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Male and female contributions to diversity
among birdwing butterfly images

Check for updates

Jennifer F. Hoyal Cuthill 1 , Nicholas Guttenberg2 & Blanca Huertas3

Machine learning (ML) newly enables tests for higher inter-species diversity in visible phenotype
(disparity) among males versus females, predictions made from Darwinian sexual selection versus
Wallacean natural selection, respectively. Here, we use ML to quantify variation across a sample
of > 16,000 dorsal and ventral photographs of the sexually dimorphic birdwing butterflies
(Lepidoptera: Papilionidae). Validation of image embedding distances, learnt by a triplet-trained, deep
convolutional neural network, shows ML can be used for automated reconstruction of phenotypic
evolution achieving measures of phylogenetic congruence to genetic species trees within a range
sampled among genetic trees themselves. Quantification of sexual disparity difference (male versus
female embedding distance), shows sexually and phylogenetically variable inter-species disparity.
Ornithoptera exemplify high embedded male image disparity, diversification of selective optima in
fitted multi-peak OU models and accelerated divergence, with cases of extreme divergence in
allopatry and sympatry. However, genus Troides shows inverted patterns, including comparatively
static male embedded phenotype, and higher female than male disparity – though within an inferred
selective regime common to these females. Birdwing shapes and colour patterns that are most
phenotypically distinctive in ML similarity are generally those of males. However, either sex can
contribute majoritively to observed phenotypic diversity among species.

Two opposed hypotheses for the evolution of sexually variable animal
phenotypes are sexual selection on phenotypes of the sex chosen formating,
proposed by Darwin1–4, or natural selection on the sex with greater repro-
ductive input, suggested by Wallace5,6. Birdwing butterflies include specta-
cular examples of sexually dimorphic colour, pattern, and shape7. Within
the swallowtail butterfly family Papilionidae, the birdwing butterflies pre-
sent a morphological and biogeographic diversification, across the Pacific
region, into three recognised genera, Trogonoptera Rippon, 1890, Troides
Hübner, 1819 and Ornithoptera Boisduval, 18328,9, with 37 species8 and
>130 subspecies10. Often rare, dependent on tropical forest11,12, and long-
prized by collectors for their exceptional beauty7 and size, all birdwing
species are under legal protection for trading by CITES, and some are
categorised as endangered species8. Morphological studies have shown
divergence in both wing colouration mechanisms and photoreceptor exci-
tation between examples of birdwing butterfly species, suggesting that wing
morphology may function in mate recognition and signalling13–16. Quali-
tative observations have suggested, first, that male birdwings can be more
brightly coloured than females17, and, second, that males from different
islands can, in cases, differ more markedly from each other than do corre-
sponding females (e.g., Ornithoptera, Solomon Islands18). Furthermore,

birdwing butterflies exhibit elaborate mating behaviour, including male
courtship displays subject to female mate choice19 (SI Supplementary
Note 1). Birdwing males have been observed to pursue multiple females,
whereas females have been observed to reject matings12, implying a steeper
relationship between numbers of mates and direct reproductive success for
males than females20. Such asymmetries theoretically predict sexual selec-
tion on phenotypes of males from mating preferences of females2,21. This
suggests thehypothesis that sexual selection, actingonphenotypesprimarily
of males, first proposed by Darwin1, has been correlated with, and poten-
tially causative of, both sexual dimorphism and inter-species phenotypic
diversification22–25. Notably, however, female evolution may also make
distinct contributions to phenotypic variation, under a less studied6

hypothesis originally presented byWallace5.Wallace predicted that females
under comparatively high natural selection pressure for protective pheno-
types, due potentially, for example, to higher predation rates5,6,26, or lower
sexual selection on female phenotype (making natural selection relatively
more important), will show divergent allopatric wing patterns, in response
to habitat variation5.

Here we capture an unprecedented extent of phenotypic variation
amongbothbirdwing females andmales to address this historical imbalance
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and reveal the extent of female variation. Sexually dimorphic groups in
which females aremorphologicallymorediverse thanmaleshaveonly rarely
been identified3,6,27,28. The effects of sexual dimorphism on inter-species
diversity of phenotypes (i.e., disparity: the multidimensional extent of var-
iation in phenotypes29,30) have been tested relatively rarely using any
methods31,32 and new capacities for quantification among comprehensive
samples of whole-organism photographs are only recently enabled by new
methods of machine learning (Figs. S1–S3). Furthermore, though pivotal
studies have shown that it is possible to compare samples of female andmale
disparity, using traditional morphometric methods, it has remained com-
monpractice in studiesof sexual dimorphicbiological traits to focusonmale
traits31. Consequently, machine learningmethods open up new possibilities
to quantify the extent to which male and female variation, predicted by
sexual and natural selection1,5, contributes to the diversity of large-scale
photographic samples of overall visible phenotype.

Further to this, biological signallingmay, in general, be undermultiple,
potentially conflicting evolutionary selection pressures, selection strengths
(including potential neutrality), and constraints, presenting a range of
alternative causes for the evolution of biological signals. Among birdwing
butterflies, as well as other animal groups, potential selection pressures on
visible phenotype include species recognition5, sexual selection, predation,
potentially effecting aposematic warning colouration (given the toxicity of
birdwing larval hostplants33), and/or camouflage (across potentially variable
viewing distances and backgrounds), and flight19, with potential for sexual
variation in natural selection on males, as well as females34.

Here, we usemachine-learnt embeddings to quantify and characterise,
relative to predictions of sexual versus natural selection in phenotypic
diversification1–6, sexual and interspecific variation across 16,734 dorsal and
ventral photographs of birdwing butterflies, covering the entire Natural
History Museum (NHMUK) birdwing collection, the largest and most
comprehensive known on this group, including the three genera, 35 species
OTUs (operational taxonomic units) and 131 recognised subspecies. Until
very recently, methods capable of quantitatively capturing phenotypic
variation approaching this scale and complexity did not exist30,35–42. We use
deep learning with a triplet-trained convolutional neural network (CNN),
ButterflyNet version 1.2 (Supplementary Software 1, modified from But-
terflyNet version 135), to generate Euclidean spatial embeddings of uni-
formly scaled, dorsal and ventral photographs. Supervised CNNs can learn
visually similar image features directly from biological images that are
labelled, for example, by species35,39,40. Embedding methods based on such
CNNs can then capture the extent and relational structure of image simi-
larity within multidimensional image embeddings35,39,43,44, comparable to
biological “morphospaces” constructed using traditional morphometric
methods30. Because CNNs are comparatively robust to translation, rotation,
and scaling, can compare one-to-many features, and can access directly any

image variation informative for their task (without subjective variable
selection), their capabilities extend beyond previous methods of biological
image comparison, such as geometric morphometrics or pixel colour
comparison35,39,40,45 (Figs. S1–S3).

Here, our applications ofML towhole-specimenphotographs facilitate
the first: (i) Tests of congruence between learnt phenotypic distances and
genetic phylogenetic distances, relative to those among genomic data, with
ML training time; relevant toML validation and its potential for automated
morphological phylogenetic reconstruction. (ii) Quantitative morpho-
metric analysis of the sexually dimorphic birdwing butterflies (Trogo-
noptera,Troides, andOrnithoptera), a case study for the extent of sexual and
inter-species variation in phenotype. (iii) Tests, among whole-specimen
photographs, of male versus female contributions to observed inter-species
variation (disparity) hypothesised under sexual1 versus natural5 selection.
(iv) Applications of phylogenetic comparative measures to infer selective
optima and diversification rates among phenotypic metrics learned directly
by ML triplet embedding. (v) Comparisons of machine-learnt phenotypic
distinctiveness, in allopatry and sympatry.

Results and discussion
Machine-learnt triplet embeddings
The 16,734 images of birdwing butterfly specimens were embedded in a
Euclidean multidimensional space capturing the visible similarity infor-
mative to a CNN (Supplementary Software 1). The network architecture (v.
1.2) builds on ButterflyNet 1 to incorporate the following key features:
optimising image embeddingusing triplet loss35,36,43,44 (without an additional
classification loss35), adding image augmentation and calculating “live”
correlations with genetic distance, visualised during training, that facilitate
comparisons of embedding distances to independent genetic distances. The
CNN was trained to optimally place all images (sampled in triplets, two of
the same species, one different) such that the Euclidean distances between
images fromthe same speciesare comparatively close, relative todistances to
images of different species.

Visualisations of the resultant embeddings highlight biologically
meaningful structure (Fig. 1), using projection to 2D via the UMAP46

algorithm.UMAP (UniformManifoldApproximation andProjection) aids
interpretation of structure, such as clustering, in multidimensional spaces
(here our 64-dimensional machine-learnt embedding) by using geometric
and topological methods46 to project the data to a lower number of
dimensions (here 2) that can be more easily visualised.

Notably, the late embedding structure includes both clusters of images
with the same species identity (e.g., Fig. 2f, i), corresponding to the labels on
which the algorithm was trained (Figs. 1–4, species OTU), and additional
structurewithin and above the species level, beyond the label information to
which the algorithm was given direct access (also present in earlier

Fig. 1 | Patterns of phenotypic similarity in birdwing butterfly genera and sexes.
Early structure in amachine-learnt embedding of 16,734 dorsal and ventral birdwing
butterfly photographs, trained for 10 epochs on triplets of photographs with species
OTU labels. Points represent individual photographs. Embedded proximity

represents image similarity. Visualisations of a 64-dimensional ML embedding,
projected to 2D using the UMAP46 algorithm. Structure of genera (a), biological
sexes (b), and the embedded images (c).
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embeddings; Figs. 1–2, Fig. S4). Such structure can be expected to be
recovered by an ML embedding because it aids success in the training task
itself (in this case, placement of image triplets by species). In particular,
embedding structure is present, which can be mapped to biological sex
(Figs. 1b, 2b) and higher level phylogeny and taxonomy8,11, including genus
(Fig. 1a, c) and species group (Fig. 2a).

Validation of evolutionary embedding structure
The extent to which our machine-learnt embedding distances, based on
image similarity, were correlated with independent evolutionary

phylogenetic information was quantitatively validated35 against genetic
phylogenetic signals (with phylogenetic signal defined as the information on
relatedness a given measure of similarity contains, sensu47), based on pub-
lished sequences from four housekeeping genes available for 177
specimens8, representing 30 of our 35 phenotypic species OTUs (Accession
numbers SupplementaryData2; Supplementary Software2).These analyses
compared the congruence between ML phenotypic and multi-gene coa-
lescent species trees to a statistical distribution of genetic species tree simi-
larities, which provides an independent reference for the extent of
congruence expected between estimates of species phylogeny (given natural

Fig. 2 | Patterns of phenotypic similarity in birdwing species groups and sexes.
Late structure of machine-learnt embedding trained for 2990 epochs (n = 16,734
images, as for Fig. 1). Structure of species groups (a) and sexes (b). c Diagram
illustrating alternative and null evolutionary hypotheses (clusters for each species
represented by ovals sharing border colour). d–i, Exemplar species groups showing
inverted patterns of sexual disparity (d, g, sexes; e, h, photographs; f, i, species).

d–fOrnithoptera paradisea species group showing clustered females with peripheral
males (neighbour-joining clade depth females 0.32, males 0.53). g–i Troides hali-
phron species group showing clustered males with peripheral females (clade depth
females 1.0,males 0.31). Large inset photographs show examples ofmale and female,
dorsal (left) and ventral (right) for O. paradisea (e) and T. haliphron (h).

https://doi.org/10.1038/s42003-024-06376-2 Article

Communications Biology |           (2024) 7:774 3



processes that can generate phylogenetic signal variation, conflict, and
uncertainty). Measures of tree similarity between a phenotypic neighbour-
joining species phylogeny were reconstructed from the ML image embed-
ding, and 1000 multi-species coalescent genetic trees (taken from post-
burn-in BayesianMCMC chains that reflect the likelihood of sampled trees
by the relative amounts of search time spent in different regions of tree
space). These comparisons show that the distribution of distances between
machine-learnt phenotypic trees and independent genetic trees overlaps
that among genetic species trees themselves, with a median within their
internal range (Fig. S5). Distributions of similarity betweenML phenotypic
trees and genetic trees were also found to be very significantly different from
those expected at random (n = 1000, Kruskal–Wallis, two-tailed
p < 0.001, Fig. S6).

Embedding structure and training time
During ML training, triplet loss (which the algorithm aims to minimise)
successfully tends to converge towards a stable level (Supplementary Soft-
ware 1; Fig. S7). Applications of embeddingmethods, which pass a hurdle of
successful convergence in their training loss function, then present new
questions of the extent of correlation between the measures of image
similarity recovered throughout this training process (as it approaches and
achieves convergence in training loss) and further variables of biological
interest. Here, in particular, we explore the correlation between embedded
image similarity and independent evolutionary measures of genetic dis-
tance, as ML training proceeds. Initially, there is also a rapid increase in the
correlation between inter-species genetic distances and the phenotypic
embedding distances which have been learnt (Fig. S7). However, as
ML training proceeds, different levels of taxonomic, phylogenetic, and
phenotypic structure are revealed (Figs. 1–2, Fig. S4). For example, 2D

visualisations of relatively early embedding structure (soon after initial,
rapid improvement in triplet loss) indicate large clustersmappingbroadly to
genus and sex (Fig. 1, Fig. S4). In relatively later training, different species
groups become increasingly distinct (Fig. 2). However, the deeper rela-
tionships that were marked in early embeddings can become less apparent.
In line with this, in the reported training runs, the highest correlation
between phenotypic embedding and genetic distances is achieved by
approximately epoch 500, after which this correlation broadly declined,
while triplet loss approached stabilisation around epoch 3000 (with fluc-
tuations between individual epochs throughout) (Fig. S7). This is notable as
an example of a non-linear relationship between ML optimisation (mini-
misation of species triplet loss) and its secondary outcome, embedding
structure (particularly, evolutionary phylogenetic signal present in
embedded distances), which may (as here) be an ultimate aim in using
machine learning. We show here that there is not necessarily one correct
stopping time, since different stopping times can capture different, biolo-
gically relevant information. Consequently, we suggest comparing results
stopped at different points, particularly after rapid early improvement and
later convergence in triplet loss (a procedure that can be performedwhether
or not independent validation data is available for a given study). The
following evolutionary results compare ML phenotypic distances from
different training epochs (including early stopping times soon after initial
loss and genetic distance improvement as well as late stopping times at loss
convergence), present averages calculated acrossdifferent runs and stopping
times, and meet the additional criteria that they show emergent biological
structure, mapping to sex and taxonomic group, median similarity between
phenotypic and genetic trees within the internal range of gene-tree simi-
larity, and reveal evolutionary patterns consistent across independent
training runs (as specified below).

Fig. 3 | Sexual disparity among birdwing butterfly
species. a–c Heatmaps showing sexual disparity
difference: the difference between pairwise inter-
species distances for males versus corresponding
females, based on an ML phenotypic embedding
trained for 2990 epochs (n = 16,734 images, as for
Fig. 1). When the difference is positive (blue), males
are more disparate than females. When the differ-
ence is negative (red), females are more disparate
than males. a All 35 included species OTUs (phy-
logenetic tip order). b, c Exemplar species groups
showing polarised average sexual disparity (alpha-
betic order). bOrnithoptera paradisea species group
(Fig. 2d–f), positive mean = 0.06. c Troides hali-
phron group (Fig. 2g–i), negative mean =−0.19).
Column order, left to right, repeats row order, top to
bottom.
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Sexual variation in visual similarity
Quantificationof the extent of sexual variation inmachine-learnphenotypic
similarity, using embedding visualisation and a measure (calculated from
embedding distances) that we call the sexual disparity difference (male
minus female disparity), shows that observed inter-species disparity among
birdwing butterflies is variable between biological sexes and phylogeneti-
cally non-random (Fig. 3).

In relatively early embeddings, where broad genus and sex differences
predominate, females of birdwing species from the two major genera
Ornithoptera andTroides form a large central cluster withmales around the

periphery (Fig. 1) andmean, median andmaximum inter-species distances
are all higher for males than females (n = 595, Kruskal–Wallis, two-tailed
p < 0.001, results consistent across 10 epoch embeddings from three inde-
pendent ML training runs, Fig. S8). Similarly, in early embeddings, the
average sexual disparity difference among birdwing butterfly species is
positive, showing relatively highmale disparity (e.g., epoch 10,mean = 0.13,
35 species).

However, analyses of disparity within 9 birdwing species groups8,11

(Fig. 2), learnt in joint embeddings by species label, reveal diversifications
with contrasting trends in sexual disparity. This contrast is exemplified by

b

Fig. 4 | Phenotypic distinctiveness and sexual disparity. a Relationships between
centroid phenotypic distances between males or females of birdwing species and
inter-species sexual disparity difference (positive difference: inter-male distance
> inter-female distance; negative difference: inter-female distance > inter-male
distance). Early embedding trained for 10 epochs (corresponding to Fig. 1). b Late
machine-learnt phenotypic embedding trained for 2990 epochs, image points
coloured by species OTUs (dataset as for Fig. 1). c, d Ranked phenotypic distinc-
tiveness of birdwing species measured by mean (c) or minimum (d) distance
(ordered most distinctive, top, to least, bottom,). Averages across 15 embeddings,

epoch range 10–2990, three independent training runs. e Illustrated examples (bold
text panels b–g) of phenotypically distinctive species, left to right: male dorsal,
ventral; female dorsal, ventral. See also Fig. 1, e. n = 16,734 images, as for Fig. 1.
f, gMaps contrasting cases of allopatric (f) and sympatric (g) geographic ranges12 in
phenotypically distinctive species, from independently supported9 species clades
(Fig. S10), on New Guinea (dashed line, mountain range) and nearby islands.
f Allopatric ranges of O. croesus, O. aesacus and O. priamus (also extending into
Australia). g Sympatric ranges12 occur in O. paradisea (Fig. 2e), O. meridionalis and
O. tithonus on New Guinea.
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the O. paradisea and T. haliphron species groups (Figs. 2–3), which show,
respectively, extreme positive versus extreme negative values of the sexual
disparity difference, showing respectively, higher male than female dis-
parity, and vice versa. Multiple embeddings comparing the statistical
repeatability of key results across training runs (which varied in run para-
meters such as the image batch sampling) and run stop points (explored
effects of varying training time) showed that the signs of these sexual dis-
parity differenceswere consistent across all of 15 sequential repeatability test
embeddings, sampled from training epochs between 10 and 2990 from 3
independent ML training runs. The O. priamus and O. paradisea species
groups exemplify an evolutionary pattern of high male disparity. For
example, while females of the O. paradisea species group are closely clus-
tered with each other, and with those of the O. priamus and O. victoriae
groups, their males have diversified into comparatively distinct phenotypic
sub-clusters, including one containing some of the most extreme
morphologies among birdwing butterflies (Figs. 2 and 4). In contrast some
(but not all) Troides species groups show an inverted pattern of visually
similar males with relatively disparate females, exemplified by the extreme
negative sexual disparity difference of the T. haliphron and T. amphrysus
species groups.

On two grounds, we can reject null hypotheses of embedded pheno-
typic variation that is random with respect to evolutionary diversification
among birdwing butterflies (i.e., the collective and distinct components of
evolutionary history in males and females of the diversifying species), spe-
cifically null hypotheses of no sexual dimorphism and no inter-species
correlation in embedded phenotype (diagram, Fig. 2c). First, phenotypic
evolution that was randomwith respect to sex can be rejected overall, based
on the sexual structure of phenotypic similarity (e.g., p < 0.001, above,
Fig. S8) and non-zero sexual disparity differences observed within species
groups. Second, random differences in sexual disparity among species
samples can be rejected due to the non-random overlap between embedded
phenotypic distance and independent genetic distance (p < 0.001,
above; Fig. S6).

Male and female contributions to inter-species disparity
Variation between males of birdwing butterfly species is generally more
salient and distinctive to theMLnetwork than that between females (Figs. 1,
2 and 4). Particularly, in relatively early embeddings the sexual disparity
difference is consistently and very significantly positively correlated with
inter-species phenotypic distance between males, but not consistently cor-
related with distance between females (Fig. 4a, male Spearman correlation
p < 0.001, r ≥ 0.38 across 3 independent training runs, Fig. S9). In other
words, as we considermore visually dissimilar species pairs there is a greater
tendency for the disparity to be greater among theirmales than among their
females. This pattern is consistent with the observed early embedding
structure dominated, overall, by high male disparity (Fig. 1b) and male
phenotypic distinctiveness (Fig. 4a–e).

The evolution of sexual disparity
In genus Troides, including in species groups where female images were
observed to be more phenotypically disparate than males such as the T.
haliphron group, dimorphic male characteristics, including bright and
contrasting wing colour patterns, are represented in the studied photo-
graphs (Figs. 2 and 4), in addition to, and not replaced by, other signalling
modalities or aspects of phenotype (SI), as has been suggested in male
antbirds, for example27. However, embedded male phenotypes are com-
paratively close in genus Troides (e.g., Fig. 2). Alongside learnt variation in
wing phenotypes among females (which are primarily brown, with, for
example, variable white and yellow patches and spots, Figs. 2, 4), there is
higher female than male disparity in some Troides species groups
(Figs. 2–3). This is contrary to someprevious suggestions, for example based
on rates of colour evolution inferred from illustrations of European
butterflies48, that there is ‘no indication that it is common in butterflies for
dichromatism to evolve due to female-limited chromatic evolution under
natural selection, as argued by Wallace’48. Indeed, machine learning on

comprehensive samples of whole-organism photographs adds to the pre-
viously rare examples of higher female than male variation in visible phe-
notypic traits beyond size, such as colour, shape or number of features6,27,31,
showing that female variability learnt from visible phenotype can dominate
observed phenotypic diversification in species groups with comparatively
static male phenotype, as predicted by Wallace to result from relatively
strong, divergent natural selection on females5. In contrast, in other species
groups, particularly in genus Ornithoptera, we observe inverted evolu-
tionary patterns, with highmachine-learntmale disparity and extrememale
phenotypes, predicted by Darwinian sexual selection1,49.

Testing predictions of selection
The ML embedding method we use here is not a causal machine learning
method (one that formally incorporates a causal model of the studied
system50). Consequently, additional phylogenetic comparative analyses51,
which test phylogenetic distributions of continuous biological trait data
againstmodels of evolutionary selection,were applied to themachine-learnt
measures of phenotypic similarity and an analytically distinct, time-
calibrated reference phylogeny of overlapping birdwing species9. For ML
visual similarity learnt from separately labelled male and female photo-
graphs, a multi-peak Ornstein-Uhlenbeck (OU) model received strong
Akaike information criterion (AIC) support over null hypotheses of evo-
lution by pure Brownian motion or with a single OU peak for both males
and females, across 10 repeated embedding samples (Fig. S10). Convergent
evolution in sympatry is a prediction of shared natural selection51 and a
corollary of Wallace’s prediction of divergent female defensive colour pat-
terning in different habitats (to the extent that shared biogeography reflects
shared habitat). Convergence within an ML embedding, comparable to
‘ecomorph’ convergence among general multivariate biological trait data51,
was not detected between females from genera Troides and Ornithoptera
where biogeographic ranges of birdwing genera overlap among species from
NewGuinea8,12, as opposed to allopatric species (specifically inT.amphrysus
andT. oblongomaculatus, as opposed to otherTroides species allopatricwith
New Guinean Ornithoptera, Fig. S10). Rather, phylogenetic comparative
analyses identified a single selective regime for females ofTroideswithin and
outside their rangeoverlapwithOrnithoptera, and inferred that thedisparity
of females within and between Troides species groups (observed to be high
relative to that of corresponding males) crosses one best-fitting selective
regime (Fig. S10).

Exaggeration49, and potentially 52,53 diversification, of secondary sexual
traits is a key prediction of sexual selection, as opposed to other possible
factors, particularly in sexually dimorphic traits25 and sympatric species.
Selective model testing51 returned a significantly higher number of OU
selective regimes for males than females (Wilcoxon W = 55, p = 0.002,
separate sex ML labels, number of best-fitting convergent regimes not sig-
nificantly higher for females than males, WilcoxonW = 12, p = 1, Fig. S10).
Tests for variation between genera Ornithoptera and Troides in the rate of
evolution across all image embedding axes (with separate sex labels) showed
that rates were, on average higher in Troides for females (proportionate
difference mean = 0.8), versus Ornithoptera for males (mean = 1.3, pro-
portionate rate difference, Ornithopetera/Troides, 10 repeated embedding
samples, paired t test t =−3.232, p = 0.018; Fig. S10). Therefore, machine-
learnt phenotypic diversity, within and between birdwing genera, is corre-
lated with variation in the number, breadth, and decoupling of inferred
selective optima for the two sexes. These differences are associated with
female investment in a smaller number of larger eggs in Ornithoptera,
compared withTroides54, increasing asymmetries betweenmale and female
reproduction2,21,55.

Biogeography and sexual diversity
Different models of sexual selection disagree on the likelihood of achieving
stable coexistence of multiple sexually selected traits49,52,53. Consequently,
two empirical questions remain open: the importance, in the real world, of
allopatry in the diversification of sexually dimorphic phenotypes, and the
extent of sexual variation in sympatric speciation53,56,57. The machine-learnt
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visual diversity among ornithopteran males includes phenotypically dis-
tinctive species, such as O. croesus, O. aesacus and O. priamus, for which
allopatric island isolation accompanies the diversification of sexually
dimorphic male traits (Figs. 2, 3, 4e, f). However, also present are species,
notably the New Guinean O. paradisea group, exhibiting sexual dimorph-
ism, high male phenotypic diversity, and sympatric geographic ranges
(Figs. 2, 3, 4g).

Darwin versus Wallace: sexual or natural selection
Wallace specifically argued for contributions to inter-species diversity from
eithermales or females, examples of specieswith highly variable, ‘protective’
colouration in females but not males and a ‘tendency in the male of most
animals—but especially of birds and insects—to develop more and more
intensity of colour’, all evolutionary patterns recovered by this analysis5.
However, Wallace also countered Darwin’s1 hypothesis of sexual selection
for the evolution of sexual dimorphism in visual signalling traits, based
specifically on scepticism of female mate choice5,58. Instead, Wallace pri-
marily advocated natural selection mechanisms in promoting sexually
dimorphic variation with a secondary role for a form of indirect sexual
selection without ornamental trait preferences among females5. Sexual
selection remains a highly active and debated research area58. However, the
years of research since the origins of evolutionary theory have increased the
evidence for female (and male59) mate choice58, including in insects and
specifically among birdwing butterflies (in which, for example, female
rejection of male courtship has been observed12, alongside elaborate male
display behaviours, SI Supplementary Note 1). The further development of
sexual selection theory, including runaway models49, also provides specific
theoretical mechanisms for both the tendency towards male phenotypic
exaggeration hypothesised by both Darwin1 and Wallace5 and its diversifi-
cation, which Wallace could not explain, except by possible effects of
individual variability 5. In light of our analysis, we can also consider how the
patterns of high female disparity we recover relate to Wallace’s hypotheses
on natural selection5. In discussing sexually dimorphic protective coloura-
tion among females, for example, Wallace hypothesised that ‘natural
selection is constantly at work, preventing the female from acquiring [the]
same tints [as the male], or modifying her colours in various directions to
secure protection by assimilating her to her surroundings’ and (with regard
to birds) ‘the different amounts of colour acquired by the females have no
doubt depended on peculiarities of habits and of environment, and on the
powers of defence or of concealment possessed by the species’. These
statements link variability among female phenotypes to adaptation to dif-
ferent habitats, consequently predicting greater similarity of phenotype in
the same habitat, via stasis or evolutionary convergence. However, evolu-
tionary model-testing on our machine-learnt phenotypic trait values was
unable to detect, among embedded female images, overall phenotypic
convergences in the same geographic region alongside divergence of
selective regimes in different biogeographic regions. Instead, recovered
female and male variation was characterised by varying extents of diver-
gence, with a greater diversification of selective regimes inferred among
males versus broad selective regimes associated with genera of females
(Fig. S10). This provides evidence for contrasting selection in males and
females, potentially resulting from diversification of female preferences and
male phenotypes, under sexual selection, particularly in Ornithoptera, ver-
sus more subtle diversification of female protective colour patterning
(potentially combining crypsis and aposematism, SI) within broader inter-
species natural selection regimes.

Overall, therefore, we demonstrate that machine learning can recover
rich and complex patterns of phenotypic variation. These include both
salient male variation, predicted by Darwin1 under the female mate choice
that contemporaries doubted5 and, under-studied31, female variation, with
this case supporting some, but not all, ofWallace’s predictions undernatural
selection5.We have noted that these contrasting patterns in the evolution of
disparity are correlated with observed differences in reproductive input
between birdwing genera54. Our results, therefore, suggest that differences in
the dynamics of natural versus sexual selection within a broader

evolutionary radiation can result in sexual dimorphism, inter-species phe-
notypic variation, and a diversity of underpinning evolutionary patterns.
Looking forward, machine learning offers opportunities to measure phe-
nomic diversity, and test hypotheses on its evolutionary causes, at unpre-
cedented scales.

Methods
Recuration
Birdwing butterflies (Lepidoptera: Papilionidae: genera Ornithoptera, Tro-
gonoptera andTroides)were chosen for exhaustive specimen imaging by the
Natural History Museum, London (NHMUK) due to the extensive collec-
tion, brightly coloured specimens, relatively well-established taxonomy10,11

and large specimen size which facilitates study. In preparation for digitisa-
tion, a comprehensive recuration of the birdwing specimens at the Natural
History Museum (NHMUK) was carried out, collating specimens from
across the several collections and arranging them taxonomically into a
consolidated collection, arranged into the three genera, 35 species OTUs
(operational taxonomic units) and 131 subspecies (online on the NHMUK
Data Portal). Specimen RGB photographs were then taken by the Digital
Collections Programme digitisers, covering the entire (NHMUK) birdwing
collection.Original specimenphotographs and accompanyingmetadata are
available through the NHMUK Data Portal at https://data.nhm.ac.uk/
dataset/collection-specimens.

Photographic dataset
Photographic data were screened for this study to include only specimens
that were adults, possessed all four wings, and were photographed in both
dorsal and ventral view. Original photographs, which include additional
items such as specimen labels, were cropped44 to include only the butterfly
specimen padded with a 1-pixel border, using image segmentation in
MatLab. Images were rescaled (with fixed aspect ratio) to a uniform pixel
resolution of 64 pixels high for ML analyses35, in order to standardise and
reduce the problem size, corresponding memory and training time
requirements, and potential for model overfitting in image comparisons via
the CNN. Operational taxonomic units at the species level (e.g., including
resolution of suggested species synonyms and treatment of potential sub-
species for the purposes of analysis) were based on the NHMUK taxonomy
for each image listed on theNHMUKDataPortal. The imagedataset used in
our machine learning analyses is provided (Supplementary Data 3), with
corresponding taxonomic label data (Supplementary Data 1). Total num-
bers of images of female and male birdwings were respectively 7840 and
8894. Image sample sizeswere respectively, for the 35OTUs:T. aeacus 1044,
O. aesacus 24, O. alexandrae 78, O. allottei 6, T. amphrysus 1060, T.
andromache 110, T. brookiana 894, O. chimaera 168, T. criton 208, T.
critonides 140, O. croesus 374, T. cuneifera 266, T. darsius 436, T. dohertyi
136, O. goliath 200, T. haliphron 874, T. helena 2608, T. hypolitus 516, T.
magellanus 60, O. meridionalis 32, T. minos 418, T. miranda 234, T.
oblongomaculatus 978, O. paradisea 238, T. plato 56, T. prattorum 38, O.
priamus 4136, T. rhadamanthus 88, T. rhadamantus 296, T. riedeli 46, O.
rothschildi 46, O. Tithonus 92, T. trojana 64, T. vandepolli 178, O.
victoriae 592.

OTU evaluation
Operational taxonomic units were included for analysis based on the spe-
cific epithet for each given image included in this dataset listed on the
NHMUK Data Portal. OTUs that subsequently showed lowest phenotypic
distinctiveness due to a near neighbour in the embedding (see methods
below) include T. critonides, in line with its previously suggested synonymy
with T. criton criton60. This indicates that ML embedding distance can be
used to quantitatively assist further taxonomic evaluation of sampled spe-
cimens or populations, here from historical museum collections.

Genetic dataset
The extent to which inter-species distances within machine-learnt embed-
dings of birdwing butterfly photographs (e.g., learnt using different
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algorithms or parameter values) contain structure that is meaningful with
regard to biological evolution was tested by comparison against calculated
inter-species genetic distances. Published gene sequences for birdwing
butterflies were downloaded from the GenBank repository, based on col-
lated accessioning information8 (Supplementary Data 2). Sequences were
available for four genes with minimum coverage of 33 specimens: COI
(mitochondrial cytochrome c oxidase subunit 1), 120 specimens; 16 S
(mitochondrial 16 S ribosomal RNA), 59 specimens; ND5 (mitochondrial
NADHdehydrogenase subunit 5), 33 specimens; EF-1α (nuclear elongation
factor 1-alpha), 68 specimens. Collectively, these covered 177 butterfly
specimens and 30 of the 35 birdwing OTUs used for our photographic
dataset.

Genetic analyses
DNA sequences were aligned within each gene using the programme
MUSCLE61. The best-fittingmodel of DNA substitution was tested for each
gene using the programme jModelTest 2.1.762,63 with a fixed BIONJ tree,
3 substitution schemes for likelihood calculations, and the AIC selection
criterion. Selected substitution models used for further analysis were: COI,
GTR+G (likelihood -lnL = 12831, AIC = 26154), 16 S GTR+ I+G
(-lnL = 1971.1098, AIC = 4192); ND5, HKY+ I+G (-lnL = 4203.2407,
AIC = 8544); EF-1α, K80+ I+G, equivalent to HKY with equal base fre-
quencies (-lnL = 2412, 5096).

Bayesian phylogenies of sampled gene sequences were first recon-
structed from each gene partition using BEAST, with both a strictmolecular
clock and relaxed lognormal clock, which allows substitution rate variation
between branches (BEAST input xml file, Supplementary Software 2). A
lognormal mean substitution rate prior was provided of 0.01909 substitu-
tions per site per million years, based on the published average substitution
rate estimated across 10 genes, including the 4 used in this study, on a fossil
calibrated phylogeny of 18 genera of Papilioninae64. Each clock analysis
(strict/relaxed) was run using two independent MCMC chains of length
10,000. The effective sample size (ESS) of each analysis was examined, and
model comparison was performed using Tracer based on combined logs
from the two chains, with a 10% burn-in (a standard practice, which dis-
cards trees from the earliest part of the tree search which may not yet have
achieved representative likelihoods). Comparison of model likelihoods was
conducted, supporting a relaxed molecular clock over a strict clock (like-
lihood relaxed =−21633, strict =−21779), therefore the genetic trees from
the relaxed clock runs (with posterior ESS = 146) were used in further
analyses.

For comparison against inter-species distances within our phenotypic
spatial embeddings, we reconstructed species-level genetic phylogenies
using the Bayesian multi-species coalescent method with the programme
Astral65. Astral reconstructs the most probable species phylogeny given an
input set of trees from different parts of the genome, which, due to standard
phylogenetic processes, such as gene coalescence through lineages, rapid
divergence, polytomous speciation, or hybridisation can show differing
phylogenetic histories66. In order to provide a measurement context for
comparisons between phenotypic and genetic phylogenetic signals, as
described in further detail below, wemeasured the distribution of similarity
among likely genetic trees by reconstructing a set of 1000 species trees, each
reconstructed by sampling one tree from each of the 4 included genes from
the Bayesian MCMC chains (post-burn-in).

Machine learning embedding method
We made improvements to the architecture of the original ButterflyNet35

CNN (ButterflyNet 1.2, Supplementary Software 1). We removed the
classifier part of the original architecture35 so that embedding structure is
based solely on triplet-training loss, facilitating exploration of the effects of
triplet-loss training duration on the correlation between inter-OTU Eucli-
dean distances in the image embedding (a proxy for whole-specimen visual
similarity) and independent genetic distances based onhousekeeping genes.
We use Euclidean embedding distance measures since, similar to other
triplet implementations44, our architecture is based on an Euclidean triplet-

training loss function35. This loss function was additionally modified to a
margin loss (with a range ofmargin values).Wequantitatively evaluated the
relationship between network training time and the correlation between
average OTU embedding distances and genetic distances. We also per-
formed data augmentation using random-affine transformations of the
original data using the RandomAffine function from the PyTorch67 torch-
vision package (incorporating random image translations, scaling, and
shears). Data were presented to training in randomised order, relative to the
initial ordering of the joined data (using a numpy random seed of 12345,
Supplementary Software 1). A sampling step was included in order to
mitigate the potential effects of imbalance in the numbers of images of each
species in the photographic dataset on the distribution of inter-species
distances in the embeddings. During the sampling of image triplets for the
triplet-trainingMLmethod (which presents two images of the same species
and one image of a different species to the CNN), we first sampled the
species for the two images that were to be the same (sampling, with equal
probability, one species from the OTU list), then sampled two images from
the selected species (sampling images, with equal probability, from those
available for the given species). This ensured that each training batch
sampled the species to be the samewith uniform probability from the list of
included species (an additional uniform sampling option for the species
selected to be different in each triplet is also available in Supplementary
Software 1). Data required to replicated machine learning analyses and a
representative trained ML model are provided as Supplementary Data
files 3–6.

Calculation of average embedding distances
Biological subsets of the photographic dataset, including image surface
(dorsal/ventral), biological sex, and species (based on NHMUK records),
were used to calculate average embedding locations across all photographs
within each subset, across the 16,734 images in the dataset, and to calculate
the corresponding Euclidean distances between subset pairs.

Pixel correlation analyses
For comparison with the ML analyses, a supplementary analysis was con-
ducted based on simple comparisons of the Pearson correlation coefficient
between values of overlying RGB pixels between identically scaled, sampled
image pairs (Supplementary Software 3). Compared pixels were therefore
those with the same x, y coordinates in sampled, uniformly scaled images,
comparedbetweencorrespondingRGBcolour channels.Comparisonswere
conducted at three levels of image resolution: 64, 32, and16pixels high. 1000
images were randomly sampled for pairwise comparisons from the full
image dataset of 16,734 images. Prior to pixel comparison, ventral images
were flipped horizontally, to match the orientation of corresponding dorsal
views. In each pairwise image comparison, the second sampled image was
rescaled to match the dimensions of the first sampled image. For compar-
ison with results based on our ML method, phylogenetic trees were
reconstructed based on average pixel correlation values between images
sampled from species. To prepare an input suitable for phylogenetic
reconstruction (seemethods below), a pairwise inter-species distancematrix
was constructed based on the mean pixel correlations for compared images
sampled from the appropriate species. The matrix was then scaled by
subtraction fromone, such that a pixel correlation of one would correspond
to a distance of zero for phylogenetic reconstruction. All phylogenetic trees
were pruned to the same taxon set as the genetic trees and given the same
rooting (to T. brookiana) prior to tree comparisons. Since phylogenetic tree
similarity measures such as Euclidean tree distance are sensitive to branch
lengths, an additional analysis was conducted for comparison, in which
input distance matrices (based on either pixel correlations or embedding
distance)were individually rescaled to a proportion of theirmaximumprior
to phylogenetic reconstruction and comparison.

Phylogenetic reconstruction
Reconstruction of phylogenies based on ML distances between images is a
new method of phylogenetic reconstruction35,36, which presents new
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opportunities and questions. For example, we specifically address here the
extent and typeofphylogenetic information captured, relative to analytically
independent phylogenetic signals from genomic samples for shared taxa35,
given ML training time. In traditional morphological character analysis a
human observer generally views an entity (e.g., a biological individual) and
attempts to break up an observed phenotype into encoded characters68. The
main task of phylogenetic algorithms is usually to reconstruct one or more
phylogenetic trees from these characters e.g., reconciling conflict between
them. In comparison, the ML triplet embedding is trained to give each
individual image a location in a multidimensional space that collectively
represents the information learnt from visible phenotype and in which,
inter-image distances are defined to be Euclidean35,43,44. The main task
remaining for phylogenetic reconstruction is then to summarise the hier-
archical relationships between images, or groups of images, in the overall
embedding, for which we used the neighbour-joining algorithm35,69. The
mean embedding location of the photographs of each speciesOTUwas first
used to calculate a square-form pairwise inter-species Euclidean distance
matrix, using the Python Scipy package70. A neighbour-joining phylogeny
was then reconstructed from the phenotypic distance matrix (using the
Python biotite.sequence.phylo sub-package71, Supplementary Software 1).
Neighbour-joining phylogenies were reconstructed based on average
embedding distances between species, considering all images and, for
comparison, considering female images or male images only. Clade depths
were calculated from the highest terminal in a clade to the most recent
common ancestor of the clade using the software package Mesquite 3.1172.

Phylogenetic signals reconstructed from the machine-learnt
embeddings were quantitatively compared to phylogenetic signals
from independent genetic data (where phylogenetic signal is defined,
generally, as the information on relative relatedness between OTUs from
a given data partition47). During ML training, the Pearson correlation
coefficient between pairwise matrices of inter-species embedding dis-
tance and average genetic distance (which can be rapidly calculated) was
reported every 10 training epochs (Supplementary Software 1). This was
supplemented by subsequent analyses based on phylogenetic recon-
struction from output embedding distances. Since we were interested in
further use of evolutionary distance measures based on the phenotypic
embedding, phylogenetic trees were compared using a statistic that
considers both tree topology and branch lengths, the Euclidean distance
(branch-length distance73) tree similarity measure, calculated using the
Python Dendropy package74. All trees were given a common rooting
(Trogonoptera brookiana) prior to the calculation of tree similarity
statistics.

To evaluate the extent to which machine-learnt measures of visual
similarity are correlated with independent genetic signals of evolution we
assessed statistical distributions of pairwise incongruence.Where genetic
data are an appropriate benchmark, measures of incongruence can
considered a measure of ML tree quality, like, for example, the incon-
gruence length difference test used previously to evaluate trees based on
different genetic loci75,76. A tree representing a given genetic locus itself
provides a specific phylogenetic signal (its implied levels of relatedness
among the specific OTUs47), which may deviate from other signals,
including those from ML, for a range of reasons, including inter-gene
conflict resulting fromnormal genetic processes66, or partial information.
Given this, wemeasured pairwise incongruence between a tree based on a
given embedding and a sample of species tree based on published genetic
data, relative to the pairwise incongruence among the genetic data
themselves. This assesses the extent of congruence between ML and
genetic signals relative to the extent of congruence present among the
evolutionary histories of available genetic loci. Where such ML-gene
incongruence is low, this demonstrates agreement between the machine-
learnt measure of visual similarity and genetic evolution. Here, we
compare ML phylogeny against published housekeeping genes, which
have been previously used to reconstruct the history of speciation and
biogeographic radiation among birdwing butterflies8.

Phenotypic distinctiveness
Measures of phenotypic distinctiveness were calculated from the pairwise
embedding distances, using the pairwise, minimum, and mean distance in
the ML image embedding of each species from all others. The minimum
distance criterion ranks phenotypic distinctiveness such that the most dis-
tinctive species are those that have the greatest centroid distance from any
other species. Themean distance criterion ranks phenotypic distinctiveness
such that themost distinctive species are those that have the greatest average
centroid distance from all other species.

Comparative analyses
Comparisons of statistics calculated from embedding distances were con-
ducted across thewhole dataset, among genera, andwithin 9 species groups.
These are groups of closely related species, previously proposed based on
qualitative assessments of morphology11, taxonomy, and genetic
phylogeny8. Phylogenetic comparative tests of predictions from different
selective models for the phylogenetic distribution of machine-learnt phe-
notypes were conducted using the R package SURFACE51 against a distinct,
published reference phylogeny (IQ tree of ref. 9) for 30 overlapping OTUs.
Embedding locations for the phylogenetic comparative analyses, conducted
separately for each sex, were the mean OTU locations on each of 64
embedding axes, for embeddings with separate male and female species
labels (allowing male and female images of the same species to be located
separately in the embeddings). Given these trait values and the reference
phylogeny, SURFACE allows tests of alternative evolutionary selective
models (comparing model likelihoods: higher values indicate higher sup-
port) given their number of parameters, via their AIC values (Akaike
Information Criterion, lower values indicate higher support)51. A null
hypothesis of pure Brownian motion was tested against single-peak and
multi-peak Ornstein-Uhlenbeck models, which model the presence of
adaptive peaks. The resultant best-fitmodel andAIC supportwere recorded
in addition to the number of best-fitting selective regimes, and the number
of these inferred tobe convergent on thephylogeny.Apriori hypothesis tests
for variation in the rate of evolution across the 64 image embedding axes on
a distinct reference phylogeny were conducted for genera Ornithoptera
versusTroidesusing theRpackagemotmot77. Separate hypothesis tests were
conducted for females and males using image locations in embeddings
trained with separate male and female labels.

Calculation of sexual disparity differences
Biological groups, such as birdwing butterflies, where reproductive invest-
ment, e.g., gamete size, is greater in females, courtship displays are shown by
males, and mate choice including potential mate rejection is observed in
females (see SI SupplementaryNotes 1–2) provide test cases for themaximal
effects on phenotypic diversity (disparity) of sexual selection on male phe-
notype from female mate choice1 versus relatively stronger natural selection
on the phenotypes of females5. The relative extents ofmale and female image
variation were summarised using a statistic, which we call the sexual dis-
parity difference. To calculate this, we first separately calculated the average
distances between subsets of males and subsets of females (we calculated
subsets within each sex under two conditions, all images and dorsal/ventral
images).AverageEuclideandistanceswere then calculatedbetweenall subset
pairs. This produces one inter-species pairwise distance matrix for each sex.
We then calculated the sexual disparity difference as the difference between
the male and female pairwise distance matrices. This results in a matrix of
sexual disparity difference measures, one measure for each possible pair of
subsets (e.g., species 1, dorsal surface images versus species 2, dorsal surface
images). If the sexual disparity difference is positive, for a givendata subset, it
means that the distance between male subset centroids is greater than the
distance between female centroids for the corresponding subsets. If the
sexual disparity difference is negative, it means that the distance between
female subset centroids is greater than the distance between male subset
centroids. If the difference is zero, it would mean that centroid distances
between males and females of the corresponding subsets were equal.
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Statistics and reproducibility
Statistical analyses were conducted using the Python Scipy Stats package70

and PAST78. Normality tests used the D’Agostino and Pearson omnibus
normality test79 or Shapiro-Wilk test.Where non-normal distributionswere
observed, non-parametric statistical tests were used for further analyses. All
tailed testswere two-tailed. Thebirdwingbutterfly imagedataset analysed in
this study comprised 16,734 photographs.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All photographic data used in this study andmetadata are publicly available
at https://data.nhm.ac.uk/dataset/collection-specimens. Supplementary
Data provided with this study are 1 image label data and 2 accession
numbers of publicly available genetic data used in this study. 3 processed
photographic data used in machine learning and additional analyses, 4
taxonomic labels formatted for machine learning analyses, 5 representative
trained machine learning models, 6 matrix of genetic distances for com-
parisons in machine learning, 7-10 source data for Figs. 1–4, respectively.
Supplementary information, data, and software are publicly available at the
Dryad data repository80.

Code availability
Computer code used to performmachine learning analyses, and trainedML
models, are provided as Supplementary Software 1 (ButterflyNet Version
1.2). Aligned genetic data, and accompanying analytical parameters, are
provided as aBEASTxml inputfile in Supplementary Software 2.Computer
code for pixel correlation analyses is provided as Supplementary Software 3.
Supplementary Software is available via Dryad80.
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