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Abstract   This chapter considers the importance of decision support systems for 
supply chain risk management (SCRM). The first part provides an overview of the 
different operations research techniques and methodologies for decision making 
for managing risks, focusing on multiple-criteria decision analysis methods and 
mathematical programming. The second part is devoted to artificial intelligence 
(AI) techniques which have been applied in the SCRM domain to analyse data and 
make decisions regarding possible risks. These include Petri nets, multi-agent 
systems, automated reasoning and machine learning. The chapter concludes with a 
discussion of potential ways in which future decision support systems for SCRM 
can benefit from recent advances in AI research. 

1 Introduction 

Over the past two decades several events have significantly affected global supply 
chains and have brought the need for management of risks to the forefront. From 
the 9/11 terrorist attacks and the 2008 economic crisis, to the 2011 Japan 
earthquake and tsunami (Pettit et al. 2013) and Thailand floods (Chopra and Sodhi 
2014), to more recent examples such as the decision in 2016 of the UK to 
withdraw from the European Union (Matthews 2017) or the KFC chicken supply 
crisis in early 2018 (Green 2018), global supply chains are disrupted by a 
multitude of strategic, environmental, financial or political causes. Risks are also 
becoming more common, as discussed by Snyder et al. (2016) and Behzadi et al. 
(2017), due to the increased vulnerability of supply chains that adopt lean 
management and just-in-time production and logistics and the decrease in vertical 
integration which increases supply chain complexity. 

The aforementioned factors have continuously renewed the interest of 
practitioners and suppliers in research related to risks in supply chains. According 
to Ho et al. (2015), supply chain risk can be defined by as “the likelihood and 
impact of unexpected macro and/or micro-level events that adversely influence 
any part of a supply chain, leading to operational, tactical or strategic level failures 
or irregularities”. Research in supply chain risk is inextricably linked to 
uncertainty, as the most common cause of risk is the uncertainty of possible 
outcomes caused by imperfect knowledge or unpredictable events. Addressing risk 
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and uncertainty leads to reduced supply chain vulnerability, reduced impact of 
disruptions, while achieving higher degrees of robustness and resilience. 

Supply chain risk management (SCRM) aims to provide a structured approach 
to achieve the aforementioned benefits. While there is no universally accepted 
definition, SCRM generally follows similar risk management strategies in other 
disciplines in that it consists of at least three phases: identification, assessment and 
mitigation (Ghadge et al. 2013). These phases depend on the coordination and 
collaboration of supply chain partners in order to make the correct decisions. 

SCRM decision making reflects the complexity of the supply chain itself, 
involving the analysis of information from all involved parties and actions that 
affect anything from individual entities to the whole chain. To that end, operations 
and supply chain research communities have devoted significant effort in 
providing decision-makers with the support they need to achieve their SCRM-
related goals. This support ranges from methods and techniques that can be used 
to make more informed decisions to fully fledged decision support systems. 
Different techniques are utilised as per the phase in risk management. Some of the 
techniques employed for risk identification are supply chain vulnerability maps 
(Blos et al. 2009) and big data and process engineering approach (Wang et al. 
2016). Ghadge et al. (2012) suggests that both qualitative and quantitative 
methods can be employed for risk assessment. Some of the quantitative techniques 
are supply chain network opportunity package (Brun et al. 2006), network analysis 
method to evaluate disruption propagation and its effect on supply chain network 
(T. Wu et al. 2007), Petri net (Mazzuto et al. 2012), data envelopment analysis and 
Monte Carlo simulation (D. D. Wu and Olson 2008) and fuzzy analytic hierarchy 
process (Samvedi et al. 2013). Risk mitigation as a process can employ both 
proactive and reactive strategies. Some of these strategies may include risk-
sharing contracts (Ghadge et al. 2017), establishing strategic supplier relationships 
(Hajmohammad and Vachon 2015), encouraging suppliers' involvement (J. Chen 
et al. 2015), and reducing supply base complexity (Olson and Swenseth 2014). 

The main purpose of this chapter is to summarise the various techniques that 
have been used to support decision making procedures within SCRM and 
investigate their capabilities, while also determining areas where there is untapped 
potential that can be leveraged to manage supply chain risks more effectively. 
Note that the analysis on SCRM research presented in this chapter is 
representative and by no means exhaustive. Interested readers can indicatively 
refer to the survey papers of Govindan et al. (2017) and Ho et al. (2015) for a 
comprehensive literature review of SCRM research. 

The rest of this chapter is organised as follows. Section 2 focuses on multiple-
criteria decision analysis methods and related techniques that try to find the best 
out of known solutions to a decision problem. Section 3 deals with methods that 
rely on mathematical programming to model the decision problem and find 
optimal solutions. Section 4 focuses on various other artificial intelligence (AI) 
techniques that have been exploited to support SCRM decision making, namely 
Petri nets, multi-agent systems, automated reasoning and machine learning. 
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Finally, Section 5 concludes and suggests directions to further investigate the 
synergies between AI and SCRM to facilitate effective decision making. 

2 Multiple-criteria Decision Analysis for SCRM 

The problem of managing risks in supply chains is a prime example of a process 
relying on multiple-criteria decision analysis (MCDA) and decision-making 
(MCDM), since it entails evaluating the conflicting effects arising both from 
normal supply chain operation and due to associated risks. Hence, decision 
support systems for SCRM invariably rely on the vast array of MCDA techniques 
that have been proposed in literature. These techniques are usually grouped into 
two large categories: evaluation techniques, which find the best out of known 
alternative solutions, and design techniques, which represent the problem as a 
mathematical problem and solve it to find alternatives (which are initially 
unknown). In this section, the most prominent techniques belonging to the former 
category are outlined, along with related techniques that have been used to achieve 
the same goals, specifically decision trees, game theory and simulation. Section 3 
focuses on the latter category, summarising mathematical programming 
techniques for SCRM. 

2.1 MCDA Methods 

Analytic Hierarchy Process (AHP) Introduced by Saaty (1980), AHP has 
become one of the most widely used tools for MCDM under uncertainty. The 
process involves three main steps: (1) the decision (goal) is decomposed into a 
hierarchy of alternatives and independent criteria (on one or more levels) that play 
a role in deciding among the alternatives; (2) a pairwise comparison is conducted 
between the goal and the criteria, as well as between alternatives and criteria, 
attributing priorities to all elements; and (3) the calculated priorities are checked 
for consistency and a decision is made. For instance, 17 different risk factors 
affecting a supply chain are manually identified in Schoenherr et al.(2008) and 
included as criteria in AHP in order to decide among five alternative choices for 
offshore suppliers of a manufacturing company. 
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 
Proposed by Hwang and Yoon (1981), it relies on the notion of geometric distance 
to evaluate whether an alternative is better or worse. Alternatives and criteria are 
also pairwise compared like in AHP and weighted values are attributed to the 
pairs. Then, two imaginary solutions are constructed: the ideal solution, which has 
the highest value for all criteria and the negative ideal, which has the lowest value 
for all criteria. Finally, the geometric distances from these imaginary solutions are  
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Table 1. Comparison of MCDA evaluation methods that have been applied for SCRM 

Method Description Advantages Disadvantages SCRM task Reference 
AHP Decomposes 

decision into 
hierarchy of 
alternatives based 
on criteria 

Supports both 
qualitative and 
quantitative 
evaluation, group 
decision making 

Problematic to 
add/remove criteria 
and alternatives, or 
when some of these 
are interdependent 

Assess,  
Mitigate 

(Schoenherr 
et al. 2008) 

TOPSIS Evaluates 
alternatives based 
on difference  
from ideal 
solution 

Simple and easy to 
use, fixed number 
of steps regardless 
of number of 
criteria 

Euclidean distance 
calculation does not 
consider correlation 
among criteria 

Assess,  
Mitigate 

(Samvedi et 
al. 2013) 

DEA Maximises 
efficiency of 
alternatives by 
calibrating input/ 
output parameters 

Quantifies sources 
of inefficiency for 
alternatives 

Cannot measure 
absolute efficiency 

Assess,  
Mitigate 

(Azadeh and 
Alem 2010) 

FMEA Identifies and 
evaluates severity 
and likelihood    
of failures 

Directly applicable 
to management of 
risks 

Cannot consider 
combination               
of failures 

Identify,  
Assess 

(P.-S. Chen 
and Wu 
2013) 

 
calculated for all alternatives, ranking them according to relative closeness: the 
optimal alternative is the one that is closest to the ideal and farthest from the 
negative ideal. Samvedi et al. (2013) combines AHP and TOPSIS in order to 
create a risk index to determine the severity of risk at a given state of a supply 
chain. It is noted that the authors employ fuzzy variations of both techniques, 
where calculated priorities and weights are fuzzy numbers. 
Data Envelopment Analysis (DEA) Charnes et al. (1978) introduced this 
evaluation method for alternative solutions that can be characterised by a set of 
inputs and a set of outputs. Each solution’s efficiency score is the ratio of the 
weighted sums of outputs and inputs. Weights are calculated using mathematical 
optimisation, trying to maximise the efficiency of a solution, while making sure 
that all other efficiencies are reasonable (less than or equal to 1). Azadeh and 
Alem (2010) propose a decision making process for supplier selection under 
uncertainty that relies on fuzzy and stochastic variants of DEA. Input 
characteristics of suppliers (expected cost, quality acceptance level and on-time 
delivery distribution rate) and outputs are either modelled as triangular fuzzy 
numbers, or random variables, depending on whether available data is vague or 
uncertain. 
Failure Mode and Effect Analysis (FMEA) While the aforementioned 
methodologies are generally applicable to any decision-making process, FMEA is 
designed to evaluate potential failures of a process and their impact, in order to be 
able to mitigate failure risk. Hence it is directly relevant to the goals of SCRM. 
The FMEA process involves several steps that identify possible failures and their 
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causes, while also evaluating their severity and likelihood of occurring. Then, the 
current process is evaluated in terms of the likelihood of detecting these failures. 
Finally, failures are prioritised based on their severity, occurrence and detection 
likelihood and actions are recommended for each. P.-S. Chen and Wu (2013) 
approaches the supplier selection problem from the perspective of supply chain 
risk by combining AHP and FMEA. Several criteria for selecting suppliers are 
identified and FMEA is used to identify potential cases of suppliers failing to 
achieve high quality levels in terms of these criteria, evaluating whether these 
failures can be detected. Then, AHP is used to calculate weights for each criterion. 
Finally, failures are prioritised by calculating the product of their severity, 
occurrence, detection likelihood and AHP weight of the associated criterion. 

Table 1 offers a summary and comparison of the aforementioned MCDA 
evaluation methods, outlining their advantages and disadvantages, the SCRM 
tasks they are typically used for and some key references. 

2.2 Related Techniques 

Simulation Many tasks within the SCRM process involve risk-related knowledge 
that may be unavailable and can be obtained in an exploratory manner. Simulation 
techniques have proven useful to that end and have been employed either on their 
own or combined with one of the methods analysed in this and subsequent 
sections. For instance, Kull and Closs (2008) uses discrete event simulation to 
assess the supply risk of an organisation and determine which factors contribute 
more to it. The work of Azadeh and Alem (2010) mentioned earlier uses the 
Monte Carlo method to simulate the linear models of the proposed DEA variants. 
Decision Trees The inclusion of risks in an analysis of a supply chain leads to the 
need for representing several different alternative situations, depending on which 
aspects of the supply chain are affected. Decision trees are a suitable tool for such 
forms of representation and have been used in SCRM research mostly for risk 
analysis. For instance, Ruiz-Torres and Mahmoodi (2007) uses decision trees to 
determine the lowest cost approach under various supplier failure scenarios. 
Game Theory Supply chains are a prime example of complex collaboration and 
competition among players, hence the related decision-making processes can also 
be modelled as a game, especially when these decisions involve economy-related 
risks. For example, Xiao and Yang (2008) applies game theoretic analysis for the 
case of rival supply chains to determine the effects of suppliers and retailers 
having different risk profiles (risk-neutral and risk-averse). 
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3 Mathematical Programming for SCRM 

Probably the most well-researched methodology to address risks in supply chains 
involves formalising supply chain interactions as a mathematical optimisation 
model which seeks to minimise one or more objective functions subject to a 
number of constraints. In contrast to most of the methodologies presented in 
Section 2, no alternative solutions are known beforehand; they can only be found 
by solving the models. There is a wide variation in terms of how these models 
address the inherent uncertainty in risks, as well as how they are solved. The rest 
of this section attempts to summarise approaches to address both of these aspects, 
focusing on stochastic programming, robust optimisation and fuzzy programming, 
in terms of handling uncertainty and exact, heuristic and metaheuristic algorithms 
in terms of model solving. 

3.1 Modelling Uncertainty 

Simple mathematical supply chain models include deterministic parameters that 
are assumed to be fully known. However, this is in contrast to the realities of 
supply chains where parameters may only partially known and may be subject to 
variation, especially due to various risks within or outside the supply chain 
network. Thus, some degree of uncertainty needs to be integrated in the model 
parameters. Three different ways have been proposed in literature to achieve this. 
Stochastic Programming The most common solution is to introduce stochastic 
parameters for those aspects of the supply chain model that are uncertain, such as 
demand, supply, return, various aspects of cost and so on. These parameters may 
be continuous or discrete. In the former case, it is assumed they follow a 
distribution with known mean and variance, as is the case in the model of Miranda 
and Garrido (2008) or Taleizadeh et al. (2011), indicatively, where authors model 
daily demand as a random variable with a fixed mean and variance. Alternatively, 
uncertain parameters are modelled via a number of discrete scenarios whose 
occurrence probability is known. The most common case is the so-called two-
stage model, where some decisions are made regardless of the values of  uncertain 
parameters (first stage), while the rest follow afterwards and depend on a finite 
number of realisations of these parameters. In Santoso et al. (2005), for instance, 
supply chain configuration decisions (e.g. processing centres placement) are fixed, 
while processing cost, demand, supply and capacity are all considered random 
variables with a finite number of possible realisations. Finally, a less common 
approach is to consider more than one periods for the second stage or, 
equivalently, more than two stages. For instance, Nickel et al. (2012), considers 
multiple periods after the first stage, each with its own possible scenarios, which 
essentially leads to a tree representation of all scenarios. 
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Table 2. Comparison of mathematical programming approaching to modelling uncertainty 

Method Description Advantages Disadvantages Reference 
Stochastic 
Programming 
(SP) 

Uses stochastic 
variable with known 
distributions to model 
risk and uncertainty 

Granularity can be 
adapted easily,  
two-stage very  
close to the supply 
chain decision 
making process 

Probability 
distributions must be 
known for parameters, 
can become 
exceptionally  
complex 

(Miranda and 
Garrido 
2008); 
(Santoso et 
al. 2005) 

Robust 
Optimisation 
(RO) 

Determines solutions 
that are nearly    
optimal or nearly 
feasible in any 
realisation 

No probability 
distributions 
necessary,  
generally less 
complex than SP 

Delivers more 
conservative (worst-
case) solutions than   
SP or FP 

(Pishvaee et 
al. 2011)  

Fuzzy 
Programming 
(FP) 

Uses fuzzy numbers  
to model risk and 
uncertainty 

Models ambiguity 
and vagueness, 
generally more 
tractable than SP 

Models are more 
difficult to grasp, 
requires more 
expertise 

(Amid et al. 
2009); 
(Torabi et al. 
2015) 

 
Robust Optimisation If distributions of uncertain parameters are unknown, then 
the aforementioned solutions are not applicable. Instead, one can assume that 
parameters vary within a predefined interval or that they follow discrete scenarios 
for which, however, probabilities are unknown. In such a setting, robust 
optimisation techniques (Mulvey et al. 1995) can be applied to find an optimal 
solution across all possible realisations. Specifically, a solution is considered 
solution-robust if it remains close to optimal (e.g. it leads to a minimum increase 
of the optimal cost), while it is considered model-robust if it remains feasible (i.e. 
does not violate any constraints) for all possible realisations. A notable example is 
the work of Pishvaee et al. (2011), where the authors consider transportation costs, 
demand and return to be uncertain in a closed-loop supply chain network and 
assume that they vary within a prespecified bounded box. The optimisation 
objective is then to find solutions that satisfy the constraints for all possible 
realisations of these variables while keeping costs close to the optimal minimum. 
Fuzzy Programming Instead of modelling uncertain parameters as stochastic 
variables, several works propose to treat them as fuzzy numbers corresponding to 
a set of possible values with weights attributed according to membership 
functions, while the corresponding constraints are modelled as fuzzy sets. This 
leads to so-called fuzzy possibilistic programming solutions that incorporate a 
level of flexibility in the possible parameter realisations. For instance, Amid et al. 
(2009) assumes that demand follows a triangular function, where the probability 
of possible demand values ranges from 0 at a lower and an upper limit, and peaks 
at 1 for a value in between. Also, net costs, quality and service levels follow an R-
function, where there are two intervals, one corresponding to values of the highest 
probability, followed by a second one where probability decreases linearly, 
reaching zero for an upper limit value. On the other hand, Torabi et al. (2015) 



8    G. Baryannis et al. 

assumes discrete scenarios for demand, supply and cost, with parameter values for 
each scenario following triangular membership functions. 

Table 2 offers a summary and comparison of the aforementioned modelling 
approaches. It should be noted that there are works which combine the 
aforementioned techniques into hybrid solutions. For instance, Bai and Liu (2016) 
models demand and cost as fuzzy numbers but incorporates a robustness element 
by using variable membership functions instead of fixed ones. Zhalechian et al. 
(2016) models some aspects of uncertainty using fuzzy numbers, while others are 
modelled using stochastic chance-constrained programming. Finally, 
Keyvanshokooh et al. (2016) proposes a hybrid robust-stochastic approach, where 
transportation costs are modelled through stochastic scenarios, while robust 
optimisation is applied for demand and return quantities which assume to take 
values from a finite set. 

3.2 Model Solving 

The above analysed mathematical programming techniques often result in very 
complex models that are not solvable directly. Stochastic continuous models are 
most often non-linear and are usually simplified through linearisation. Scenario-
based stochastic models have to be converted to deterministic equivalents, where 
there is a separate set of constraints for each scenario, resulting in even larger 
models. Fuzzy models are also reformulated to their crisp (defuzzified) 
equivalents, interpreting membership degrees of fuzzy sets using real values. 
Then, depending again on the complexity of the resulting model, one of the 
solution approaches described in the rest of this section is followed. 
Commercial Solvers In many cases, the resulting model is solvable using a 
proprietary optimisation software package in a reasonable amount of time. 
Modelling and optimisation systems commonly referenced in literature include 
CPLEX1, GAMS2, LINGO3 and GUROBI4. 
Optimal Solution Algorithms In other cases, well-known algorithms are 
employed, which have been proven capable of finding the optimal solution, 
provided that the model possesses specific characteristics. For instance, Santoso et 
al. (2005) applies Benders (or L-shaped) decomposition (Benders 1962) to solve 
the proposed model, relying on the fact that a two-stage stochastic program can be 
easily divided into sub-problems. A similar divide-and-conquer approach is 
followed in the Branch and Bound algorithm (Land and Doig 1960), which is 

                                                           
1 https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer 
2 http://www.gams.com 
3 https://www.lindo.com/index.php/products/lingo-and-optimization-modeling 
4 http://www.gurobi.com/products/gurobi-optimizer 
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employed by Qi et al. (2010) in their attempt to investigate the effects of supply 
and demand disruptions on retailer location and customer allocation. 
Heuristic Algorithms Model complexity may preclude finding an optimal 
solution, either because it requires unacceptable amounts of time or because the 
aforementioned algorithms fail to find such an exact solution. In such cases, 
heuristic algorithms are employed to find a good enough or an approximate 
solution. Probably the most common heuristic used in supply chain research is 
Lagrangian relaxation (LR) (Everett 1963) which uses multipliers to penalise 
violations of constraints and tries to minimise these values. 
Metaheuristic Algorithms In other cases, standard heuristics are not able to find 
sufficiently good solutions, so a metaheuristic algorithm is employed to find or 
generate better heuristics. Many metaheuristics are inspired by nature, such as 
genetic algorithms (GA) which simulate the process of natural selection. 
Simulated annealing (SA) parallels the process of heating and slowly cooling 
materials in metallurgy with that of slowly decreasing the probability of accepting 
worse solutions while trying to find an optimal one. Peng et al. (2011) uses a GA-
based metaheuristic for a model that attempts to reduce the risk of facility 
disruptions, while Lee and Dong (2009) address the typical problem of uncertain 
demand and return for reverse logistic networks using an SA-based algorithm to 
decide on facility locations and product flow. Other metaheuristics rely on local 
search methods, trying to improve on a candidate solution by slightly changing it. 
Cardona-Valdés et al. (2014) combine two such metaheuristics, GRASP and Tabu 
search, to address demand uncertainty in the decision-making process for 
warehouse location and transportation mode allocation. 

4 AI Techniques for SCRM 

The methods discussed in Section 2 focus primarily on integrating the opinions of 
stakeholders and partially automating the process of weighing the various criteria 
that factor in a decision. The mathematical programming techniques in Section 3 
can broadly be considered as part of the AI field, since they apply intelligent 
methods of searching for a solution and are able to do so faster due to the 
constantly increasing computational capabilities of machines. However, the 
intelligence of such techniques is still constrained. This section explores other AI 
techniques that have received relatively little attention in supply chain research 
and discuss how these may prove useful to decision making for SCRM. 
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4.1 Petri Nets 

Viewed from a high level of abstraction, supply chains can be considered as 
discrete event dynamic systems, since their evolution is directly dependent on the 
occurrence of events over time. This is especially true when these events have 
significant effects to their operation, as is the case of risk events. The analysis of 
such systems usually relies on some kind of graph model, like Petri nets (Petri 
1966). Petri nets consist of three types of elements: (1) places, modelling states, 
(2) transitions, modelling the transition from one place to another, and (3) arcs, 
connecting an initiating place to a transition and a transition to a subsequent place. 
Each place may have one or more tokens. For a transition to fire (i.e. occur), a 
predefined sufficient number of tokens must be present at the place leading to that 
transition. 

Petri net models essentially represent cause and effect relationships which are 
fundamental in risk analysis. This has been recognised in SCRM literature by a 
handful of researchers. Asar et al. (2006) uses fault tree analysis to identify 
multiple levels of causes of disruption in a manufacturing supply chain, as well as 
existing mitigating techniques. The resulting fault tree is then converted to a Petri 
net, which is then used to determine the probability levels for each disruption and 
the success level of mitigation practices. Rossi and Pero (2012) follows a different 
approach, modelling the complete operation of a simple logistic network as a Petri 
net. Any product-related element is represented by a token (e.g. customer requests, 
occurred stock-outs, order quantities, safety stocks and so on). Risks are then 
identified by calculating the coverability graph of the Petri net, e.g. detecting cases 
where delivery lead times are higher than a threshold, or cases of inaccurate 
forecasts at the retailer or distributor side. 

Zegordi and Davarzani (2012) uses a well-known variant called Coloured Petri 
nets which provide the ability to distinguish between tokens, using values called 
colours. These are employed to model the interconnected relationships among 
disruptions: each type of disruption is assigned a colour and when one disruption 
may cause another, a token is allowed to change colour. The graphs represent the 
supply chain operation as in Rossi and Pero (2012) and their analysis helps 
determine how disruptions propagate and how they affect performance. 

4.2 Multi-Agent Systems 

A supply chain involves a number of entities (customers, suppliers, and so on) 
interacting with each other, each with their own agendas, which may sometimes 
overlap or conflict. It is straightforward to imagine each one of these entities as an 
intelligent agent, model the supply chain as a multi-agent system (MAS) and use 
this system to support decision making. In such a MAS, each agent follows a set 
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of rules that govern its interactions with the other agents. Agents communicate 
with each other by issuing requests and responses. In principle, after defining each 
agent’s behaviour, a MAS can run independently and reach a solution without the 
need for human intervention, since agents are capable of perceiving their 
environment, respond to changes and initiate actions. 

Kwon et al. (2007) proposes the use of MAS to address supply and demand 
uncertainties in manufacturing supply chain management. Three types of agents 
are modelled: retailers, manufacturers and suppliers. Each agent makes decisions 
according to the interests of the firm it represents and can adjust its behaviour to 
respond to risks. For instance, a manufacturer agent aims to maximise revenue and 
minimise costs, while it has to decide on order and production quantities and 
whether to expand its supplier base to address supply risk. The authors propose an 
iterative adjustment approach so that all agents achieve their profit goals, while 
the supply chain’s profit is also maximised. Simulations are run with varying 
numbers for customer demand, lead time, production capacity and number of 
suppliers, while the manufacturer includes a risk pooling strategy in its behaviour 
to search for additional suppliers in the face of disruptions.  

Mele et al. (2007) combine a MAS with Monte Carlo simulation and 
metaheuristics to retrofit a supply chain design due to uncertain demand, as well 
as transport and processing times. Specifically, a genetic algorithm is used to 
determine inventory control parameters. Then, different realisations of the 
uncertain parameters are obtained using Monte Carlo sampling. All parameter 
values are fed into the MAS which aims to maximise profit by emulations the 
decision-making process in terms of production scheduling, transport of materials 
and inventory replenishment. This process is iterated (applying genetic operators 
and generating new samples) until optimality criteria are met. 

Giannakis and Louis (2011) present a holistic MAS framework for all phases of 
SCRM. Apart from agents representing supply chain entities, there are additional 
ones to support communication, coordination, monitoring, and disruption 
management. Risk identification relies on the monitoring agent detecting changes 
in performance indicators such as in-stock inventory, production throughput or 
delivery lead times. Assessment is then run by the disruption management agent, 
who investigates the root cause for each risk and determines risk impacts and 
probabilities. Then, past responses to each risk are collected in risk portfolios are 
evaluated, simulating their effects using the MAS. Finally, the best performing 
risk responses are proposed as solutions. 

4.3 Automated Rule-based Reasoning 

Decision-making for SCRM and supply chain management in general has always 
relied on the accumulated expertise and experience of key stakeholders. 
Automated reasoning systems provide a means of encoding this knowledge into a 
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machine-interpretable form in order to (partially) automate the decision-making 
process. A common approach is to rely on a rule-based representation (with case-
based being a popular alternative). Rules have the advantage of being easily 
interpretable by both humans and machines, since they follow a simple if-then 
formalisation. 

SCRIS (Kayis and Karningsih 2012) is a supply chain risk identification system 
that relies on rule-based knowledge encoded using the CLIPS5 language. The 
authors elicit knowledge from existing SCRM literature to collect supply chain 
risk events, factors and sub factors and their interrelations. These are expressed in 
the form of a rule hierarchy that facilitates a forward chaining inference approach: 
specific characteristics of a supply chain lead to the identification of risk sub 
factors, sub factors lead to factors, factors to events, and finally events to 
communication of identified risks. SCRIS is validated using several case studies, 
showing that it can identify 80% of potential risks. 

Emmenegger et al. (2012) proposes an early warning system for procurement 
risks in supply chains that relies on information sources both internal to the supply 
chain and external (e.g. business information services or the Internet), which 
indicate the existence of a risk event. The system relies on an ontological risk 
model that includes enterprise semantics, risk events, risk indicators, warning 
signals and procurement risks. The ontology is written in OWL6 and rules are 
encoded in SQWRL (O'Connor and Das 2009), while the identification process is 
as follows. Risk events that are derived from information sources are aggregated 
and contribute to the calculation of risk indicators. If these exceed a threshold then 
a warning signal is issued. A particular risk is identified when all warning signals 
associated with it are issued. 

4.4 Machine Learning 

The past decade has seen a tremendous growth in research on and applications of 
machine learning, a research area within AI focusing on systems that are not only 
intelligent in the sense of deriving conclusions and making decisions but also due 
to their ability of learning in order to improve their performance. While machine 
learning principles have existed since the birth of AI as a research field (and even 
earlier, in the case of statistical methods), research has progressed rapidly in recent 
years, partly due to the increase in available computing power and the emergence 
of big data. While advances in machine learning have been exploited in various 
research areas, their application in SCRM has only been considered by few 
studies, which are analysed in the rest of this section. 

                                                           
5 http://www.clipsrules.net 
6 https://www.w3.org/TR/owl2-overview 
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The first study, to our knowledge, to incorporate machine learning in SCRM-
related tasks is that of Bruzzone and Orsoni (2003). The authors use Artificial 
Neural Networks (ANN), one of the earliest successes in machine learning 
research, to assess logistic performance risks in terms of actual transportation 
costs and production losses. ANNs are fed input data on production times, 
quantities and capacities. Then, they are trained using calculated cost estimates for 
the available input. This gives them the ability to learn to calculate cost estimates 
for different sets of input data. Evaluation results prove the superiority of ANNs in 
terms of flexibility, adaptability and accuracy of response, compared to discrete 
event simulation. 

ANNs are combined with a case-based reasoning (CBR) system in Zhao and 
Yu (2011) to address the problem of supplier selection under uncertainty for the 
case of Chinese petroleum enterprises. CBR relies on the principle that if a 
solution was successful in the past, it may also successful in closely similar 
situations. The authors propose to use ANNs to improve on key problems of CBR: 
(1) how to objectively calculate suitable weights for all attributes that characterise 
a case; (2) how to determine the degree of similarity between existing cases and 
the target case; (3) how to extract rules from the cases; and (4) how to maintain 
the case base. ANNs are trained using existing cases, then use this knowledge to 
learn how to determine decisions for new cases, which are in turn expressed as 
new cases and stored in the case base to be used for future decisions. 

The CBR approach is also adopted by Jiang and Sheng (2009) for the problem 
of inventory control under demand risk. Previous cases of replenishment actions 
using order-up-to levels or reorder points are collected, along with the achieved 
service levels. Then, a reinforcement learning approach is applied to make 
decisions for new cases, in terms of order-up-to levels or reorder points. The 
achieved service level is the actual reward (or punishment, if it is unsatisfactory) 
that helps the system learn which actions bring it closer to or further from the 
target service level. Results show that reinforcement learning achieves average 
service levels that are very close to the target level, especially in the case of 
reorder point replenishment. 

M. Chen et al. (2010) propose the use of a Bayesian model for the management 
of manufacturing supply chains that face supply disruptions. This relies on Bayes’ 
rule which relates the conditional probability of an event A happening given 
evidence B, to the probability of A happening (in general), the probability of B 
being observed, and the probability of B being observed given that A happened.   
This allows re-calculating probabilities after new evidence is acquired. The 
authors’ model assumes that disruptions affect supply in a number of fixed levels, 
each with an unknown probability. The goal of the model is to learn these 
probabilities over time, starting with initial values determined from past 
experience, expert assessment or provided by suppliers themselves. By learning 
these probabilities, the manufacturer can make informed decisions about sourcing 
strategies, even when the initial knowledge is imperfect. 
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Table 3. Comparison of AI techniques that have been applied for SCRM 

Technique Description Advantages Disadvantages SCRM task Reference 
Petri nets Model dynamic 

systems in the 
form of states 
and transitions 
between them 

Can be used at 
various levels of 
abstraction, 
supports automatic 
simulation 

May be difficult to 
build, maintain and 
interpret if network 
too large 

Identify, 
Assess 

(Asar et al. 
2006); 
(Zegordi and 
Davarzani 
2012) 

Multi-Agent 
Systems 

Simulate 
interactions 
between entities 
with predefined 
behaviour 

Can rapidly react 
and adapt to 
changing 
environments, 
scales easily 

Formalising agent 
behaviour requires 
expertise and may 
become too 
complex 

Identify,  
Assess, 
Mitigate 

(Mele et al. 
2007); 
(Giannakis 
and Louis 
2011) 

Automated 
Rule-based 
Reasoning 

Encode 
knowledge using 
rules, infer 
information and 
choose actions  

Natural, intuitive 
way to encode 
expert knowledge, 
modular, powerful 
reasoning systems 

Rules need to be 
carefully crafted to 
avoid loops or 
contradictions,  
may require large 
rule sets 

Identify, 
Assess, 
Mitigate 

(Kayis and 
Karningsih 
2012); 
(Emmenegger 
et al. 2012) 

Machine 
Learning 

Learn from 
existing 
knowledge and 
make predictions 
on previously 
unknown setups 

Uncovers hidden 
correlation in data, 
continuously 
improves as more 
data becomes 
available 

Depends on the 
availability of 
relevant and 
accurate datasets, 
results may not be 
interpretable 

Identify,  
Assess, 
Mitigate 

(P.-S. Chen 
and Wu 
2013) 

 
Bayes’ rule is also featured in Garvey et al. (2015) in the form of Bayesian 

(Belief) Networks (BN). These graph models represent events that have a direct 
influence on others. Based on these connections, one can calculate the probability 
of an event taking place, given that others have also taken place. The authors 
model a set of risks as a BN and use it within the risk assessment process to 
determine how risk propagates. Each member of a supply network (distributors, 
manufacturers, retailers) is then evaluated in terms of their risk contribution factor 
and risk propagation ratio. 

The work of Zage et al. (2013) is unique since it is the only published SCRM 
study, to the best of our knowledge, that combines a machine learning approach 
with an implementation that exploits big data. The authors focus on security risks 
in supply chains, specifically the problem of identifying deceptive practices in e-
commerce. First, they use a graph-based representation of transactions to 
determine relationships that are characteristic of deception. Then, they use these 
characteristics as features in a clustering approach to distinguish legitimate users 
(those who do not exhibit such characteristics) and fraudsters. The algorithm relies 
on large-scale Web data, collecting information for vendors through their Web 
presence. Evaluation shows that high accuracy in detecting fraudsters is achieved 
even when the classifier is trained with only one-third of the available data. Table 
3 provides a summary and comparison of all AI techniques presented in this 
Section. 
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5 Conclusions 

The wide variety of available methods and techniques presented in this chapter 
supports the fact that supply chain decision-makers nowadays have access to a 
powerful arsenal in their quest to manage risks that affect the supply chain. This 
gives them the ability to choose the tools that are most suitable to their goals. 
From our analysis, we can draw the following conclusions: 

 
● MCDA analysis methods such as AHP, TOPSIS, DEA or FMEA are more 

suitable when the various alternative choices are known and the decision-maker 
needs a structured and systematic way of deciding among them. This makes 
them especially suitable for deciding among different risk mitigation plans. 

● Mathematical  modelling and optimisation excel at capturing the full spectrum 
of parameters, constraints and objectives that are involved in a supply chain 
decision and can provide optimal or close to optimal solutions for highly 
complex models. Thus, they are suited for the case when a supply chain can be 
modelled in detail, the target objectives are fully known, but the different ways 
of achieving these objectives are not completely known. In such cases, 
mathematical optimisation can derive risk mitigation decisions and plans that 
achieve SCRM-related objectives. 

● AI techniques are very diverse, which means that their success depends on 
choosing the suitable technique for the task at hand. For instance, network-
based approaches like Petri nets are especially suitable when one needs to trace 
interactions and assess the dynamic behaviour of a supply chain. Multi-agent 
systems can place more focus on the conflicting or coordinating interactions 
among different supply chain stakeholders. Rule-based reasoning techniques 
are excellent when knowledge can be easily encoded in the form of rules. 
Finally, machine learning techniques can support a wide variety of tasks but 
can only do so effectively when an adequate amount of data is available. 
Since each technique has its own set of capabilities and may be more suitable 

for some aspects of SCRM than others (as summarised in Tables 1, 2 and 3), it 
makes sense to explore the possibility of combining two or more of the presented 
methods and techniques into a comprehensive decision support system for SCRM. 
While some cases of hybridisation have been reported in literature (e.g. in the 
work of Keyvanshokooh et al. (2016)), they usually follow specific patterns, such 
as the introduction of fuzziness into existing techniques, or the combination of 
mathematical programming with MCDA analysis methods. However, it would 
also be interesting to explore a hybrid approach that integrates one of the AI 
techniques in Section 4 with the powerful optimisation abilities of mathematical 
programming. 

Finally, what should be evident from the discussion in Section 4 is that, while 
research in AI techniques has made strides in recent years, SCRM and operations 
research in general, have not fully exploited the associated benefits. In particular, 
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the powerful predictive and learning capabilities of machine learning and big data 
analytics have an indisputable potential that can revolutionise SCRM, both with 
regard to identifying and assessing risks more quickly and accurately and 
determining the optimal ways to respond to them in order to create more robust 
and resilient supply chains. 
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