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We examine high-stakes strategic choice using more than 40 years of data from the American 
TV game show The Price Is Right. In every episode, contestants play the Showcase Showdown, 
a sequential game of perfect information for which the optimal strategy can be found through 
backward induction. We find that contestants systematically deviate from the subgame perfect 
Nash equilibrium. These departures from optimality are well explained by a modified agent 
quantal response model that allows for limited foresight. The results suggest that many contestants 
simplify the decision problem by adopting a myopic representation, and optimize their chances 
of beating the next contestant only. In line with learning, contestants’ choices improve over the 
course of our sample period.

1. Introduction

Many economic interactions are sequential in nature. A negotiator thinking about their bargaining offer, an entrepreneur deciding 
whether to enter a market, and a corporate manager determining how many goods to produce, all need to consider the subsequent 
actions of others. Such situations can be modeled as finite sequential games of perfect information, for which the subgame perfect 
Nash equilibria can be found through backward induction (von Stackelberg, 1934; Selten, 1978; Dixit, 1982; Rubinstein, 1982).

Unfortunately, the descriptive accuracy of game-theoretic equilibria is difficult to test in the field, because agents’ choice options, 
payoffs, and the information they have are normally not (or not straightforwardly) observable. When choices deviate from equilibrium 
play, it consequently remains unclear whether the behavior is truly suboptimal or whether the deviations are the result of incorrect 
modeling assumptions. To avoid this joint-hypothesis problem, tests of equilibrium play typically rely on laboratory experiments in 
which all factors are perfectly controlled. Experimental work finds that people often deviate from the equilibrium strategies, casting 
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doubt on the descriptive validity of backward induction as a solution concept (Rosenthal, 1981; McKelvey and Palfrey, 1992; Fey et 
al., 1996; Binmore et al., 2002; Johnson et al., 2002; Levitt et al., 2011; Dufwenberg and Van Essen, 2018). The generalizability of 
experimental findings to real-world situations, however, is subject to debate. Critics argue that it is not surprising that experimental 
subjects frequently fail to adopt equilibrium strategies, most notably because of low incentives and little experience with the task 
(Binmore, 1999; Levitt and List, 2007a,b; Falk and Heckman, 2009; Camerer, 2015).

The present paper examines the optimality of strategic decisions in the quasi-controlled high-stakes field setting of the Showcase 
Showdown (SCSD), a finite sequential game of perfect information that is played twice in every episode of the long-running American 
TV game show The Price Is Right. In this game, described in more detail in Section 2, three contestants take turns to spin a wheel that 
contains all multiples of 5 in the range 5–100.2 Immediately after spinning the wheel once, the contestant has to decide whether to 
spin the wheel again. Their score is the outcome of the first spin if they spin only once, and the sum of the two spin outcomes if they 
spin twice. The contestant whose score is closest to 100 without going over wins the game and proceeds to the so-called Showcase

final, where they compete with the winner of another SCSD to win a set of prizes worth tens of thousands of dollars in expectation. 
If their score is exactly 100 they win one or two cash bonus prizes on top of their qualification for the final.

To make the optimal choice, the contestants thus need to weigh the possibility of obtaining a more competitive score and having 
a shot at the bonus prizes against the risk of self-elimination. Coe and Butterworth (1995), Grosjean (1998), and Tenorio and Cason 
(2002) derive the unique subgame perfect Nash equilibrium (SPNE) for this game for various combinations of bonus prizes and 
expected showcase values. The three contestants’ equilibrium strategies, which can be found through backward induction, take the 
form of decision rules that dictate whether a contestant should stop or spin again.

The characteristics of the SCSD make it an appealing test bed for assessing the descriptive validity of backward induction as a 
solution concept in the field. First, as in carefully designed lab experiments, the task is well-defined and both the choice options and 
the choice-relevant information that is available to contestants are known. Second, the prizes that can be won dwarf the payoffs that 
are typically employed in experiments. Third, the SCSD has been repeated numerous times under similar conditions, creating the 
opportunity of a large-scale statistical analysis. Other benefits of the long history are that contestants can be expected to be familiar 
with the game, and that we can explore potential learning effects.3

At the same time, the game show setting may evoke external validity concerns because of selection procedures and because of the 
unusual conditions under which choices are made. Section 5 reflects on these concerns. Any possible downside, however, should be 
evaluated in the light of the availability of better alternatives. Other opportunities for a large-scale, high-stakes field test of backward 
induction are incredibly scarce, if not absent. Hence, following List (2023), the unique setting should be embraced and not dismissed 
for its idiosyncrasies.

The present paper is not the first to use a TV game show as a real-world naturally-occurring laboratory. Game shows have been 
used to study a wide range of other topics in economics, such as decision making under risk (Gertner, 1993; Metrick, 1995; Post et al., 
2008; Bombardini and Trebbi, 2012), discrimination (Levitt, 2004; Belot et al., 2010), bargaining (van Dolder et al., 2015), willingness 
to compete (Hogarth et al., 2012; Buser et al., 2023), giving (Eberhardt et al., 2024), and cooperation (List, 2006; Oberholzer-Gee et 
al., 2010; van den Assem et al., 2012; Turmunkh et al., 2019).

We analyze a large sample of 10,071 renditions of the SCSD. In every rendition, three contestants make a spin decision, but a 
substantial fraction of the total of 30,213 decisions are trivial and of little value to our study. For Contestant 2 and 3, decisions are 
trivial when their first-spin outcome is lower than the best preceding score (in which case they always spin again). For Contestant 
3, who spins last, decisions are also trivial when their first-spin outcome is higher than the best preceding score (in which case they 
always stop).4 We omit those decisions from our empirical analysis, and exclusively focus on the decisions of Contestant 1 and on 
the remaining decisions of Contestant 2.

We start our analysis by examining whether, when, and how contestants deviate from the SPNE. We find that Contestants 1 
and 2 frequently make suboptimal decisions, and that the error rate of Contestant 1 is somewhat higher than that of Contestant 2. 
Strikingly, Contestant 1 almost exclusively errs by underspinning, that is, they stop when it is optimal to spin. Contestant 2’s mistakes, 
by contrast, are considerably more symmetric and involve only slightly more underspinning than overspinning.

We then consider several explanations for suboptimal play that are well-rooted in the literature. First, we examine whether 
contestants depart from the equilibrium strategy because they make random errors in evaluating the expected utility of their two 
choice options, and expect others to make similar mistakes. To test this explanation, we estimate an agent quantal response equilibrium 
model (AQRE; McKelvey and Palfrey, 1998). We find that a substantial proportion of the deviations from the SPNE can be explained 
by random evaluation errors. The decisions of Contestant 2 are largely consistent with the model’s probabilistic predictions, but the 
model fails to capture most of the systematic underspinning of Contestant 1.

Next, we consider the possible role of omission bias, which is the tendency to favor harmful inactions over harmful actions (Ritov 
and Baron, 1990, 1992; Spranca et al., 1991; Feldman et al., 2020). Systematic underspinning in the SCSD can be explained by 
a preference for elimination after not spinning (by an opponent who obtains a higher score) over elimination after spinning (by 

2 Henceforth we refer to the contestant who spins first as Contestant 1, to the contestant who spins second as Contestant 2, and to the contestant who spins last as 
Contestant 3.

3 The SCSD has also been proposed as a useful classroom tool for teaching probability and game theory (Burks and Jaye, 2012; Swenson, 2015).
2

4 Contestant 3 faces a nontrivial decision when they tie with the best preceding score, but such situations are relatively rare.
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exceeding 100 points).5 We find that allowing for omission bias in the AQRE model improves the goodness-of-fit for Contestant 1, 
but at the same time introduces systematic prediction errors for Contestant 2. Hence, omission bias fails to adequately explain the 
behavior that we observe.

Another possible explanation is that contestants do not properly backward induct, and instead adopt a simplified representation of 
the game. Prior research suggests that people have limited foresight, and look only one or a few steps ahead in multi-stage strategic 
situations (Jehiel, 1995, 1998, 2001; Johnson et al., 2002; Gabaix and Laibson, 2005; Gabaix et al., 2006; Mantovani, 2016; Ke, 
2019; Rampal, 2022; Baranski and Reuben, 2023). We accordingly adjust our baseline AQRE model by allowing for the possibility 
that a contestant myopically behaves as if the next stage of the game is also the last. This myopic, simplified frame lowers Contestant 
1’s propensity to spin, because beating only one subsequent contestant in expectation requires a lower score than beating two. For 
Contestant 2, limited foresight coincides with full backward induction because for them the next stage is also the last stage of the 
game. We find that our limited foresight model accurately describes the observed behavior of contestants. According to the estimation 
results, approximately 41 percent of the contestants simplify the game by looking only one step ahead.

The overall conclusion therefore is that the deviations from the SPNE in this high-stakes game are well explained by a combination 
of random evaluation errors and limited foresight, and that the role of omission bias is relatively limited. This conclusion is robust 
to various alternative modeling assumptions.

Our findings diverge markedly from those of Tenorio and Cason (2002), who explore a relatively small sample of renditions of the 
SCSD from 1994 and 1995. They conclude that omission bias is a plausible explanation for the deviations from the SPNE in their data, 
but their analysis is limited to simple comparisons, and their evidence derives almost exclusively from decisions of Contestant 1 (due 
to a lack of informative observations for Contestant 2). The present paper uses a considerably larger sample, with many informative 
observations for both Contestant 1 and Contestant 2, which allows for the estimation of structural decision models and for tests of 
competing hypotheses.

Our results are striking in the light of the long history of the show and its popularity. A natural question is whether contestants’ 
behavior converges towards the SPNE over time. To answer this question, we split our sample into four subperiods. For Contestant 
1, we find that the frequency of deviations from the SPNE decreases substantially and monotonically over time. For Contestant 2, 
there is no clear trend. When we estimate the limited foresight model, we find that the fraction of spinning decisions that are made 
in accordance with limited foresight decreases monotonically from 65 percent in the first period to 18 percent in the last. Despite this 
strong improvement, the results show that many contestants remain unable to follow the optimal strategies deriving from backward 
induction, even after several decades of The Price Is Right.

The remainder of the paper is structured as follows. Section 2 introduces the game show and the SCSD in more detail, and outlines 
the equilibrium strategies. Section 3 discusses the data and provides a descriptive analysis of the deviations from equilibrium play. 
Section 4 presents the main analyses and results, various robustness checks, and the learning analysis. Section 5 concludes and 
discusses our findings.

2. The game and its equilibrium strategies

The Price Is Right was first aired in the United States in 1956. Through the years, the format was introduced in many other 
countries, but here we exclusively consider the American version. Every episode consists of multiple games. The game that is central 
in our paper—the Showcase Showdown (SCSD)—was first included in 1975. Apart from a change in 2008 (see below), the SCSD has 
remained the same since 1979. We exclusively consider episodes from 1979 onwards.

Every episode contains two renditions of the SCSD, with three contestants each. Prior to the SCSD, these contestants played two 
other games: the so-called One Bid game, and a “pricing game”. In the One Bid game, four contestants guess the retail price of a 
consumer product (such as a microwave or television).6 The contestant whose guess is closest to the actual retail price without going 
over wins the product, gets to play one of the many different pricing games, and will then automatically also be one of the SCSD 
contestants.7 In their pricing game, the contestant can win one or more prizes, often by guessing the retail prices of consumer goods. 
After three contestants have won a One Bid game and completed their pricing game, the first SCSD is played. In the next part of every 
episode this combination of three One Bid games, three pricing games, and one SCSD is repeated.

The winners of the two SCSDs proceed to the final of the episode. In this so-called Showcase round, the two finalists have to 
guess the retail price of their own respective showcase, which typically consists of multiple valuable prizes such as a car, furniture, 
electronics, or a trip. The contestant whose guess is closest to the retail price without exceeding wins the contents of their showcase. 
If the winner’s guess is within a specified range below the retail price ($100 until 1997-98, $250 from 1998-99 onwards), then they 
win both showcases; if both finalists’ guesses exceed the retail price, then both showcases remain unclaimed.

In the SCSD, our game of interest, three contestants take turns to spin a big wheel that contains all multiples of 5 up to 100. The 
contestant with the lowest (highest) prior winnings spins first (last). Immediately after observing the outcome of their first spin, the 

5 Walker et al. (2018) propose the related concept of sudden death aversion: the tendency to avoid strategies that can lead to immediate defeat, even if these are 
optimal. In our setting, sudden death aversion and omission bias are indistinguishable, because spinning (acting) entails the risk of immediate elimination whereas 
not spinning (not acting) postpones possible elimination.

6 Contestants are selected by the producers through interviews with ticketed audience members shortly before to the recording of the episode.
7 Bennett and Hickman (1993), Berk et al. (1996), and Healy and Noussair (2004) use the One Bid game to study strategic decision making. Atanasov et al. (2024)
3

use it to study own-gender favoritism.
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Table 1

Optimal strategies.

Contestant First spin 𝐸(𝑆) Stopping threshold

Panel A: Bonus Scheme 1 (until 2008-09)

C1 $1,532 ≤𝐸(𝑆) < $4,180 75
C1 𝐸(𝑆) ≥ $4,180 70
C2 Beats C1 $2,564 ≤𝐸(𝑆) < $27,826 60
C2 Beats C1 𝐸(𝑆) ≥ $27,826 55
C2 Ties C1 $2,503 ≤𝐸(𝑆) < $10,702 75
C2 Ties C1 𝐸(𝑆) ≥ $10,702 70
C3 Ties C1 or C2 $2,000 ≤𝐸(𝑆) < $4,000 60
C3 Ties C1 or C2 𝐸(𝑆) ≥ $4,000 55
C3 Ties C1 and C2 $2,400 ≤𝐸(𝑆) < $6,000 75
C3 Ties C1 and C2 𝐸(𝑆) ≥ $6,000 70

Panel B: Bonus Scheme 2 (from 2008-09 onwards)

C1 $2,489 ≤𝐸(𝑆) < $6,792 75
C1 𝐸(𝑆) ≥ $6,792 70
C2 Beats C1 $4,167 ≤𝐸(𝑆) < $45,217 60
C2 Beats C1 𝐸(𝑆) ≥ $45,217 55
C2 Ties C1 $4,068 ≤𝐸(𝑆) < $17,391 75
C2 Ties C1 𝐸(𝑆) ≥ $17,391 70
C3 Ties C1 or C2 $3,250 ≤𝐸(𝑆) < $6,500 60
C3 Ties C1 or C2 𝐸(𝑆) ≥ $6,500 55
C3 Ties C1 and C2 $3,900 ≤𝐸(𝑆) < $9,750 75
C3 Ties C1 and C2 𝐸(𝑆) ≥ $9,750 70

Notes: The table shows the optimal strategies for empirically relevant ranges of the ex-

pected showcase value, and for the two different bonus schemes. Under Bonus Scheme 
1 (Panel A), the bonus prizes are $1,000, $5,000, and $10,000; under Bonus Scheme 
2 (Panel B), the bonus prizes are $1,000, $10,000, and $25,000. The first column in-

dicates whether the contestant is the first (C1), second (C2), or third (C3) to spin. The 
second column indicates whether the contestant’s first spin beats or ties the best preced-

ing score. The third column gives the range for the expected showcase value. The last 
column gives the optimal stopping threshold: the first-spin outcome at or above which 
the contestant should stop, and below which they should spin again. The table omits 
the trivial optimal decision of C2 and C3 in situations where their first-spin outcome is 
lower than the best preceding score (always spin), and that of C3 when their first-spin 
outcome beats the best preceding score (always stop).

contestant has to decide whether to spin the wheel again.8 Their score is the outcome of the first spin if they spin once, and the 
sum of the two spin outcomes if they spin twice. The contestant whose score is closest to 100 without exceeding is the winner and 
proceeds to the Showcase round.9 If two or three contestants tie for the highest score, they enter a “spin-off” in which they each spin 
the wheel once more; the one who spins the highest number is the winner. This procedure is repeated in the case of further ties.

On top of securing a place in the lucrative final, SCSD contestants can also win one or two monetary bonus prizes. If a contestant 
scores exactly 100 points, they receive $1,000 plus a bonus spin that yields an additional $10,000 ($5,000 before 2008-09) if the 
wheel lands on 5 or 15, or $25,000 ($10,000 before 2008-09) if it lands on 100. If two or three contestants tie at a score of 100, the 
outcome of their bonus spin counts as their spin-off score.

The optimal strategy for a contestant depends on the expected showcase value and the bonus prizes. Coe and Butterworth (1995), 
Grosjean (1998), and Tenorio and Cason (2002) derive the SPNE for a limited set of combinations of these values. The three contes-

tants’ equilibrium strategies, which can be found through backward induction, take the form of optimal stopping rules that dictate 
when a contestant should not use their second spin. Our sample covers a large time span, over which the average retail price of the 
showcases varied considerably, and during which there was a change in the bonus prizes. We therefore derive the optimal stopping 
thresholds for a large set of combinations of expected showcase values and the two bonus schemes. In line with previous work, we 
assume (i) that spin outcomes follow a discrete uniform distribution from 5 to 100 with steps of 5, (ii) that contestants are risk neutral, 
and (iii) that the chance of winning the Showcase round after winning the SCSD is 50 percent. Subsection 4.4 examines the sensitivity 
of our results to the last two assumptions. We use numerical methods to compute the optimal strategies.10

Table 1 shows the optimal strategies for empirically relevant ranges of the expected showcase value, denoted 𝐸(𝑆), and for the 
two different bonus schemes.11 The table omits the trivial optimal decisions of Contestant 2 and Contestant 3 in situations where 

8 The wheel must be spun for at least one full revolution.
9 If the third contestant beats the best preceding score with their first spin, or if the first two contestants went over 100, the third contestant automatically advances 

to the Showcase round. In the latter case, Contestant 3 does spin the wheel once to try to win a bonus prize by spinning exactly 100, but they are not given the choice 
to spin a second time.
10 As noted by Tenorio and Cason (2002), a complete analytical solution is infeasible due to the discrete partitions of the wheel, the possibility of ties, and the 

presence of bonuses.
4

11 When 𝐸(𝑆) goes to zero, the optimal stopping threshold converges to 100.
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Notes: The figure shows the average stated retail price of showcases for every season. Error bars depict standard errors around the mean. Horizontal lines 
indicate the most relevant expected showcase values at which the optimal stopping thresholds change. Table A.1 in the Appendix shows the number of 
included showcases for every season.

Fig. 1. Average stated retail price of showcases across seasons.

their first-spin outcome is lower than the best preceding score (where they should always spin again), and that of Contestant 3 when 
their first-spin outcome beats the best preceding score (where they are automatically declared the winner). The optimal stopping 
threshold jumps discretely because the numbers on the wheel are multiples of five.

Consider, for example, a rendition of the SCSD with the most recent bonus scheme and where 𝐸(𝑆) = $30, 000. Contestant 3 faces 
a nontrivial decision only when they tie the best preceding score. If they tie with one previous contestant, they should stop when the 
tie is at 55 or more (and spin otherwise). In the case of a three-way tie, the stopping threshold is 70. The optimal strategies of the 
other two contestants can be found through backward induction. Assuming that Contestant 3 strictly adopts the optimal approach, 
Contestant 2 is best off by stopping at 60 or more if they beat the score of Contestant 1, and by spinning otherwise. In the case of 
a tie with Contestant 1, Contestant 2’s stopping threshold is 70. Contestant 1 has to anticipate the decisions of Contestant 2 and 3. 
Assuming that these two both follow the optimal strategy, Contestant 1’s stopping threshold is 70.

3. Data and preliminary results

Our data are from the The Price Is Right Episode Guide.12 We accessed this fan-edited website on 21 June 2021. At that time, it 
contained 5, 834 detailed recaps of episodes of The Price Is Right from 1979 onwards. We successfully scraped the data for one or 
both SCSDs for 5,307 episodes. After omitting special episodes with a deviating prize structure, and the one available episode from 
the 1978-79 season, our final sample contains 10,071 SCSDs from 5,235 different episodes that were aired between 1979-80 and 
2020-21.13 In most cases, we additionally obtained contestants’ names, the accumulated value of the prizes they earned prior to the 
SCSD, and the stated retail prices of the showcases. Table A.1 in the Appendix shows the numbers of episodes, SCSDs, and stated 
showcase prices in our sample for every season.

As a first analysis, we explore the extent to which contestants’ spinning decisions are consistent with the SPNE. Because almost all 
Contestant 3’s decisions are trivial—they are automatically declared the winner if their first-spin outcome beats the best preceding 
score, and by default spin again if it is lower—we focus exclusively on Contestants 1 and 2. For the same reason, we omit decisions 
of Contestant 2 that follow first-spin outcomes that are lower than the score of Contestant 1. This leaves us with 10,071 spinning 
decisions for Contestant 1 and 4,488 for Contestant 2.

The previous section showed how the optimal stopping rule depends on a contestant’s assessment of the expected showcase value. 
We make the simplifying assumption that this subjective expectation equals the average stated retail price of the showcases in the 
given season, and examine the sensitivity of our results to this assumption in Subsection 4.4.

12 See https://tpirepguide .com.
13 Some special episodes featured a deviating SCSD bonus scheme or extra-valuable prizes in the Showcase round. We identified and omitted such episodes using 

https://www .priceisright .fandom .com, a collaborative website dedicated to The Price Is Right. We also omit the one episode from the 1978-79 season, because we 
5

cannot reliably estimate the expected showcase value for that season.

https://tpirepguide.com
https://www.priceisright.fandom.com
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Notes: The figure shows how often the decisions of Contestant 1 (Panel A, N=10,071) and Contestant 2 (Panel B, N=4,104) deviate from the optimal strategy, for 
every possible first-spin outcome. Panel B omits ties and thus exclusively considers choice situations where the first-spin outcome of Contestant 2 beats the score of 
Contestant 1. Dark gray bars depict first-spin outcomes at which it is optimal to spin, light gray bars depict first-spin outcomes at which it is optimal to stop.

Fig. 2. Deviations from the SPNE.

Fig. 1 shows the average stated retail price per season. Throughout our sample period, this average increased from $7,838 (1979-

80) to $29,342 (2020-21), or by approximately 3.3 percent per year. For comparison, the inflation in the US over this period was 3.0 
percent per year (US Consumer Price Index; OECD, 2021). The horizontal lines indicate the most relevant values for 𝐸(𝑆) at which 
the optimal stopping rules change. The jumps reflect the change of the bonus prizes. At any expectation higher than these values, the 
stopping rules remain the same.

For Contestant 1, the average retail price was always well above the threshold values of $4, 180 (until 2008-09) and $6, 792 (from 
2008-09 onwards). Hence, throughout our entire sample period Contestant 1 optimizes their play by stopping if and only if their first 
spin is 70 or higher. For Contestant 2 we need to distinguish between situations where their first spin beats the score of Contestant 
1, and situations where they tie.14 Contestant 2’s optimal stopping rule in situations where their first spin beats Contestant 1’s score 
was also constant over time: the average retail price never exceeded the critical values of $27, 826 (until 2008-09) and $45, 217 (from 
2008-09 onwards), which means that they should stop if and only if their first spin is 60 or higher. For ties the optimal stopping rule 
did change. Most of the time—from the 1983-84 season onward—Contestant 2 was best off by stopping if and only if the tie was at 
70 or higher. Until the start of the 1983-84 season, the stopping threshold was 75.

When we compare the full sample of contestants’ actual decisions with the corresponding optimal decisions, we observe that only 
a small proportion deviate. For Contestant 1, 93.4 percent of the 10,071 decisions are in accordance with the equilibrium strategy. 
For Contestant 2, 95.9 percent of the 4,488 decisions are optimal. The low overall error rates are not very surprising, because most 
decisions are easy.

When we exclusively consider “difficult” choice situations—which we define as situations where the first-spin outcome is no more 
than two steps below the stopping threshold and no more than one step above it—we find that 72.9 percent of the 2,069 decisions of 
Contestant 1 and 79.5 percent of the 790 decisions of Contestant 2 are in accordance with the equilibrium strategy. Hence, for these 
more difficult choice situations, the rates of departure from optimality are considerable.

The deviations tend to be in one direction. If Contestants 1 and 2 were to follow the optimal strategy, they would spin in 65.9 and 
32.4 percent of all situations in our sample, respectively. In reality, however, they spin only 59.6 and 30.9 percent of the times. For 
the more difficult situations, the optimal spinning rates are 49.1 and 46.3 percent, whereas the actual rates are only 23.3 and 39.7 
percent. Hence, these global spinning statistics indicate that there is systematic underspinning, especially for Contestant 1.

Fig. 2 shows how often Contestant 1 (Panel A) and Contestant 2 (Panel B) deviate from the optimal strategy, for every possible 
first-spin outcome.15 The dark gray bars represent the deviations in situations where it is optimal to spin, the light gray bars show 
the deviations in situations where it is optimal to stop. Clearly, at first-spin outcomes of 60 and 65 Contestant 1 frequently departs 
from the equilibrium strategy. In these situations, spinning is optimal but many instead choose to stop. In contrast to these frequent 
underspinning errors, Contestant 1 displays hardly any overspinning errors. For Contestant 2, the pattern looks different. Contestant 

14 Ties are relatively rare. Out of the 4,488 nontrivial spinning choices that we have for Contestant 2, only 384 (8.6%) are ties.
15 Fig. 2 omits the (relatively rare) choice situations of Contestant 2 where they are tied with Contestant 1, because the optimal stopping threshold is different for 
6

these situations.



Games and Economic Behavior xxx (xxxx) xxxB. Klein Teeselink, D. van Dolder, M.J. van den Assem et al.

2 departs less frequently from the optimal strategy than Contestant 1. Moreover, in comparison with Contestant 1, their deviations 
from optimality are considerably more symmetric.

The costs of deviating from the SPNE are often sizable. Table A.2 in the Appendix shows the costs when the expected showcase 
value is $30,000 and the second bonus scheme applies. This combination is representative for the last 12 years of our sample period.16

For instance, for Contestant 1, stopping after a first-spin outcome of 65 reduces their expected earnings by $393, and stopping after 60 
reduces these by $1,189. For Contestant 2, spinning after beating Contestant 1 with a first spin of 60 lowers their expected earnings 
by $1,008. The costs of stopping at 55—Contestant 2’s most frequent deviation from the SPNE—are relatively small at only $55.

4. Analyses and results

We propose and test three possible explanations for contestants’ deviations from the SPNE. Subsection 4.1 introduces our baseline 
structural model, which allows for the possibility that contestants make random evaluation errors. Subsection 4.2 then extends this 
model with the possibility of omission bias, whereas Subsection 4.3 instead extends it to allow for the possibility of limited foresight. 
Subsection 4.4 presents robustness checks, which include tests of various alternative explanations. Last, Subsection 4.5 exploits the 
longitudinal dimension of the data to explore whether there is evidence of learning over the years.

4.1. Random errors

The SPNE is based on the assumption that contestants perfectly maximize their expected utility, and never make mistakes. In 
reality, people of course do make mistakes. In the SCSD, the costs of mistakes vary between choice situations, and strongly depend 
on a contestant’s first spin outcome. In situations where spinning is only slightly better than stopping, or vice versa, even a small 
evaluation error could lead a contestant to deviate from the optimal choice. Depending on the relative costs of over- or underspinning 
across all choice situations, random evaluation errors can lead to a pattern of systematic deviation from the SPNE.

Moreover, a player who realizes that the choices of their opponents are not flawless should take this into account in determining 
their optimal strategy. Factoring in the mistakes of others may lead to optimal strategies that differ from the SPNE (Goeree and 
Holt, 2001; Goeree et al., 2002, 2003). In the SCSD, mistakes of subsequent opponents generally lower the incentive to spin again. 
Therefore, in theory, the anticipation of mistakes could explain the underspinning relative to the SPNE.

To examine the role of random errors, we adopt the Quantal Response Equilibrium (QRE) concept (McKelvey and Palfrey, 1995; 
Chen et al., 1997). The QRE is a stochastic generalization of the Nash equilibrium, and commonly used to account for bounded 
rationality in strategic settings (see, for example, Capra et al., 1999; Anderson et al., 2001; Goeree et al., 2002, 2003; Moinas and 
Pouget, 2013; Goeree et al., 2016, 2017). The main underlying idea is that people make random mistakes in evaluating the expected 
utilities of choice alternatives, and that they anticipate that others do the same. Because the SCSD is a sequential game, we consider 
the Agent Quantal Response Equilibrium (AQRE), a modification of the QRE for extensive-form games (McKelvey and Palfrey, 1998). 
The AQRE concept has found many applications (see, for example, Fey et al., 1996; McKelvey and Palfrey, 1998; Deck, 2001; Cason 
and Reynolds, 2005; Cai and Wang, 2006; McKelvey and Patty, 2006; Fehr et al., 2021).

Almost all of Contestant 3’s decisions are trivial, and therefore we assume that Contestants 1 and 2 expect Contestant 3 to play 
their SPNE strategy without error. Similarly, we assume that Contestant 1 does not expect Contestant 2 to err after a first-spin outcome 
that is worse than Contestant 1’s score, because Contestant 2 by default always spins again in such situations.

For all nontrivial choice situations, let 𝐸𝑈𝑠
𝑖𝑗 (⋅) denote the expected utility of action 𝑠 ∈ {Spin, Stop} for Contestant 𝑖 ∈ {1, 2} in 

SCSD 𝑗 ∈ {1, 2, … , 𝐽}. Contestants make random evaluation errors 𝜀𝑠𝑖𝑗 and mistakenly consider 𝐸𝑈
𝑠

𝑖𝑗 (⋅) = 𝐸𝑈𝑠
𝑖𝑗 (⋅) + 𝜀𝑠𝑖𝑗 . Following 

convention, we assume that 𝜀𝑠𝑖𝑗 is independently and identically distributed according to an extreme value distribution, which leads 
to the following predicted spin probabilities (Goeree et al., 2005; Haile et al., 2008; Goeree et al., 2020):

𝑃
𝑆𝑝𝑖𝑛
𝑖𝑗 = 𝑒

𝜆𝐸𝑈
𝑆𝑝𝑖𝑛
𝑖𝑗

𝑒
𝜆𝐸𝑈

𝑆𝑝𝑖𝑛
𝑖𝑗 + 𝑒

𝜆𝐸𝑈
𝑆𝑡𝑜𝑝
𝑖𝑗

(1)

𝜆 can be interpreted as contestants’ rationality or payoff sensitivity parameter. If 𝜆 → 0, contestants make completely random 
choices and spin with a 50 percent likelihood; if 𝜆 →∞, they follow the payoff-maximizing strategy with certainty. In Subsection 
4.4, we consider a more flexible specification that allows 𝜆 to differ between Contestant 1 and Contestant 2.

The expected utilities of spinning and stopping both depend on the resulting probability of winning the SCSD, the probability 
of winning the showcase after winning the SCSD, the expected showcase value, and the shape of the utility function; for spinning, 
the expected utility in addition depends on the bonus prizes. In our main analyses we assume risk neutrality. We also assume that 
contestants believe that they have a 50 percent chance of winning the showcase after winning the SCSD, and that the expected 
showcase value equals the average stated retail price of all showcases in the entire running season. We examine the sensitivity of the 
results to these assumptions in Subsection 4.4.

The next two subsections expand the model with additional parameters that capture omission bias and limited foresight. We 
convert all nominal monetary values to 2015 dollars using the US Consumer Price Index (OECD, 2021). To obtain more readable 
coefficients, we divide all monetary values by 1,000.

16 It is infeasible to provide a complete picture because the costs depend on the expected showcase value and the bonus prizes, which both change over the course 
7

of our sample period.
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Table 2

Estimation results.

SPNE Baseline Omission bias Limited foresight OB & LF

𝜆 1.384 (0.028) 1.508 (0.032) 1.579 (0.039) 1.583 (0.039)

𝛾 0.803 (0.050) 0.110 (0.088)

𝛽 0.410 (0.024) 0.371 (0.039)

N 14,559 14,559 14,559 14,559

Log-likelihood -1,964 -1,843 -1,794 -1,794

AIC 3,930 3,689 3,593 3,593

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.959 0.934 0.959 0.952 0.943 0.953 0.959 0.953 0.945

Hit rate (difficult) 0.729 0.795 0.729 0.795 0.815 0.703 0.817 0.795 0.817 0.713

Brier score 0.066 0.041 0.046 0.035 0.037 0.037 0.034 0.035 0.034 0.035

Brier score (difficult) 0.271 0.205 0.176 0.173 0.132 0.185 0.120 0.174 0.120 0.174

Spinning bias -0.063 -0.014 -0.040 0.001 -0.013 0.021 0.007 0.001 0.006 0.004

Spinning bias (difficult) -0.258 -0.066 -0.217 0.009 -0.104 0.112 0.003 0.014 -0.001 0.028

Notes: The table shows the estimated parameters and goodness-of-fit statistics of various structural models of strategic decision making. 
SPNE is the model that adopts the binary predictions from the subgame perfect Nash equilibrium, Baseline is the baseline AQRE model, 
Omission bias is the AQRE model that incorporates omission bias, Limited foresight is the AQRE model that allows for limited foresight, and 
OB & LF is the AQRE model with both omission bias and limited foresight. 𝜆 is the estimated rationality parameter, 𝛾 is the estimated 
disutility of self-elimination, and 𝛽 is the estimated probability of limited foresight. Standard errors are in parentheses. N is the number of 
spinning decisions, Log likelihood is the overall log-likelihood value of the estimation, and AIC is the Akaike Information Criterion value. 
Other goodness-of-fit measures are given separately for Contestant 1 (C1) and Contestant 2 (C2), both for all choice situations combined 
and for relatively difficult choice situations only. Difficult choice situations are choices where the first-spin outcome is no more than two 
steps below the stopping threshold and no more than one step above it. Hit rate is the fraction of correctly predicted decisions, Brier score

is the mean squared prediction error, and Spinning bias is the average difference between contestants’ actual spinning decisions and the 
model’s spinning predictions.

We compute the log-likelihood of a decision as:

𝑙𝑙𝑖𝑗 =

{
𝑙𝑜𝑔(𝑃𝑆𝑝𝑖𝑛

𝑖𝑗 ) if 𝑠𝑖𝑗 = Spin

𝑙𝑜𝑔(1 − 𝑃
𝑆𝑝𝑖𝑛
𝑖𝑗 ) if 𝑠𝑖𝑗 = Stop

(2)

Aggregating across decisions, the overall log-likelihood is given by:

𝐿𝐿 =
2∑
𝑖=1

𝐽∑
𝑗=1

𝑤𝑖𝑙𝑙𝑖𝑗 (3)

The number of decisions of Contestant 1 in our sample is more than twice the number of decisions of Contestant 2. Without any 
correction, the results would be disproportionately driven by the choices and idiosyncrasies of Contestant 1, while the aim of our 
analysis is to understand the behavior of both Contestant 1 and Contestant 2. We therefore weight the observations of Contestant 1 by 
𝑤1 = (𝑁1 +𝑁2)∕2𝑁1 and those of Contestant 2 by 𝑤2 = (𝑁1 +𝑁2)∕2𝑁2, such that the overall weights for the two types of contestants 
are equal and the average weight across all individual contestants remains unity. In Subsection 4.4 we also present the results without 
weighting.

To find the parameters that maximize the overall log-likelihood, we use the Newton-Raphson and Nelder-Mead algorithms that 
are available in the maxLik package in R (Henningsen and Toomet, 2011).

Table 2 presents the results. To compare how well the baseline AQRE model explains contestants’ behavior relative to the SPNE, 
we consider three goodness-of-fit statistics: the hit rate, the Brier score, and the spinning bias.

The hit rate of the model is the fraction of correctly predicted decisions. A prediction is defined as correct if the model assigns a 50 
percent or greater probability to the contestant’s actual decision. The baseline model correctly predicts 93.4 percent of Contestant 1’s

decisions and 95.9 percent of Contestant 2’s decisions. These high hit rates are not surprising, because most decisions in our sam-

ple are easy. For relatively difficult choice situations—where the first-spin outcome is no more than two steps below the stopping 
threshold and no more than one step above it—the hit rate of the baseline model is 72.9 percent for Contestant 1 and 79.5 percent 
for Contestant 2. These hit rates are identical to those for the SPNE, suggesting that allowing for evaluation errors does not add any 
descriptive power. Due to the binary nature of “hits”, however, the measure is rather crude. In contrast to the SPNE, the predictions 
of the AQRE are probabilistic, and much of the variation in these probabilities is not reflected in the hit rate.

To assess the difference between the observed choices and the probabilistic predictions, we calculate the Brier score (Brier, 1950). 
The Brier score is the mean squared prediction error. For the binary predictions of the SPNE, the Brier score is the complement of 
the hit rate. Compared to the Brier scores for the SPNE, those for the baseline model are substantially lower. The improvement is 
especially strong for Contestant 1. For their difficult decisions, for example, the statistic declines from 0.271 to 0.176.

The Brier score is a good measure to assess overall predictive accuracy, but it is uninformative of the degree to which the model 
systematically over- or underpredicts contestants’ propensity to spin. To visually explore whether there is any systematic deviation, 
8

Fig. 3 plots the actual spinning rates against the average probabilistic predictions of the baseline AQRE model for every possible 
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Notes: The figure shows the observed spinning rate and the average probabilistic prediction of the baseline model for Contestant 1 (Panel A, N=10,071) and for 
Contestant 2 (Panel B, N=4,488) for all possible first-spin outcomes. The lower parts of the panels show the differences between the observed and predicted spinning 
rates.

Fig. 3. Empirical spinning rates and baseline model predictions.

first-spin outcome. The figure clearly shows that Contestant 1 underspins relative to the predictions. At first-spin outcomes of 60, 
65 and 70, the fraction of contestants who use their second spin is approximately 25-30 percentage points lower than predicted. For 
Contestant 2 the differences are much smaller, with the observed spinning rate on average being slightly higher than the predicted 
rate.

The spinning bias quantifies the degree of systematic deviation, and is calculated as the average difference between contestants’ 
actual spinning decisions, which take a value of either 0 (stop) or 1 (spin), and the model’s probabilistic spinning predictions, 
which can take any value between 0 and 1. A positive value of this goodness-of-fit statistic indicates overspinning, a negative value 
underspinning. Confirming the pattern in Fig. 3, the spinning bias is negative for Contestant 1: -4.0 percentage points at the aggregate 
level, and -21.7 percentage points for the relatively difficult first-spin outcomes. This degree of systematic underspinning according to 
the baseline model is high, but lower than the negative spinning bias of Contestant 1 relative to the SPNE (-6.3 and -25.8 percentage 
points, respectively). For Contestant 2, the spinning bias is positive and close to zero: 0.1 percentage points across all choices, and 
0.9 for the more difficult ones.

Taken together, these findings suggest that random evaluation errors can explain some of the deviations from the SPNE. The 
systematic underspinning of Contestant 1, however, remains largely unexplained.

4.2. Omission bias

Tenorio and Cason (2002) explore a relatively small sample of renditions of the SCSD from 1994 and 1995, and similarly report 
that contestants tend to stop when it is actually optimal to spin. Their evidence derives primarily from Contestant 1, as their sample of 
informative decisions of Contestant 2 is too small to draw reliable conclusions. Tenorio and Cason propose that the underspinning can 
be explained by omission bias—the tendency to favor harmful inactions over harmful actions (Ritov and Baron, 1990, 1992; Spranca 
et al., 1991; Feldman et al., 2020). Other research shows that omission bias can play an important role in settings where decision 
makers face a choice between action and inaction. Examples include vaccination decisions, debt repayment, blackjack, and sports 
refereeing (Ritov and Baron, 1990; Asch et al., 1994; Carlin and Robinson, 2009; DiBonaventura and Chapman, 2008; Moskowitz 
and Wertheim, 2011; Hallsworth et al., 2024).

In the SCSD, contestants will be less likely to spin if they prefer elimination after not spinning (by an opponent who obtains a 
higher score) over elimination after spinning (by exceeding 100 points). To examine whether omission bias can explain the observed 
spinning behavior, we extend the baseline structural model with 𝛾 , a parameter that captures the disutility of self-elimination. In our 
baseline specification, the utility from elimination is always zero. In this alternative specification, however, the utility is −𝛾 if the 
contestant spins again and exceeds the maximum score of 100. The utility of elimination after an opponent obtains a higher score 
remains zero.

Table 2 shows the results for the AQRE model with omission bias. The estimated value of 𝛾 is 0.803, implying that the disutility 
of losing through self-elimination is equivalent to the disutility of a monetary loss of $803 (in 2015 dollars). This model explains 
9

contestants’ choices better than the baseline model, also when we account for its additional parameter: both the log-likelihood and 
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Notes: The figure shows the observed spinning rate and the average probabilistic prediction of the omission bias model for Contestant 1 (Panel A, N=10,071) and for 
Contestant 2 (Panel B, N=4,488) for all possible first-spin outcomes. The lower parts of the panels show the differences between the observed and predicted spinning 
rates.

Fig. 4. Empirical spinning rates and omission bias model predictions

the AIC show a substantial improvement. A likelihood-ratio test confirms that the model with omission bias significantly outperforms 
the baseline model (𝜒2(1) = 242.43, 𝑝 < 0.001).

The separate goodness-of-fit measures for the two contestants show that the omission bias model provides a better account of 
Contestant 1’s decisions but a worse account of Contestant 2’s decisions, as compared to the baseline model. For Contestant 1, the 
overall hit rate improves from 93.4 to 95.2 percent, and the hit rate for difficult decisions improves from 72.9 to 81.5 percent. The 
Brier scores similarly show an improved fit. The opposite holds for Contestant 2: the overall hit rate deteriorates from 95.9 to 94.3 
percent, the hit rate for more difficult decisions deteriorates from 79.5 to 70.3 percent, and the Brier scores increase.

Fig. 4 compares the actual spinning rates and the average probabilistic predictions of the omission bias model for all first-spin 
outcomes. For Contestant 1, as compared to the baseline model, the predictions are substantially closer to the actual spinning rates. 
As shown in Table 2, the remaining spinning bias of Contestant 1 is -1.3 percentage points, which compares favorably to the -4.0 
percentage points of the baseline model. For relatively difficult first-spin outcomes the degree of underspinning decreases from 21.7 
to 10.4 percentage points.

The reduction of the systematic prediction error for Contestant 1, however, is largely offset by an increase for Contestant 2. 
Contestant 2 clearly overspins relative to the predictions of the omission bias model. Their spinning bias increases from 0.1 to 2.1 
percentage points across all choices, and from 0.9 to 11.2 percentage points for the more difficult ones.

Altogether, omission bias thus fails to adequately explain contestants’ behavior. The additional parameter partially captures the 
underspinning of Contestant 1 and improves the overall fit of the model, but at the same time introduces large systematic prediction 
errors for Contestant 2.

4.3. Limited foresight

A possible alternative explanation for the suboptimal behavior of contestants is limited foresight. A large body of theoretical 
research proposes that people reason only one or a few steps ahead (Jehiel, 1995, 1998, 2001; Jackson and Wolinsky, 1996; Gabaix 
and Laibson, 2005; Ke, 2019; Rampal, 2022; Bossaerts et al., 2024). Several experimental studies support this notion (Neelin et al., 
1988; Johnson et al., 2002; Gabaix et al., 2006; Mantovani, 2016; Kendall, 2020; Rampal, 2020; Barreda-Tarrazona et al., 2021; 
Baranski and Reuben, 2023; Bossaerts et al., 2024).

To simplify the decision problem, an SCSD contestant may adopt a myopic representation and optimize their chances of beating 
the next contestant only. If Contestant 1 only considers Contestant 2 in their spinning choice and ignores the presence of Contestant 3, 
then Contestant 1 will be less inclined to spin because beating only one subsequent contestant in expectation requires a lower score 
than beating two. For Contestant 2, limited foresight coincides with full backward induction because the next stage is also the last 
stage of the game.

Our limited foresight model expands the baseline model with the possibility that contestants reduce complexity by considering 
the next contestant only. We assume that myopic contestants believe that this next contestant behaves as if they are the last. A 
10

contestant adopts the simplified frame with probability 𝛽, and correctly considers all future contestants with probability 1 − 𝛽. In this 
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Notes: The figure shows the observed spinning rate and the average probabilistic prediction of the limited foresight model for Contestant 1 (Panel A, N=10,071) 
and for Contestant 2 (Panel B, N=4,488) for all possible first-spin outcomes. The lower parts of the panels show the differences between the observed and predicted 
spinning rates.

Fig. 5. Empirical spinning rates and limited foresight model predictions.

mixture model, the likelihood of spinning is the probability-weighted average of the likelihood under limited foresight (𝑄𝑆𝑝𝑖𝑛
𝑖𝑗 ) and 

the likelihood under full backward induction (𝑃𝑆𝑝𝑖𝑛
𝑖𝑗 ), and the log-likelihood becomes:

𝑙𝑙𝑖𝑗 =

{
𝑙𝑜𝑔((1 − 𝛽)𝑃𝑆𝑝𝑖𝑛

𝑖𝑗 + 𝛽𝑄
𝑆𝑝𝑖𝑛
𝑖𝑗 ) if 𝑠𝑖𝑗 = Spin

𝑙𝑜𝑔((1 − 𝛽)(1 − 𝑃
𝑆𝑝𝑖𝑛
𝑖𝑗 ) + 𝛽(1 −𝑄

𝑆𝑝𝑖𝑛
𝑖𝑗 )) if 𝑠𝑖𝑗 = Stop

(2′)

The penultimate column of Table 2 shows the results for the limited foresight model. The estimated 𝛽 coefficient is 0.410, sug-

gesting that 41 percent of the spinning decisions are made in accordance with limited foresight, while the remaining 59 percent are 
consistent with full backward induction.17 The empirical fit is much better than the fit of the baseline and omission bias models: both 
the log-likelihood and the AIC show considerable improvements. A likelihood-ratio test confirms that the new model outperforms the 
baseline model (𝜒2(1) = 338.99, 𝑝 < 0.001), and a Vuong test for non-nested models confirms that it also outperforms the omission 
bias model (𝑍 = 6.86, 𝑝 < 0.001).

As compared to the omission bias model, the limited foresight model provides a slightly better account of Contestant 1’s decisions, 
and a substantially better account of Contestant 2’s decisions. For Contestant 1, the hit rates are nearly identical to those of the 
omission bias model, and the Brier scores are better. For Contestant 2, the overall hit rate increases from 94.3 to 95.9 percent, the 
hit rate for difficult first-spin outcomes increases from 70.3 to 79.5 percent, and the Brier scores improve.

Fig. 5 plots the actual spinning rates against the average probabilistic predictions of the limited foresight model, and shows that 
the model accurately captures the observed behavior. For both Contestant 1 and Contestant 2, the actual and predicted spinning 
rates approximately coincide. As also shown in Table 2, barely any spinning bias remains. Across all choices, Contestant 1 spins 0.7 
percentage points more often than predicted by the model, and Contestant 2 spins only 0.1 percentage points more often. For the 
more difficult choices, the spinning biases are a mere 0.3 and 1.4 percentage points, respectively.

The limited foresight model thus provides an accurate account of contestants’ spinning decisions. To examine whether contestants’ 
choices are also partly driven by omission bias, we in addition estimate a model that allows for both omission bias and limited foresight. 
The final column of Table 2 shows the estimation results. The results clearly speak against omission bias as an important driver. First, 
the omission bias parameter is relatively small and statistically insignificant. Second, the goodness-of-fit of the model is similar to 
that of the limited foresight model: neither the log-likelihood nor the AIC value improves, and accordingly, a likelihood-ratio test 
does not reject the hypothesis that the two models explain spinning choices equally well (𝜒2(1) = 1.56, 𝑝 = 0.212).

17 This estimate is consistent with different degrees of heterogeneity in the probability of limited foresight, ranging from absence of heterogeneity under a uniform 
probability of 0.41, to the other extreme where 41 percent of the contestants always adopt the myopic frame and 59 percent always fully backward induct. We are 
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unable to draw conclusions regarding the degree of heterogeneity, because we observe only one decision per contestant.
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All in all, the conclusion from these analyses is that the behavior of contestants is well described by an AQRE model with limited 
foresight, where all contestants make random evaluation errors and many simplify the decision problem by myopically considering 
the next stage of the game only.

4.4. Robustness checks

The structural models require a variety of assumptions. In the present subsection, we explore the sensitivity of the results to risk 
aversion (4.4.1), to beliefs about the expected value of winning the SCSD (4.4.2), to the weight attached to the opportunity of winning 
bonus prizes (4.4.3), to the weighting of individual decisions in the log-likelihood function (4.4.4), to allowing for separate rationality 
parameters (4.4.5), and to other, more minor aspects (4.4.6).

4.4.1. Risk aversion

The choice between spinning and stopping is essentially a choice between two risky prospects. In the analyses thus far we assumed 
that contestants are risk neutral. Here we explore the sensitivity of the results to the alternative assumption that contestants are risk 
averse. We now assume that they have a constant absolute risk aversion (CARA) utility function of the form 𝑈 (𝑥) = 1 − exp𝜃𝑥, where 
𝑥 is the monetary value of the prospective winnings and 𝜃 is the risk-aversion coefficient. We set 𝜃 such that the certainty equivalent 
of a 50-50 lottery of winning $25,000 or $0 is $2,500, reflecting a high degree of risk aversion. To obtain more readable coefficients, 
we scale the utility function such that the utility of $1,000 equals unity.

Switching from risk neutrality to high risk aversion leaves the SPNE predictions unchanged (not tabulated). Table 3, Panel A 
presents the new estimation results for the structural models. Introducing high risk aversion strongly worsens the log-likelihood of 
the baseline model, and somewhat improves the fit of the models with omission bias, limited foresight, and the combination of these. 
Contestant 1 still underspins compared to the predictions of the baseline model, whereas Contestant 2 still overspins compared to 
the predictions of the omission bias model. The limited foresight model again provides an accurate account of contestants’ spinning 
decisions and displays a better fit than the omission bias model (Vuong test: 𝑍 = 5.02, 𝑝 < 0.001). At the same time, adding the 
possibility of omission bias to the limited foresight model now does improve the empirical fit (LR test: 𝜒2(1) = 15.99, 𝑝 < 0.001).

We find similar results for more moderate degrees of risk aversion, for example when we set 𝜃 such that the certainty equivalent 
of the 50-50 lottery of winning $25,000 or $0 is $5,000 or $10,000 (see Table A.3, Panels A and B, in the Appendix). Under medium 
and low risk aversion, however, the improvement from adding the possibility of omission bias to the limited foresight model is only 
borderline significant or absent (LR test medium: 𝜒2(1) = 3.84, 𝑝 = 0.050; low: 𝜒2(1) = 0.93, 𝑝 = 0.335).

4.4.2. Discounting the showcase value

The optimal strategies and stochastic model predictions depend on the expected value of the showcase, 𝐸(𝑆), relative to the value 
of the monetary bonus prizes. For the main analyses, we assumed that the value of a showcase equals its stated retail price. The 
stated retail price is a natural and salient value, but in reality contestants will likely discount it. The showcase prizes are selected by 
the game show producers, not by the contestants themselves, and mostly these will not align well with contestants’ preferences.18

As a robustness check, we re-estimate the structural models under the alternative assumption that contestants value showcases at 50 
percent of the stated retail price.19

Table 3, Panel B presents the results. Discounting the showcase value leads to a worse fit of the baseline model and stronger 
evidence of underspinning. This is not surprising, because a lower expected showcase value increases the relative attractiveness of 
the bonus prizes, and thus increases the incentive to spin a second time. Limited foresight still provides a better account of contestants’ 
spinning decisions than omission bias (Vuong test: 𝑍 = 4.83, 𝑝 < 0.001), but adding omission bias to the limited foresight model now 
does increase the explanatory power (LR test: 𝜒2(1) = 20.13, 𝑝 < 0.001).

4.4.3. Ignoring bonus prizes

A possible explanation for underspinning is that contestants are overly focused on reaching the final of the episode, and attach a 
relatively low weight to the possibility of winning one or two bonus prizes by obtaining a score of exactly 100. Here, we re-estimate 
the structural models under the extreme assumption that contestants completely ignore the existence of the bonus prizes.20

Table 3, Panel C presents the results. As expected, ignoring the bonus prizes improves the overall fit of the baseline model. The new 
fit of the models with omission bias, limited foresight, and the combination of these, however, is somewhat worse. More importantly, 
the limited foresight model still explains choices substantially better than the omission bias model (Vuong test: 𝑍 = 9.08, 𝑝 < 0.001). 
Combining omission bias and limited foresight yields significantly more explanatory power than limited foresight alone (LR test: 
𝜒2(1) = 4.50, 𝑝 = 0.034), but the estimated omission bias parameter is negative. This suggests that people prefer harmful actions over 
harmful inactions, which contradicts the omission bias hypothesis.

18 Contestants should further discount the showcase value because of taxes. Although taxes are levied over both (monetary) bonus prizes and (generally non-

monetary) showcase prizes, taxes generally make the showcase prizes comparatively less attractive. The reason is that the showcase prizes are taxed on the basis of 
their (relatively high, non-discounted) retail prices.
19 The effect of discounting the showcase value is equivalent to the effect of lowering contestants’ perceived chance of winning the showcase after winning the SCSD. 

The present robustness test therefore also captures the possibility that this subjective probability is smaller than the 50 percent that we assumed in the main analyses.
20 This robustness test also captures the possibility that contestants expect to derive additional utility from playing the Showcase final, for example because they are 
12

overconfident about their chances of winning the showcase, or because of enjoyment associated with “winning the episode”.
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Table 3

Estimation results under alternative modeling choices.

Baseline Omission bias Limited foresight OB & LF

Panel A: High risk aversion

𝜆 9.503 (0.191) 10.811 (0.231) 11.234 (0.286) 11.395 (0.286)

𝛾 0.147 (0.007) 0.049 (0.012)

𝛽 0.499 (0.024) 0.376 (0.039)

Log-likelihood -2,037 -1,833 -1,791 -1,783

AIC 4,076 3,669 3,587 3,573

C1 C2 C1 C2 C1 C2 C1 C2

Spinning bias -0.048 -0.005 -0.014 0.021 0.009 -0.005 0.007 0.004

Spinning bias (difficult) -0.252 -0.016 -0.103 0.118 0.013 -0.011 0.000 0.037

Panel B: Discounted showcase value

𝜆 2.609 (0.052) 2.972 (0.064) 3.070 (0.078) 3.119 (0.077)

𝛾 0.537 (0.026) 0.202 (0.045)

𝛽 0.498 (0.025) 0.360 (0.039)

Log-likelihood -2,038 -1,832 -1,797 -1,787

AIC 4,078 3,667 3,598 3,580

C1 C2 C1 C2 C1 C2 C1 C2

Spinning bias -0.047 -0.006 -0.013 0.020 0.009 -0.006 0.006 0.004

Spinning bias (difficult) -0.251 -0.020 -0.101 0.115 0.012 -0.015 -0.003 0.038

Panel C: No bonus prizes

𝜆 1.458 (0.030) 1.530 (0.032) 1.609 (0.039) 1.606 (0.040)

𝛾 0.532 (0.050) -0.185 (0.087)

𝛽 0.320 (0.024) 0.384 (0.039)

Log-likelihood -1,912 -1,856 -1,804 -1,802

AIC 3,826 3,716 3,613 3,610

C1 C2 C1 C2 C1 C2 C1 C2

Spinning bias -0.032 0.009 -0.014 0.022 0.006 0.009 0.007 0.004

Spinning bias (difficult) -0.183 0.038 -0.107 0.109 -0.007 0.038 0.001 0.012

Panel D: No weighting

𝜆 1.423 (0.027) 1.677 (0.035) 1.764 (0.047) 1.776 (0.045)

𝛾 1.051 (0.046) 0.385 (0.113)

𝛽 0.412 (0.020) 0.284 (0.042)

Log-likelihood -2,049 -1,814 -1,791 -1,786

AIC 4,101 3,633 3,586 3,578

C1 C2 C1 C2 C1 C2 C1 C2

Spinning bias -0.041 0.001 -0.008 0.027 0.005 0.001 0.003 0.011

Spinning bias (difficult) -0.217 0.010 -0.066 0.147 0.011 0.017 -0.003 0.069

Panel E: Separate rationality parameters

𝜆1 1.481 (0.038) 1.980 (0.063) 2.303 (0.111) 2.324 (0.108)

𝜆2 1.220 (0.042) 1.087 (0.037) 1.232 (0.042) 1.198 (0.042)

𝛾 1.086 (0.052) 0.402 (0.098)

𝛽 0.424 (0.021) 0.303 (0.036)

Log-likelihood -1,954 -1,767 -1,731 -1,723

AIC 3,911 3,539 3,468 3,454

C1 C2 C1 C2 C1 C2 C1 C2

Spinning bias -0.043 0.001 -0.011 0.027 0.003 0.001 0.001 0.011

Spinning bias (difficult) -0.217 0.004 -0.056 0.114 0.029 0.004 0.021 0.050

Notes: The table shows the results for five alternative modeling choices: under the assumption that contestants have 
CARA utility and are indifferent between $2,500 and a 50-50 lottery of winning $25,000 or $0 (Panel A), under the 
assumption that contestants value showcases at 50 instead of 100 percent of the stated retail price (Panel B), under 
the assumption that contestants ignore the bonus prizes (Panel C), when all individual observations for Contestants 1 
and 2 are equally weighted, that is, without correcting for the imbalance in the sample sizes (Panel D), and when the 
rationality parameter, 𝜆, is allowed to differ between Contestant 1 and Contestant 2 (Panel E). In all panels, N = 14,559. 
Definitions are as in Table 2.

4.4.4. No weighting

The aim of our analysis is to simultaneously understand the spinning choices of both Contestant 1 and Contestant 2. The number 
13

of observations for Contestant 1 in our sample is more than twice as large as that for Contestant 2, and to avoid that our results 
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are disproportionately driven by the choices and idiosyncrasies of Contestant 1, our structural models correct for this imbalance by 
weighting the two types of observations. For completeness, we also report the results without weighting.

Table 3, Panel D shows the results. The limited foresight model again clearly explains contestants’ choices better than the omission 
bias model (Vuong test: 𝑍 = 6.17, 𝑝 < 0.001). At the same time, adding omission bias to the limited foresight model does improve 
the empirical fit (LR test: 𝜒2(1) = 10.588, 𝑝 = 0.001).

As expected, without correcting for the imbalance in sample sizes, the omission bias model provides an even worse account of 
Contestant 2’s decisions than it does with the correction. In both cases, allowing for omission bias reduces the systematic prediction 
errors for Contestant 1 and increases those for Contestant 2, but the calibration issue is clearly more pronounced without weighting.

4.4.5. Separate rationality parameters

Our main specifications assume that all contestants have the same rationality parameter. Previous literature, however, suggests 
that error rates can differ across player roles (see Friedman, 2020, for a theoretical account of why such differences may emerge). As 
an additional test, we therefore increase the flexibility of the structural models by allowing the rationality parameter to vary between 
Contestant 1 and Contestant 2.

Table 3, Panel E presents the results. Incorporating separate rationality parameters somewhat improves the fit of the baseline 
model, and strongly increases the fit of the models with omission bias, limited foresight, and the combination of these (LR tests: all 
𝜒2(1) > 20.32, all 𝑝 < 0.001). As before, the limited foresight model provides a much better account of contestants’ choices than the 
omission bias model (Vuong test: 𝑍 = 2.54, 𝑝 < 0.001), but adding the possibility of omission bias to the limited foresight model in 
this case does improve the empirical fit (LR test: 𝜒2(𝑋) = 16.45, 𝑝 < 0.001).

The estimated rationality parameter of Contestant 2 (𝜆2) is consistently lower than that of Contestant 1 (𝜆1), suggesting that 
Contestant 2 is more error-prone than Contestant 1. This seems counterintuitive, as the decision situation of Contestant 2—who 
needs to think just one step ahead—appears simpler than that of Contestant 1. However, 𝜆2 also captures the beliefs of Contestant 1 
about Contestant 2’s error rate, and overestimation of this rate lowers Contestant 1’s incentive to spin. The relatively low estimate 
for 𝜆2 reflects that Contestant 1 believes that Contestant 2 is relatively likely to err, which helps explain their underspinning.

4.4.6. Other robustness checks

Table A.3 in the Appendix shows the results of two additional robustness analyses. First, we use the original, nominal monetary 
values instead of the inflation-corrected, real monetary values (Panel C). Second, we assume that the expected showcase value equals 
the average stated retail price of all showcases in the previous season instead of the running season (Panel D). In both cases, the 
limited foresight model provides a much better account of contestants’ choices than the omission bias model (Vuong tests: both 
𝑍 > 6.38, both 𝑝 < 0.001). Adding the possibility of omission bias to the limited foresight model leads to a statistically significant 
improvement of the empirical fit when using nominal monetary values (LR test: 𝜒2(1) = 4.35, 𝑝 = 0.037), but not when the expected 
showcase value is based on the previous season (LR test: 𝜒2(1) = 1.29, 𝑝 = 0.255).

Finally, a possible concern may be that the order in which contestants take turns spinning the wheel is not random, but determined 
by the sum of the prizes they won in the previous games. This can be problematic if there is a relationship between contestants’ prior 
winnings and their rationality. Such a relationship, however, is not very likely, because the nature of the prior games is such that 
winnings are driven largely by luck. Moreover, empirically there is no evidence of such a relationship. When we regress the likelihood 
of following the optimal strategy on prior winnings, the regression coefficient is economically and statistically insignificant, regardless 
of whether we consider a linear or a log-linear relationship, and regardless of whether we consider all choices or difficult choices 
only (see Table A.4 in the Appendix).

4.5. Learning

The SCSD has been running uninterruptedly for more than 40 years. This long history opens up the possibility to investigate 
whether behavior converges towards the rational equilibrium strategies over time, as contestants can learn about the game and the 
behavior of their opponents. In laboratory experiments, game theory tends to describe the behavior of experienced subjects better 
than that of inexperienced subjects (Fudenberg and Levine, 1998, 2009, 2016). Although SCSD contestants cannot gain experience 
themselves, they can potentially learn by observing the choices and outcomes of others (Duffy and Feltovich, 1999; Armantier, 2004; 
Simonsohn et al., 2008). Over time, the number of existing episodes has grown, and episodes have become more readily available. 
In addition, with the advent of the internet and modern communication technologies, people have become better able to share and 
discuss the optimal strategies.

To explore whether there is any evidence of learning, we divide our sample period into four different subperiods: (i) seasons 
1979-80 to 1992-93, (ii) 1993-94 to 2007-08, (iii) 2008-09 to 2014-15, and (iv) 2015-16 to 2020-21.21

For each of the four time periods, Fig. 6 shows how often Contestants 1 and 2 deviate from the SPNE. For Contestant 1, there 
is a clear downward trend in the frequency of mistakes: the error rate decreases monotonically from 8.2 percent in Period 1 to 5.1 
percent in Period 4. Nearly all of Contestant 1’s deviations from the SPNE are underspinning errors, and the improvement over time 
almost fully reflects a reduction in underspinning. For Contestant 2, there is no clear trend in the overall quality of spinning decisions, 
with a constant error rate of roughly 4 percent across all periods. In Periods 1 to 3 Contestant 2 exhibits more underspinning than 
overspinning, while in Period 4 these errors roughly balance out.
14

21 We first separate the data for the two different bonus schemes, and then split the data for each bonus scheme into two periods of roughly equal length.
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Notes: The figure shows the fraction of spinning decisions by Contestant 1 (Panel A) and Contestant 2 (Panel B) that deviate from the SPNE, for four different time 
periods. The first period covers seasons 1979-80 to 1992-93, the second 1993-94 to 2007-08, the third 2008-09 to 2014-15, and the fourth 2015-16 to 2020-21. The 
dark gray parts of the bars reflect underspinning errors, the light gray parts reflect overspinning errors.

Fig. 6. Deviations from the SPNE per period.

Table 4

Estimation results per period.

Period 1 Period 2 Period 3 Period 4

𝜆 1.480 (0.098) 1.477 (0.058) 1.722 (0.088) 1.683 (0.090)

𝛽 0.654 (0.067) 0.491 (0.039) 0.345 (0.045) 0.183 (0.050)

N 2,012 5,876 3,770 2,901

Log-likelihood -260 -726 -425 -361

AIC 525 1,456 854 726

C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.950 0.953 0.950 0.959 0.955 0.963 0.960 0.959

Hit rate (difficult) 0.838 0.781 0.807 0.786 0.831 0.798 0.826 0.815

Brier score 0.038 0.036 0.034 0.034 0.032 0.031 0.030 0.042

Brier score (difficult) 0.114 0.158 0.117 0.174 0.112 0.167 0.122 0.190

Spinning bias 0.012 -0.006 0.011 -0.003 0.003 -0.001 -0.002 0.019

Spinning bias (difficult) 0.019 -0.021 0.006 -0.015 0.000 -0.006 -0.041 0.105

Notes: The table shows the estimated parameters and the goodness-of-fit statistics of the structural model with limited 
foresight for four different time periods. The first period covers seasons 1979-80 to 1992-93, the second 1993-94 to 
2007-08, the third 2008-09 to 2014-15, and the fourth 2015-16 to 2020-21. Other definitions are as in Table 2.

Of course comparing behavior in different time periods in this way is rather crude, because the costs of mistakes can be very 
different at different points in time due to the changing expected showcase value and the two different bonus schemes. The structural 
models account for such changes and confirm the improvement of Contestant 1’s decisions. Table 4 shows the period-by-period 
estimation results for the limited foresight model. In line with the strong reduction of Contestant 1’s underspinning relative to the 
SPNE, the fraction of spinning decisions that are made in accordance with limited foresight diminishes significantly over time: 𝛽
decreases monotonically from 65.4 to 18.3 percent.

The improved decision making over time is in line with learning. The results for the last period, however, show that even after 
several decades of The Price Is Right, a sizable proportion of contestants remains unable to follow the optimal strategies deriving from 
backward induction.

5. Conclusion and discussion

The present paper examines high-stakes strategic decision making in the Showcase Showdown (SCSD), a sequential game of perfect 
information that is part of the long-running American TV game show The Price Is Right. The optimal strategies for this game can 
15

be found through backward induction. Most tests of the descriptive validity of backward induction as a solution concept rely on 
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controlled laboratory experiments.22 The SCSD provides an appealing alternative test bed, allowing for assessing the descriptive 
validity under conditions that are markedly different. The high stakes and ample learning opportunities provide a particularly benign 
setting for game-theoretic predictions to hold.

In spite of this, we find that contestants systematically deviate from the unique subgame perfect Nash equilibrium (SPNE). Their 
behavior is well explained by a modified agent quantal response equilibrium model that not only allows for random evaluation errors 
but also for limited foresight.23 The results suggest that contestants are likely to simplify the decision problem by adopting a myopic 
representation and optimize their chances of beating the next contestant only. Our findings are robust to a rich variety of alternative 
modeling choices, including those regarding risk aversion. The role of omission bias is relatively small: limited foresight consistently 
explains the data significantly better than omission bias, but under several modeling assumptions omission bias does provide some 
additional explanatory power. In line with learning, we find that the frequency of deviations from the SPNE and the estimated degree 
of limited foresight decrease over the course of our sample period. However, both systematic and non-systematic deviations remain 
commonplace, even after several decades.

Various published papers have derived the equilibrium strategies for the SCSD. Apparently, many contestants do not take heed of 
this information before coming on the show. This is consistent with research that demonstrates that people often do not use important 
and readily available information (for an overview, see Handel and Schwartzstein, 2018). Such ignorance is rational if the search 
costs outweigh the expected benefits (Stigler, 1961). For the SCSD, the expected benefits of thorough preparation are low: only six 
out of the several hundred audience members who travel to the recording studio actually play the SCSD, and only a fraction of those 
six end up in a relatively difficult choice situation where knowing the optimal strategy may truly be helpful. For many laypeople, the 
low ex-ante expected benefits probably do not outweigh the costs of looking up and reading an academic paper.

The pattern of underspinning in the SCSD can be adequately captured by limited foresight. This well-documented bias, however, 
is not the only possible explanation. One alternative is rationality neglect. Several studies show that people tend to underestimate the 
rationality of their competition in strategic settings (Camerer and Lovallo, 1999; Weizsäcker, 2003; Rogers et al., 2009; Greenwood 
and Hanson, 2015). In the SCSD, overestimating the likelihood that others make mistakes generally lowers the perceived incentive 
to spin, especially for Contestant 1.

Underspinning could also result from overestimation of conjunctive events, which is the tendency to overestimate the likelihood 
of an event that requires the simultaneous occurrence of multiple conditions (Slovic, 1969; Cohen et al., 1972; Bar-Hillel, 1973; 
Vieider, 2011; Baillon et al., 2013). For Contestant 1, winning the SCSD requires the conjunction of beating Contestant 2 and beat-

ing Contestant 3. Overestimating conjunctive events thus elevates the subjective probability of winning, both for stopping and for 
spinning, but the impact is larger for stopping.24

In the present paper, we chose not to pursue these alternative explanations. Implementing them into our structural models is not 
straightforward and requires several additional modeling choices, thereby increasing both the degrees of freedom and the complexity. 
Moreover, the empirical fit of the limited foresight model leaves little room for improvement.

Further research can use experiments with modifications of the SCSD to try to shed further light on the possible explanations 
behind the deviations from the SPNE. For example, experimenters could vary the number of subsequent opponents to test hypotheses 
regarding the simplified myopic representations that subjects may employ, or observe multiple decisions from the same individuals 
to study heterogeneity. It will, however, always remain unclear whether small-stakes laboratory findings generalize to high-stakes 
settings, as the size and nature of deviations from the SPNE may well depend on the stakes.

The Price Is Right can be seen as an atypical setting to test the descriptive validity of backward induction, and critics may therefore 
view it as a negative distraction. However, novel settings should not be too easily dismissed as they can provide rare opportunities 
for relevant tests of economic theory (List, 2023). The SCSD uniquely allows for a large-scale analysis of strategic decision making at 
stakes that are impossible to replicate in the lab.

Nevertheless, following List (2023), it is important to explicitly consider how selection procedures and the naturalness of our setting 
may affect the generalizability of our results. Before contestants play the SCSD, they self-selected into the audience, were selected 
from the audience by the producers, and won a One Bid game. Unfortunately, it is unclear whether these elements of selection have 
led to any under- or overrepresentation of strategically sophisticated contestants. At the same time, selection effects are inevitable in 
any lab or field setting. Moreover, SCSD contestants are quite diverse in terms of demographic characteristics, such as age, gender, 
ethnicity, and education, and as a group they seem to resemble a cross-section of the general population more closely than the subject 
pools of most laboratory experiments.

The setting in which contestants make their decisions—with a lively studio audience and camera’s reminding them of the millions 
of TV viewers—likely induces stress. Psychological research indicates that the mere presence of others can facilitate performance 
in simple tasks but impair it in more complex ones (Zajonc, 1965; Bond and Titus, 1983). We cannot fully dismiss the impact the 
setting may have had on contestants, but prior research suggests that our findings are unlikely to be an artifact of the setting. Tenorio 

22 One exception is Spenkuch et al. (2018), who find that voting behavior of US Senators during roll-call votes is largely consistent with the equilibrium predictions 
of a model in which the senators rely on backward induction.
23 Chakraborty and Kendall (2023) analyze a single-player decision problem that requires subjects to reason contingently about their own decisions at hypothetical 

future events, and similarly find that behavior is best described by a model that combines QRE-like noise and limited foresight.
24 If Contestant 1 stops, the probability of winning equals the probability of the conjunctive event of beating both Contestant 2 and Contestant 3. If Contestant 1 

spins, the probability of winning is an average of not only such conjunctive probabilities (for every potential score of 100 or less), but also the probability of zero 
(for every potential score exceeding the maximum of 100). Moreover, the conjunctive probabilities after spinning and improving the score are higher than those after 
16

stopping, limiting the scope for overestimation.
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and Cason (2002) compare the behavior of laboratory subjects who play the SCSD to that of real contestants, and Antonovics et al. 
(2009), Healy and Noussair (2004), and Baltussen et al. (2016) make such a comparison for other games or game shows. None of 
these studies find that the patterns of behavior are different between the two types of settings. Moreover, every setting—including the 
experimental laboratory—is in some way special. It is impossible to study behavior under each and every possible set of conditions, 
and hence the optimal approach is to investigate if similar patterns are found in settings that are markedly different.

The finding that contestants in the SCSD often deviate from the optimal strategy and instead behave as if they adopt a simplified 
representation of the game adds to an ongoing debate about whether cognitive biases disappear in high-stake situations (Levitt and 
List, 2007a,b). Experimental research by Smith and Walker (1993), Cooper et al. (1999), Rapoport et al. (2003), and Parravano and 
Poulsen (2015) finds that the decisions of subjects tend to be closer to equilibrium play when the monetary incentives are higher. At 
the same time, Camerer and Hogarth (1999) and Enke et al. (2023) find that cognitive errors in experiments are largely impervious 
to the size of the stakes. Our results align with those of the latter two studies, and show that random and systematic violations of 
game-theoretic predictions abound in a high-stakes game that subjects can be expected to be highly familiar with.
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Appendix

Table A.1

Data coverage per season.

Season Episodes SCSDs Showcases

1979-1980 32 61 60
1980-1981 30 54 58
1981-1982 31 59 60
1982-1983 192 368 378
1983-1984 93 174 179
1984-1985 16 28 31
1985-1986 15 27 29
1986-1987 65 122 118
1987-1988 22 41 39
1988-1989 25 49 49
1989-1990 25 49 49
1990-1991 15 27 28
1991-1992 83 163 163
1992-1993 80 151 160
1993-1994 75 134 92
1994-1995 111 207 175
1995-1996 112 201 223
1996-1997 140 227 268
1997-1998 116 189 219
1998-1999 130 240 256
1999-2000 134 264 265
2000-2001 171 309 341
2001-2002 182 363 364
2002-2003 173 345 346
2003-2004 170 340 294
2004-2005 159 316 255
2005-2006 168 336 267
2006-2007 150 249 125
2007-2008 179 354 353
2008-2009 190 372 375
2009-2010 188 375 374
2010-2011 189 370 372
17
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Table A.1 (continued)

Season Episodes SCSDs Showcases

2011-2012 192 376 382
2012-2013 186 361 370
2013-2014 193 378 386
2014-2015 187 369 373
2015-2016 193 383 385
2016-2017 178 355 356
2017-2018 175 350 350
2018-2019 176 350 351
2019-2020 158 313 316
2020-2021 136 272 272

Notes: The table displays the coverage of our sam-

ple per season. Episodes is the number of episodes for 
which we have the data for at least one of the two 
SCSDs. SCSDs is the number of SCSDs for which we 
have all spinning decisions and outcomes. Showcases

is the number of showcases for which we know the 
stated retail price.

Table A.2

Costs of deviations from the SPNE.

First spin C1 C2

5 $3,264 $5,223

10 $3,247 $5,123

15 $3,216 $4,939

20 $3,166 $4,668

25 $3,094 $4,306

30 $2,995 $3,850

35 $2,861 $3,295

40 $2,684 $2,638

45 $2,454 $1,874

50 $2,161 $1,002

55 $1,800 $55

60 $1,189 $1,008

65 $393 $2,189

70 $555 $3,493

75 $1,796 $4,923

80 $3,333 $6,484

85 $5,211 $8,179

90 $7,482 $10,012

95 $10,199 $11,987

100 $13,585 $14,269

Notes: The table shows the costs of de-

viating from the SPNE when the ex-

pected showcase value is $30,000 and 
the bonus prizes are $1,000, $10,000, 
and $25,000. For Contestant 2 (C2), 
the costs are for choice situations 
where their first-spin outcome beats 
the score of Contestant 1 (C1). Under 
these conditions, the stopping thresh-
18

olds are 70 (C1) and 60 (C2).



Games and Economic Behavior xxx (xxxx) xxxB. Klein Teeselink, D. van Dolder, M.J. van den Assem et al.

Table A.3

Additional estimation results under alternative modeling choices.

Baseline Omission bias Limited foresight OB & LF

Panel A: Medium risk aversion

𝜆 5.141 (0.103) 5.675 (0.121) 5.943 (0.149) 5.971 (0.149)

𝛾 0.235 (0.013) 0.046 (0.024)

𝛽 0.439 (0.024) 0.379 (0.039)

Log-likelihood -1,981 -1,836 -1,788 -1,786

AIC 3,965 3,676 3,579 3,578

C1 C2 C1 C2 C1 C2 C1 C2

Spinning bias -0.043 -0.001 -0.014 0.021 0.008 -0.001 0.007 0.004

Spinning bias (difficult) -0.229 -0.001 -0.103 0.113 0.008 0.004 0.001 0.027

Panel B: Low risk aversion

𝜆 2.155 (0.044) 2.344 (0.050) 2.456 (0.061) 2.461 (0.061)

𝛾 0.508 (0.032) 0.055 (0.057)

𝛽 0.405 (0.024) 0.375 (0.039)

Log-likelihood -1,956 -1,839 -1,790 -1,790

AIC 3,915 3,682 3,585 3,586

C1 C2 C1 C2 C1 C2 C1 C2

Spinning bias -0.040 0.002 -0.014 0.021 0.007 0.002 0.006 0.004

Spinning bias (difficult) -0.216 0.011 -0.104 0.112 0.003 0.015 0.000 0.027

Panel C: Nominal showcase values

𝜆 1.775 (0.037) 1.925 (0.042) 2.051 (0.052) 2.057 (0.051)

𝛾 0.620 (0.039) 0.129 (0.062)

𝛽 0.405 (0.024) 0.351 (0.035)

Log-likelihood -2,013 -1,892 -1,837 -1,835

AIC 4,028 3,788 3,679 3,676

C1 C2 C1 C2 C1 C2 C1 C2

Spinning bias -0.038 0.002 -0.011 0.022 0.008 0.001 0.007 0.006

Spinning bias (difficult) -0.220 0.008 -0.110 0.108 0.000 0.013 -0.006 0.034

Panel D: Last season’s showcase values

𝜆 1.367 (0.028) 1.490 (0.032) 1.561 (0.039) 1.565 (0.039)

𝛾 0.807 (0.051) 0.101 (0.089)

𝛽 0.409 (0.024) 0.374 (0.039)

Log-likelihood -1,959 -1,840 -1,789 -1,788

AIC 3,919 3,683 3,582 3,583

C1 C2 C1 C2 C1 C2 C1 C2

Spinning bias -0.040 0.001 -0.013 0.021 0.007 0.001 0.007 0.004

Spinning bias (difficult) -0.217 0.010 -0.104 0.112 0.003 0.014 -0.001 0.028

Notes: The table shows the results for four alternative modeling choices: under the assumption that contestants have 
CARA utility and are indifferent between $5,000 and a 50-50 lottery of winning $25,000 or $0 (Panel A), under the 
assumption that contestants have CARA utility and are indifferent between $10,000 and a 50-50 lottery of winning 
$25,000 or $0 (Panel B), when nominal instead of real monetary values are used (Panel C), and under the assumption 
that the expected showcase value equals the average stated retail price of all showcases in the previous season instead 
19

of the running season (Panel D). In Panel D, N=14,475; in all other panels, N=14,559. Definitions are as in Table 2.
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Table A.4

Optimal choices and prior winnings.

All choices Difficult choices

Model 1 Model 2 Model 3 Model 4

Prior winnings 0.00003 0.0003

(0.00005) (0.0002)

ln(Prior winnings) 0.001 0.001

(0.002) (0.007)

Fixed effects Yes Yes Yes Yes

Observations 12,665 12,665 2,491 2,491

Notes: The table shows regression results for the relationship between the 
optimality of play and prior winnings. The dependent variable is a dummy 
variable that takes the value of 1 if the contestant follows the optimal strat-

egy according to the SPNE, and 0 otherwise. Prior winnings is the inflation-

corrected monetary value of the prizes won by the contestant prior to the 
SCSD, in thousands of dollars. ln(Prior winnings) is the natural logarithm 
of Prior winnings. Fixed effects allow for differences in the average likeli-

hood of a departure from optimality across first-spin outcomes, separately 
for Contestant 1 and for Contestant 2, and, in the case of Contestant 2, for 
whether their first spin beats or ties the previous contestant’s score. Mod-

els 1 and 2 are estimated for all observations for which prior winnings are 
available in our data; Models 3 and 4 are estimated for relatively difficult 
choice situations only. Difficult choices are choices where the first-spin out-

come is no more than two steps below the stopping threshold and no more 
than one step above it. Standard errors are in parentheses.
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