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We investigate the dynamical critical behavior of the two-dimensional three-state Potts model
with single spin-flip dynamics in equilibrium. We focus on the mean-squared deviation of the
magnetization M (MSDM ) as a function of time, as well as on the autocorrelation function of M .
Our simulations reveal the existence of two crossover behaviors at times τ1 ∼ Lz1 and τ2 ∼ Lz2 ,
separating three dynamical regimes. MSDM appears to shift from ordinary diffusion in the first
regime, to anomalous diffusion in the second, and finally to be constant in the third regime. The
magnetization autocorrelation function on the other hand is found to fluctuate between exponential
decay, stretched-exponential decay, and then again exponential decay along these three regimes. This
behavior is in agreement with the one reported recently for the two-dimensional Ising ferromagnet
[Phys. Rev. E 108, 034118 (2023)], indicating that the existence of two dynamic critical exponents
is not a peculiarity of the Ising model itself. A comparison of both MSDM and the magnetization’s
autocorrelation function suggests that within our numerical accuracy the exponents z1 and z2 are
shared between the Ising and three-state Potts models at least for the particular case of single spin-
flip dynamics studied here, even though their equilibrium universality classes are clearly distinct.
Continuity of MSDM requires that α(z2 − z1) = γ/ν − z1, in which α is the anomalous exponent
in the intermediate regime. Since the ratio γ/ν is not shared between the two models, it follows
that α is not shared either, an aspect well verified in our simulations. Finally, we also discuss the
relevance of our main findings using another useful observable, namely the line magnetization Ml.

I. INTRODUCTION

Universality, erstwhile phenomenologically established,
has been a leading principle of critical phenomena [1, 2].
It is the property that models or systems can have the
exact same set of critical exponents, describing their be-
haviour near a critical point of a second-order phase tran-
sition, even though their microscopic properties are very
different. The explanation of universality, in terms of di-
verse Hamiltonian flows to a single fixed point, has been
one of the crowning achievements of renormalization-
group theory [3]. There are several spin models in this
context which have been used for the identification and
classification of universality classes [4–6]. Two of the
most common are the Ising model [7], the simplest fruit-
fly model of statistical physics, and the q-state Potts
model [8] which showcases a rich critical behavior de-
pending on the number of spin states q [9]. Of course,
for q = 2 the Ising case is recovered.

Although the existence and quantitative description of
universality classes in most pure spin systems with sim-
ple interactions is well-established for equilibrium prop-
erties, the situation regarding dynamical properties is
much more involved [10–13]. Fortunately however, the
concepts of critical phenomena can be broadly speaking
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extended to dynamical processes [10] and this has already
pushed forward our understanding of the field.

In a numerical study, the dynamics of a lattice model
can be probed in various settings. One might consider
the autocorrelation time τ of a system in equilibrium
or various off-equilibrium situations. Roughly speaking,
the autocorrelation time τ is the time needed to generate
a statistically independent configuration in a stochastic
process at equilibrium. In the neighborhood of a critical
point the autocorrelation time increases with increasing
correlation length ξ, a phenomenon called critical slow-
ing down. The increase is governed by a power law of the
form τ ∼ ξz [14, 15], where z is the dynamic critical ex-
ponent, an exponent which is unrelated to the the static
exponents. Note that in a finite system, ξ is bounded by
the linear system size L, so that τ ∼ Lz at the incipi-
ent critical point. The exponent z is the main critical
entity that defines the corresponding dynamical univer-
sality classes, even in very complicated models, such as
spin glasses [16].

Recently, a new window of opportunities in exploring
further the universality aspects of dynamical phenom-
ena has been opened [17]. Via extensive simulations of
the square-lattice Ising ferromagnet it was shown that,
in contrast to the standard belief of a single dynamic
exponent (denoted as z2 in our framework), there is an-
other dynamic critical exponent z1 which also appears
to be of great practical relevance, since for obtaining
statistically uncorrelated samples the proper sampling
frequency should be set by the newly introduced expo-
nent. We should underline here that earlier work on non-
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equilibrium dynamics has also suggested the presence of
a new exponent θ [18] akin to the newly introduced ex-
ponent z1 in Ref. [17]. Our previous work communicated
that the dynamical critical behavior of the Ising model
with Glauber dynamics is much richer than recorded so
far, thus calling for further examination of dynamical uni-
versality classes, even in simple models.

In this context, the three-state Potts model is a nat-
ural upcoming candidate that has been anyway exten-
sively used in the literature of critical phenomena and
that lies in a different equilibrium universality class as
compared to that of the Ising ferromagnet. We note the
static critical exponent values ν = 5/6, β/ν = 2/15,
and γ/ν = 26/15 for the three-state Potts universality
class [9] and the values ν = 1, β/ν = 1/8, and γ/ν = 7/4
for the Ising one. From a dynamics perspective, although
the dynamic critical exponent z of the Ising model at
two dimensions is known without doubt by the seminal
work of Nightingale and Blöte to be z = 2.1665(12) [14],
the same is not true for the three-state Potts model on
the square lattice. In particular, for the latter model
there is currently no consensus on the value of z, and
the estimates suggested in the literature, using a variety
of methods from Monte Carlo simulations to dynamic
renormalization group and short-time scaling, span the
wide range z = 2.17(4)− 2.7(4) [19–24].

In the current paper we attempt to enrich our under-
standing of dynamical critical phenomena by presenting a
substantiative analysis on the dynamical behavior of the
two-dimensional three-state Potts model. Following the
prescription of Ref. [17], we focus on the mean-squared
deviation of the magnetization M , MSDM , as a function
of time, as well as on the autocorrelation function of M .
Our simulations manifest the existence of two crossover
behaviors at times τ1 ∼ Lz1 and τ2 ∼ Lz2 , separating
three dynamical regimes. This behavior evinces the ex-
istence of two dynamic critical exponents z1 and z2, as
in the case of the simple Ising ferromagnet. Our main
finding is that the dynamical critical behavior appears
to be independent of the equilibrium universality class
for the present models under study and the particular
choice of local single spin-flip dynamics and that the dy-
namic exponents z1 and z2 are not determined by their
corresponding static ones, such as γ and ν. Although we
can not make any more general claims regarding transver-
sal universality across models belonging to different equi-
librium universality classes we believe that our analysis
brings to light an interesting feature in dynamical crit-
ical phenomena that has not been previously reported.
Finally, we also provide a complementary analysis in the
same framework based on the line magnetization Ml of
the system, from which additional important conclusions
may be drawn.

The rest of the paper is organized as follows: In Sec. II
we define the Potts model and give an outline of the
numerical protocol. Subsequently in Sec. III and after
introducing the basic observables, we present our numer-
ical data for the bulk and line magnetizations, providing

insightful comparisons with the already obtained results
for the Ising ferromagnet. This contribution closes with
a summary and some concluding remarks in Sec. IV.

II. MODEL AND SIMULATION DETAILS

Two versions of the Potts model exist, often referred
to as the vector and standard Potts model. For q = 2
and 3 the two models are identical. We consider here
the nearest-neighbor, zero-field, three-state vector Potts
model (as it has a more natural magnetization definition),
described by the Hamiltonian [9]

H = −2J

3

∑
⟨ij⟩

σ⃗i · σ⃗j . (1)

In the above equation J > 0 indicates ferromagnetic in-
teractions, ⟨. . .⟩ refers to summation over nearest neigh-
bors only on the square lattice, and σ⃗i defines the spin
vector on lattice site i which can take three possible
options: (− 1

2 ,
1
2

√
3), (− 1

2 ,−
1
2

√
3), or (1, 0). Note that

σ⃗i · σ⃗j = 1 for identical spin vectors, and − 1
2 other-

wise. This indicates that the Hamiltonian (1) is math-
ematically equivalent to its more conventional version,
where the spins take an integer value (0, 1, or 2) and the
dot-product is replaced by the Kronecker delta-function
(apart from a constant offset in the energy). Many
equilibrium properties of this model are known, such
as the exact location of the critical temperature, i.e.,
Tc = 1/ ln(1 +

√
3) [8] but also its critical exponents [9],

as also outlined in the previous Section.
The Potts model is a generalization of the Ising model

and in principle its dynamics can also be a straightfor-
ward extension of Glauber dynamics [25–27]. However
in the present work we chose for simplicity to implement
the heat-bath algorithm, where an elementary move is
a proposed change of a single spin at a random loca-
tion, which is then accepted or rejected according to the
heat-bath acceptance ratio [5]. One unit of time then
consists of N = L2 elementary moves, where L denotes
the linear dimension of the lattice. Other commonly used
dynamical algorithms in the extensive literature are the
spin-exchange (Kawasaki) dynamics [28–30], as well as
numerous types of cluster algorithms [31–33]. Yet, these
are outside the scope of the current work.

Our numerical simulations of the three-state Potts
model were performed at the exact critical tempera-
ture [8] using single spin-flip dynamics of heat-bath type
and systems with linear sizes within the range L =
{16− 192}, employing periodic boundary conditions. As
a reference, the simulation time needed for a single re-
alization of a system with linear size L = 96 on a node
of Dual Intel Xeon E5-2690 V4 processor was ∼ 80 min-
utes. To ensure a sufficiently good statistical accuracy in
our numerical data, an extensive averaging over 104−105

independent realizations was performed for all sizes stud-
ied.
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FIG. 1: (a) Mean-square displacement of the magnetiza-
tion MSDM (t) and (b) normalized autocorrelation func-
tion ĈM (t) vs. time (t) for the same set of system sizes
given in panel (b).

III. RESULTS AND ANALYSIS

A. Bulk magnetization

We follow in this Section the analysis performed for
the Ising ferromagnet in Ref. [17]. The two key observ-
ables that allow us to elaborate on some new aspects of
the dynamical behavior of the Potts model are based on
the order parameter (bulk magnetization) of the system,
M⃗ =

∑
i σ⃗i, as it fluctuates in its equilibrium state. The

first corresponds to the mean-squared deviation of the
magnetization

MSDM (t) =

〈∣∣∣∆M⃗(t)
∣∣∣2〉 =

〈∣∣∣M⃗(t)− M⃗(0)
∣∣∣2〉 , (2)

and the second to the magnetization’s autocorrelation
function, defined as usual via

CM (t) = ⟨M⃗(t) · M⃗(0)⟩. (3)

Figure 1 summarizes the raw numerical data ob-
tained for the two-dimensional three-state Potts model.
In particular, Fig. 1(a) depicts the MSDM (t), whereas
Fig. 1(b) the normalized autocorrelation ĈM (t) = ⟨M⃗(t)·
M⃗(0)⟩/⟨

∣∣∣M⃗(0)
∣∣∣2⟩, both as a function of time. Three well-

defined regimes are detected, separated by two crossover
correlation times, which we define hereafter as τ1 and τ2,
respectively.

At short times t, the dynamics contains L2t proposed
spin flips at spatially separated locations, out of which
the numerically computed fraction fp ≈ 0.33 is accepted.
The dynamics thus involve fpL2t uncorrelated changes of

|∆M | = ±
√

3
2 . That being so, MSDM in the short-time

regime is described by

MSDM =
3

2
fpL

2t (t ≪ τ1). (4)

At these short times, the magnetization does not have
enough time to change significantly, remaining close to its
t = 0 value. Additionally, the expectation of the squared
magnetization is related to the magnetic susceptibility [5]

χ =
β

L2
⟨M2⟩. (5)

Thus, in the short-time regime (using the equilibrium
property χ ∼ Lγ/ν), we have that

CM (t) ≈ kbTL
2χ ∼ L2+γ/ν (t ≪ τ1). (6)

Conversely, at very long times now, the two values of
the magnetization are uncorrelated so that ⟨M⃗(t) ·M⃗(0)⟩

is small as compared to
〈∣∣∣M⃗ ∣∣∣2〉. Therefore, we deduce

that MSDM saturates as

MSDM (t) =

〈∣∣∣M⃗(t)
∣∣∣2 + ∣∣∣M⃗(0)

∣∣∣2 − 2M⃗(t) · M⃗(0)

〉
≈ 2⟨M2⟩ ≈ 2kbTL

2χ.

(7)

Rather than an operational procedure, the dynamics
can also be articulated from the application of the tran-
sition matrix A to the state vector S⃗. This is clearly
a dysfunctional formulation due to the fact that A is a
sparse 2L

2 × 2L
2

matrix, but nevertheless useful for the
sake of argument. This transition matrix has an eigen-
value of e0 = 1, with an eigenvector in which each ele-
ment lies the likelihood of that state (the Boltzmann dis-
tribution). It also has a second-highest eigenvalue e1 ≈ 1,
which determines the final exponential decay of the au-
tocorrelation function. At long times t, the dynamical
matrix is applied tL2 times. Thus, expressed in A the dy-
namics can be written as CM (t) = ⟨S⃗tAtL2

S⃗0⟩. For long
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FIG. 2: Data collapse of the MSDM (t) curves for the full
range of system sizes studied around the first crossover
Lz1 with a scaling form of MSDM (t)/(L2t) ∼ t/Lz1 ,
where z1 is 0.50(5). The MSDM (t) shifts from nor-
mal (∼ L2t) to anomalous diffusion (∼ L2+z1−αz1tα) at
t = Lz1 .

times, the decay of the autocorrelation function is domi-
nated by the largest non-zero eigenvector and eigenvalue
CM (t) ∼ etL

2

1 ∼ exp [−t/τ2], where τ2 = −L2 ln (e1).
Clearly, it is almost impossible to numerically retrieve τ2
via e1, unless L is a very small number. However, the
whole construction provides a solid argument suggest-
ing that the magnetization autocorrelation function will
eventually decay exponentially at long times for finite L.

At the same time, the intermediate regime plays also
a crucial role in connecting the short- and long-time
regimes monotonically. The numerical data suggest that
this happens via anomalous diffusion, i.e., MSDM (t) ∼
tα, whereas the autocorrelation function seems to decay
as a stretched-exponential with the same anomalous ex-
ponent α.

As in Ref. [17], the main target of this work is to ob-
tain, via finite-size scaling approaches [6], access to the
dynamic exponents z1 and z2 that mark the crossover
behavior between the three aforementioned regimes, as
well as the anomalous exponent α. Figure 2 imprints the
collapse of MSDM (t) curves for all system sizes studied
in the area around the first transition point, obtained for
z1 = 0.50(5), in agreement with the result z1 = 1/2 for
the Ising ferromagnet [17]. At the intermediate regime
of this plot the curve is expected to decay as ∼ tα−1,
leading to the numerical estimate of α = 0.74(4). Fig-
ure 3 now presents an analogue to Fig. 2, this time a col-
lapse of the curves around the second transition point.
This is established by plotting − ln (ĈM (t))/(L−z2t) as
a function of t/Lz2 , where in this case z2 = 2.17(1),
in agreement with the estimate 2.17(4) by Tang and
Landau [21], but even more importantly with the result
z2 = 13/6 ≈ 2.1667 [14, 17] for the Ising ferromagnet.
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FIG. 3: Data collapse of − ln (ĈM (t)) for the full range
of system sizes studied around the second crossover with
a scaling form − ln(ĈM (t))/L−z2t ∼ t/Lz2 , where z2 =
2.17(1).

The intermediate regime for MSDM initiates at time
τ1 ∼ Lz1 at a value of ⟨(∆M)2⟩ ∼ L2+z1 , followed by
a power-law increase controlled by the exponent α, and
finally reaching its saturation value ∼ L2+γ/ν at time
τ2 ∼ Lz2 . Following the assumptions of Ref. [17] for a
single power-law dependence in the intermediate regime,
the anomalous exponent α can be expressed via

α = (γ/ν − z1)/(z2 − z1). (8)

Inserting the values γ/ν = 26/15, z1 = 1/2, and z2 =
13/6 in the above Eq. (8) we obtain the analytical re-
sult α = 37/50 = 0.74, in excellent agreement with
the numerical estimate 0.74(4) obtained from the scal-
ing analysis of Fig. 2 (note the value α = 3/4 for the
Ising case [17]). This is another strong evidence in favor
of the dynamical universality hypothesis between Ising
and Potts models, as exemplified below in more detail.

B. A direct comparison of Ising and Potts models

Since the values obtained above for the dynamic ex-
ponents of the three-state Potts model are up to a good
numerical accuracy compatible to those of the Ising fer-
romagnet [17], we perform here an additional direct com-
parison of the numerical data for both models, consider-
ing equally the mean-squared deviation of the magneti-
zation and the magnetization autocorrelation functions.

In Fig. 4(a)–(b) we focus on the relative values of the
first exponent z1. For a more meaningful comparison, we
exploit the knowledge that, at short times, the MSDM (t)
for the Potts model is smaller than that for the Ising
model simply because the acceptance ratio for the pro-
posed moves is larger – numerically we find this ratio to
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FIG. 4: Comparative results for the two-dimensional
three-state Potts (red curves) and Ising (black curves)
models. Panels (a) and (b) showcase the data col-
lapse of the MSDM (t) curves with a scaling form of
MSDM (t)/(tfxαx) ∼ tfx, where fx and αx are some
arbitrary constants for Ising and Potts models, respec-
tively. Panels (c) and (d) present the collapse of
− ln (ĈM (t)) around the second crossover with a scaling
form − ln(ĈM (t))/L−z2t ∼ t/Lz2 . Numerical data for
two system sizes are shown, namely L = 32 and L = 64.

be fP = 0.33 (Potts) and fI = 0.14 (Ising). Furthermore,
the change in the squared magnetization due to a single
spin-flip corresponds to 3/2 and 4 for the Potts and Ising
models, respectively. After removing both of these rela-
tively trivial effects, the curves of Fig. 4(a)–(b) show a
remarkable similarity, to the degree that numerically we
cannot determine which of the two models has a larger
exponent z1; our numerical estimation is that if there is
a difference in z1, it does not exceed the order of ∼ 10−3.
Subsequently we elaborate on the relative values of the
second exponent z2 in Fig. 4(c)–(d). Here, we apply ar-
bitrary scaling factors along the horizontal and vertical
axes and plot − ln(ĈM (t))/L−z2t vs. t/Lz2 . Again, the
curves show an excellent matching, indicating that the
difference in the numerical value of the dynamic expo-
nent z2 between the two models is negligible, and thus
undetectable in our simulations.

Finally, as mentioned in Sec. I, the exponent ratio
γ/ν which is known exactly for both models in equi-
librium, appears to be only slightly different; note the
values 7/4 = 1.75 (Ising ferromagnet) and 26/15 ≈ 1.733
(three-state Potts model). When combining Eq. (8) with
the numerically indistinguishable values for the dynamic
exponents z1 and z2 obtained in the current work and
in Ref. [17] one would expect a slight difference in the
anomalous exponent α. This is indeed the case, as is
clearly visible from Fig. 4(a)–(b).

C. Line magnetization

Besides the most studied bulk magnetization, another
convenient observable is the line magnetization, which
can also provide insightful results pertaining to the uni-
versality aspects of criticality. To define the line magneti-
zation we need to switch notation from the generic coor-
dinate i used above, to the location (x, y), so that the new
observable is simply the sum of spins along the sites with
the same x-coordinate (or alternatively, y-coordinate).
For convenience, we now focus on the line magnetization
for the collection of the x = 0 sites, given by

M⃗l(x = 0) =

L−1∑
y=0

M⃗(0, y). (9)

In full analogy to the bulk magnetization, both the mean-
squared deviation (MSDMl

(t)) and the normalized auto-
correlation function (ĈMl

(t)) of the line magnetization
Ml can be defined. In fact, our simulations revealed the
same dynamical behavior featuring three distinct regimes
separated by two crossover behaviors distinguished at
times t ∼ Lz

(l)
1 and t ∼ Lz

(l)
2 : (i) A first short-time

regime where the MSDMl
increases linearly with time and

the autocorrelation function remains constant, (ii) a sec-
ond intermediate regime where the MSDMl

increases as
a power law, but the autocorrelation function decreases
as a stretched exponential, and (iii) a final asymptotic
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FIG. 5: Results based on the analysis of the line magne-
tization for both the three-state Potts and Ising models.
(a) Data collapse of the MSDMl

(t) curves with a scal-
ing form of MSDMl

(t)/(Lt) ∼ t/Lz
(l)
1 around the first

crossover regime for L = 24, 48, and 64. (b) Data
collapse of − ln (ĈMl

(t)) according to the scaling form
− ln(ĈMl

(t))/(L−z
(l)
2 t) ∼ t/Lz

(l)
2 for L = 64 around the

second crossover regime.

regime where the MSDMl
saturates with the autocorre-

lation function decaying exponentially.
As in Sec. IIIA above, we determined numerically the

dynamic exponents z(l)1 and z
(l)
2 , as well as the anomalous

exponent α(l) via data collapses of the available numerical
data. In this case, we considered systems with linear sizes
L ∈ {24, 48, 64}. The collapsed curves are shown in Fig. 5
for both the three-state Potts and Ising models. The re-
sulting values are listed below: (i) z

(l)
1 = 0 for Ising and

Potts, clearly different from the values obtained for the
bulk magnetization, (ii) z

(l)
2 = 2.17(1), numerically in-

distinguishable from the estimates obtained for the bulk
magnetization for both models, and (iii) α(l) = 0.35(1)

and 0.34(1) for the Potts and Ising models, respectively.
This slight difference is visible in Fig. 5(a) from the mi-
nor variation in the relevant slopes. Note that the Ising
result α(l) = 0.34(1) is in agreement with the earlier work
of Ref. [34], and that for the line magnetization, conti-
nuity requires α(l) = (γ/ν − 1− z

(l)
1 )/(z

(l)
2 − z

(l)
1 ), as the

saturation of the MSDMl
folows the scaling of the form

∼ Lγ/ν+1.

IV. CONCLUDING REMARKS

We analyzed the results of extensive simulations of
the two-dimensional three-state Potts model with local
spin-flip dynamics. We scrutinized the time evolution
of the mean-squared deviation and autocorrelation func-
tion of the bulk and line magnetizations, featuring three
dynamical regimes separated by two crossover times at
τ1 ∼ Lz1 and τ2 ∼ Lz2 . In the short-time regime, the
mean-squared deviation shows ordinary diffusive behav-
ior and the autocorrelation function exponential decay.
In the second intermediate regime the mean-squared de-
viation is characterized by anomalous diffusive behavior
and the autocorrelation function decays in a stretched-
exponential way. Finally, in the third late-time regime
the mean-squared deviation saturates at a constant value
while the autocorrelation function again decays exponen-
tially. This intricate behavior was originally highlighted
in Ref. [17] for the square-lattice Ising ferromagnet and
its bulk magnetization.

In particular, the second crossover to the exponential
decay of the autocorrelation function is well documented
in the literature for the bulk magnetization of the two-
dimensional Ising model. Nightingale and Blöte eluci-
dated that this decay sets in at a time determined by the
dynamic critical exponent z = 2.1665(12) [14]. Our re-
sults are in agreement with this value, but extend also to
the line magnetization of the Ising model, and more sur-
prisingly to the bulk and line magnetizations of the three-
state Potts model. On the other hand, the first crossover
has only recently been disclosed by our group [17] for the
bulk magnetization of the square-lattice Ising ferromag-
net, and was found to occur at a time determined by a
new dynamic exponent z1 ≈ 0.5. In the current work, we
find that this exponent shares the same value for the bulk
magnetization of the three-state Potts model, similar to
the exponent z2. However, the same analysis based on a
different observable, namely the line magnetization, sug-
gested the value z

(l)
1 ≈ 0 for both Ising and Potts models.

At the moment, we don’t have any theoretical argument
for this numerically observed behavior.

In the intermediate regime, the mean-squared devia-
tion of the magnetization shows power-law behavior with
an anomalous exponent α, and related to this, the auto-
correlation function a stretched-exponential decay with
the same exponent. Continuity sets a relation between
γ/ν (the ratio of two equilibrium critical exponents), z1,
z2 and α; see Eq. (8). Since z1 and z2 are shared between
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the Ising and three-state Potts models but γ/ν is not, it
is not surprising that α takes different values between the
two models. This result pertains to both the bulk and
line magnetizations considered.

To conclude, we provided numerical evidence suggest-
ing that at two dimensions the three-state Potts model
and the Ising ferromagnet, which belong to distinct equi-
librium universality classes, share within our numerical
accuracy their dynamical critical exponents z1 and z2.
This result has been obtained using heat-bath dynamics
but we expect it to hold also for other types of single
spin-flip dynamics as well, such as Metropolis, Glauber,
and others. At this stage, it would be very interesting to
place the results of the present work in a more general
framework of universality but this would require an ex-
tensive testing of the current protocol against different
spin models, and perhaps also different algorithm dy-
namics (including the most commonly used cluster al-
gorithms). Work in this direction is currently under way.

We hope that our work will stimulate additional research 
on the field of dynamical critical phenomena providing 
a more rigorous theoretical ground to accommodate for 
the reported numerical results.
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