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Abstract—Early detection of suspicious skin lesions can sig-
nificantly increase the five-year survival rates of the patients.
Advancements in computer vision techniques facilitate the use of
artificial intelligence (AI) models along with image data for skin
cancer detection. However, there is limited work done on skin
cancer detection solely based on patient metadata. The 7-point
checklist (7PCL) and Williams methods use a limited number of
meta-features to calculate skin lesion risk scores and to find a
patient at risk of developing skin cancer, respectively. This study
attempts to fill the gap and proposes an AI-based framework for
classifying skin lesion metadata into binary classes: Suspicious
vs Non-suspicious. The developed framework has been evaluated
using real-world skin lesion metadata sourced from a network of
private skin diagnostic clinics across the UK. We have collected
and analyzed 54,000 skin lesions metadata, from 25,214 patients
undergoing teledermatology assessment after clinical examination
and imaging, comprising 25 features including patient age,
gender, and lesion location. The metadata has been pre-processed
through encoding, followed by feature selection using wrapper,
Shapley, and Pearson correlation methods. Finally, five different
predictive models were utilized and optimized to classify skin
lesion metadata into Suspicious vs Non-suspicious classes. Our
proposed approach achieved 83.53(±0.03)% sensitivity in detect-
ing suspicious lesions using only metadata and outperformed the
7PCL and Williams methods. We believe this AI-based frame-
work is unique in classifying skin lesions based solely on metadata
and has significant potential to improve the performance of
current AI models that are based on image assessment alone.

I. INTRODUCTION

Malignant melanoma is considered one of the fatal types
of skin cancer accounting for 90% of deaths among patients
with this disease [1]. Delays in early detection of suspicious
skin lesions can decrease five-year survival rates by 20%
[2], including the United Kingdom (UK) population. The UK
follows a two-week wait pathway system, where suspicious
lesions of melanoma or squamous cell carcinoma (SCC)
should be seen by a specialist within two weeks. These urgent
referrals have increased dramatically in recent years (159,430
patients in 2009/2010 to 506,456 patients in 2019/2020), and
have significantly contributed to building up healthcare access
pressure for timely assessment [3]. Moreover, for non-urgent

1Md Islam, Alba Garcia, John Gan and Haider Raza are with the School of
Computer Science and Electronics Engineering, University of Essex, United
Kingdom

2Gordon Wishart is with Check4Cancer Ltd., and Anglia Ruskin University,
UK

3Joseph Walls is with Check4Cancer Ltd., and Fitzwilliam Hospital, UK
4Per Hall is with Check4Cancer Ltd., and Addenbrookes Hospital NHS

Foundation Trust, UK
*This work was supported by Innovate UK Funding for Knowledge

Partnership with Check4Cancer Ltd.

referrals, such as suspected basal cell carcinoma (BCC), the
current waiting time is 18 weeks and only 80% of the patients
were seen within this target time frame during 2019/2020.
Furthermore, COVID-19 contributed to an increased backlog
of non-urgent cases due to cancellations or to accommodate
two-week urgent patients. Skin cancer referrals are anticipated
to rise in the years ahead because of the ageing population
[4] in the UK. In this scenario, artificial intelligence (AI) can
emerge as a solution as it has great potential to provide a
second opinion about a skin lesion whether it is suspicious
or not, and can help in decision-making in the skin cancer
assessment pathway.

Due to significant advancements in computer vision (CV)
technology, researchers now use image data for skin cancer
detection [5]. In the early 2000s, skin cancer was diagnosed
using techniques such as the ABCD rule and 7-point checklist
(7PCL) before researchers [6, 7] assessed the reliability of
introducing CV techniques in skin cancer diagnosis. Later,
the availability of open-source datasets and deep learning
algorithms such as convolutional neural networks (CNN) were
employed for assessing skin lesion images. Esteva et al. [8]
compared the performance of CV models versus 21 board-
certified dermatologists and achieved a dermatologist-level
performance. Conversely, the study in [9] emphasized the
importance of the patient’s clinical information such as age,
gender, and lesion location, and found an overall 7% increase
in balanced accuracy with the inclusion of clinical information
in the analysis. Similarly, the work in [10] evaluated all com-
binations of dermoscopic, macroscopic, and clinical metadata
(age, gender, and anatomic location) and observed that com-
bining all three yielded the highest overall AUC of 88.80%.
The study in [11] evaluated just the clinical information
(age, gender, BMI, ethnicity, hypertension, heart disease, and
diabetes status) using the National Health Interview Survey
(NHIS) data from 450,000 patients between 1997 and 2015
to classify non-melanoma skin cancers against the “never-
cancer” skin diseases. They employed a basic feed-forward
neural network and achieved an AUC of 81% with 86.2%
sensitivity and 62.7% specificity on the validation set.

The previous studies [9, 10, 11] all included a limited set
of meta-features (age, gender, anatomic location). Moreover,
those studies used metadata along with image data, and there
is no mention of the performance of their models using only
metadata. We attempt to fill the gap by proposing an AI-
based framework to classify skin lesions solely based on
metadata. The framework comprises collecting and analyzing
metadata to identify relevant meta-features associated with



skin cancer progression followed by separating suspicious
lesions from non-suspicious ones through applying AI models.
This research work offers three major contributions:

1) Collection of 54,000 skin lesions metadata from 25,214
patients across a national network of private UK skin
diagnostic clinics.

2) Identification of a subset of meta-features significantly
related to the development of skin cancer.

3) Adaptation and optimization of five predictive AI models
for skin lesion binary classification based solely on
metadata.

This paper is structured as follows: Section II describes the
metadata collection, feature selection, and classification model.
Section III provides information on the results and discussion,
and Section IV concludes the study.

II. DATA AND METHOD

A. Metadata Collection

In this study, we collected 54,000 skin lesions metadata
from 25,214 patients, who attended private skin cancer diagno-
sis clinics between [2015-2022]. Ethical approval was received
from the university Ethics Committee. The data collection
summary is provided in Table I. All the features excluding
lesion rating are used as input to the machine learning (ML)
models to classify whether input features belong to suspicious
or non-suspicious categories.

The meta-features listed in Table I are self-explanatory
except for the lesion location feature that comprises seven
values according to the anatomic location of the lesion such
as i) Head and Neck, ii) Trunk waist up (front or back), iii)
Groin/Buttocks/Genitals, iv) Hand, v) Foot, vi) Left/Right Leg
(ankle up), and vii) Left/Right Arm (wrist up). The Williams
score is calculated based on the method explained in the study
[12] and summarized in Table II, where age, gender, sunburns,
natural hair colour, the density of freckles on arms, number of
moles, and prior non-melanoma history features were included
to calculate the final Williams scores. The lesion score is
calculated based on a weighted 7PCL as mentioned in the
study [7] using the eq 1:

Lesion Score = 2

3∑
i=1

Mi +

4∑
j=1

Ni (1)

where M is the set of major lesion features (change in
size, shape, and colour) and N is set of minor features
(inflammation, oozing, itching, and diameter ≥7 mm).

The 7PCL was first formulated by Mackie et al. [13], where
they included seven lesion characteristics (change in size,
shape, colour, inflammation, oozing, itching, and diameter ≥7
mm), each having a score of 1, to help prioritise pigmented
skin lesions for urgent referral. Later Walter et al. [7] were
able to confirm better results with a revised version, which
separated lesion features into two groups:- i) major features
(change in size, shape, and colour) each having a score of
2 and ii) minor features (inflammation, oozing, itching, and
diameter ≥7 mm) with a score of 1. Consequently, lesions

with scores ≥3 were sent for specialist opinion. Finally, the
target variable, lesion rating, comprises two values (suspicious
and non-suspicious) rated by our in-house skin cancer spe-
cialists. The experts classified pigmented lesions with atypical
features in size, shape, color, or dermatoscopic appearance of
melanoma as suspicious. Furthermore, skin lesions suspicious
of either BCC, SCC, or potentially pre-malignant Actinic
Keratoses were also rated as suspicious.

We have encoded all the non-numerical meta-features to
convert them into categorical features using a one-hot encod-
ing approach as summarized in Table III for an illustrative
purpose. An effort was made to analyze the collected meta-
features through explanatory data analysis (EDA). 95% of the
skin lesions with a lesion score of zero belong to a non-
suspicious class as illustrated using the bar plot in Fig. 1.
Contrarily, more than 50% skin lesions with a lesion score of
10 fall in the suspicious category. Therefore, it can be inferred
that the higher the lesion score, the higher the probability that
the skin lesions belong to a suspicious group (p-value<0.01).
For William’s score between 56 and 61, around 60% cases
belong to a suspicious category, whereas only around 7% cases
belong to a suspicious group with Williams scores between
0–6 as summarized using bar plot in Fig. 1. The higher
Williams score likely increases the chance of the skin lesion
being suspicious as compared to a low Williams score.

Furthermore, we also analysed another potential meta fea-
ture - patient age - summarised using a probability density
function in Fig. 2. We observed that the mean age of patients
with a suspicious skin lesion is 52, which is significantly
higher than the patients’ mean age of 41 years with non-
suspicious skin lesions (p-value<0.01).

B. Feature Selection

Three feature identification methods, i.e., wrapper, Shapley,
and Pearson correlation, were utilized to select relevant fea-
tures associated with skin cancer development. Consequently,
the highly relevant attributes were identified and used during
model training and evaluation.

The wrapper method [14] is an ML-based approach that
works as a black-box function to evaluate subsets of features.
The wrapper method produces a set of representative features
and then uses an ML model to train and evaluate each subset.
Based on the model’s performance, the wrapper method iden-
tifies the best subset of features. The feature selection based
on wrapper method is briefly summarized as follows:

• Subset generation: first, a subset of features is generated.
This can be done in two ways- start with one feature
and gradually add more, or start with all features and
gradually remove them, or generate subsets of features
randomly.

• Subset evaluation: after a subset of features has been gen-
erated, a model is trained on this subset of features, and
the model’s performance is evaluated, usually through
cross-validation. The performance of the model gives an
estimate of the quality of the features in the subset.



TABLE I
LIST OF 25 META-FEATURES: A TOTAL OF 54,000 SKIN LESIONS METADATA FROM 25,214 PATIENTS HAVE BEEN COLLECTED.

Meta-Feature Description Type Range
Patient ID Patients’ ID anonymous Alphanumeric A-Z, a-z,0-9
Lesion ID Lesions’ ID anonymous Alphanumeric A-Z, a-z,0-9
Age Patients’ age in years Numeric 0–92
Gender Patients’ gender at birth (M/F) Categorical 0–1
Lesion Size Change in size (yes/no) Categorical 0–1
Lesion Age Has it been present <6 months? (yes/no) Categorical 0–1
Lesion Shape Change in shape (yes/no) Categorical 0–1
Lesion Colour Change in colour (yes/no) Categorical 0–1
Lesion >7mm Is it 7mm or more? (yes/no) Categorical 0–1
Lesion Inflamed Is it Inflamed? (yes/no) Categorical 0–1
Lesion Oozing Is it Oozing? (yes/no) Categorical 0–1
Lesion Pink It is pink? (yes/no) Categorical 0–1
Lesion Itch Is it itchy? (yes/no) Categorical 0–1
Lesion Location Location on the body- Head Neck, Hand, Foot, Left/Right Leg, Left/Right Arm Categorical 0–5
Williams Score Williams score calculated based on [12] Numeric 0–67
Prior Family History Prior family history of skin cancer (yes/no) Categorical 0–1
Williams Group Williams group (<25 = average risk; 25+ = high risk) Categorical 0–1
Hair Natural hair color (black, red, blonde, brown) Categorical 1–4
Sunburn Number of sunburns (0, 1–4, 5–9, >10 burns) Categorical 1–4
Mole Number of moles (1, 2, 3 or more, none) Categorical 1–4
Freckle The density of freckles on arms (a few, several, a lot, none) Categorical 1–4
Prior Melanoma Any prior history of melanoma (yes/no) Categorical 0–1
Prior Skin Cancer Any prior history of skin cancer (yes/no) Categorical 0–1
Lesion Score 7-point weighted checklist score based on [7] Numeric 0–10
Lesion Rating Target variable whether lesion is suspicious or non-suspicious Categorical 0–1

Fig. 1. Comparison of Lesion and Williams scores for suspicious and non-suspicious cases.

• Stopping criterion: this process is repeated, generating
and evaluating different subsets of features, until some
stopping criterion is met. This could be a certain number
of subsets evaluated, a certain amount of time elapsed,
or no improvement in model performance after a certain
number of iterations.

Our proposed feed-forward wrapper technique adapts a
random forest (RF) classifier as a base learner and iteratively
estimates model performance for a subset of features. We
used 10-fold cross-validation (CV) while evaluating the per-
formance of the RF classifier as a feature selector to identify
an optimal subset of meta-features with stopping criteria of no

improvement in model performance after 1000 iterations.
ML interpretability is a topic of growing importance in ML.

Interpretability is the ability to explain ML model decision
making and nowadays researchers as well as users of ML
models prefer to have some kind of explanation for informed
decision-making. This is more important when dealing with
real-world applications, particularly in healthcare applications.
One such method frequently used for the interpretability of ML
models is known as Shapely Additive Explanations (SHAP)
[15]. This method is preferred over the traditional statistical-
based methods such as filter because many of these methods
can be inconsistent, which means that the most important
features may not always be given the highest feature impor-



TABLE II
CALCULATION OF WILLIAMS SCORE BASED ON THE RISK FACTORS

DESCRIBED IN THE STUDY [12].

Risk Factor Category Score

Gender Female
Male

0
7

Age

35-44
45-54
55-64
65-74

0
5
8
11

Sunburn

None
1-4
5-9
10 or more

0
1
4
7

Hair

Dark brown/Black
Light brown
Blond
Red

0
4
5
8

Freckle

None
Few
Several
A lot

0
4
6
10

Mole

None
1
2
3 or more

0
3
5
11

Prior Skin Cancer No
Yes

0
13

Fig. 2. Comparison of patient age distribution for suspicious and non-
suspicious cases.

tance score. One example is that in the tree-based method as
a wrapper which might give two equally important features
different scores based on what level of splitting was done
using the features. The features which split the model first
might be given higher importance. This motivates us to use the
SHAP method for feature selection for our use case. Shapley
method assigns high scores to meta-features due to their
performance in classifying instances correctly. Our adopted
Shapley value-based feature selection method measures the
marginal contribution of each feature when combined with
other features.

Filter methods utilize univariate statistics to test whether
there is a significant relationship between each input meta-
feature to the target variable. The meta-features that provide

the highest correlation values are the features that are kept
for model development. One of the benefits of using the filter
method is that, this method is not dependent on the ML models
that we decide to develop. We adopted a filtering method
known as Pearson’s correlation coefficient to select relevant
meta-features. The Pearson correlation [16] is a statistical
approach that is frequently used in healthcare applications to
measure the amount of linear correlation between an input X
meta-feature and the output Y target variable. It ranges from
+1 to -1, where 1 means there is a total positive correlation,
and -1 means that there is a total negative correlation. Con-
versely, 0 means that there is no linear correlation. To calculate
the Pearson correlation coefficient, we take the covariance
of the input meta-feature X and output target variable Y
and divide it by the product of the two variables’ standard
deviation, i.e.,

ρX,Y = corr(X, Y ) =
cov(X,Y )

σXσY
(2)

where cov and corr denote the covariance and the correla-
tion coefficient respectively, and σX andσY are the standard
deviation (SD) of the random variable X and Y , respectively.

C. Skin Lesion Classification Model

This study proposes an AI framework for suspicious vs
non-suspicious skin lesion binary classification based solely
on patient metadata. An overview of the proposed AI model
is shown in Fig. 3. We adopted five ML models for skin lesion
binary classification: suspicious vs non-suspicious categories
based on patient metadata described in this section.

1) Naive Bayes (NB) classifier: It is a candid and com-
pelling algorithm for the classification task based on the Bayes
theorem. It predicts a class level’s probability given a particular
data record [17]. The class with the highest probability is
considered as the predicted class for the given data tuple.
NB classifiers assume that all attributes are conditionally
independent of the given class label. The goal of this classifier
is to learn a representative function from a given training
labeled dataset. The conditional probability p(Y |X) of target
variable Y is calculated as follows:

p(Y | X) =
p(Y ) p(X | Y )

p(X)
(3)

where p(Y ) is the prior probability of a class Y , p(X|Y ) is the
conditional probability of meta-feature given a particular class,
and p(X) is the evidence or probability of data X regardless
of its target class (suspicious or non-suspicious).

2) Support vector machine (SVM): It is one of the most
popular supervised ML approaches more frequently used for
classification in various industries such as healthcare applica-
tions [18]. SVM finds a hyperplane to maximize the margin
between the groups by utilizing the Lagrangian optimization
technique [19]. One of the fundamental advantages of SVM
is that if the data is linearly separable, then there is a unique
global maximum value of the margin. In cases of non-linear
distribution of the data, where a hyperplane cannot separate



TABLE III
METADATA CONVERSION USING ONE-HOT ENCODING APPROACH.

Raw metadata before pre-processing Metadata after pre-processing
Lesion Size Lesion Shape Gender Lesion Rating
No Yes F Green
Yes Yes M Green
Yes No F Green
Yes Yes F Red
Yes Yes M Red
Yes No M Green
No Yes M Red
Yes Yes M Green
No No F Red
Yes Yes F Red

Lesion Size Lesion Shape Gender Lesion Rating
0 1 0 0
1 1 1 0
1 0 0 0
1 1 0 1
1 1 1 1
1 0 1 0
0 1 1 1
1 1 1 0
0 0 0 1
1 1 0 1

Patient 
Metadata

NB

MLP

RF

suspicious

non-suspicious

Model Fusion 
(Ensemble) 

Feature Selection

AI Model Development &  
Binary Classification 

SVM

LR

Fig. 3. The Proposed AI framework for skin lesion classification into suspicious and non-suspicious based on patient metadata.

the region, SVM uses a kernel function technique. The kernel
function transforms the data into a higher dimensional feature
space where the data’s linear separation is possible.

3) Logistic regression (LR): It is a statistical method, where
log-odds of the probability of an event are linear combinations
of independent variables [20]. Although the model outputs the
probability of an event, it is used in the classification task
by applying a threshold. The logistic regression approach’s
outcome is binary, such as positive or 1 (suspicious) and
negative or 0 (non-suspicious). Our adapted LR tries to de-
velop a relationship (function) between the meta-feature and
outcome variable by finding the best descriptive fitting model.
Two different approaches were available for learning this
function. A discriminating model learns the function directly
to compute class posterior while a generative model learns the
conditional class probability and class prior by applying Bayes
rule [21]. We used a modified alternative to discriminative
and generative models to merge probability altogether to learn
the discriminative function, which directly maps input meta-
feature to output target variable as follows:

p(Y |X) =
exp(β0 +

∑P
i=1 βiXi)

1 + exp(β0 +
∑P

i=1 βiXi)
(4)

where p(Y |X) is probability of a skin lesion being suspicious
(Y =1) given meta-feature X , β0 is the intercept, and β are the
coefficient values, P is the total number of meta-features.

4) Multi-layer perceptron (MLP): It is one of the dominant
predictive models used in machine learning. As the name
‘neural’ suggests, MLP is a brain-inspired system that tries to
replicate the human brain [22]. MLP consists of an input and
output layer and a hidden layer (in most cases) to transform
input into some form that the next layer can use. An MLP
is handy in finding a pattern or feature extraction from data
that is considered complicated or laborious for a human. The
success of neural network-based approaches such as MLP
is due to a technique known as “backpropagation,” which
allows changing the weight of the hidden layer if there are
any errors. The fundamental advantage of MLP is that it does
not require in-depth knowledge about the relationship between
input meta-feature and output target variables. Instead, it tries



to recognize a pattern in the dataset and store those patterns as
a weight for later use for the test cases. In our implementation,
We have adopted an MLP with three hidden layers (32, 16,
8 neurons), rectified linear activation function (ReLU), and
adaptive moment estimation (Adam) optimizer.

5) Random Forest: It employs an ensembling technique that
generates multiple random trees and combines the outcome
of a test sample based on majority voting or averaging [23].
During RF model development, trees are built upon a bootstrap
sample of the data. RF adds more randomness in selecting
a subset of predictors compared to a decision tree, where
each node is split using the best variable selected based on
a node splitting criterion - gini or entropy. This randomness
in selecting features makes the RF classifier more accurate and
robust compared to other classifiers such as SVM, discrimi-
native analysis, and neural network [24]. In our adaptation,
we optimized the RF model to find the best hyper-parameters
(number of trees, 500, max depth, 40, splitting criterion, gini,
bootstrap, true) for classifying skin lesions into suspicious and
non-suspicious categories.

Furthermore, this study employed the ensembling technique
of majority voting-based decision-making by combining NB,
LR, SVM, RF, and MLP model outcomes. The final decision
of a test sample is taken based on majority voting. In the
stacking approach, we stacked NB, LR, SVM, and RF as
feature extractors and MLP as meta-learners to classify input
metadata into suspicious and non-suspicious classes.

D. Data Split and Evaluation Metrics

We split the metadata of 54,000 skin lesions into training
(80%) and test (20%) sets. During the training, a 10-fold CV
was used to build the models. The models were optimized
to tune hyper-parameters and the best-performing models
were selected based on their 10-CV results on training data.
Consequently, the selected models were evaluated on test data.
The following evaluation metrics were utilized to assess the
performance of the developed AI framework:

Sensitivity (Sen) =
TP

TP + FN
(5)

Specificity (Spc) =
TN

FP + TN
(6)

Balanced Accuracy (Acc) =
Sen+ Spc

2
(7)

where TP, TN,FP, FN refer to true positive (suspicious
classified as suspicious), true negative (non-suspicious clas-
sified as non-suspicious), false positive (non-suspicious mis-
classified as suspicious), and false negative (suspicious mis-
classified as non-suspicious) instances, respectively.

III. RESULTS AND DISCUSSION

In this section, the results of the feature selection are
provided and analyzed. The performance of the developed AI
framework is presented and benchmarked with those in the
literature.

A. Feature Selection Results

The selected features using the wrapper, Shapley, and Pear-
son correlation methods are summarized in Table IV. The
wrapper method ranks the number of moles, freckles, family
history, lesion pink, lesion age, lesion score, and patient age as
top features. The Shapley method prioritises prior skin cancer,
Williams score, lesion location, lesion pink, and lesion score
as top features. The Pearson correlation method ranks lesion
pink, lesion inflamed, patient age, lesion oozing, lesion score
as top features. The three most correlated features listed by
all the feature selection methods are lesion pink, lesion score,
and Williams score.

TABLE IV
FEATURE SELECTION RESULTS FOR THE WRAPPER, SHAPLEY, AND

PEARSON CORRELATION METHODS.

Wrapper Shaply Pearson Correlation
1 Mole
2 Freckle
3 Family History
4 Lesion Age
5 Lesion Size
6 Lesion Pink
7 Lesion Body
8 Client Age
9 Williams Score
10 Lesion Score

1 Lesion Pink
2 Prior Skin Cancer
3 Mole
4 Client Age
5 Lesion Score
6 Lesion Inflamed
7 Family History
8 Williams Score
9 Lesion Body
10 Lesion Size

1 Lesion Pink
2 Lesion Inflamed
3 Client Age
4 Lesion Oozing
5 Lesion Score
6 Lesion Itch
7 Prior Skin Cancer
8 Lesion Size
9 Williams Score
10 Sunburn

TABLE V
THE PERFORMANCE COMPARISON OF THE RF MODEL FOR DIFFERENT

FEATURE COMBINATIONS (TOP 1-5, TOP-10, TOP-15, AND ALL
FEATURES).

Feature Acc Sen Spc
Top1: Lesion Score 62.26% 57.87% 66.64%
Top2: Lesion Score

Lesion Pink 68.12% 70.29% 67.95%

Top3: Lesion Score
Lesion Pink
Gender

68.85% 75.25% 62.44%

Top4: Lesion Score
Lesion Pink
Gender
Williams Group

67.21% 79.02% 55.39%

Top5: Lesion Age
Lesion Shape
Lesion Pink
Gender
Williams Group

67.55% 81.23% 53.87%

Top10: Top5+
Lesion Body
Lesion Score
Prior Melanoma
Age
Freckle

68.26% 81.97% 54.55%

Top15: Top10+
Family History
Mole
Sunburn
Prior Skin Cancer
Lesion Oozing

70.53% 82.15% 58.91%

All Features from Table I 70.22% 83.16% 57.27%

Furthermore, we attempted to identify the top-performing
features from all candidate features based on their individual



Fig. 4. The performance comparison of the employed ML models for skin lesions metadata classification.

contributions in classifying skin lesion metadata as suspicious
or non-suspicious. The incremental performance gains for
different top feature combinations (top 1–5, top–10, top–15,
and all features) are summarized in Table V. We found lesion
score as the top-1 contributing feature that alone achieved a
balanced accuracy of 62.26%, a sensitivity of 57.87%, and a
specificity of 66.64% using the RF model. Lesion pink and
lesion score are found as the top-2 features that contributed
about 12% sensitivity improvement. The RF model achieved
a balanced accuracy of 67.55%, a sensitivity of 81.23%, and
a specificity of 53.87% with the top–5 features ( lesion age,
lesion shape, lesion pink, patient gender, and Williams group).
The RF model performed best for all the collected features
listed in Table I with a balanced accuracy of 70.22%, a
sensitivity of 83.16%, and a specificity of 57.27%.

Finding a subset of significantly correlated features has
great potential to reduce workload during healthcare data
collection. This can also significantly reduce data size and
shorten model training time. Our research identified a set
of top–5 meta-features from a pool of 25 features, which
achieved a promising sensitivity of 81.97% (for all 25 features,
sensitivity was 83.16%).

B. Skin Lesion Classification Results

The performance of the ML models is depicted in Fig. 4.
The NB model attained a balanced accuracy of 70.31%, with
a sensitivity of 64.95% and a specificity of 75.67%. Compared
to the LR model, NB exhibited an improvement in sensitivity
by approximately 16%, although specificity notably decreased
to 58.13%. Subsequently, the RF model enhanced sensitivity
to 83.16%. The MLP model yielded a balanced accuracy of
70.16%, with a sensitivity of 81.60% and a specificity of
58.72%. Employing a voting approach resulted in a sensitivity
of 83.35%, comparable to that of the RF model. Notably, the
stacking ensemble of NB, LR, MLP, and RF models achieved
the highest sensitivity of 83.53%. Although RF, Voting, and

Stacking models achieved similar performance, we selected
RF models for benchmarking as RF as a single model offers
less computational complexity, and training time compared to
voting (five models) and stacking (five models) approaches.

In this study, sensitivity takes precedence over other eval-
uation metrics, notably specificity. This prioritization stems
from the critical importance of accurately detecting suspicious
lesions, particularly those associated with melanoma. Given
the severe consequences of missing a suspicious lesion, our
focus on sensitivity aims to minimize FN. Following discus-
sions with our in-house skin cancer experts, we opted to trade
off specificity scores to enhance the detection of suspicious
cases.

TABLE VI
THE PERFORMANCE COMPARISON OF THE RF MODEL FOR DIFFERENT

COMBINATIONS OF THE OUTCOME PROBABILITY THRESHOLD.

Threshold Balanced Accuracy Sensitivity Specificity
0.01 59.63% 94.94% 24.32%
0.02 64.04% 92.00% 36.08%
0.03 67.01% 88.96% 45.06%
0.04 68.72% 85.92% 51.52%
0.05 70.22% 83.16% 57.27%
0.06 71.33% 80.59% 62.07%
0.07 73.17% 77.18% 69.15%
0.08 73.13% 74.33% 71.93%
0.09 73.48% 72.49% 74.46%
0.10 73.29% 69.83% 76.76%

There was a compromise between sensitivity and specificity
scores. As we aimed for high sensitivity, the specificity scores
were affected as highlighted in Table VI. In our experiment,
the ML models used a default probability threshold value of
0.50 for classifying input data into output classes. We have
tuned this probability threshold value between 0 and 1 with
an interval of 0.01. The RF model outperformed in terms of
sensitivity (83.16%) with a threshold value of 0.05 as com-
pared to a default threshold value of 0.50 (sensitivity 77.15%).
Although the sensitivity increased with a 0.05 threshold value,



TABLE VII
THE PERFORMANCE BENCHMARKING OF OUR APPROACH ALONG WITH THE 7PCL AND WILLIAMS METHOD.

Method 7PCL Method [7] Williams Method [12] Our Approach

Feature

1.Lesion Size
2.Lesion Color
3.Lesion Shape
4.Lesion >7mm
5.Lesion Inflamed
6.Lesion Oozing
7.Lesion Itch

1.Patient Gender
2.Patient Age
3.Sunburn
4.Hair Color
5.Mole
6.Freckle
7.Prior Skin Cancer

All the meta-features listed in Table I

AI Model Performance
Balanced Accuracy: 64.58%
Sensitivity: 68.09%
Specificity: 61.07%

Balanced Accuracy: 64.01%
Sensitivity: 66.32%
Specificity: 61.71%

Balanced Accuracy: 70.22%
Sensitivity: 83.16%
Specificity: 57.27%

other evaluation metrics such as specificity dropped to 57.27%.
We have benchmarked our approach with the 7PCL [7] and

Williams method [12] and the comparative performance gain
is highlighted in Table VII. Our employed RF model out-
performed the 7PCL and Williams methods in both balanced
accuracy (p-value<0.01) and sensitivity (p-value <0.01). The
7PCL method achieved 64.58% balanced accuracy, 68.09%
sensitivity, and 61.07% specificity when evaluated using our
dataset. Although the Williams method identifies a person at
risk of developing skin cancer, we utilized Williams features
to investigate whether a person’s lesion can be classified as
suspicious or non-suspicious based on the Williams features.
The Williams method displayed a similar performance as
the 7PCL method with a balanced accuracy of 64.01%, a
sensitivity of 66.32%, and a specificity of 61.71%. Conversely,
our approach utilizing the RF model along with all the meta-
features listed in Table I achieved a significant performance
gain over the 7PCL and Williams methods. The RF model
displayed 70.22% balanced accuracy, 83.16% sensitivity, and
57.27% specificity. We prioritize sensitivity over specificity
as missing a suspicious case is more severe than missing a
non-suspicious case. Therefore, although we achieved a lower
specificity as compared to the 7PCL and Williams method,
our sensitivity is outperformed by 15%.

Moreover, to compare our approach with ML-based meth-
ods, we conducted a literature review. We noted a study by
Pacheco et al. [9], which incorporated patient metadata such
as age, gender, lesion location, bleeding, and pain alongside
skin images. They reported a 7% enhancement in performance
attributed to the inclusion of metadata. However, they did
not separate the impact of metadata alone on skin cancer
detection. Another study by Ha et al. [25], the winner of the
Kaggle 2020 melanoma challenge, integrated patient metadata
such as age, gender, and lesion location. Interestingly, they
found that augmenting images with metadata did not improve
model performance. Previous research predominantly relied
on image data alone, with limited exploration of patient
metadata for lesion classification in skin cancer detection.
Hence, we developed an AI framework exclusively leveraging
metadata. Our findings indicate that this framework effectively
discriminates between suspicious and non-suspicious skin le-
sions with high sensitivity. This approach has the potential to
complement existing skin cancer assessment methods when

used alongside image data. In the future, patients categorized
as non-suspicious based on both metadata and images could
potentially avoid referrals to specialist clinics. Additionally,
metadata classification could serve as a decision support tool
for telemedicine reporters when lesion classification remains
uncertain post-image analysis alone. This approach holds
promise for reducing the number of referrals for potential biop-
sies and alleviating waiting times for skin cancer diagnosis.

IV. CONCLUSION

The integration of AI methodologies in skin lesion classifi-
cation, focusing solely on metadata, holds significant promise
in streamlining and expediting the detection of suspicious
lesions. By potentially reducing patient referrals for biopsy
procedures, this approach has the potential to mitigate waiting
times for skin cancer diagnosis and treatment, ultimately
enhancing patient outcomes. In our study, we developed an
AI framework exclusively leveraging patient metadata for
skin lesion classification, achieving a sensitivity of 83.53%.
Additionally, our research contributed to the acquisition of
high-quality data and the identification of a subset of meta-
features highly pertinent to skin cancer development. Future
efforts may involve amalgamating these highly correlated
meta-features with image modalities and employing computer
vision models, which could potentially augment the perfor-
mance of the classification model.
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