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Abstract. Automated skin lesion classification is pivotal in modern der-
matology, and recent strides in deep learning have shown immense poten-
tial in this field. This paper introduces a novel attention mechanism amal-
gamating various self-attention variants with the Vision Transformer
(ViT) architecture to enhance skin lesion classification performance. By
integrating Scaled Dot-Product Attention, Multiplicative Attention, and
Additive Attention, a unified framework is devised for capturing diverse
contextual cues within dermatological images. Extensive experiments are
conducted on skin lesion datasets (ISIC 2017) to assess different loss func-
tions, attention mechanisms, and fusion strategies. Results demonstrate
that the proposed method significantly enhances classification perfor-
mance across all metrics, exhibiting a remarkable improvement of over
12% in F1 score compared to the baseline. This approach not only show-
cases the efficacy of attention mechanisms in dermatological image anal-
ysis but also underscores the potential of ViT architecture in advancing
automated skin lesion classification, thereby offering promising prospects
for improving diagnostic accuracy and patient care in dermatology.

Keywords: Vision Transformer · Self-Attention Fusion · Skin Lesion
Classification.

1 Introduction

Skin cancer analysis is a critical process used by medical professionals to detect
and diagnose skin cancer [2]. This involves examining suspicious skin lesions and
abnormalities to determine whether they are cancerous or benign. Various meth-
ods, including visual inspection, dermoscopy, and image analysis using artificial
intelligence (AI), have been employed for accurate diagnosis. By identifying skin
cancer at an early stage, medical interventions can be initiated promptly, leading
to better chances of successful treatment and recovery [2]. Delays in detecting
suspicious skin lesions significantly reduce five-year survival rates by 20%, as
evidenced in a study [17]. The two-week rule for cancer patients requires im-
mediate assessment of the suspected lesion by a specialist within two weeks.
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Over the years, referrals for this pathway have surged, from 159,430 patients in
2009/2010 to 506,456 patients in 2019/2020, intensifying pressure on healthcare
access and timely assessments [18]. Additionally, non-urgent referrals face an
18-week waiting period, with only 80% of patients seen within this timeframe
in 2019/2020. The COVID-19 pandemic exacerbated this backlog by either can-
celling appointments or accommodating urgent patients, further exacerbating
access issues. With the ageing population, skin cancer referrals are projected to
rise in the foreseeable future [12].

In the domain of skin cancer analysis, imbalanced datasets pose a signifi-
cant challenge [13]. Such datasets often contain a disproportionate number of
samples from certain types of skin lesions, resulting in an unequal represen-
tation of different skin cancer classes. This imbalance can adversely affect the
performance of machine learning models and AI algorithms [13]. The skewed
distribution may cause the model to be biased towards the majority class, lead-
ing to reduced accuracy in detecting and classifying rare or underrepresented
skin cancer types. Addressing the imbalance problem is crucial to ensure the
model’s fairness and efficacy in skin cancer analysis. Vision Transformer (ViT)
[11] is a state-of-the-art deep learning model that has shown remarkable perfor-
mance in various computer vision tasks. However, ViTs demand immense labeled
data for pre-training models, notably more than Convolutional Neural Networks
(CNNs). Training ViTs from scratch on small datasets may yield suboptimal
results. Transfer learning based on ImageNet presents challenges in adapting to
domain-specific tasks with limited data. Furthermore, when applied to an im-
balanced skin cancer image dataset, ViTs may encounter challenges due to the
skewed class distribution [3]. The model may struggle to generalize effectively
to the minority class, leading to suboptimal performance in detecting rare or
malignant skin lesions. The need to enhance ViT’s performance on imbalanced
datasets is a pressing research topic to ensure accurate and unbiased skin cancer
analysis using transformer-based models.

To overcome the limitations of ViTs on imbalanced skin cancer image datasets,
this study proposes a method leveraging various techniques to mitigate class im-
balance and enhance model performance: 1) employing data augmentation for
synthetic minority class samples [22]; 2) utilizing weighted loss functions to em-
phasize rare classes during training [3]; and 3) modifying the ViT architecture
by replacing the last n attention layers with attention fusion layers.

This paper is structured as follows: Section 2 describes the proposed network
architecture with self-attention fusion and the loss functions. Section 3 provides
information on the experiment setup, including dataset and evaluation metrics.
Section 4 presents the results, followed by discussions. Section 5 presents future
works, and Section 6 concludes the study.
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Fig. 1: The proposed self-attention fusion architecture

2 Method

2.1 Network Architecture with Self-attention Fusion

In our proposed method for skin cancer classification, ViT B16 [11] is adopted
as the backbone of our model. This choice is underpinned by the superior perfor-
mance and scalability demonstrated by ViTs in image recognition tasks. Two dif-
ferent sets of initial weights are used for the proposed model. The first one is the
ViT model pre-trained via supervised learning on ImageNet-21k, a vast dataset
with 14 million images across 21,843 classes, and subsequently fine-tuned on
ImageNet-1k, comprising 1 million images spanning 1,000 classes. These weights
are the same as those used in the original ViT paper [11]. The second one is
the ViT model pre-trained via self-supervised learning on ImageNet-1k. This
model follows the training method from the DINO paper [5]. This pre-training
regimen equips our model with a rich understanding of visual features, enabling
effective knowledge transfer to the domain of skin cancer classification. To en-
hance the model’s generalization capabilities, RandAugment [8] is chosen for
data augmentation.

To tailor the ViT model for dermatological image analysis, for capturing
contextual information in particular, a modified attention layer is designed by
combining the original scaled dot product attention [20] with other attention
mechanisms such as multiplicative attention [16] and additive attention [4], as
shown in Fig. 1. The scaled dot product attention, known for its efficiency and
global context modeling, excels in capturing long-range dependencies by calcu-
lating the dot product of the query and key matrices while scaling to mitigate the
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vanishing gradient problem. Multiplicative attention, on the other hand, intro-
duces a dynamic element-wise multiplication operation between the query and
key matrices, emphasizing the interactive influence between features. Lastly, ad-
ditive attention employs a weighted sum of the query and key matrices, allowing
for a flexible and learnable combination of features.

The proposed attention fusion approach aims to leverage the strengths of
different attention mechanisms and thus enhance the model’s ability to discern
salient features within dermatological images. Attention maps produced by dif-
ferent attention mechanisms are integrated using several fusion strategies namely
average, maximum, and multiplication element-wise operations. The average fu-
sion strategy as defined in (1) facilitates a balanced integration, allowing each
attention mechanism to contribute equally to the final attention map. On the
other hand, the maximum fusion strategy as defined in (2) emphasizes the most
salient regions identified by any of the attention mechanisms, prioritizing the
strongest cues. The multiplication fusion strategy as defined in (3), captures the
synergistic effect of attention mechanisms, accentuating regions where multiple
mechanisms concurrently identify salient features.

Avg Fusion(i, j) =
1

n

n∑
k=1

Attmapk(i, j) (1)

Max Fusion(i, j) = max
k

Attmapk(i, j) (2)

Prod Fusion(i, j) =

n∏
k=1

Attmapk(i, j) (3)

In our model, only the last n attention layers of the ViT model are strate-
gically replaced with the proposed attention fusion layers, ensuring that the
valuable knowledge encapsulated in the pre-trained weights from a vast dataset
is retained. By focusing our adjustments on the last n attention layers, we aim
to preserve the wealth of information encoded in the preceding layers while al-
lowing the model to adapt and capture new intricate patterns specific to the
task at hand. This fine-tuning methodology strikes a balance between leverag-
ing the generalization capabilities gained from pre-training on a large dataset
and tailoring the model to the nuances of the target domain, hence resolving
the domain adaptation challenge. The modified attention layers serve as a lens,
through which the proposed model can refine its understanding of the extracted
features and effectively integrate domain-specific intricacies, thereby optimizing
its performance on the specific tasks or patterns that may be characteristic of
the new data distribution. In our experiments, we restrict the value of n to the
set {1, 2, 3} due to memory constraints.

2.2 Loss Functions

In order to combat the imbalance problem and optimize the performance of
our skin cancer classification model based on the modified ViT architecture,
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we conducted extensive experiments to evaluate various loss functions, aiming
to identify the most effective loss function for training the proposed model to
achieve superior accuracy and generalization. The loss functions under scrutiny
in our study include cross-entropy loss, as defined in (4), weighted cross-entropy
loss, as defined in (5), with parameter weight α ∈ {0.2, 0.5, 0.7, 0.8, 0.9}, focal loss
[14], as defined in (6), with α ∈ {0.2, 0.5, 0.7, 0.8, 0.9} and parameter γ ∈ {1, 2}
which is a focusing parameter that modulates the loss. When γ = 0, Focal Loss
becomes equivalent to standard cross-entropy loss. Additionally, we explored
the class-balanced loss function [9], as defined in (7), with γ ∈ {0.5, 1} and a
hyperparameter that controls the balance between classes, β ∈ {0.999, 0.9999}.
pt in the equations represents the predicted probability assigned to the true label
while nt is the number of samples in the true class. Moreover, label smoothing
[19] was incorporated into our experimentation with α ∈ {0.1, 0.25, 0.5}.

CE(pt) = −log(pt) (4)

Weighted CE(pt) = −αlog(pt) (5)

FL(pt) = −α(1− pt)
γ log(pt) (6)

CB(pt) = − 1− β

1− βnt
(1− pt)

γ log(pt) (7)

The weighted cross-entropy loss with varying alpha values allows us to as-
sess the impact of different class weightings on the model’s ability to prioritize
certain classes during training. Similarly, the focal loss introduces a dynamic
scaling factor, alpha, and a focusing parameter, gamma, to modulate the in-
fluence of hard-to-classify samples on the training process. The class-balanced
loss, with adjustable beta and an additional gamma parameter, when applying
the class-balanced term to the focal loss, addresses the issue of imbalanced class
distribution, ensuring that each class contributes proportionally to the overall
loss, hence preventing prior probability shift.

Label smoothing, on the other hand, is a regularization technique to prevent
the model from becoming excessively confident in its predictions, potentially
improving generalization performance. Through a meticulous analysis of the ex-
perimental results, we aim to provide valuable insights into the impact of these
diverse loss functions on the ViT model’s training dynamics and, ultimately, its
efficacy in skin cancer classification.

3 Experimental Setup

3.1 Dataset and Performance Metrics

The International Skin Imaging Collaboration (ISIC) 2017 dataset is used in our
experiment, which comprises a diverse collection of skin lesion images captured
using dermoscopy photography. With ground truth annotations, it contains 2000
images in the training set, 150 images in the validation set, and 600 images in the
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test set. The images fall into one of three categories: "melanoma", "seborrheic
keratosis", and "nevus" [7].

Due to the inherent imbalance in class distribution, the performance of our
model is evaluated using a comprehensive set of metrics. The choice of metrics
is essential to ensure a nuanced understanding of the model’s effectiveness in
handling the intricacies of imbalanced data. We employ the following metrics:
Balanced Accuracy (BA), Area Under the Receiver Operating Characteristic
curve (AUC), Average Precision (AP), Accuracy (Acc), and F1 Score (F1). These
metrics collectively provide a holistic assessment of the model’s classification
performance, considering both its ability to correctly identify positive instances
and its robustness in handling class imbalance.

BA is defined as:

BA =
Sensitivity + Specificity

2
(8)

where Sensitivity, also known as True Positive Rate (TPR) or Recall, is calcu-
lated as follows:

Sensitivity =
TP

TP + FN
(9)

and Specificity, also known as True Negative Rate (TNR), is calculated as follows:

Specificity =
TN

TN + FP
(10)

It is a crucial metric that considers both sensitivity and specificity of the model,
offering a fair assessment of the model performance on imbalanced datasets.

AUC quantifies the model’s ability to discriminate between positive and neg-
ative instances across different probability thresholds. It is calculated as the area
under the ROC curve.

AP measures the precision-recall trade-off across various threshold values,
providing a more nuanced evaluation of classification performance, which is de-
fined as:

AP =
∑
n

(Recalln −Recalln−1)× Precisionn (11)

where Recalln and Precisionn are Recall and Precision achieved at the n-th
threshold.

Acc gauges the overall correctness of the model’s predictions and is calculated
as the ratio of correctly predicted instances to the total number of instances:

Acc =
TP + TN

TP + TN + FP + FN
(12)

F1 Score is the harmonic mean of precision and recall, offering a balanced as-
sessment of the model’s performance:

F1 =
2× Precision×Recall

Precision+Recall
(13)
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3.2 Experimental Configuration

In our experimental study, distinct scenarios were systematically investigated,
including variations in the choice of loss functions, as well as the impact of
the replacement of the last attention layer with the proposed attention fusion.
We adhere to the classification challenges outlined in the ISIC 2017 Challenge,
encompassing two distinct tasks. The initial task (classification task 1) involves
discriminating between (a) melanoma and (b) nevus and seborrheic keratosis,
resulting in an imbalance ratio of 1:4. The subsequent task (classification task
2) requires distinguishing between (a) seborrheic keratosis and (b) nevus and
melanoma, leading to an imbalance ratio of 1:7. To compare the performance of
the proposed method, we use classification task 2 which has a larger imbalance
ratio of 1:7. After that, we combine both classification tasks to compare the
proposed method with those in the ISIC 2017 Challenge leaderboard. For each
training instance, we employed ViT-B16 [11] as a baseline model. The baseline
models consist of the original ViT architecture with pre-trained weights derived
from both supervised and self-supervised learning, specifically DINO. Further,
each model undergoes training on ISIC 2017 dataset for 20 epochs with a learning
rate set to 2e-5 and AdamW [15] as the optimizer. The best model is determined
based on the evaluation of the validation set in terms of the lowest evaluation
loss. The reported performance metrics represent the average performance across
the two tasks on the test set.

4 Results and Discussion

In the course of our investigation, we systematically scrutinized the performance
of the proposed skin cancer classification model with different loss functions. The
results of this initial comparative study are presented in Table 1, comparing the
model performance on classifying (a) seborrheic keratosis and (b) a combination
of nevus and melanoma.

Table 1: Performance Comparison of Different Loss Functions
Loss Function BA AUC AP Acc F1
CE 0.6975 0.8535 0.5964 0.8467 0.5354
Weighted CE 0.6952 0.8611 0.6103 0.8533 0.5368
Focal Loss 0.5708 0.7868 0.4991 0.8200 0.2603
Class Balanced 0.7166 0.7794 0.4960 0.6950 0.4903

The weighted cross-entropy loss with α = 0.8 achieved superior performance
across all metrics except for BA. Building upon this preliminary result and con-
sidering that the ISIC 2017 Challenge utilizes the AUC as the main metric, the
weighted cross-entropy loss was chosen to proceed with further investigation.
The weighted cross-entropy loss is effective in handling class imbalance, which
is often prevalent in medical imaging datasets such as the ISIC dataset.
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In the subsequent study, we directed our attention toward enhancing the
model’s attention mechanism by modifying the last n attention layers. To deepen
our understanding of the influence of attention mechanisms on the model’s per-
formance, we visualized the attention maps generated by different attention
mechanisms, as depicted in Fig. 2b, where column 1 and column 3 show the
attention maps on the penultimate layer from different heads, while column 2
and column 4 present the mask mapping of each attention map, obtained by
selecting a portion of the self-attention maps through thresholding, retaining
30% of its mass. Visible parts are areas with attention values below the thresh-
old, while the red areas indicate areas with attention values above the threshold
that the model pays more attention to. It shows that each attention mechanism
can identify both brighter and darker skin lesions in column 2 and column 4,
respectively, albeit with varying intensity levels in column 1 and column 3. This
divergence in intensity provides an opportunity to effectively amalgamate their
respective attention maps.

Subsequently, we explored the synergy achievable through attention map fu-
sion in our proposed method. By combining attention maps produced by different
attention mechanisms, we sought to create a more comprehensive and informa-
tive representation of salient features within dermatological images. We used the
ISIC 2017 dataset to train our models, employing weighted cross entropy with a
loss function, as recommended in the preceding phase.

The results of this attention mechanism modification are systematically pre-
sented in Table 2 for the ViT model and DINO model. It is evident that all the
proposed models using the ViT model with different attention fusion strategies
outperformed the baseline model in terms of the AP metric. The proposed model
using the ViT model incorporating maximum attention fusion particularly out-
performed all other models across all metrics, except in the case of AUC, in
terms of which the product fusion approach outperformed all other methods.

Table 2: Self-attention Fusion Performance on VIT-B16 and DINO-B16
Fusion Strategy BA AUC AP Acc F1
VIT-B16
Base 0.6952 0.8611 0.6103 0.8533 0.5368
Prod. Fusion (Ours) 0.6899 0.8658 0.6277 0.8500 0.5263
Max Fusion (Ours) 0.7005 0.8465 0.6305 0.8567 0.5474
Avg Fusion (Ours) 0.6919 0.8449 0.6167 0.8533 0.5319
DINO-B16
Base 0.6962 0.8543 0.6180 0.8550 0.5397
Prod. Fusion (Ours) 0.7698 0.8607 0.6448 0.8483 0.6224
Max Fusion (Ours) 0.7768 0.8787 0.6516 0.8700 0.6518
Avg Fusion (Ours) 0.7665 0.8714 0.6439 0.8483 0.6192

It is evident from Table 2 that our proposed attention fusion method is not
only effective on the original ViT model, but also on the models pre-trained
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(a)

(b)

(c)

Fig. 2: (a) Original image. (b) Attention maps from two different heads corre-
spond to a skin lesion with a darker and brighter area. The even columns present
the mask mapping with a threshold of 0.3. (c) Attention maps from the proposed
method



10 R. I. Heroza et al.

using the DINO method. When applied on the models pre-trained using the
DINO method, the proposed method incorporating maximum attention fusion
shows the best performance in terms of all metrics, especially in terms of F1
score, with a 12% increase compared to the base model.

The initial assessment reveals that the base models, utilizing both VIT and
DINO architectures, yield similar levels of performance. However, our proposed
approach exhibits a significant performance boost when applied to the DINO
model, revealing substantial disparities in performance. This outcome suggests
that the intricate process of feature extraction, facilitated by the three attention
mechanisms, operates with greater efficacy when applied to the features gen-
erated by the DINO architecture. These results align closely with the findings
presented in the DINO paper [5], where it is elucidated that DINO’s features har-
bor richer and more informative content essential for tasks such as semantic seg-
mentation. The inherent self-distillation mechanism within the DINO framework
which produced the final model plays a pivotal role in enhancing the model’s
ability to capture nuanced and meaningful features inherent within the skin
lesion images.

The improvement in performance observed in the proposed model compared
to the baseline could be attributed to its enhanced focus on the lesion area, as
evidenced by the attention maps visualization in Fig. 2c. These attention maps
reveal that the proposed model exhibits a greater degree of attention and empha-
sis on the features within the lesion area while tending to disregard irrelevant
regions of the skin. This heightened focus on the lesion area likely allows the
model to extract more discriminative features associated with the pathology,
thereby improving its ability to accurately classify or detect abnormalities.

By selectively attending to the lesion area, the proposed model may effec-
tively filter out the noise and irrelevant information present in the surrounding
skin regions. This targeted attention mechanism enables the model to prioritize
relevant features crucial for classification or detection tasks, leading to a more
robust and accurate performance compared to the baseline. Additionally, the
ability of the proposed model to ignore non-essential areas of the skin suggests a
more efficient allocation of computational resources, allowing for a more refined
analysis of the critical regions.

Furthermore, the attention maps provide valuable insights into the inner
workings of the proposed model, shedding light on its decision-making process
and highlighting areas of focus that contribute most significantly to its improved
performance. Overall, the relationship between the observed performance im-
provements and the attention maps visualization underscores the importance of
attention mechanisms in enhancing the effectiveness of deep learning models for
medical image analysis tasks.

In order to measure the confidence of the classification performance of our
proposed methods, the McNemar test was used, which is a statistical method
commonly employed in the field of machine learning to assess the differences
in classification performance between two models with low type I error [10].
It provides a robust means of evaluating whether the observed discrepancies
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in predictions made by the models are statistically significant. By examining
the discordant classifications made by the models on paired data points, the
McNemar test enables to determine if one model significantly outperforms the
other.

The contingency tables and p values for comparing the proposed models
with self-attention fusion and the baseline models VIT-B16 and DINO-B16 us-
ing McNemar Test are presented in Table 3 and Table 4 respectively. The null
hypothesis in this test is that the proposed model with self-attention fusion and
the baseline show error rates without significant difference. While our proposed
method demonstrates some improvement over the baseline model when applied
to the VIT architecture, the difference is not statistically significant. The test
results fail to reject the null hypothesis, indicating similar error rates between
the two methods. However, on the DINO architecture, our proposed method ex-
hibits clear superiority. With a p-value of 0.0131, falling below the conventional
threshold of 0.05, the test successfully rejects the null hypothesis, underscoring
a significant enhancement in model performance when our proposed attention
fusion method is employed with the DINO model.

Table 3: McNemar Test on VIT-B16
Contingency Table Ours - Correct Ours - Incorrect
Base - Correct 497 15
Base - Incorrect 17 71

p-value: 0.8596 Fail to Reject Null Hypothesis

Table 4: McNemar Test on DINO-B16
Contingency Table Ours - Correct Ours - Incorrect
Base - Correct 476 22
Base - Incorrect 43 59

p-value: 0.0131 Reject Null Hypothesis

In Table 5, our results were compared with those in the ISIC 2017 Challenge
leaderboard [1] in terms of the average performance for classification task 1 and
classification task 2.

In contrast to the outcomes observed in the ISIC 2017 Challenge leaderboard,
our proposed method secures the 4th position based on the AUC metric, which
serves as the primary evaluation criterion in the challenge. It is noteworthy that
this accomplishment was attained despite our utilisation of ViT B16 as the base
model, a choice made to accommodate memory constraints in our experimental
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Table 5: Comparison with the ISIC 2017 Leaderboard
Model AUC BA AP Acc F1
Rank 1 0.911 0.831 0.750 0.816 0.612
Rank 2 0.910 0.883 0.748 0.849 0.242
Rank 3 0.908 0.844 0.754 0.883 0.564
DINO Fusion (Ours) 0.899 0.805 0.695 0.890 0.679
Rank 4 0.896 0.843 0.733 0.888 0.612
VIT Fusion (Ours) 0.896 0.770 0.699 0.871 0.606
Rank 5 0.886 0.847 0.667 0.873 0.608

setup. It should be noted that the top three models in the leaderboard lever-
age more extensive training data and segmentation masks. It is important to
highlight that the potential for achieving even more superior results exists by
employing larger ViT variants [11] and incorporating a more extensive set of
training data. It is worth noting that our proposed method outperformed all
the models in the leaderboard in terms of Acc and F1 score, demonstrating an
excellent balance between precision and recall in our model’s performance.

5 Future Work

There exist different feature map dimensions, such as Linformer [21] and Per-
former [6]. It is worth exploring the synergistic potential of integrating the
latest advancements in self-attention mechanisms in future investigations. Lin-
former and Performer have emerged as promising alternatives to traditional
self-attention mechanisms, offering more efficient computation and scalability
to handle larger input dimensions. By combining these novel attention maps
with varying feature map dimensions, we aim to further enhance the perfor-
mance and robustness of skin lesion classification models. This endeavor could
entail exploring the interplay between different attention mechanisms and feature
map structures, optimizing their fusion strategies, and conducting comprehen-
sive evaluations on diverse dermatological datasets. Additionally, investigating
the interpretability and generalisability of such hybrid models will be crucial for
advancing our understanding of skin lesion classification and facilitating their
clinical applicability in real-world settings.

6 Conclusion

This paper proposes a simple yet powerful attention fusion technique within
a single-model framework, designed to enhance the skin cancer classification
capabilities of vision transformers. By selectively replacing attention mechanisms
in the final layers with a combination of diverse attention variants, our approach
leverages pre-trained weights while exploring new patterns. Experimental results
have demonstrated the effectiveness of the proposed method, with consistent



Title Suppressed Due to Excessive Length 13

improvements across all metrics, achieving a 12% increase in F1 score compared
to the baseline. Notably, even with a small model due to memory constraints
our proposed method attained the fourth position compared to those in the ISIC
2017 Challenge leaderboard in terms of AUC and outperformed all the models
in the leaderboard in terms of Acc and F1 score.
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