochastic
optimization problem and facilitate online synchronous
degree control, we convert it into a deterministic form us-
ing the Lyapunov optimization framework. Subsequently,
we employ a binary search method to find the optimal
bandwidth allocation. Following that, we present an effi-
cient synchronous degree control approach that offers an
O(

√
µ, 1/µ) latency-learning balance guarantee where µ

is a hyperparameter associated with the algorithm.
• Numerical results corroborate our theoretical findings

and demonstrate the effectiveness of the proposed ap-
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TABLE I
COMPARISON OF OUR WORK AND RELATED WORKS (3: CONSIDERED, 7: NOT CONSIDERED)

Works Limited
wireless
resources

Constrained
learning
latency

Data het-
erogeneity

Gradient
calibration

Convergence
analysis

Synchronous
degree
control

Effects of synchronous
degree on learning per-
formance

[18], [20] 7 7 7 7 7 7 7
[19] 7 7 7 7 3 7 7
[21], [22] 7 7 3 7 3 7 7
[23] 7 7 3 7 7 7 7
[24] 3 7 7 7 7 7 7
[25] 3 7 3 7 3 7 7
[26] 3 7 3 7 3 3 7

Ours 3 3 3 3 3 3 3

proach. Compared to the benchmark schemes, ASAFL
attains 2.9% and 5.78% accuracy gain on the MNIST
and CIFAR-10 datasets, respectively. Correspondingly, it
provides 2.1x and 1.9x speed up in the learning process
on those two datasets to achieve the corresponding target
accuracies.

The remainder of this paper is structured as: We presents
the proposed ASAFL and system model in Section II. Section
III analyzes the convergence bound of ASAFL. Section IV
presents the proposed bandwidth allocation and adaptive syn-
chronous degree control scheme to minimize global loss. In
section V, we evaluate the proposed approaches by simulation.
Finally, we conclude this work in Section VI.

II. SYSTEM MODEL AND LEARNING MECHANISM

In the considered FL system, N clients are coordinated by
an edge server to learn a global model x ∈ Rd, where d
is the dimension of the model. The clients are indexed by
N = {1, 2, · · · , N}. Each client n (n ∈ N ) has a local private
dataset Bn with Bn data samples. The entire dataset is B =
∪N
n=1Bn, which has B =

∑N
n=1 Bn data samples. For each

sample ζ ∈ B, let ℓ(ζ;x) be the sample-wise loss. Thus, the
local loss function of client n is

Ln(x) =
1

Bn

∑
ξ∈Bn

ℓ(ξ;x). (1)

The goal of the FL system is to minimize the global loss
function as follows:

L(x) =
∑N

n=1
qnLn(x), (2)

where qn is the weight of client n, which satisfies qn ≥ 0 and∑N
n=1 qn = 1. Similar to [14], [15], we consider the dataset

size among clients to be balanced and setting qn = 1
N .

A. Adaptive Semi-Asynchronous Federated Learning

To alleviate the straggler effect in synchronous FL and the
adverse impact of delayed gradients in asynchronous FL, this
work proposes a novel ASAFL approach which dynamically
controls the synchronous degree in each round to capture the
trade-off between learning latency and accuracy, as depicted in
Fig. 1. In addition, due to the data heterogeneity among clients,
aggregating partial clients’ local updates may induce biased
global model updating and learning performance degradation

for FL. We propose to utilize clients’ historical gradients
received by the server to calibrate the global update. The
efficacy of this gradient calibration approach is verified in our
simulations. Specifically, the server retains a gradient array
{Gn,t : ∀n ∈ N} to cache the latest received gradients from
clients. At the start of FL, the server initializes the global
model x0 and broadcasts it to clients. The retained gradient
arrays of all clients are initialized as Gn,t = 0 (∀n ∈ N ). Then,
the learning process is done by repeating the local training
at clients and the global model updating at the edge server,
formally described in Algorithm 1. Let T denote the number
of global rounds until the training process terminates. In the
following, we illustrate the detailed algorithm on the client
and server sides, respectively.

• Client Side (Line 12-16 in Algorithm 1): Upon receiving
the global model xt, client n (n ∈ N ) updates its model
through executing I steps stochastic gradient descent as
follows:

xi+1
n,t = xi

n,t − η∇L̃n(x
i
n,t), i ∈ {0, 1, · · · , I − 1}, (3)

where xi
n,t represents client n’s local model in the i-th

iteration of round t and x0
n,t = xt, η is the learning

rate. In (3), ∇L̃n(x
i
n,t) = 1

Ab

∑
ξ∈An

∇ℓ(ξ;xi
n,t) is

the stochastic gradient, where An is a mini-batch data
uniformly sampled from Bk with Ab = |An| samples.
After local training, client n uploads its local gradient,
g̃n,t, to the edge server, where g̃n,t is

g̃n,t =
∑I−1

i=0
∇L̃n(x

i
n,t) = −1

η
(xI

n,t − xt). (4)

• Edge Server Side (Line 3-10 in Algorithm 1): In each
round t, the edge server determines the synchronous
degree Kt, i.e., the number of local updates that need
to be collected. Then, the edge server waits to receive
Kt local gradients from clients. Let sn,t ∈ {0, 1} indicate
whether client n uploads its local gradient to the server in
round t, where sn,t = 1 signifies the upload, and sn,t = 0
otherwise. Thus, the set of clients whose local gradients
are received at the edge server in round t can be denoted
as St = {n : sn,t = 1, ∀n ∈ N}. Denote by gn,t the
received local gradient from client n in round t. Since
clients are asynchronously involved in the global model
updating, gn,t is not necessarily equal to g̃n,t. Denote
by τn,t the staleness of g̃n,t, defined as the interval
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Fig. 1. Comparison of traditional asynchronous FL and ASAFL: (a) Asynchronous FL. (b) Semi-asynchronous FL. (c) The proposed adaptive semi-asynchronous
FL.

Algorithm 1 Adaptive Semi-Asynchronous FL
1: Initialization: The server initials {Gn,−1 = 0 : ∀n ∈ N} and

the global model x0, then send the global model to all clients.
2: Server side:
3: for t = 0, 1, · · · , T − 1 do
4: Initialize St = ∅, decide the synchronous degree Kt.
5: while |St|< Kt do
6: if Receive the gradient from client n then
7: Updating the gradient array according to (5)
8: St = St ∪ n
9: Update the global model as xt+1 = xt − η 1

N

∑N
n=1 Gn,t

10: Broadcast xt+1 to the clients in St.
11: Client side:
12: if Client n received the global model xt then
13: for i = 0, 1, · · · , I − 1 do
14: Execute local training based on (3);
15: Calculate local gradient as g̃n,t = − 1

η
(xI

n,t − xt)
16: Upload g̃n,t to the edge server.

between round t and the round when client n received
the last global model. In fact, gn,t = g̃n,t−τn,t and
g̃n,t−τn,t is computed based on an older version of the
global model, i.e., xt−τn,t . Once the edge server receiving
|St|= Kt local gradients, it updates its retained gradients
as follows:

Gn,t =

{
gn,t, if n ∈ St,

Gn,t−1, else. (5)

Then, the global model is updated as xt+1 = xt −
η 1
N

∑N
n=1 Gn,t and broadcasted to the clients in St.

To better explain the proposed ASAFL, we compare it to the
conventional asynchronous FL and semi-asynchronous FL in
Fig. 1. Consider one server and four clients collaboratively
learning a global model. Taking round 2 as an example,
in which the global model is updated from x2 to x3. The
asynchronous FL in Fig. 1(a) immediately updates the global
model upon receipt of client 1’s local gradient g̃1,1, i.e.,
x3 = x2 − ηg̃1,1. Due to the frequent updating of the
global model, asynchronous FL encounters delayed gradients,
resulting in unforeseen model accuracy degradation. To relieve
the negative effect of delay gradients while mitigating the
straggler effect, semi-asynchronous FL updates the global
model once the edge server collects K (1 < K < N )

local gradients, as shown in Fig. 1(b). Specifically, the global
model is updated using the local gradients of client 2 and
client 4, i.e., x2 = x1 − η 1

2 (g̃2,1 + g̃4,0). Although the
aforementioned FL approaches effectively enhance learning
convergence for FL, the partial client participation in each
round can lead to biased global model updating when the
data distribution is non-IID. To address this issue, this work
calibrates the global update by reusing the received historical
local gradients at the edge server from the un-participated
clients, as shown in Fig. 1(c). Particularly, upon receiving
local gradients from client 1, client 3, and client 4, the edge
server updates the global model by incorporating the received
gradients from client 1, 3, and client 4 (i.e., g̃1,2, g̃3,0, and
g̃4,0), along with the historical gradients of client 2 (i.e., g̃2,0),
i.e., x2 = x1 − η 1

4 (g̃1,2 + g̃2,0 + g̃3,0 + g̃4,0). In addition,
the conventional semi-asynchronous FL approaches fixed the
synchronous degree in the learning process, potentially failing
to adequately balance learning latency and accuracy. To this
end, we propose dynamically adjusting the synchronous degree
in each round to achieve better learning performance.

It is worth mentioning that the proposed ASAFL can be
further improved by introducing a proper staleness control
mechanism to exclude the local gradients with extremely
large staleness and prevent model performance degradation.
In existing works, e.g., [23], [25], the staleness control is
mainly implemented by introducing a staleness threshold τ0.
In the training process, after the per-round global model
updating, the edge server distributes the updated global model
to clients exceeding the staleness threshold τ0. Subsequently,
these clients halt their local training and restart local training
based on the latest received global model. In practical systems,
the value of τ0 should be carefully determined by sufficiently
considering the data heterogeneity degree, the system scale,
clients’ computing capability heterogeneity degree, and other
characteristics of the learning system. This is beyond the scope
of this work and will be studied in our future work.

B. Learning Latency Model

This subsection characterizes the learning latency for the
proposed FL framework, incorporating computation and com-
munication latencies.
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• Computation Latency: We adopt the central processing
unit (CPU) frequency to depict client computation capa-
bility. The CPU frequency of client n is denoted as fn.
Let Cn be the required CPU cycles for processing one
data sample at client n. The local training latency at client
n can be expressed as

T comp
n,t =

IAbCn

fn
, (6)

where Ab is the local batch size.
• Communication Latency: This work employs the fre-

quency division multiple access technique in the system,
where clients share the total bandwidth of B Hz for
uploading their local gradients. Let pn and hn,t rep-
resent the transmit power and channel gain of client
n in round t, respectively. Denote by ϑn,t the ratio
of the total bandwidth assigned to client n in the t-th
round. We use ϑt = {ϑ1,t, ϑ2,t, · · · , ϑN,t} to denote the
bandwidth allocation policy in round t. Consequently,
the transmit rate of client n in round t is expressed as
rn,t = ϑn,tB log2(1 +

pnhn,t

σ2 ), where σ2 is the variance
of Gaussian additive noise. Denote by Q the number of
parameters of each local gradient, and each parameter is
quantized by q bits. Therefore, the communication latency
of client n to transmit its gradient is

T comm
n,t =

Qq

rn,t
=

Qq

ϑn,tB log2(1 +
pnhn,t

σ2 )
. (7)

Based on the above models, we characterize the per-round
latency in the following. Consider a general round t, where the
edge server waits for Kt clients to complete their local training
and upload their local gradients. Due to the asynchronous
mechanism, clients may have accomplished part of the local
training process at the beginning of round t instead of starting
training from round t. Thus, the required computation time of
client n is usually not equal to T comp

n,t . Let T rem
n,t denote the

remaining time to complete local training of client n in round
t. Thus, the latency of each client n (n ∈ St) includes the
remaining local training time T rem

n,t and communication time
T comm
n,t . The latency in round t depends on the slowest client,

i.e.,

Tt = max
n∈St

{T rem
n,t + T comm

n,t }. (8)

Note that the aforementioned analysis does not consider
the latency associated with global model broadcasting and
updating. This is because the edge server typically possesses
larger transmit power and stronger computational capability
than the resource-constrained edge clients. Thus, we mainly
focus on the performance bottleneck inherent in edge clients.

C. Problem Formulation

This work aims to dynamically adjust the synchronous
degree and optimize bandwidth allocation policies in each
round to minimize the global loss function while adhering
to the total learning latency constraint Tmax. The optimization

problem is formulated as follows:

min
{Kt,ϑt}T−1

t=0

E[L(xT )] (9)

s. t.
T−1∑
t=0

Tt ≤ Tmax, (9a)

N∑
n=1

ϑn,t ≤ 1, ∀t, (9b)

0 ≤ ϑn,t ≤ 1,∀n ∈ N ,∀t, (9c)
0 ≤ Kt ≤ N, ∀t, (9d)
Kt ∈ N,∀t, (9e)

where (9a) stipulates that the latency of the entire learning
process cannot exceed the maximum allowed latency, Tmax.
(9b) and (9c) correspond to the wireless bandwidth restrictions.
(9d) and (9e) impose constraints on the synchronous degree,
indicating the number of collected gradients in each round
cannot surpass the client number.

Problem (9) is intractable to solve as it necessitates de-
riving the closed-form expression of the global loss function
L(xT ), which is almost impossible due to the intricacies of
the learning process. To tackle this issue, we find an upper
bound of L(xT ) and transform problem (9) into minimizing
this bound for global loss minimization in the following
sections. Furthermore, solving problem (9) demands precise
time latency information for all clients in all rounds at the
beginning of FL. However, such information is unattainable
because of unforeseen time-varying channels. To facilitate
online synchronous degree control and resource allocation,
we transform the long-term decision problem (9) into a
deterministic one in each round by leveraging the Lyapunov
optimization framework in Section IV.

III. CONVERGENCE ANALYSIS

This section investigates the convergence behaviour of
ASAFL to explore how the synchronous degree Kt in each
round affects its learning performance. For the sake of anal-
ysis, we define ∇Ln(x

i
n,t) = 1

Bn

∑
ξ∈Bn

ℓ(ξ;x) as the full
gradient of client n in the i-th iteration in round t. Let L∗

represent the optimal global loss function. In addition, we
impose some assumptions on the loss functions Ln(·) as
follows:

Assumption 1. All the loss functions, Ln(x) (∀n ∈
N ), are β-smooth, i.e., for all x1,x2 ∈ Rd, we have
∥∇Ln(x1)−∇Ln(x2)∥ ≤ β ∥x1 − x2∥, where β > 0. In
addition, Ln(x) is weak convex, i.e., Ln(x1) ≥ Ln(x2) +
⟨∇Ln(x2),x1 − x2⟩+ µ

2 ∥x1 − x2∥2, where µ ≥ 0. Ln(x) is
convex if µ = 0, and non-convex if µ > 0 [18].

Assumption 2. The stochastic gradient computed on the
uniformly sampled mini-batch data An,t of client n is
an unbiased estimation of the full gradient ∇Ln(xt), i.e.,
E∥∇L̃n(xt)∥= ∇Ln(xt), and the variance is bounded by ς2,
i.e., E∥∇L̃n(xt)−∇Ln(xt)∥≤ ς2.

Assumption 3. The loss function on each client has a global
variance bound, i.e., 1

N

∑N
n=1 ∥∇L(x)−∇Ln(x)∥2 ≤ Γ2.
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These assumptions are widely utilized for the convergence
analysis of FL, e.g., [15], [27]–[29]. In Assumption 1, the
weak convex assumption on loss functions induces the derived
analysis result to be effective for both strongly convex and
a restricted family of non-convex problems [18]. The con-
vergence analysis in more general non-convex loss function
settings is a promising direction, which will be left as a future
direction of this work. In addition, the experimentation results
in Section V further show that our proposed ASAFL approach
based on this assumption works well for practical machine
learning models (i.e., VGG-11 and LeNet-5) with non-convex
loss functions. In Assumption 3, we utilize a universal bound
Γ2 for quantifying the degree of non-IID. Particularly, Γ2 = 0
indicates the data distribution among clients is IID. Γ2 > 0
represents the data distributions are non-IID, and large Γ2

reflects high heterogeneity of the local data distribution.

Lemma 1. If Assumptions 1 and 2 are satisfied, the deviation
of local model from the global model after i iterations is
bounded by

E
∥∥xi

n,t − xt

∥∥2 ≤ 4η2(I − 1)(2IG2 + ς2). (10)

Proof. See Appendix A.

Lemma 2. If Assumptions 1 and 2 are satisfied, the drift
between the global models in two rounds, i.e., t1 and t2
(t1 > t2), is bounded by

E ∥xt1 − xt2∥
2 ≤ 3c1η

2(t1 − t2)
2, (11)

where c1 = (I2 + I − 1)ς2 + (I2 + 2I(I − 1))G2

Proof. See Appendix B.

Based on the above two lemmas, the convergence bound of
ASAFL is derived in the following theorem.

Theorem 1. If Assumptions 1-3 are satisfied, and η ≤ 1
2Iβ ,

the T -round convergence bound of ASAFL is

E[L(xT )− L∗] ≤ cT2 E[L(x0)− L∗] + c
∑T−1

t=0
ct2

+
21η2βc1

4N

T−1∑
t=0

cT−t−1
2

N∑
n=1

(1− sn,t)(τn,t−1 + 1)2. (12)

where c2 = 1−µηI +2µβη2I2 and c = 12η2β(I − 1)IG2 +
(6η2β(I − 1) + 3

4ηI)ς
2 + 3ηIΓ.

Proof. See Appendix C.

According to Theorem 1, the convergence bound of ASAFL
is determined by three terms: 1) The initial gap between the
global loss and the optimal loss. 2) A system hyperparameters-
associated term. 3) The cumulative staleness of clients’ local
gradients. The first two terms determined by the system
hyperparameters and the initial global model are unrelated
to bandwidth allocation and synchronous degree control. The
third term is closely connected to the synchronous degree
control policy. By increasing the synchronous degree Kt in
each round to decrease the gradients’ staleness, the learning
performance of ASAFL can be improved. However, increasing
the synchronous degree Kt in each round will increase the

corresponding learning latency as the edge server must wait
for more clients to transmit their gradients. In the latency-
constrained FL system, one should carefully control the syn-
chronous degree Kt in each round to achieve balance between
the latency and accuracy.
Remark 1. Note that 0 < c2 < 1 due to η ≤ 1

2Iβ . As t

increases, cT−t−1
2 also keeps increasing. This indicates that the

impact of gradient staleness intensifies throughout the learning
process, with the staleness in later rounds exerting a more
substantial influence on learning performance than that in the
early rounds. Consequently, under the given overall training
time, one should allocate more time to the later rounds to
increase the synchronous degree for improving the learning
performance.

IV. ADAPTIVE SEMI-ASYNCHRONOUS FEDERATED
LEARNING

In this section, we develop an adaptive asynchronous degree
control and bandwidth allocation algorithm to solve problem
(9) online. For this purpose, we convert problem (9) to
optimizing the convergence bound obtained in Section III.
Then, we derive the bandwidth allocation policies and develop
a low-time complexity synchronous degree control algorithm
to enhance the FL performance.

A. Problem Analysis

Following Theorem 1, minimizing the final term on the
right-hand-side (RHS) of (12) leads to global loss mini-
mization. However, the direct minimization of

∑T−1
t=0 (1 −

µηI +2µβη2I2)T−t−1
∑N

n=1(1− sn,t)(τn,t−1 +1)2 presents
an intractable challenge due to the presence of unknown
parameters, such as the Lipschitz constant β and µ. The
value of β and µ are closely related the machine learning
models and loss function characteristics. As highlighted in
[30], computing the precise value of β and µ for deep
learning models is impractical, even in the context of two-layer
neural networks. Fortunately, our analysis result in Remark 1
elucidates that allocating more time to the later rounds helps
improve the learning performance when the overall learning
time is constrained. Building upon this insight, we introduce
variables λt (∀t) to represent the weight of gradients’ staleness
in round t to quantify the impact of staleness in each round.
Furthermore, we define the objective function as the weighted
staleness of local gradients across the learning process, i.e.,∑T−1

t=0 λt

∑N
n=1 sn,t(τn,t−1+1)2, and maximize it to achieve

global loss minimization. Consequently, we reformulate prob-
lem (9) into the following problem:

max
{Kt,ϑt}T−1

t=0

∑T−1

t=0
λt

∑N

n=1
sn,t(τn,t−1 + 1)2 (13)

s. t. (9a), (9b), (9c), (9d), (9e).

In problem (13), the weight parameter λt is crucial for the
learning performance. In the following, we provide some
guidelines for selecting λt:

1) Based on Remark 1, λt should be ascending with re-
spect to the round index t since the gradients’ staleness in
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later rounds exerts a more significant influence on learning
performance than that in the early rounds. This guideline is
verified in Section V-B.

2) Based on Theorem 1, the weight of gradients’ staleness
in each round t is cT−t−1

2 (0 < c2 < 1), which shows a
convex shape with respect to t. Thus, in the continuous number
domain, λt ought to be a convex function with respect to t.

3) The values of λt in the early rounds should not be
too small. Given a fixed learning latency, overly small values
may lead to quite small synchronous degrees and only a few
clients participate in the global model updating. Hence, the
global model is not well-trained in the earlier rounds. This
may induce learning performance degradation.

According to these guidelines, we select λt = 1
T−t as the

weighting policy in this work. The effectiveness of these
guidelines for selecting λt is verified in Section V-D.

Directly solving problem (13) requires optimally dividing
the latency budget into each round, which is impractical since
it requires precise knowledge of the channel condition and
computation schedule of all clients throughout the entire learn-
ing process. To enable online dynamic synchronous degree
control, we adopt the Lyapunov optimization framework to
handle the dependencies between rounds. Thus, we define a
virtual queue qt, which evolves as

qt+1 = max
(
qt + Tt −

Tmax

T
, 0
)
, (14)

with a initial value q0 = 0. Taking inspiration from the drift-
plus-penalty algorithm [31], the long-term latency constraint
(9a) and the objective function (13) can be transformed into
Lyapunov drift-plus-penalty function. Then, we reformulate
problem (13) into the following problem to minimize the drift-
plus-penalty function and facilitate online synchronous degree
control and bandwidth allocation:

min
Kt,ϑt

− µλt

N∑
n=1

sn,t(τn,t−1 + 1)2 + qtTt (15)

s. t. (9b), (9c), (9d), (9e).

In problem (15), µ is a weight factor that balances the latency
and accuracy. Increasing µ would emphasize accuracy by
immolating latency and vice versa.

B. Optimal Bandwidth Allocation

For any given synchronous degree control policy Kt in
round t, the participating client set St can be determined,
which is the first Kt clients that accomplish their local training
in round t. With St, we decompose the optimal bandwidth
allocation problem as

min
ϑt

max
n∈St

{T rem
n,t + T comm

n,t } (16)

s. t. (9b), (9c)..

The optimization problem (16) is a convex [32], its optimal
solution can be obtained through the following lemma.

Lemma 3. The optimal bandwidth allocation policy of prob-
lem (16) satisfies the following condition:

ϑn,t =
Qq

(T ∗
t − T rem

n,t )B log2(1 +
pn,thn,t

σ2 )
, (17)

where T ∗
t is the optimal latency for the participating client set

St in round t and satisfy
∑

n∈St
ϑn,t = 1.

Proof. See Appendix D.

In Lemma 3, the optimal bandwidth allocation decision
includes an unknown variable T ∗

t . From (17), it is evident
that ϑk,t is a monotonically decreasing function concerning
T ∗
t . Therefore, the binary search method can be utilized to

find the optimal bandwidth allocation policy. To facilitate this,
we derive the upper and lower bounds of T ∗

t in the below. To
derive the lower bound for T ∗

t , we utilize the fact that the
minimum bandwidth ratio allocated to clients is below 1

Kt
,

i.e., minn∈St ϑ
∗
n,t ≤ 1

Kt
. Thus, we have

minn∈St

Qq

B log2(1+
pk,thk,t

σ2 )

maxn∈St(T
∗
t − T rem

n,t )
≤ 1

Kt
. (18)

Hence, the lower bound of T ∗
t is given by

T low
t = min

n∈St

KtQq

Blog2(1 +
pk,thk,t

σ2 )
+ min

n∈St

T rem
n,t . (19)

To determine the upper bound for T ∗
t , we consider

maxn∈St ϑ
∗
n,t ≥ 1

Kt
. The upper bound is derived using a

comparable approach to the one employed for the lower bound
and is therefore skipped for conciseness, it is given by

T up
t = max

n∈St

KtQq

B log2(1 +
pk,thk,t

σ2 )
+ max

n∈St

T rem
n,t . (20)

Building upon the above lower and upper bounds, we utilize
the binary search method to find the optimal T ∗

t and determine
the optimal bandwidth allocation policy, the specific steps of
which are detailed in Algorithm 2. The algorithm iteratively
halves the search region, terminating when the precision
criterion ε is met. Thus, the complexity of Algorithm 2 is
O(log2

Tup
t −T low

t

ε ).

C. Synchronous Degree Control

Based on the preceding analysis, the optimal bandwidth
allocation for any client set St can be solved. Note that under
the semi-asynchronous aggregation mechanism, for round t
with a given synchronous degree Kt (1 ≤ Kt ≤ N ), the first
Kt clients completed their local training will participate in
the current-round global model update. That is, the optimal
latency and bandwidth allocation policy can be obtained for
any given Kt in round t. Problem (15) is to select an
appropriate synchronous degree to minimize the drift-plus-
penalty, i.e., −µλt

∑N
n=1 sn,t(τn,t−1 + 1)2 + qtTt. Therefore,

in each round t, we sort the clients in ascending order based
on their remaining computation time. Here various sorting
algorithms, such as Heapsort or Mergesort, can be adopted
with a worst-case complexity of O(N logN). Let Ñ denote
the sorted client set. Subsequently, we solve the synchronous
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Algorithm 2 Bandwidth Allocation
1: Input St, the precision factor ε > 0.
2: Compute the lower bound (T low

t ) and upper bound (T up
t ) based

on (19) and (20), respectively.
3: repeat
4: Set Tmid = (T low

t + T up
t )/2.

5: For each client n ∈ St, compute the required bandwidth
allocation ratio ϑn,t(Tmid) based on (17).

6: Compute
∑

n∈St
ϑn,t(Tmid).

7: if
∑

n∈St
ϑn,t(Tmid) > 1 then

8: Set T low
t = Tmid and T up

t = T up
t .

9: else if 0 <
∑

n∈St
ϑn,t(Tmid) < 1− ε then

10: Set T low
t = T low

t and T up
t = Tmid.

11: else
12: Break the circulation.
13: until |T up

t − T low
t |< ε

14: return The optimal latency T ∗
t = Tmid and the optimal band-

width allocation policy ϑt.

Algorithm 3 Adaptive Synchronous Degree Control
1: Input the virtual queue length qt and λt, initialize µ.
2: Sort clients according to T rem

n,t ascendingly to acquire the sorted
client set Ñ .

3: for Kt = 1, 2, · · · , N do
4: S = Ñ [1 : Kt]
5: Solve the optimal latency and bandwidth allocation policy of

S by Algorithm 2, i.e., T ∗
t (S), ϑ∗

t .
6: Calculate the drift-plus-penalty of Kt, i.e., Y(Kt) =

−µλt

∑N
n=1 sn,t(τn,t−1 + 1)2 + qtT

∗
t (S).

7: Find the synchronous degree K∗
t = argmin1≤Kt≤N Y(Kt), the

participating client set S = Ñ [1 : Kt], and the corresponding
bandwidth allocation policy ϑ∗

t

8: return The synchronous degree control policy K∗
t , bandwidth

allocation policy ϑ∗
t

degree control policy by gradually increasing Kt from 1 to N .
For each potential Kt, the first Kt clients in Ñ are selected to
form the participating client set, and Algorithm 2 is executed
to compute the optimal round latency. Following that, we
substitute the optimal round latency into the objective func-
tion (15) to compute the drift-plus-penalty value, denoted as
Y(Kt). The optimal synchronous control policy is derived by
comparing the drift-plus-penalty value among all potential Kt,
i.e., K∗

t = argmin1≤Kt≤N Y(Kt). We formally describe the
proposed synchronous degree control approach in Algorithm
3. Algorithm 3 performs N times Algorithm 2 to calculate the
synchronous degree control policy and has a polynomial time
complexity O(N logN +N log2

Tup
t −T low

t

ε ).

D. Optimality and Implementation

This subsection discusses the optimality and implementation
of the proposed approach. To characterize the performance of
the proposed adaptive synchronous degree control algorithm,
we compare it with its optimal offline counterpart which is in
fact problem (13), regarding the computation and communica-
tion time in the entire learning process as a predefined hyper-
parameter sequence. Let s∗n,t be the optimal client participation
indicators obtained by solving the above problem. The perfor-
mance guarantee of the proposed adaptive synchronous degree
control algorithm is shown in the following proposition.

Proposition 1. Compared to the offline counterpart optimal
solution, the cumulative loss of the proposed adaptive asyn-
chronous control algorithm is bounded by

T−1∑
t=0

λt

N∑
n=1

sn,t(τn,t−1 + 1)2

≥ −T 2χ2

2µ
+

T−1∑
t=0

λt

N∑
n=1

s∗n,t(τn,t−1 + 1)2, (21)

and the latency of the proposed algorithm is bounded by

T−1∑
t=0

Tt ≤ Tmax+

√√√√Tχ2+2µ
T−1∑
t=0

λt

N∑
n=1

(τn,t−1 + 1)2. (22)

where χ = max
t

{∣∣Tt − Tmax

T

∣∣}.

Proof. See Appendix E.

According to Proposition 1, we have the following remark:

Remark 2. For the proposed adaptive synchronous degree
control approach, we have: 1) the latency constraint is approx-
imately met with the O(

√
µ)-bounded factor, and 2) the pro-

posed adaptive synchronous degree control algorithm achieves
O(1/µ)-optimality concerning its optimal offline counterpart
solution. Therefore, the proposed adaptive synchronous degree
control algorithm exhibits an O(

√
µ, 1/µ) latency-learning

trade-off. In particular, when µ is increased, greater priority
is given to decreasing the gradients’ staleness for the purpose
of enhancing learning performance, even if it results in higher
latency, and conversely.

In wireless networks, enabling the deployment of the pro-
posed ASAFL necessitates the server to retain all clients’
historical gradient information. Consequently, the server’s
memory size demand is contingent upon the model size and
the client number. This poses limitations on the scalability
of ASAFL, as the growing number of clients may lead to an
exhaustion of the edge server’s memory space. To address this
challenge, we devise a variant ASAFL which is equivalent
to the proposed ASAFL. In the variant ASAFL, the edge
server only retains one gradient array Ḡt for caching the
aggregated gradient, and each client n (n ∈ N ) independently
retains a gradient array, denoted as Gn,t, to cache its latest
gradient information. Following that, we make two following
changes in Algorithm 1 as follows: 1) At the client side,
each client n upload the difference between its current and
prior gradients, i.e., ∆n,t = gn,t − Gn,t−1, to the server,
as differing from uploading current local gradient gn,t in
Algorithm 1. 2) At the server side, after receiving the client
gradient information, it updates the retained gradient array
according to Ḡt = Ḡt−1 + 1

N

∑
n∈St

∆n,t. Then, the global
model is updated as xt+1 = xt − ηḠt. Through the above
changes, we mitigate the server’s memory bottleneck and
obtain an equivalent implementation of the proposed ASAFL
in Algorithm 1, which is proved in the following theorem.

Theorem 2. The variant ASAFL is equivalent to the proposed
ASAFL in Algorithm 1.
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Proof. Firstly, for the retained Ḡt at the server, we have

Ḡt = Ḡt−1 +
1

N

∑N

n=1
sn,t∆n,t

= Ḡt−1 +
1

N

∑N

n=1
sn,t(gn,t − Gn,t−1)

= Ḡt−1 +
1

N

∑N

n=1
(Gn,t − Gn,t−1). (23)

Note that, at the start of FL, we initialize the retained gradient
arrays at the edge server and clients as 0, i.e., Ḡ−1 = 0 and
Gn,−1 = 0(n ∈ N ). When t = 0, we have

Ḡ0= Ḡ−1+
1

N

N∑
n=1

(Gn,0 − Gn,−1) =
1

N

N∑
n=1

Gn,0. (24)

When t = 1, we have

Ḡ1 = Ḡ0 +
1

N

∑N

n=1
(Gn,1 − Gn,0)

=
1

N

∑N

n=1
Gn,1 + Ḡ0 −

1

N

∑N

n=1
Gn,0

=
1

N

∑N

n=1
Gn,1. (25)

Similarly, for t > 1, we can derive that Ḡt =
1
N

∑N
n=1 Gn,t.

Thus, the updated global model through the variant ASAFL is
xt+1 = xt − ηḠt = xt − η 1

N

∑N
n=1 Gn,t, which equals to the

updated global model by the ASAFL in Algorithm 1. Thus,
the variant ASAFL is equivalent to ASAFL.

According to Theorem 2, one can implement the above
variant ASAFL to achieve an equivalent learning process with
the proposed ASAFL in Algorithm 1 in practical wireless
networks. It is worth mentioning that the computation costs,
communication costs, and the learned global model of the
variant ASAFL are the same as the ASAFL approach in
Algorithm 1. The variant ASAFL only requires the edge server
to retain a single gradient array, whereas ASAFL necessitates
the retention of all K users’ gradient arrays. Thus, compared
to Algorithm 1, the variant ASAFL design can save K times
memory size. For clarity, we summarize the detailed steps of
the variant ASAFL in Algorithm 4.

V. NUMERICAL RESULTS

This section evaluates the efficacy of the proposed ASAFL.
Unless otherwise identified, the defaulting experimental pa-
rameters are summarised in Table II. The parameters chosen
in the simulation are based on the parameter settings of a
typical wireless FL system such as [12], [16], [17], [24]–[26],
[33]. We consider a circular region with a radius of 500m,
where the edge server is positioned at the centre, and N
clients are uniformly distributed. The channel gain of each
client n (n ∈ N ) is modelled as hn,t = h0ρn(t)d

−2
n , where

h0 is the path loss constant, ρn,t ∼ exp(1) is the small-
scale fading channel power gain of client n in round t, dn
is the distance from client n to the edge server. The CPU
frequency of each client n (n ∈ N ) is randomly selected from
[0.1, 0.8] GHz with interval 0.1 GHz. We evaluate the learning
performance of the proposed ASAFL using the MNIST and
CIFAR-10 datasets. The network architectures used for the

Algorithm 4 Variant ASAFL algorithm
1: Initialization: The server initials its gradient array Ḡt = 0 and

the global model x0, each client n (n ∈ N ) initializes its gradient
array Gt = 0.

2: Server side:
3: for t = 0, 1, · · · , T − 1 do
4: Initialize St = ∅, decide the synchronous degree Kt.
5: while |St|< Kt do
6: if Receive the gradient difference ∆n,t from client n then
7: Updating the gradient array according to Ḡt = Ḡt−1+

1
N

∑
n∈St

∆n,t

8: St = St ∪ n
9: Update the global model as xt+1 = xt − ηḠt

10: Broadcast xt+1 to the clients in St.
11: Client side:
12: if Client n received the global model xt then
13: for i = 0, 1, · · · , I − 1 do
14: Execute local training based on (3);
15: Calculate local gradient as g̃n,t = − 1

η
(xI

n,t − xt)
16: Upload ∆n,t = gn,t − Gn,t−1 to the edge server.

learning tasks on these three datasets are summarized in Table
III, where ’F’ denotes the fully connected module, ’C’ denotes
the convolution module, ’M’ denotes the 2 × 2 max-pooling
layer, and the number indicates the number of neurons in fully
connected layers or filters in convolution layers. For MNIST,
we train a LeNet-5 [34], which requires 497098 FLOPs to
process one data sample. For CIFAR-10, we train a VGG-
11 model [10], which requires 305662730 FLOPs to process
one data sample. Each CPU cycle is able to process 4 FLOPs.
For the dataset splitting, we follow prior arts [35] to model the
non-IID data distribution using a Dirichlet distribution Dir(α),
in which a smaller α indicates higher data heterogeneity.

TABLE II
PARAMETER SETTINGS

Parameter Value Parameter Value
N 50 B 10 MHz
pn (∀n ∈ N ) 10 dBm σ2 10−12 W
q 32 bits h0 -30 dBm
I 8 Ab 128
η 0.01 α 0.01
Q(LeNet-5) 19670 Cn(LeNet-5) 124,274.5
Q(VGG-11) 9354378 Cn(VGG-11) 76,415,682.5
Tmax(LeNet-5) 0.1T s Tmax(VGG-11) 10T s

TABLE III
NETWORK ARCHITECTURE FOR THE CLASSIFICATION MODEL

Dataset Model Name Model Architecture

MNIST LeNet-5 [34] C: [6, M, 16, M]
F: [256, 64, 10]

CIFAR-100 VGG-11 [10] C: VGG-11 feature extractor
F: [512, 256, 10]

A. Effectiveness of Gradient Calibration

This subsection demonstrates the advantages of the pro-
posed gradient calibration method through contrasting it to
the following algorithms under different data heterogeneous
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Fig. 2. Comparison of various FL algorithms on MNIST dataset: (a) α = 0.01
(b) α = 0.1.

degrees on MNIST and CIFAR-10 datasets. 1) Asynchronous
FL: The edge server immediately updates the global model
once it receives one local update from clients. 2) Synchronous
FL [12], [17]: The server aggregates K local gradients in a
synchronous way for the global model updating per round. 3)
Semi-Asynchronous FL (SAFL) [24]: The edge server updates
the global model when it receives K local gradients from
clients, and clients perform their local training asynchronously.
4) Semi-Asynchronous FL with staleness control (SAFL-SC)
[25]: The training process of SAFA-SC closely resembles that
of SAFA, with one notable distinction being the introduction
of a staleness threshold hyperparameter τ0. In the training
process, after the per-round global model updating, the edge
server distributes the updated global model to clients exceed-
ing the staleness threshold τ0. Subsequently, these clients halt
their local training and restart local training based on the latest
received global model. Due to page limits, we only present the
results of K = 10 [12], [17], [25], and the results on other
values of K show similar conclusion with K = 10.

Fig. 2 compares the above FL schemes on MNIST dataset.
In Fig. 2(a), we configure the data heterogeneity parameter
as α = 0.01. The results show that the semi-asynchronous
approach with the proposed gradient calibration attains su-
perior accuracy and convergence speed than the benchmarks.
Specifically, our proposed approach improves at least 4.83%
accuracy compared to the baseline schemes. When aiming for
an accuracy of 88%, our approach requires 9.95s to achieve the
target, while the Semi-Asynchronous FL requires 43.09s. That
is, the proposed approach can provide a 4.3x speed up for the
convergence. The performance gain of the proposed approach
comes from the gradient calibration mechanism, which adopts
the absent clients’ historical gradients to calibrate the global
model update and mitigate the bias in the global aggregation.
However, the three benchmarks update the global model
only based on partial clients’ gradients, which may induce
biased global model updating under the data heterogeneity
scenarios. Fig. 2(b) evaluates the proposed approach and the
benchmarks by configuring α = 0.1, which induced smaller
data heterogeneity than Fig. 2(a). It is observed that all the FL
algorithms under a = 0.1 achieve better learning performance
than that under α = 0.01. The reason is that increased data
heterogeneity weakens the generalization capability of the
global model, thereby worsening the degradation in accuracy.
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Fig. 3. Comparison of various FL algorithms on CIFAR-10 dataset: (a) α =
0.01 (b) α = 0.1.

Moreover, the proposed approach improves accuracy by 3.24%
compared to the benchmark schemes, and it is able to provide
3.6x speed up to achieve 90% test accuracy.

One interesting phenomenon in Fig. 2 is that ASFL-SC
with a large staleness threshold (τ0 = 7) performs better than
that with a small staleness threshold (τ0 = 3). This may be
because that small τ0 forces clients with weak computation and
communication capabilities frequency halt their current local
training and restart training based on the latest received global
model. Thus, these weak clients are less involved in the global
model updating and induce learning performance degradation.
In addition, ASFL-SC with a large staleness threshold (τ0 = 7)
slightly outperforms ASFL under the data heterogeneity set-
ting of α = 0.1 while performing worse than ASFL under
higher data heterogeneity setting of α = 0.01. This reveals
that the staleness control may not significantly impact the
learning accuracy when the data distribution is highly non-IID.
Therefore, in real-world systems, it becomes imperative for the
staleness control policy to thoroughly account for factors such
as the degree of data heterogeneity and other system variables
as we discussed in Section II-A. Due to page limits, we leave
this promising direction as our future works.

A similar comparison is conducted using the CIFAR-10
dataset, as depicted in Fig. 3. The results show that the
proposed approach with gradient calibration surpasses the
baselines in both accuracy and convergence speed. Notably,
a more pronounced performance gain is observed for the
proposed approach on this intricate dataset compared to the
MNIST dataset in Fig. 2. In Fig. 3(a), we set α = 0.01, where
the proposed approach achieves a notable 7.8% accuracy
boosting compared to the benchmarks. In Fig. 3(b), α is set to
0.1, leading to a 6.4% accuracy improvement for the proposed
approach. In addition, similar to the results on the MNIST
data set, it is observed that the proposed approach performs
better than the ASFL-SC approach and the effectiveness of
the staleness control policy is highly related to the data
heterogeneity degree.

In Table IV, we present the required time necessary to
achieve a target accuracy for both the proposed approach and
the top-performing baseline algorithm. Specifically, on the
CIFAR-10 dataset, when α = 0.01, the proposed approach
spends only 0.97×104s to achieve 65% accuracy, while semi-
asynchronous FL (the best benchmark) requires 1.63 × 104s.
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TABLE IV
REQUIRED TIME TO REACH A TARGET ACCURACY

Dataset α Target Proposed Best
Baseline

Speed
Up

MNIST 0.01 88% 9.95s 43.09s 4.3x
0.1 90% 9.3s 33.5s 3.6x

CIFAR-10 0.01 65% 0.97×104s 1.63× 104s 1.7x
0.1 70% 0.73×104s 1.17× 104s 1.6x
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Fig. 4. Comparison of synchronous degree control patterns on MNIST dataset:
(a) Test accuracy. (b) Latency. (c) Average staleness of local gradients.

That is, the proposed approach achieves 1.7x speed up in
comparison to the benchmarks. When α = 0.1, the proposed
approach attains 1.6x speed up to reach 70% accuracy com-
pared to the benchmarks.

B. Impacts of Synchronous Degree Control Policy

This subsection validates the theoretical results presented in
Remark 1 by examining the effects of the following temporal
synchronous degree control patterns on the learning perfor-
mance of ASAFL: 1) Fixed Synchronous Degree Pattern:
The synchronous degree in each round is consistently set
to 10, indicating that the edge server waits for ten clients’
local gradients to update the global model. 2) Ascending
Synchronous Degree Pattern: This pattern gradually increases
the synchronous degree from 1 to 20, resulting in an average
synchronous degree of 10 in each round. 3) Descending
Synchronous Degree Pattern: Conversely, in this pattern, the
synchronous degree declines from 20 to 1, maintaining the
average synchronous degree in each round to 10.

In Fig. 4, we compare the performance of the above three
synchronous degree control policies on MNIST dataset. In
Fig. 4(a), we can see that the ascending pattern outperforms
the other two patterns in both accuracy and convergence
speed. The latent reason for this phenomenon can be found
in Fig. 4(b) and Fig. 4(c). Fig. 4(b) shows that the per-round
latency of the Ascending pattern exhibits a gradual increase
since the ascending in synchronous degree compels the edge
server to await more clients for global model updating. This
facilitates fewer clients to be involved in the early global model
updating stages to mitigate the waiting time and accelerate the
convergence. As the learning process progresses, more clients
engage in the global model updating process to reduce the
convergence error and improve the final learning accuracy.
In Fig. 4(c), the average staleness of local gradients in the
ascending pattern exhibits an initial increase followed by a
subsequent decrease during the learning process. It is worth
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Fig. 5. Comparison of synchronous degree control patterns on CIFAR-10
dataset: (a) Test accuracy. (b) Latency. (c) Average staleness of local gradients.

noting that the rise in staleness in the early learning stages
is because the initial staleness is equal to zero. According to
Theorem 1, the gradient staleness in the later learning rounds
has a more distinct impact on the learning performance than
that in the early rounds. Consequently, the proposed approach,
which assigns a higher synchronous degree in later rounds
to mitigate corresponding staleness, achieves superior con-
vergence error reduction and enhanced learning performance
compared to the benchmarks. This aligns with our theoretical
findings illustrated in Remark 1.

Similarly, the evaluations based on CIFAR-10 in Fig. 5 pro-
vide additional validation of our theoretical insights outlined
in Remark 1. It is observed that the ascending synchronous
degree control pattern achieves better performance than the
other two patterns. Thus, in practical FL systems with a given
learning time budget, it is recommended to incrementally
increase the synchronous degree to attain fast learning con-
vergence and high model accuracy.

C. Overall Effectiveness

This subsection assesses the proposed ASAFL by compar-
ing it with the following benchmarks: 1) Greedy synchronous
degree control: In each round t, the available learning time is
the remaining time, i.e., Tmax−

∑t−1
x=1 Tt. 2) Adaptive Myopic

synchronous degree control: In each round t, the available time
is calculated as the residual time divided by the residual round
number, i.e., Tmax−

∑t−1
x=1 Tt

T−t+1 . 3) Equal bandwidth allocation
policy (EBA): In each round, the synchronous degree is
determined by the proposed approach, while the bandwidth
is equally allocated to each selected client. For the proposed
approach, we set λt =

1
T−t (∀t ∈ {0, 1, T − 1}).

Fig. 6 compares these synchronous degree control approach-
es on the MNIST dataset. Fig. 6(a) shows that the proposed
algorithm surpasses the benchmarks in terms of convergence
speed and learning accuracy. Fig. 6(b) depicts the cumulative
time usage of various synchronous degree control algorithms.
It is observed that the growth speed of the time usage of the
proposed approach under µ = 10 and µ = 100 increases along
with the learning process. This indicates that the proposed
approach has higher time usage in the later rounds than in the
early rounds. Thus, the proposed approach acquires superior
learning accuracy. Particularly, the proposed approach with
µ = 10 exhibits an equivalent time usage to the Adaptive
Myopic algorithm. Both of them adhere to the time constraint,
with the unified time usage being less than 1 at the end of the
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Fig. 6. Comparison of different synchronous degree control algorithms on
MNIST dataset: (a) Test accuracy (b) Unified cumulative time usage.
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Fig. 7. Comparison of different synchronous degree control algorithms on
CIFAR-10 dataset: (a) Test accuracy (b) Unified cumulative time usage.

training process. However, the proposed approach with µ = 10
significantly outperforms the Adaptive Myopic method, i.e.,
enhancing accuracy by 2.9%, as well as achieving 2.1x speed
up when aiming for an accuracy of 90%. In addition, the
proposed approach significantly surpasses the equal bandwidth
allocation approach. This verifies the importance of optimizing
the bandwidth allocation policy, which is able to save training
time and involve more clients to participate in the learning
process.

Fig. 7 further juxtaposes the performance of the syn-
chronous degree control algorithms on the CIFAR-10 dataset.
Similarly, the proposed approach consistently outperforms the
benchmarks. Fig. 7(b) illustrates that the proposed scheme
allocates more time in the later rounds than the benchmarks.
This means that the proposed approach has a larger syn-
chronous degree in the later rounds. Following Remark 1, this
leads to the superior performance of the proposed approach
compared to the benchmarks. In particular, the proposed
approach with µ = 10 consumes the same learning time as
Myopic, while achieving better performance. Specifically, the
proposed approach boosts accuracy by 5.78% compared to
the Myopic method, and it provides 1.9x speed up to attain
65% accuracy. Similar to the results on the MNIST dataset,
the proposed approach outperforms the EBA approach. This
further illustrates the necessity to optimize the bandwidth
resources to save training time and encourage more clients
to join the learning process.
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Fig. 8. Comparison of different weighting policies of λt: (a) Weight value
λt over global rounds. (b) Test accuracy. (c) Unified cumulative time usage.

D. Weighting Parameter Tuning

This subsection compares the following weighting policies
on the CIFAR-10 dataset to verify the guidelines for selecting
the weighting parameter λ in Section IV-A. 1) λt =

1
T−t , 2)

λt = 0.95T−t−1, 3) λt = 0.7T−t−1, 4) λt =
t
T .

Fig. 8(a) shows the weight values over rounds for these
weighting policies. Specifically, the weight values of λt =

t
T

are linear increasing with respect to t. For the other three
weighting policies, the weight values in the later rounds are
far bigger than in the early rounds. Compared to λt = 0.95T−t

and λt = 0.7T−t, λt = 1
T−t has large weight values in

the early rounds. Fig. 8(b) and Fig. 8(c) show the learning
performance and the cumulative time usage of all four weight-
ing policies. Since changing the weighting policy may break
the learning time constraint without changing the drift-plus-
penalty hyperparameter µ, this subsection sets different drift-
plus-penalty hyperparameters for these weighting policies such
that the consumed time does not exceed the time constraint.
Specifically, we set µ = 10 for λt = 1

T−t , µ = 18 for
λt = 0.95T−t, µ = 30 for λt = 0.7T−t and µ = 0.5 for
λt =

t
T . From Fig. 8(c), all these policies adhere to the time

constraint, with the unified time usage being less than 1 at the
end of the training process. It is observed from Fig. 8(b) that
the weighting policy λt =

1
T−t achieves the highest learning

accuracy. The reason comes from the following aspects: 1)
Compared to λt = t

T , λt = 1
T−t is able to emphasise

more importance in the later learning rounds. 2) Compared
to λt = 0.95T−t and λt = 0.7T−t, λt = 1

T−t allows more
clients to participate in the early rounds to provide a more
accurate model for the training in later rounds.

VI. CONCLUSION

This work proposed a novel ASAFL approach to dynamical-
ly adjust the synchronous degree to strike a balance between
learning latency and accuracy. To mitigate the biased model
updating resulting from partial client aggregation in the pres-
ence of data heterogeneity, we have proposed calibrating the
global updates by incorporating the historical local gradients
of absent clients in each round. We have theoretically analyzed
the convergence behaviour of the proposed ASAFL, revealing
that allocating more learning time to the later rounds helps
improve the learning performance when the total learning
time budget is fixed. Inspired by this, we develop an online
synchronous degree control and resource optimization scheme
to improve the learning performance of ASAFL. Simulation
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results demonstrated the efficacy of ASAFL in improving
convergence speed and learning accuracy.

APPENDIX

A. Proof of Lemma 1

Note that Lemma 1 is satisfied when i = 0 due to x0
n,t = xt.

For the case of i ≥ 1, we have

E
∥∥xi

n,t − xt

∥∥2 = E
∥∥∥xi−1

n,t − η∇L̃n(x
i−1
n,t )− xt

∥∥∥2
= E

∥∥xi−1
n,t − η∇Ln(x

i−1
n,t )− xt

∥∥2
+ η2E

∥∥∥∇L̃n(x
i−1
n,t )−∇Ln(x

i−1
n,t )

∥∥∥2
≤ E

∥∥xi−1
n,t − η∇Ln(x

i−1
n,t )− xt

∥∥2 + η2ς2, (26)

where the second equation is due to the unbiased stochastic
gradient assumption. The last inequation is due to Assumption
2. For the first term on the RHS of (26), we have

E
∥∥xi−1

n,t − η∇Ln(x
i−1
n,t )− xt

∥∥2
= E

∥∥xi−1
n,t − xt

∥∥2 + η2E
∥∥∇Ln(x

i−1
n,t )

∥∥2
− 2E

⟨ 1√
I − 1

(xi−1
n,t − xt),

√
I − 1η∇Ln(x

i−1
n,t )

⟩
≤ (1 +

1

I − 1
)E

∥∥xi−1
n,t − xt

∥∥2 + η2IE
∥∥∇Ln(x

i−1
n,t )

∥∥2
≤ (1 +

1

I − 1
)E

∥∥xi−1
n,t − xt

∥∥2
+ 2η2IE

∥∥∇Ln(x
i−1
n,t )−∇Ln(xt)

∥∥2 + 2η2IE ∥∇Ln(xt)∥2

≤ (1 +
3

2(I − 1)
)E

∥∥xi−1
n,t − xt

∥∥2 + 2η2IG2, (27)

where the first and second inequation holds by the triangle
inequality. The last inequation comes from Assumption 1.
Substituting (27) into (26) obtains:

E
∥∥xi

n,t − xt

∥∥2 ≤ (1 +
3

2(I − 1)
)E

∥∥xi−1
n,t − xt

∥∥2
+ 2η2IG2 + η2ς2. (28)

Telescoping the above inequation obtains

E
∥∥xi

n,t − xt

∥∥2 ≤ (2η2IG2 + η2ς2)
(1 + 3

2(I−1) )
I−1 − 1

3
2(I−1)

≤ 4η2(I − 1)(2IG2 + ς2), (29)

where the last inequation is due to (1 + 3
2(I−1) )

I−1 = (1 +
3

2(I−1) )
3
2

2(I−1)
3 ≤ exp( 32 ) < 5 and 2(I−1)

3 < I − 1.

B. Proof of Lemma 2

For two different rounds, i.e., t1 and t2 (t1 > t2), we have

E ∥xt1 − xt2∥
2
= E

∥∥∥∑t1−1

t=t2
(xt+1 − xt)

∥∥∥2
= η2I2E

∥∥∥∑t1−1

t=t2

1

NI

∑N

n=1

∑I−1

i=0
∇L̃n(x

i
n,t−τn,t

)
∥∥∥2

≤ 3η2I

N
(t1 − t2)

t1−1∑
t=t2

N∑
n=1

I−1∑
i=0

L2E
∥∥∥xi

n,t−τn,t
− xt−τn,t

∥∥∥2

+ 3η2I2(t1 − t2)
2
(ς2 +G2)

≤ 3c1η
2(t1 − t2)

2, (30)

where c1 = (I2 + I − 1)ς2 + (I2 + 2I(I − 1))G2.
The first inequation comes from adding and subtracting
∇Ln(x

i
n,t−τn,t

) + ∇Ln(xt−τn,t), then using the triangle in-
equality. The second inequation is due to Lemma 1.

C. Proof of Theorem 1

According to the β-smooth of L(·), we derive that

E[L(xt+1)− L(xt)]

≤ E ⟨∇L(xt),xt+1 − xt⟩+
β

2
E ∥xt+1 − xt∥2

= −ηE
⟨
∇L(xt),

1

N

∑N

n=1

∑I−1

i=0
∇L̃n(x

i
n,t−τn,t

)
⟩

+
βη2

2
E
∥∥∥ 1

N

∑N

n=1

∑I−1

i=0
∇L̃n(x

i
n,t−τn,t

)
∥∥∥2

= −ηE
⟨
∇L(xt),

1

N

∑N

n=1

∑I−1

i=0
∇Ln(x

i
n,t−τn,t

)
⟩

︸ ︷︷ ︸
A1

− η

N

N∑
n=1

I−1∑
i=0

E
⟨
∇L(xt),∇L̃n(x

i
n,t−τn,t

)−∇Ln(x
i
n,t−τn,t

)
⟩

︸ ︷︷ ︸
A2

+
βη2I2

2
E
∥∥∥ 1

NI

∑N

n=1

∑I−1

i=0
∇L̃n(x

i
n,t−τn,t

))
∥∥∥2︸ ︷︷ ︸

A3

, (31)

where the last equation holds by adding and subtracting
∇Ln(x

i
n,t−τn,t

) into ∇L̃n(x
i
n,t−τn,t

). Below we bound the
three terms in (31). For A1, we have

A1 = −ηIE ∥∇L(xt)∥2 + ηIE
⟨
∇L(xt),

∇L(xt)−
1

NI

∑N

n=1

∑I−1

i=0
∇Ln(x

i
n,t−τn,t

)
⟩

≤ −1

2
ηIE ∥∇L(xt)∥2

+
ηI

2
E
∥∥∥∇L(xt)−

1

NI

N∑
n=1

I−1∑
i=0

∇Ln(x
i
n,t−τn,t

)
∥∥∥2. (32)

For the last term on the RHS of (32), we have

E
∥∥∥∇L(xt)−

1

NI

∑N

n=1

∑I−1

i=0
∇Ln(x

i
n,t−τn,t

)
∥∥∥2

≤ 1

NI

N∑
n=1

I−1∑
i=0

E
∥∥∥∇L(xt)−∇Ln(x

i
n,t−τn,t

)
∥∥∥2

≤ 3

N

∑N

n=1
E ∥∇L(xt)−∇Ln(xt)∥2

+
3

N

∑N

n=1
E
∥∥∇Ln(xt)−∇Ln(xt−τn,t)

∥∥2
+

3

NI

N∑
n=1

I−1∑
i=0

E
∥∥∥∇Ln(xt−τn,t)−∇Ln(x

i
n,t−τn,t

)
∥∥∥2

≤ 3Γ +
3

N

∑N

n=1
β2E

∥∥xt − xt−τn,t

∥∥2
+

3

NI

∑N

n=1

∑I−1

i=0
β2E∥xt−τn,t − xi

n,t−τn,t
∥2, (33)
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where the first inequation follows the Jensen’s inequality.
The second inequation is derived by adding and subtracting
∇Ln(xt) +∇Ln(xt−τn,t) into ∇L(xt). The third inequation
abides by Assumption 1 and Assumption 2. Substituting (33)
into (32), we have

A1 ≤ −1

2
ηIE ∥∇L(xt)∥2 +

3ηI

2N

N∑
n=1

β2E
∥∥xt − xt−τn,t

∥∥2
+

3ηIΓ

2
+

3η

2N

N∑
n=1

I−1∑
i=0

β2E
∥∥∥xt−τn,t − xi

n,t−τn,t

∥∥∥2.
(34)

For the term A2, we have

A2 = − η

N

∑N

n=1

∑I−1

i=0
E
⟨
∇L(xt)−∇L(xt−τn,t),

∇L̃n(x
i
n,t−τn,t

)−∇Ln(x
i
n,t−τn,t

)
⟩

≤ ηI

2N

∑N

n=1
E
∥∥∇L(xt)−∇L(xt−τn,t

)
∥∥2

+
η

2N

N∑
n=1

I−1∑
i=0

E∥∇L̃n(x
i
n,t−τn,t

)−∇Ln(x
i
n,t−τn,t

)∥2

≤ ηIβ2

2N

∑N

n=1
E
∥∥xt − xt−τn,t

∥∥2 + 1

2
ηIς2. (35)

Now we bound the term A3 as follows:

A3 ≤ 1

NI

∑N

n=1

∑I−1

i=0
E
∥∥∥∇L̃n(x

i
n,t−τn,t

)
∥∥∥2

≤ 1

NI

N∑
n=1

I−1∑
i=0

E
∥∥∥∇Ln(x

i
n,t−τn,t

)
∥∥∥2 + ς2

≤ 2

NI

N∑
n=1

I−1∑
i=0

E
∥∥∥∇Ln(x

i
n,t−τn,t

)−∇L(xt)
∥∥∥2

+ 2E ∥∇L(xt)∥2 + ς2, (36)

where the second inequation is due to Assumption 2. The
third inequation is by adding and subtracting ∇L(xt) into
∇Ln(x

i
n,t−τn,t

). The first term in the above inequality is
bounded as

2

NI

∑N

n=1

∑I−1

i=0
E
∥∥∥∇Ln(x

i
n,t−τn,t

)−∇L(xt)
∥∥∥2

≤ 6

NI

∑N

n=1

∑I−1

i=0
β2E

∥∥∥xi
n,t−τn,t

− xt−τn,t

∥∥∥2
+

6

N

∑N

n=1
β2E

∥∥xt−τn,t − xt

∥∥2
+

6

N

∑N

n=1
E ∥∇Ln(xt)−∇L(xt)∥2

≤ 6

NI

∑N

n=1

∑I−1

i=0
β2E

∥∥∥xi
n,t−τn,t

− xt−τn,t

∥∥∥2
+

6

N

∑N

n=1
β2E

∥∥xt−τn,t
− xt

∥∥2 + 6Γ2. (37)

Substituting (37) into (36), we have

A3≤ 2E ∥∇L(xt)∥2

+
6

NI

∑N

n=1

∑I−1

i=0
β2E

∥∥∥xi
n,t−τn,t

− xt−τn,t

∥∥∥2
+

6

N

∑N

n=1
β2E

∥∥xt−τn,t − xt

∥∥2 + ς2 + 6Γ2. (38)

Substituting (34), (38), and (35) into (31), we have

E[L(xt+1)− L(xt)] ≤ (−1

2
ηI + βη2I2)E ∥∇L(xt)∥2

+
21η2β

4N
c1

∑N

n=1
τ2n,t + 12η2β(I − 1)IG2

+ (6η2β(I − 1) +
3

4
ηI)ς2 + 3ηIΓ. (39)

According to Assumption 1, we have ∥∇L(xt)∥2 ≥
2µ (L(xt)− L∗). By subtracting L∗ to xt+1) and L(xt), we
have

E[L(xt+1)− L∗] ≤ (1− µηI + 2µβη2I2)E[L(xt)− L∗]

+
21η2βc1

4N

N∑
n=1

τ2n,t + c. (40)

Since the staleness of each client n’s local gradient evolves as

τn,t =

{
τn,t−1 + 1, if sn,t = 0,

0, else, (41)

we have τ2n,t = (1−sn,t)
2(τn,t−1+1)2 = (1−sn,t)(τn,t−1+

1)2. Consequently, we have

E[L(xt+1)− L∗] ≤ (1− µηI + 2µβη2I2)E[L(xt)− L∗]

+
21η2βc1

4N

∑N

n=1
(1− sn,t)(τn,t−1 + 1)2 + c. (42)

By telescoping the above inequation, and let η ≤ 1
2Iβ , we

complete the proof.

D. Proof of Lemma 3

In accordance with (7), the communication latency T comm
n,t

exhibits a decreasing trend concerning ϑn,t monotonically. For
a client who completes its gradient uploading ahead of others,
we can redistribute its bandwidth to the slower clients. This
reduces the latency in the current round decided by strag-
glers. The bandwidth redistribution continues until all clients
complete local computation and transmit gradients. Hence, the
optimal solution to problem (16) is conducted by allocating the
overall bandwidth to all clients in St, ensuring they complete
gradient computing and uploading simultaneously. Therefore,
the optimal bandwidth allocation policy adheres{

T rem
n,t + T comm

n,t = T ∗
t , ∀n ∈ St,∑

n∈St

ϑn,t = 1. (43)

where T ∗
t is the optimal delay of round t. By resolving the

above equations, we complete the proof.

E. Proof of Proposition 1

Firstly, we define the Lyapunov function as Φ(t) = 1
2q

2
t .

According to the virtual queue defined in (14), we have q2t+1 ≤
(qt + Tt − Tmax

T )2. The Lyapunov drift in the t-th round is
Λ(t) = Φ(t+ 1)− Φ(t), i.e.,

Λ(t) =
1

2
(q2t+1 − q2t )

≤ 1

2
(Tt −

Tmax

T
)2 + qt(Tt −

Tmax

T
)
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≤ 1

2
χ2 + qt(Tt −

Tmax

T
), (44)

where χ = max
t

{∣∣Tt − Tmax

T

∣∣}. By adding

−µλt

∑N
n=1 sn,t(τn,t−1 + 1)2 into both sides of (44),

the upper bound of the drift-plus-penalty in round t is

Λ(t)− µλt

∑N

n=1
sn,t(τn,t−1 + 1)2

≤ 1

2
χ2 + qt(Tt −

Tmax

T
)− µλt

N∑
n=1

sn,t(τn,t−1 + 1)2. (45)

The classical drift-plus-penalty algorithm strives to minimize
the upper bound of Λ(t)−µλt

∑N
n=1 sn,t(τn,t−1+1)2. Thus,

its solution makes the RHS on (45) not larger than that
achieved by any feasible solution. Denoting the solution of
the proposed algorithm by s+n,t, and considering a feasible
solution with Tt = 0 and sn,t = 0, we have

Λ(t)− µλt

∑N

n=1
s+n,t(τn,t−1 + 1)2 ≤ 1

2
χ2. (46)

Let ΛT = Φ(T − 1)− Φ(0) = 1
2q

2
k,T−1 be the T -round drift.

Thus, we bound the T -round drift-plus-penalty as

ΛT =
1

2
q2k,T−1 ≤ 1

2
Tχ2 +

T−1∑
t=0

µλt

N∑
n=1

(τn,t−1 + 1)2. (47)

Thus, we have

q2k,T−1 ≤ Tχ2 + 2
∑T−1

t=0
µλt

∑N

n=1
(τn,t−1 + 1)2. (48)

According to the queue defined in (14), we have Tt− Tmax

T ≤
qt+1 − qt. Summing the above inequality along T rounds
obtains∑T−1

t=0
(Tt −

Tmax

T
) ≤

∑T−1

t=0
(qt+1 − qt)

≤
√
Tχ2 + 2

∑T−1

t=0
µλt

∑N

n=1
(τn,t−1 + 1)2. (49)

By rearranging the above inequality, (22) is obtained. Below
we analyze the optimality of the proposed algorithm, which
minimizes the RHS in (45). Since Λ(t) is positive, we have

−
T−1∑
t=0

µλt

N∑
n=1

s+n,t(τn,t−1 + 1)2 ≤ 1

2
Tχ2

+
T−1∑
t=0

qt(T
∗
t −

Tmax

T
)−

T−1∑
t=0

µλt

N∑
n=1

s∗n,t(τn,t−1 + 1)2, (50)

where the second term of the above inequation is bounded as
T−1∑
t=0

qt(T
∗
t − Tmax

T
) =

T−1∑
t=0

(qt − q0)(T
∗
t − Tmax

T
)

≤ T (T − 1)

2
χ2, (51)

where the inequation holds due to q0 = 0 and qt+1 − qt ≤ χ.
Substituting (51) into (50), (21) is derived.
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