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Abstract—Unmanned surface vehicles (USVs) are becoming
increasingly significant in fulfilling integrated sensing, computing
and communication with the emergence of bidirectional com-
putation tasks. However, QoS provisioning is still challenging
since USVs are restricted with limited on-board resources and
direct links between them and shore-based terrestrial base
stations (TBSs) are frequently blocked. This paper proposes a
novel reconfigurable intelligent surface (RIS)-assisted cooperative
unmanned aerial vehicle (UAV)-USV mobile edge computing
(MEC) network architecture, where RIS-mounted tethered UAV
(TUAV) and rotary-wing UAVs (RUAVs) are collaboratively
utilized to serve USVs. RUAVs energy minimization is formulated
by jointly considering TUAV hovering altitude, RIS phase shift
vector, RUAV service selection indicator and RUAVs turning
points. A heuristic solution is proposed to tackle the formulated
problem, where the original problem is first decoupled into three
subproblems, e.g., the joint optimization of RIS phase shift vector
and TUAV hovering altitude subproblem, RUAVs service selection
indicators subproblem and RUAVs turning points subproblem,
each of which is solved by the proposed modified alternative
direction method of multiplier (ADMM) algorithm, the proposed
enhanced simulated annealing (ESA) algorithm and the proposed
successive convex approximation (SCA)-based algorithm. In this
way, the challenging problem can be efficiently solved iteratively.
The results show that the proposed solution can decrease RUAVs
energy consumption by nearly 29% compared to numerous
selected advanced algorithms. Moreover, the performance of
the proposed solution regarding typical penalty coefficients and
number of RIS reflecting elements is investigated.

Index Terms—Unmanned Surface Vehicles, Unmanned Aerial
Vehicle, Mobile Edge Computing, Reconfigurable Intelligent
Surface, Energy Minimization.

I. INTRODUCTION

A. Research Background

In recent years, the inland waterway multi-robot system of
unmanned surface vehicles (USVs) has attracted significant
attention from academia and industry due to its technical
excellence in data collection and execution in shallow and
restricted water areas [1]. With the speedy progress of the
emergence of bidirectional computation tasks, USVs have been
widely recognized in fulfilling integrated sensing, computing
and communication, which allows them to play an increasingly
important role in handling a list of novel services, such as
remote control and intelligent navigation [2]. In particular,
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a bidirectional computation task comprises two parts, one
of which is generated by USV sensors and the other of
which proactively originates from shore-based terrestrial base
stations (TBSs). However, due to the limited communication
and computing capabilities, USVs are still struggling to satisfy
the ever-increasing quality of service (QoS) requirements of
computation-intensive and latency-sensitive tasks. Moreover,
the direct links between UAVs and TBSs are frequently
obstructed due to the harsh environment; even though USVs
are allowed to offload tasks to mobile edge computing (MEC)
servers, which are placed next to TBS for execution, it is still
challenging to promise QoS of USVs task execution since
some offloaded tasks cannot be successfully delivered [3-4].

Empowered by cooperative unmanned aerial vehicle (UAV)-
USV MEC platform, UAVs have been widely utilized per-
forming as flying MEC servers to serve USVs communication
and computation cooperation in a timely manner [5-6]. In
particular, the rapid development of UAVs has brought a
revolutionary paradigm shift in wireless data transmission
to facilitate highly flexible and on-demand deployment of
communication infrastructures. Even though combining UAVs
and USVs brings numerous technical advantages, it is still
challenging to design UAVs trajectory and resource allocation
for cooperative UAV-USV MEC network. The situation may
become even more difficult for battery-empowered UAVs to
serve USVs bidirectional computation tasks with hard time
window constraints since UAVs flight energy consumption is
extremely high.

Thanks to the rapid development of reconfigurable intel-
ligent surface (RIS), RIS-assisted wireless communications
have been expansively explored as one of the most promising
solutions to configure smart radio environments [3,7]. In
particular, RIS-assisted wireless data transmission is capable
of realizing satisfactory transmission quality and coverage im-
provement by designing RIS reflection coefficients. Moreover,
RISs are generally fabricated with lightweight and conformal
geometry, which are suitable for mounting with UAVs. In
this respect, UAVs technical weaknesses, such as limited on-
board batteries, high flight power consumption and insufficient
service duration, can be remarkably enhanced while RISs
can enjoy high flexibility rather than just coating on building
surfaces. The situation may become more optimistic due to the
dynamic deployments of tethered UAVs (TUAVs). Especially
each TUAV can receive a stable power supply with a prolonged
lifetime and realize a higher payload in comparison with
untethered UAVs. As a result, TUAV-mounted RIS may not
only be able to enhance wireless link quality between UAVs
and USVs, but also can decrease energy consumption via
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jointly considering UAVs trajectories and RIS phase shift
vector when serving resource-limited USVs [8].

B. Related Works

1) Energy Minimization of RIS-Assisted UAV MEC Net-
works: Thanks to the rapid developments of metasurfaces,
RIS has been widely recognized as one potential solution to
create a controllable wireless environment by smartly adjusting
signal electromagnetic properties, including incident signal
phase shift and reflection angle, to realize various purposes
with near-zero energy consumption. In this way, RIS-mounted
UAVs are expected to boost MEC network performance by of-
fering satisfactory line-of-sight (LOS) links between UAVs and
ground mobile devices. The authors of [9] installed RIS on the
building surface to assist data offloading from mobile devices
to UAVs. Mei et al. investigated the network energy-efficiency
maximization of RIS-assisted UAV MEC network and derived
the possibility function to describe direct link quality between
each UAV and each mobile device [10]. Aiming to minimize
UAV energy consumption, the authors of [11] formulated a
network energy efficiency maximization problem by jointly
considering UAV trajectory, RIS passive beamforming and
MEC resource allocation. The results verified that the avail-
able transmission distance between MEC server and ground
mobile devices could be considerably prolonged via RIS-
mounted UAVs. The authors of [4] proposed a RIS-assisted
hybrid UAV-terrestrial network architecture to serve USVs
tasks execution with soft time window and formulated USVs
energy minimization problem by jointly considering USVs
offloading decisions, computing capability, TBS beamforming
vector and RIS phase shift-vector design. Note that with the
emergence of USVs bidirectional computation tasks, UAVs
energy consumption optimization of RIS-assisted UAV MEC
network may become highly challenging since USVs locally
generated and remote input data should be cooperatively
considered; however, very few works have explored how to
jointly determine UAV hovering altitude and RIS phase shift
vector.

2) Look Forward of Bidirectional Data Computation in RIS-
Assisted Wireless Inland Waterway Communication Networks:
The authors of [12] proposed a novel bidirectional computation
task model and formulated a network energy minimization
problem. The results showed that the network energy con-
sumption could be considerably decreased by dynamically
allocating network computing resources. The authors of [13]
proposed a novel LOS/non-line-of-sight (NLOS) hybrid wire-
less communication model for RIS-assisted UAV MEC net-
work and pointed out that USVs energy efficiency could be
remarkably enhanced by jointly optimizing UAV flying and
hovering altitude. The authors of [14] proposed a novel RIS-
assisted hybrid UAV-terrestrial network architecture to serve
USVs bidirectional tasks with soft time window. The results
revealed that USVs energy consumption could be considerably
decreased by optimizing bandwidth allocation. However, one
should be aware that most existing works cannot be directly
applied to decrease USVs bidirectional computation task en-
ergy consumption for the following reasons. First, inland

waterways environments are generally more complicated in
comparison with terrestrial wireless communications; wireless
data transmission may simultaneously suffer LOS and NLOS,
which results in severe signal attenuation. Moreover, the large
amount of the existing solutions cannot be directly employed
in handling USVs bidirectional computation tasks with hard
time window since they only considered one-way computation
or bidirectional computation tasks with soft time window; it
is extremely challenging to jointly schedule UAVs service
selection indicator, UAVs trajectories and RIS phase shift
vector when serving a number of USVs.

C. The Main Contributions

According to the above-mentioned research background,
unlike most of the research that assumes each USV computa-
tion task can only be implemented via either local execution
mode or UAV execution mode, two types of UAVs are jointly
considered to serve USVs bidirectional computation tasks,
where one RIS-mounted tethered UAV (TUAV) is utilized to
assist USVs remote data transmission with a dynamic hovering
altitude and a set of rotary-wing UAVs (RUAVs) are integrated
with MEC servers to offer computing services with the low
altitude. In this way, wireless data transmission quality can be
significantly enhanced and the majority of USVs bidirectional
tasks energy consumption can be transferred from resource-
hungry USVs to RUAVs. The main contributions of this paper
are summarized as follows.
• This paper proposes a novel RIS-assisted cooperative

UAV-USV MEC network architecture, where RIS-mounted
TUAV and flying MEC servers RUAVs are cooperatively
deployed to serve USVs computation and communication co-
operation. In particular, RIS-mounted TUAV can dynamically
decide its flying altitude and obtain a substantial power source
since it is connected to TBS via cable. Moreover, each RUAV
can dynamically determine its service selection indicator and
trajectory to serve USVs according to the wireless link quality
and USVs task size.
• RUAVs flight energy consumption minimization problem

is formulated by jointly considering TUAV hovering altitude,
RIS phase shift vector, RUAV service selection indicator and
RUAVs turning points. To tackle the formulated challenging
problem, a heuristic solution is proposed. First, we decouple
the original problem into three subproblems, e.g., the joint
optimization of RIS phase shift vector and TUAV hovering
altitude subproblem, RUAVs service selection indicators sub-
problem and RUAVs turning points subproblem. Moreover, a
modified alternative direction method of multiplier (ADMM)
algorithm, an enhanced simulated annealing (ESA) algorithm
and successive convex approximation (SCA)-based algorithm
are proposed to efficiently solve each subproblem, respectively.
In this way, the formulated challenging problem can be effi-
ciently solved in an iteratively manner.

The rest of this paper is summarized as follows. The
proposed RIS-assisted cooperative UAV-USV MEC network
architecture and the formulated RUAVs flight energy consump-
tion minimization problem are demonstrated in Section II. The
proposed solution is presented in Section III. The selected
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key performance metrics of the proposed solution along with
several benchmarks are revealed in Section IV. Section V
concludes the paper.
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Fig. 1: The proposed network architecture.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The proposed wireless inland waterway RIS-assisted coop-
erative UAV-USV MEC network architecture to support USVs
data collection, transmission and computation is demonstrated
in Fig. 1. In this system, TBS is equipped with L-antennas
and one K RIS reflecting elements TUAV is dynamically
dispatched and forms virtual clusters with TBS. The set of M
single-antenna RUAVs is deployed to collect data generated
by USVs via the predetermined trajectory. Moreover, each
RUAV m ∈ M is integrated with a MEC server. During
each equal-length time slot, each USV i ∈ I requests a
bidirectional computation task Ui to be executed, which can
be characterized by a five-tuple Ui ≜ {Dl

i, D
o
i , Fi, [Xi, Yi]},

where Dl
i and Do

i represent the input data size (in bits)
generated by USV i itself and originate proactively from the
Internet, respectively. Fi denotes the required number of CPU
cycles to execute Ui. [Xi, Yi] indicates the earliest and latest
service time to execute Ui. In particular, Dl

i and Do
i are only

able to start to execute not earlier than Xi and need to finish
execution not later than Yi. Moreover, the direct link between
TBS and each RUAV is assumed to be severely blocked.

The system is established based on three-dimensional Carte-
sian coordinates, where coordinates of TBS and each USV i
can be denoted by qTBS ∈ R3 and qi ∈ R3, respectively.
The coordinate of TUAV is denoted by qTUAV ∈ R3, where
horizontal coordinate is fixed and flying altitude is time-
varying. RUAVs are assumed to fly at a fixed altitude, which
is lower than TUAV flying altitude. Following [15], each
TUAV-mounted RIS transmission link is assumed based on
long-term statistical CSI to reduce the signaling and hardware
implementation complexity. In addition, we assume that MEC
server and central controller is aware of task data size, time
window constraints, coordinate of each USV and CSI as a
prior.

A. USVs Data Collection Model

The trajectory of each RUAV m to serve USV i can
be divided into a list of N segments, denoted by qi ≜
{qm1

i , qm2

i , . . . , qmN

i }1, i ∈ I,m ∈ M, n ∈ N , where qmn

i

represents n-th turning point of RUAV m. Following [16],
the trajectory of each RUAV m between any two successive
turning points is assumed to be a straight line.

Let δtni be the arrival time when RUAV m arriving turning
point qmn

i . The trajectory of RUAV m between any two
successive turning points can be expressed as

∆qm
i = q

mn−1

i +
v(t− δtn−1

i )

||qmn

i − q
mn−1

i ||
(qmn

i − q
mn−1

i ),

t ∈ [δtn−1
i , δtni ], i ∈ I,m ∈ M, n ∈ N ,

(1)

where v is the flight speed of each RUAV m, which can be
assumed as constant.

Let the transmission power and the maximum transmission
distance of each USV i be ptri and R, respectively. One has

C1 : ||qmn

i − qi|| ≤ R, i ∈ I,m ∈ M, n ∈ N . (2)

The achievable data transmission rate between each USV i
and RUAV m can be expressed as

Cm
i (∆qm

i ) = Bul
i log2(1 +

ptri h0

||qi −∆qm
i ||2σ2

), i ∈ I, (3)

where Bul
i and σ2 represent the allocated uplink bandwidth

and noise variance, respectively. h0 indicates the channel
power gain at the reference distance d0 = 1 m.

The throughput of RUAV m to serve USV i can be
expressed as

Cm
i =

N∑
n=1

∫ 1

0

Bul
i log2(1 +

ptri h0

||qi −∆qm
i (zmi )||2σ2

dzmi , (4)

where zmi represents the normalization of ∆qm
i .

To promise data transmission quality, the throughput of each
USV i cannot be less than Dl

i. One has

C2 : Cm
i ≥ Dl

i, i ∈ I. (5)

B. RIS-Assisted Data Transmission and Task Execution Model

After each USV i completes data collection, the correspond-
ing RUAV needs to keep hovering status at qmN

i to receive
downlink data Do

i via TUAV-mounted RIS. The corresponding
RIS phase shift vector to serve USV i can be denoted by
θi = [θ1i , θ

2
i , . . . , θ

K
i ]T , where each element of θi should

satisfy

C3 : θki ∈ [0, 2π], k ∈ {1, 2, . . . ,K}, i ∈ I. (6)

In the same manner with [6], we assume that each RIS
element follows the full reflection. In this manner, the re-
flection coefficient matrix of RIS can be expressed as Θi =
diag(θ1i , θ

2
i , . . . , θ

K
i ). Moreover, we assume that the com-

munication link between TBS and each TUAV-mounted RIS
simultaneously suffers LOS and NLOS conditions [17]. The

1RUAVs recharging platform can be regarded as a special USV without
generating any task and its coordinate q0 is assumed known a priori.
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probability of LOS regarding each TBS-RIS link can be
represented by a function of elevation angle θTBS, which can
be expressed as

PLOS(θTBS) =
1

1 +ATBSe−BTBS(θTBS−ATBS)
, (7)

where ATBS and BTBS are both transmission environmental-
related parameters.

Let Hi be TUAV hovering altitude. One has

C4 : Hmin ≤ Hi ≤ Hmax, i ∈ I, (8)

where Hmin and Hmax represent the minimum and the
maximum TUAV hovering altitude, respectively.

The corresponding path loss (PL) exponent βTBS can be
given as

βTBS(θTBS) = PLOS(θTBS)uTBS + vTBS, (9)

where uTBS and vTBS are constants, which depend on wireless
transmission environment.

The baseband channel of TBS → TUAV-mounted RIS can
be considered as Rician fading channel [18]. The correspond-
ing hTBS ∈ RL×K can be expressed as

hTBS

=

√
ρ0d

−βTBS
TBS (

√
RTBS

RTBS + 1
gLOS

TBS +

√
1

RTBS + 1
gNLOS

TBS ),
(10)

where dTBS = ||qTUAV − qTBS|| is the distance between TBS
and each TUAV-mounted RIS. ρ0 denotes the channel power
at the reference distance d0 = 1 m. RTBS represents the Rician
coefficient and gNLOS

TBS is the small scale fading. gLOS
TBS can be

given as2

gLOS
TBS =



1 e−j 2πd
λ ϕ1,r · · · e−j

2(K−1)πd
λ ϕ1,r

...
...

. . .
...

1 e−j 2πd
λ ϕl,r · · · e−j

2(K−1)πd
λ ϕl,r

...
...

. . .
...

1 e−j 2πd
λ ϕL,r · · · e−j

2(K−1)πd
λ ϕL,r


, (11)

where each ϕl,r indicates the cosine of the incident angle from
l-th antenna of TBS to TUAV-mounted RIS.

TUAV-mounted RIS → RUAV link is assumed as LOS.
Let baseband channel of TUAV-mounted RIS → RUAV m
be hRUAV ∈ RK×1, which can be expressed as

hRUAV =

√
ρ0d

−βRUAV
RUAV gLOS

RUAV, (12)

where dRUAV = ||qmN

i − qTUAV|| is the distance be-
tween RUAV and TUAV-mounted RIS. βRUAV denotes
PL exponent of hRUAV, which is a constant. gLOS

RUAV =

[1, e−j 2πd
λ ϕm,r , · · · , e−j

2(K−1)πd
λ ϕm,r ] and ϕm,r indicates the

cosine of the incident angle from RUAV m to each TUAV-
mounted RIS.

The corresponding downlink SNR of RUAV can be ex-
pressed as

γdl
i =

ptrTBS||wH
i (hTBSΘihRUAV)||2

σ2
, i ∈ I, (13)

2According to Snell’s law, the incident angle can be reasonably assumed
equal to the reflected angle when each RIS element follows the full reflection.

where ptrTBS is the transmission power of TBS and si is
the transmitted data symbol with average unity power, i.e.,
E(|si|2) = 1. wi ∈ RL×1 indicates the downlink beamforming
vector designed by TBS to serve each USV i. wH

i is the
Hermitian matrix of wi.

The instantaneous RIS-assisted downlink channel capacity
can be given as

Cdl
i = Bdl

mlog2(1 + γdl
i ), i ∈ I, (14)

where Bdl
m is the allocated downlink bandwidth for RUAV

m. The corresponding transmission time cost of Do
i can be

expressed as

tdli =
Do

i

Cdl
i

, i ∈ I. (15)

Note that each RUAV m can only be able to start executing
Ui after receiving Do

i . The time cost of RUAV m to execute
Ui can be given as

texei =
Fi

fm
, i ∈ I, (16)

where fm denotes the computing capability of RUAV m.

C. USVs Data Collection, Transmission and Computation
Model

Consider any three successive USVs served by RUAV m,
e.g., USV i−, i and i+. One should note that RUAV m can
only be able to depart from qmN

i to qm1

i+
to collect Dl

i+

of USV i+ after finishing execute Ui. Let ζmi,i+ be service
selection indicator for RUAV m, where ζmi,i+ = 1 represents
RUAV m selects to serve USV i+ after finishing serving USV
i and otherwise ζmi,i+ = 0. One has

C5 : ζmi,i+ ∈ {0, 1}, i, i+ ∈ I,m ∈ M. (17)

Since each RUAV m needs to take off from RUAVs recharging
platform at the beginning of each service slot, one has

C6 :
∑
i∈I

ζm0,i = 1,m ∈ M. (18)

Since each RUAV m needs to return to RUAVs recharging
platform to get recharged, one has

C7 :
∑
i∈I

ζmi,0 = 1,m ∈ M. (19)

Note that each RUAV m cannot start to serve data collection
for USV i earlier than Xi. δt1i of each RUAV m to arrive qm1

i

should not be earlier than Xi. One has

C8 : δt1i ≥ Xi, i ∈ I, (20)

where δt1i ≜
∑

i−∈I ζmi−,i(δt
N
i− + tdli− + texei− +

||qm1
i −q

mN

i−
||

v ).
After finishing data collection, RUAV m should keep hov-

ering status at qmN

i to download Do
i from TBS via TUAV-

mounted RIS. Each Ui should finish execution not late than
Yi, one has

C9 : δt1i +

∑N−1
n=1 ||qmn+1

i − qmn

i ||
v

+ tdli + texei ≤ Yi, i ∈ I.
(21)
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The flight energy consumption of RUAV m to serve USV
i can be expressed as

Em
i =∑

i−,i∈I

pRUAV
ζmi−,i||q

m1

i − qmN

i−
||+

∑N−1
n=1 ||qmn+1

i − qmn

i ||
v

,

(22)
where pRUAV represents flight power of each RUAV.

D. Problem Formulation

In this paper, we aim to minimize RUAVs flight energy
consumption by jointly considering TUAV hovering altitude
H ≜ {Hi, i ∈ I}, RIS phase shift vector θ ≜ {θki , i ∈ I, k ∈
K}, RUAVs service selection indicator ζ ≜ {ζmi,i+ , i, i

+ ∈
I,m ∈ M} and RUAVs turning points q ≜ {qmn

i , i ∈ I,m ∈
M, n ∈ N}, which can be formulated as

P1 : min
H,θ,ζ,q

∑
m∈M

∑
i∈I

Em
i

s.t. C1− C9.
(23)

III. THE PROPOSED SOLUTION

In this section, a heuristic solution is proposed to solve the
formulated challenging problem P1. We first decouple the
original problem P1 into three subproblems, e.g., the joint
optimization of RIS phase shift vector and TUAV hovering
altitude subproblem P1.1, RUAVs service selection indicators
subproblem P1.2 and RUAVs turning points subproblem P1.3.
To tackle P1.1, we first transform P1.1 into a list of I
parallel sub-problems, where each of which can be efficiently
solved via the proposed ADMM-based algorithm and thus one
can obtain the optimized TUAV hovering altitude. Moreover,
P1.2 can be solved using the proposed ESA algorithm and
thus RUAV service selection indicator ζ can be obtained.
Subsequently, we decouple P1.3 into M parallel sub-problems
according to the updated M RUAV service set as obtained in
solving P1.2; each subproblem can be solved via utilizing
the proposed SCA-based algorithm and thus one can obtain
optimized RUAV turning points. In this way, one can obtain
the feasible solution to the challenging problem P1. The
detailed information regarding the proposed solution is given
as follows.

A. The Joint Optimization of TUAV Hovering Altitude H and
RIS Phase Shift Vector θ

Given any feasible ζ and q, one can observe that P1 can be
divided into a list of sub-problems, which can be efficiently
solved in parallel. After remove irrelevant parameters accord-
ing to Eqs. (13)-(15), P1 can be reduced as

P1.1 : max
Hi,θi

||wH
i (hTBSΘihRUAV)||2

s.t. C3− C4.
(24)

Given any feasible Hi, P1.1 can be further reduced as

P1.1.1 : max
θi

||wH
i (hTBSΘihRUAV)||2

s.t. C3.
(25)

As such, one can obtain the optimal solution to P1.1.1 as
θ∗
i = {θ1∗i , · · · , θK∗

i }, where θk∗i = −arg(Ωi(k)) and Ωi =
hTBSdiag(hRUAV) [19].

After obtain the optimal θ∗, P1.1 can be further reduced
as

P1.1.2 : max
Hi

d−βTBS
TBS d−βRUAV

RUAV

s.t. C4.
(26)

Define f1(Hi) = vTBSlog(
√
d2b,r +H2

i ) +

βUSVlog(
√
d2r,m +H2

i ) and f2(Hi) =
uTBSlog(

√
d2
b,r+H2

i )

1+ATBSe−BTBS(θTBS−ATBS)
,

where db,r and dr,m denote horizontal projection distance
between TBS and TUAV-mounted RIS, TUAV-mounted RIS
and RUAV m, respectively. One can transform the objective
function of P1.1.2 into the following

log(d−βTBS
TBS d−βRUAV

RUAV )

= −βTBSlogdTBS − βRUAVlogdRUAV

= −vTBSlog(
√
d2b,r +H2

i )− βRUAVlog(
√
d2r,m +H2

i )

−
uTBSlog(

√
d2b,r +H2

i )

1 +ATBSe−BTBS(θTBS−ATBS)

= −f1(Hi)− f2(Hi).

(27)

In this way, P1.1.2 can be reformulated as

P̃1.1.2 : min
Hi

f1(Hi) + f2(Hi)

s.t. C4.
(28)

Note that P̃1.1.2 is still challenging to tackle for the following
reasons. First, f1(Hi) is non-convex with respect to Hi.
Moreover, Hi is closely coupled with the denominator of
f2(Hi). Inspired by [20], ADMM is utilized to decouple
P̃1.1.2. After introduce the duplicated variable Ĥi, i ∈ I to
substitute Hi in f2(Hi), one has

C10 : Hi = Ĥi, i ∈ I. (29)

In this way, P̃1.1.2 can be reformulated as

P1.1.2 : min
Hi

f1(Hi) + f2(Ĥi),

s.t. C4, C10.
(30)

Note that P1.1.2 is separable along with Hi and Ĥi. As such,
one can alternatively update Hi and Ĥi to obtain the feasible
solution to P1.1.2. The detailed information is summarized as
follows.

The update of Hi: In each r-th iteration, the optimization
problem of Hi can be formulated as

P1.1.2.1 : min
Hi

f1(Hi) +
ρ

2
(Hi − Ĥi

r−1
)2

s.t. C4,
(31)

where ρ is the penalty parameter. Note that P1.2.2.1 is still
challenging to tackle since f1(Hi) is non-convex with respect
to Hi, which makes P1.1.2.1 cannot be directly solved by
using the existing high-efficient algorithms.

One can observe that vTBSlog(
√
d2b,r +H2

i ) and

βUSVlog(
√
d2r,m +H2

i ) are concave with respect to H2
i .
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The upper bound of vTBSlog(
√
d2b,r +H2

i ) can be determined
by employing the first-order Taylor expansion [21], which
can be expressed as

vTBSlog(
√
d2b,r +H2

i )

≜
vTBS

2
log(d2b,r + (Hr−1

i )2) +
vTBS(H

2
i − (Hr−1

i )2)

2(d2b,r + (Hr−1
i )2)

.
(32)

Note that βUSVlog(
√
d2r,m +H2

i ) is identical to

vTBSlog(
√
d2b,r +H2

i ). After remove irrelavant parameters,
the upper bound of f1(Hi) in each r-th iteration can be given
as

fub
1 (Hi) ≜

vTBS(H
2
i − (Hr−1

i )2)

2(d2b,r + (Hr−1
i )2)

+
βRUAV(H

2
i − (Hr−1

i )2)

2(d2r,m + (Hr−1
i )2)

.

(33)
As such, P1.1.2.1 can be reformulated as

P̂1.1.2.1 : min
Hi

fub
1 +

ρ

2
(Hi − Ĥi

r−1
)2

s.t. C4.
(34)

One can observe that P̂1.2.2.1 is a convex optimization
problem, which can be solved by CVX [22].

The update of Ĥi: The optimization problem of Ĥi in each
r-th iteration can be formulated as

P1.1.2.2 : min
Ĥi

f2(Ĥi)

s.t. C4, C10.
(35)

Note that Ĥi can be expressed as follows

Ĥi = db,rtanθTBS. (36)

As such, f2(Ĥi) can be rewritten as

f2(db,rtanθTBS) =
uTBSlog(

√
d2b,r + d2b,rtan

2θTBS)

1 +ATBSe−BTBS(θTBS−ATBS)
. (37)

According to Dinkelbach’s approach [23], P1.1.2.2 can be
reformulated as

P̂1.1.2.2 : min
θTBS

− f2(θ
r−1
TBS )(1 +ATBSe

−BTBS(θTBS−ATBS))

+ uTBSlog(
√
d2b,r + d2b,rtan

2θTBS) +
ρ

2
w(θTBS − θ̂r−1

TBS )2

s.t. Ĉ4 : θmin
TBS ≤ θTBS ≤ θmax

TBS ,
(38)

where θ̂TBS = arctan(
Hr

i

db,r
) and w is the scale coefficient.

θmin
TBS and θmax

TBS represent the minimum and maximum values
of θTBS, respectively.

Note that uTBS is a negative constant and thus
f2(db,rtanθTBS) is negative with respect to any feasible
θTBS. According to Proposition 1, the approximation
of uTBSlog(

√
d2b,r + d2b,rtan

2θTBS) can be given as

uTBSlog(
√
d2b,r + d2b,rtan

2θr−1
TBS ) +

uTBStanθ
r−1
TBS sec2θr−1

TBS

1+tan2θr−1
TBS

(θTBS −
θr−1

TBS ).
Proposition 1: The approximation of

uTBSlog(
√
d2b,r + d2b,rtan

2θTBS) can be given as

uTBSlog(
√

d2b,r + d2b,rtan
2θr−1

TBS ) +
uTBStanθ

r−1
TBS sec2θr−1

TBS

1+tan2θr−1
TBS

(θTBS −
θr−1

TBS ).

Proof. Note that uTBSlog(
√
d2b,r + d2b,rtan

2θTBS) =
uTBS
2 log(d2b,r + d2b,rtan

2θTBS). The first-order derivative
of uTBS

2 log(d2b,r + d2b,rtan
2θTBS) is 2tanθTBSsec

2θTBS
1+tan2θTBS

. The second-

order derivative of uTBSlog(
√
d2b,r + d2b,rtan

2θTBS) is shown
in Eq. (39).

Note that 2 + 2tan2θTBS − sec2θTBS =
2cos2θTBS + 2sin2θTBS − 1

cos2θTBS
=

1

cos2θTBS
≥ 0. In this

way, one has (uTBS
2 log(d2b,t + d2b,ttan

2θTBS))
′′ ≤ 0.

As such, uTBSlog(
√

d2b,r + d2b,rtan
2θTBS) is cancave

with respect to θTBS. As such, the upper bound
of uTBSlog(

√
d2b,r + d2b,rtan

2θTBS) can be given as

uTBSlog(
√

d2b,r + d2b,rtan
2θr−1

TBS ) +
uTBStanθ

r−1
TBS sec2θr−1

TBS

1+tan2θr−1
TBS

(θTBS −
θr−1

TBS ). The proof is completed.

P̂1.1.2.2 can be reformulated as

P1.2.2.2 : min
θTBS

− f2(θ
r−1
TBS )(1 +ATBSe

−BTBS(θTBS−ATBS))

+
uTBStanθ

r−1
TBS sec2θr−1

TBS

1 + tan2θr−1
TBS

(θTBS − θr−1
TBS ) +

ρ

2
w(θTBS − θ̂r−1

TBS )2

s.t. Ĉ4.
(40)

One can see that P1.1.2.2 is a convex optimization problem,
which can be solved by CVX. In this manner, the optimized
TUAV hovering altitude H∗

i can be obtained. Let ϵADMM

and rmax
ADMM be the error control parameter and the maximum

number of iterations of the proposed ADMM-based algorithm.
The proposed algorithm can be regarded as convergence
when |Hi − Ĥi| ≤ ϵADMM or rADMM = rmax

ADMM The detailed
information of the proposed ADMM-based algorithm can be
found in Algorithm 1.

Algorithm 1: The proposed ADMM-based algorithm

1 divide P1.1 into a list of sub-problems
2 consider each sub-problem
3 for i ∈ I do
4 initialize H1

i = Hmin, Ĥ1
i = Hmax,rADMM = 1

5 while |Hi − Ĥi| ≤ ϵADMM or rADMM ≤ rmax
ADMM do

6 solve P̂1.1.2.1 and obtain HrADMM
i

7 solve P1.1.2.2 and obtain θTBS

8 update scale coefficient w
9 rADMM = rADMM + 1

10 end
11 end
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(
uTBS

2
log(d2b,r + d2b,rtan

2θTBS))
′′ = (

uTBS

2

2tanθTBSsec
2θTBS

1 + tan2θTBS
)′

=
uTBS

2

(2sec4θTBS + 4sec2θTBStan
2θTBS)(1 + tan2θTBS)− 4tan2θTBSsec

4θTBS

(1 + tan2θTBS)2

=
uTBS

2

2sec4θTBS − 2sec4θTBStan
2θTBS + 4sec2θTBStan

2θTBS + 4sec2θTBStan
4θTBS

(1 + tan2θTBS)2

=
uTBS

2

2sec4θTBS + 2sec2θTBStan
2θTBS(2 + 2tan2θTBS − sec2θTBS)

(1 + tan2θTBS)2
,

(39)

B. The Optimization of RUAVs Service Selection Indicator

Given any feasible θ, H and q, P1 can be reduced as

P1.2 : min
ζ

∑
m∈M

∑
i∈I

pu
ζmi−,i||q

m1

i − qmN

i−
||

v

s.t. C5− C9.
(41)

One can observe that P1.2 can be regarded as a multiple
traveling salesman problem with time window, which has
been proven as NP-hard and highly challenging to tackle [24].
Inspired by [25], an enhanced simulated annealing algorithm
(ESA) is proposed to tackle P1.2. The key steps of the
proposed ESA algorithm are given as follows.
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Fig. 2: The example of the proposed three perturb operations.

Perturb Operation: Let Rr be the obtained feasible so-
lution to P1.2 in r-th iteration. To enhance the diversity in
the search region, three different perturb operators are utilized
to obtain new solution Rnew. The example regarding swap
operation, insert operation and reverse operation is shown in
Fig. 2. The roulette wheel method is utilized to generate Rnew,
where the weighting factor of each operation can be assumed
as equal.
Swap operation: Randomly select two RUAV service sets and
then randomly select one element in each service set and swap
the selected two elements.
Insert operation: Randomly select two RUAV service sets and
then randomly select y consecutive elements from one of the
selected service sets, where y should be less than the number
of elements in the selected service set. Then, insert into two
successive elements in another service set.
Reverse operation: Randomly select one service set and then
choose y consecutive elements, where y should be less than the
number of elements in the selected service set. Then, reverse
the order of the selected elements.

Fitness evaluation: All obtained solution should satisfy
constraint C8 and C9, a penalty based method is proposed,
the fitness value of Rnew can be obtained via the following
fitness function
f(Rnew)

=
∑

m∈M

∑
i∈I

pRUAV
ζmi−,i||q

m1

i − qmN

i−
||

v
+ µ

∑
i∈I

Xi − δt1i

+ ν
∑
i∈I

δt1i +

∑N−1
n=1 ||qmn+1

i − qmn

i ||
v

+ tdli + texei − Yi,

(42)
where µ and ν are the penalty coefficients.

Acceptance criterion: Note that unlike the widely used
nature-inspired optimization algorithms, such as genetic al-
gorithm and differential evolution (DE) algorithm, simulated
annealing algorithm can accept Rnew as Rr+1 even if
f(Rnew) ≤ f(Rr). The acceptance criterion can be given
as follows

Rr+1 =


Rnew, f(Rnew) ≥ f(Rr),

or rand ≤ e−(f(Rr)−f(Rnew))/T r

,

Rr, otherwise,

(43)

where e−(f(Rr)−f(Rnew))/T r

is the probability to accept Rnew

as Rr+1 when f(Rnew) ≤ f(Rr). T r represents the temper-
ature parameter of simulated annealing in r-th iteration. To
promise the convergence of the proposed ESA, the acceptance
probability should keep decreasing as the number of iterations
increases. To this respect, one can update T r via T r+1 = αT r,
where α is a constant ranging from 0 to 1. The proposed
ESA algorithm can be regarding reaching convergence when
rESA = rmax

ESA , where rmax
ESA represents the maximum number of

iterations. In this manner, the optimized USV service indicator
ζ∗ can be obtained. The detailed information of the proposed
ESA algorithm is given in Algorithm 2.

C. The Optimization of RUAVs Turning Points

Given any feasible θ, H and RUAV service set Rm,m ∈
M, P1 can be reduced as

P1.3 : min
q

∑
m∈M

∑
i∈Rm

⋃
{0}

Em
i ,

s.t. C1− C2, C8− C9.
(44)

One can observe that P1.3 can be divided into M sub-
problems according to M RUAV service set, where each sub-
problem can be solved in parallel.
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Algorithm 2: The proposed ESA algorithm

1 initialize R1, rESA = 1
2 while rESA ≤ rmax

ESA do
3 RrESA+1 = RrESA

4 utilize roulette wheel method to select one perturb
operator from the proposed three perturb operators

5 perform the selected perturb operator to RrESA to
generate Rnew

6 if f(Rnew) ≥ f(RrESA) or
rand ≤ e−(f(RrESA )−f(Rnew))/T rESA then

7 update RrESA+1 = Rnew

8 end
9 update T rESA+1 = αT rESA

10 update rESA = rESA + 1
11 end

Consider each sub-problem, P1.3 can be further reduced as

P1.3.1 : min
qi

∑
i∈Rm

⋃
{0}

pRUAV
ζmi−,i||q

m1

i − qmN

i−
||+

∑N−1
n=1 ||qmn+1

i − qmn

i ||
v

s.t. C1− C2, C8− C9.

(45)

One can see that P1.3.1 is a non-convex optimization problem
due to the non-convexity of C2, C8 and C9. Inspired by [16],
we aim to relax P1.3 into a convex optimization problem via
considering convex approximation for C2, C8 and C9.

Note that each RUAV trajectory can be regarded as a curve
with a list of turning points. The throughput of each USV i,
denoted by Cn

i , can be rewritten as follows

Cm
i =

N∑
n=1

∫ 1

0

Bul
i log2(1 +

ptri h0

||qi −∆qmn

i (z)||2σ2
dz.

= lim
N→∞

N∑
n=1

Bul
i log2(1 +

ptri h0

||qi − qjn
i ||2σ2

)
||qjn

i − q
jn−1

i ||
v

.

(46)
In this paper, we assume that N is large enough to realize
the satisfactory transmission rate between any two successive
turning points e.g., qmn−1

i and qmn

i by Cm
i (qmn

i ) [26]. In
this way, Cm

i can be relaxed as

Ĉm
i =

N∑
n=1

Bul
i log2(1 +

ptri h0

||qi − qmn

i ||2σ2
)
||qmn

i − q
mn−1

i ||
v

.

(47)
Consequently, C2 can be rewritten as

Ĉ2 : Ĉm
i ≥ Dl

i. (48)

One should be aware that traditional SCA cannot be directly
utilized to approximate Ĉm

i since Bul
i log2(1+

ptr
i h0

||qi−qmn
i ||2σ2 )

and ||qmn
i −q

mn−1
i ||

v are closely coupled. To tackle this chal-
lenging problem, ADMM is utilized to decouple Ĉ2.

After introduce a duplicated variable q̂i ≜ {q̂mn

i , n ∈ N}
of qi, one has

C11 : q̂i = qi, i ∈ I. (49)

In this way, Ĉm
i can be rewritten as

C
m

i =

N∑
n=1

Bul
i log2(1 +

ptri h0

||qi − qmn

i ||2σ2
)
||q̂mn

i − q̂
mn−1

i ||
v

.

(50)
One can observe that C

m

i is separable along qi and q̂i. As
such, the solution to P1.3.1 can be obtained via respectively
update qi and q̂i in an iterative manner. Consider concave
approximation of C

m

i , one can see that log2(1+
ptr
i h0

||qi−qmn
i ||2 )

is convex with respect to ||qi−qmn

i ||2. In this way, the lower
bound of log2(1 +

ptr
i h0

||qi−qmn
i ||2 ) can be given as

log2(1 +
ptri h0

||qi − qmn

i ||2
)

≜ Zr
i − Żr

i (||qi − qmn

i ||2 − ||qi − qmn,r
i ||2),

(51)

where Zr
i = log2(1 +

ptr
i h0

||qi−q
mn,r−1
i ||2

) and Żr
i =

ptr
i h0

||qi−q
mn,r−1
i ||2+ptr

i h0||qi−q
mn,r−1
i ||

. qmn,r−1
i represents the

optimized turning point n of RUAV m when serving USV i
in each r − 1 iteration.

The lower bound of ||q̂mn

i − q̂
mn−1

i || can be obtained via
using the first-order Taylor expansion, one has

||q̂mn

i − q̂
mn−1

i ||

≜ ||q̂mn,r−1
i − q̂

mn−1,r−1

i ||

+ 2(q̂mn

i − q̂
mn−1

i )(q̂mn,r−1
i − q̂

mn−1,r−1

i )T

(52)

The lower bound of C
m

i can be given as

C
m,lb

i ≜
N∑

n=1

Bul
i (Zr

i − Żr
i (||qi − qmn

i ||2 − ||qi − qmn,r
i ||2))

· (||q̂mn,r−1
i − q̂

mn−1,r−1

i ||

+ 2(q̂mn

i − q̂
mn−1

i )(q̂mn,r−1
i − q̂

mn−1,r−1

i )T ).
(53)

To this respect, one can utilize convex approximation to
transform Ĉ2 into

C2 : C
m,lb

i ≥ Dl
i. (54)

The analysis of C8: Define the auxiliary variable κi =
Xi − δtNi− − tdli− − texei− , i, i− ∈ I. In this way, C8 can be
rewritten as

C̄8 : ||qm1

i − qmN

i− || ≥ vκi. (55)

One can utilize SCA to approximate ||qm1

i − qmN

i− ||. In this
way, C̄8 can be transformed into

Ĉ8 :2(qm1

i − qmN

i− )(qm1,r−1
i − qmN

i− )T

≥ vκi − ||qm1,r−1
i − qmN

i− ||.
(56)

The analysis of C9: Define the auxiliary variable rdli , i ∈ I,
C9 can be transformed into a convex constraint as follows

Ĉ9 : δt1i +

∑N−1
n=1 ||qmn+1

i − qmn

i ||
v

+
Do

i

rdli
+ texei ≤ Yi,

i ∈ I.
(57)
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To promise the equality between Ĉ9 and C9, one has

C12 : Cdl
i ≥ rdli , i ∈ I. (58)

Note that C12 is non-convex constraint. After substitute the
feasible RIS phase shift vector, Cdl

i can be rewritten as follows
according to Eqs. (13)-(14). One has

Cdl
i =

Bdl
mlog2(1 +

ptrTBS||wH
i ||2

σ2||qTBS − qTUAV||βTBS ||qTUAV − qmN

i ||βRUAV
).

(59)
Note that Cdl

i is convex with respect to ||qTUAV − qmN

i ||βRUAV .
One can utilize first-order Taylor expansion to obtain the lower
bound of Cdl

i , which can be expressed as Eq. (60).

In this way, P1.3.1 can be transformed into

P̂1.3.1 : min
qi

∑
i∈Rm

⋃
{0}

pRUAV
ζmi−,i||q

m1

i − qmN

i−
||

v

+ pRUAV

∑N−1
n=1 ||qmn+1

i − qmn

i ||
v

+
ξ

2
||qi − q̂i||2F

s.t. C1, C2, Ĉ8, Ĉ9, Ĉ12.

(61)

where ξ is the penalty coefficient of C11. One can observe
that P̂1.3.1 is a convex optimization problem with respect
to qi and q̂i, which can be efficiently solved by CVX. As
such, the optimized each UAV i trajectory q∗

i can be obtained.
The proposed SCA-based algorithm can be regarded as reach
convergence when rSCA = rmax

SCA or ||qi− q̂i||F ≤ ϵSCA, where
rmax

SCA is the maximum number of iterations and ϵSCA is the error
control parameter. The detailed information of the proposed
SCA-based algorithm can be found in Algorithm 3.

Algorithm 3: The proposed ADMM-SCA-based algo-
rithm

1 divide P1.3 into M parallel subproblems
2 consider each sub-problem
3 initialize q1

i , q̂1
i ,rSCA = 1

4 while rSCA ≤ rmax
SCA or ||qi − q̂i||F ≤ ϵSCA do

5 transform C2 into C2
6 transform C8 into Ĉ8
7 introduce Ĉ11
8 fix q̂i = q̂rSCA

i

9 solve P̂1.3.1 and obtain qrSCA+1
i

10 fix qi = qrSCA+1
i

11 solve P̂1.3.1 and obtain q̂rSCA+1
i

12 update rSCA = rSCA + 1
13 end

The framework regarding the proposed solution is summa-
rized in Algorithm 4, where rmax represents the maximum
number of iterations. One should note that in the proposed
network, TBS is placed in conjunction with sufficient com-
puting resources, where TBS can efficiently implement the
proposed solution and then the obtained optimized parameters
can be wirelessly transmitted to TUAV, RUAVs and RIS

controller promptly. Moreover, the communication overhead
can be assumed ignored since they are considerably smaller
than the computation task data size as proved in [27].

Proposition 2: The complexity of Algorithm 4 can
be roughly determined as O(r∗(I2.5 log( 1

ϵADMM
) + r∗ESA +

I3.5 log( 1
ϵSCA

))).

Proof. Let r∗ be the minimum required number of itera-
tions for the proposed solution to realize convergence. The
complexity of the proposed ADMM algorithm to solve P1.1
is O(I2.5 log( 1

ϵADMM
)). The complexity of the proposed ESA

algorithm to solve P1.2 is O(r∗ESA), where r∗ESA represents
the number of iterations for the proposed ESA algorithm
to reach convergence. The complexity of the proposed SCA
algorithm to solve P1.3 is O(I3.5 log( 1

ϵSCA
)). As such, the

complexity of Algorithm 4 can be roughly expressed as
O(r∗(I2.5 log( 1

ϵADMM
) + r∗ESA + I3.5 log( 1

ϵSCA
))).

Algorithm 4: The framework of the proposed solution

1 initialize q1, r = 1
2 while r ≤ rmax do
3 given qr, solve P1.1 via Algorithm 1 and obtain

Hr+1

4 given Hr+1, qr, solve P1.2 via Algorithm 2 and
obtain Rr+1

5 given Hr+1, Rr, solve P1.3 via Algorithm 3 and
obtain qr+1

6 update r = r + 1
7 end

IV. PERFORMANCE EVALUATION

This section evaluates and compares the selected key perfor-
mance metrics of the proposed solution with numerous bench-
mark algorithms. All experiments are conducted in MATLAB
with CVX toolbox on a PC with Intel Core i7-12700K CPU
@3.70GHz and 16GB RAM. The significant simulation pa-
rameters are given as follows. USVs are randomly distributed
in a square area of 350 m × 350 m. The input data size
generated by each USV and originating from the Internet
ranges from [1, 10]× 106 bits and [1, 10]× 108, respectively.
The required CPU cycles to execute each task are set as
[1, 10] × 106 and the computation capability of each RUAV
is 5× 106 CPU cycles/s. The earliest and latest service times
range from [1, 500] s and [200, 600] s, respectively. The flight
altitude of RUAV is set as 25 m. The maximum TUAV and
minimum hovering altitudes are 200 m and 50 m. We assume
that wireless communication channels are perfectly estimated,
RUAV-USV communication link is assumed as LOS and set
PL coefficients βRUAV = 2. TBS-RIS communication link
suffers LOS and NLOS conditions simultaneously, where the
significant parameters of the probability of LOS are set as
ATBS =

π

9
and BTBS = 2, respectively according to real world

measurments [28]. Moreover, the corresponding PL exponent
parameters are set as vTBS = 4 and uTBS = −2. A list
of selected advanced algorithms, e.g., Fly-in Fly-out (FIFO)
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Cdl,lb
i ≜ Bdl

mlog2(1 +
ptrTBS||wH

i ||2

σ2||qTBS − qTUAV||βTBS ||qTUAV − qmN ,r−1
i ||βRUAV

)

−
ptrTBS||wH

i ||2(||qTUAV − qmN

i ||βRUAV − ||qTUAV − qmN ,r−1
i ||βRUAV)

σ2||qTBS − qTUAV||βTBS ||qUAV − qmN ,r−1
i ||2βRUAV + ptrTBS||qm − qmN ,r−1

i ||βRUAV
.

(60)

algorithm, fixed TUAV hovering altitude (FHA) algorithm,
gradient descent (GD) algorithm and DE algorithm, are se-
lected and compared with the proposed solution. The details
regarding the selected algorithms are given as follows.

FIFO algorithm: As proposed in [29], the trajectory of
each RUAV m to serve USV i is assumed as a straight line,
which can be determined by a fly-in point and a fly-out point.
RUAV m starts to receive Dl

i when arriving at the fly-in point
and ends at fly-out points. RUAV m hovers at a fly-out point
to receive Do

i from TBS and then executes Ui by itself. The
optimization of TUAV hovering altitude and RUAV service
selection indicator is identical to the proposed solution.

FHA algorithm: TUAV is assumed as hovering at the
fixed altitude, e.g., H = 100 m. The optimization of RUAV
trajectory and RUAV service selection indicator is identical to
the proposed solution.

GD algorithm: GD algorithm is utilized to optimize TUAV
hovering altitude as analyzed in [30]. The optimization of
RUAV trajectory and RUAV service selection indicator is
identical to the proposed solution.

DE algorithm: DE algorithm is utilized to optimize RUAVs
turning points as proposed in [31]. The optimization of TUAV
hovering altitude and RUAVs service selection indicator is
identical to the proposed solution.
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Fig. 3 demonstrates RUAVs energy consumption versus the
different number of USVs. One can observe that the proposed
solution realizes the lowest RUAVs energy consumption in
comparison with other algorithms under the same number of
USVs. In particular, the proposed solution achieves around
7.0×104 J and 1.4×105 J when I = 15 and 30, respectively.
Followed by FHA algorithm with the corresponding values
approximately 7.5× 104 J and 1.5× 105 J, respectively. FIFO
algorithm reaches the worst performance with corresponding
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value at nearly 1.1×105 J and 2.1×105 J, respectively. This is
because the proposed solution is capable of optimizing each
RUAV trajectory and thus the corresponding flight distance
to receive Do

i can be considerably decreased. Moreover, the
proposed solution can dynamically adjust TUAV hovering
altitude according to the channel quality between TBS and
RUAVs. As such, the transmission time cost of each RUAV to
receive Do

i can be decreased.
The energy efficiency between TBS and USVs is defined

as the energy consumption per bit for TBS to transmit data to
USVs. Fig. 4 shows the energy efficiency between TBS and
USVs versus the number of RIS reflecting elements. One can
observe that energy efficiency between TBS and USV of all
algorithms increases with the number RIS reflecting elements
increases. Specifically, the proposed solution realizes the best
energy efficiency at around 2.8 × 105 bits/J, 5.6 × 105 bits/J
and 8.2 × 105 bits/J when K = 20, K = 40 and K = 60,
respectively. Followed by DE algorithm with corresponding
values of 2.7×105 bits/J, 5.3×105 bits/J and 7.7×105 bits/J.
FHA realizes the worst energy efficiency with approximately
1.7 × 105 bits/J, 3.3 × 105 bits/J and 4.8 × 105 bits/J when
K = 20, K = 40 and K = 60, respectively. This is because
the higher number of RIS reflecting elements can enhance
communication link quality. This may involve the fact that
with a fixed TUAV hovering altitude, TBS-RUAV communi-
cation link may be severely blocked or suffer additional PL
caused by inappropriate TUAV hovering altitude.

The energy efficiency between RUAVs and USVs is defined
as the energy consumption per bit for USVs to transmit data
to RUAVs. Fig. 5 shows energy efficiency between RUAVs
and USVs versus different typical noise power. In particular,
the proposed solution realizes approximately 1.0× 106 bits/J,
7.4 × 105 bits/J and 5.2 × 105 bits/J when σ2=-80 dBm,
σ2=-77 dBm and σ2=-74 dBm, respectively. Followed by
FHA algorithm with corresponding value of 1.0× 106 bits/J,
7.0 × 105 bits/J and 5.1 × 105 bits/J, respectively. FIFO
algorithm realizes the worst energy efficiency with 3.8× 105

bits/J, 2.3×105 bits/J and 1.4×105 bits/J when σ2=-80 dBm,
-77 dBm and -74 dBm, respectively. One can observe that
energy efficiency decreases with the noise power increasing.
This is because higher noise power promises lower SNR to
maintain data transmission quality; the distance between each
RUAV and USVs is shortened, increasing the time cost for
each RUAV to receive Dl

i.
In this paper, task that cannot be successfully executed

within its time window can be regarded as failed. In this
manner, task success execution ratio can be defined as the
percentage of successfully executed tasks. Fig. 6 demonstrates
task success execution ratio versus different noise power.
One can observe that task success execution ratio of all
algorithms keeps decreasing as noise power increases. The
proposed solution outperforms other algorithms under the
same noise power. In particular, task success execution ratio of
the proposed solution is about 97%, 70% and 46% when σ2 =
-80 dBm, -77 dBm and -74 dBm, respectively, followed by
DE algorithm and GD algorithm with corresponding values of
90%, 68%, 44% and 88%, 67%, 43%. FHA algorithm realizes
the worst performance with the task success execution ratio at

71%, 46% and 27% when σ2 = -80 dBm, -77 dBm and -74
dBm, respectively. One should note that higher noise power
may lead to lower SNR and thus the transmission time cost
may significantly increase. In addition, the proposed solution
can dynamically adjust TUAV hovering altitude according to
RUAVs trajectories and communication link status. As such,
the downlink data transmission time cost can be considerably
reduced.

5 10 15 20 25 30 35 40 45 50

The number of iterations

0.65

0.75

0.85

0.95

1.05

1.15

1.25

1.35

1.45

T
h
e 

en
er

g
y
 c

o
n
su

m
p
ti

o
n
 o

f 
R

U
A

V
s 

(J
)

10
5

=1

=2

=3

R=40m

R=30m

R=20m

Fig. 7: The energy consumption of RUAVs versus the number
of iterations.

3 6 9 12 15 18 21 24 27 30

The number of USVs

0

1

2

3

4

5

6

7

8

9

T
h
e 

en
er

g
y
 c

o
n
su

m
p
ti

o
n
 o

f 
R

U
A

V
s 

(J
)

10
5

M=5

M=10

M=15

v=2m/s

v=4m/s

v=6m/s

Fig. 8: The energy consumption of RUAVs versus the number
of USVs under different typical number of RUAVs.

The typical number of USVs, e.g., I = 15 is selected for
further investigation. Fig. 7 shows the energy consumption of
RUAVs versus the number of iterations under different typical
ADMM penalty coefficients. One can observe that the higher
value of ADMM penalty coefficient promises a lower USVs
energy consumption under the same maximum transmission
distance R. In particular, when R = 40 m, RUAVs energy
consumption of the proposed solution is around 6.9 × 104 J
when ξ = 1 while this value increases to around 7.8 × 104

J and 8.2 × 104 J when ξ = 2 and 3, respectively. This is
due to the fact that the smaller ADMM penalty coefficients
require a higher number of iterations to reach convergence.
As such, the proposed solution is capable of reaching a lower
energy consumption with a higher number of iterations when
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ADMM penalty coefficient is properly determined. Moreover,
one can observe that RUAVs energy consumption increases
as R decreases. This is because RUAV is capable of flying
closer to each USV for data collection when R is appropriately
determined.

The typical number of RUAVs, e.g., M = 5, 10, 15 is
selected for further investigation. Fig. 8 plots RUAVs energy
consumption versus different number of USVs. One can
observe the higher number of RUAVs leads to higher USVs
energy consumption. Specifically, when v = 2 m/s and I = 15,
USVs energy consumption is about 7.0× 104 J when M = 5
while this value is nearly 1.0 × 105 J and 1.3 × 105 J when
M = 10 and 15, respectively. Moreover, one can see that
a higher number of USVs realizes a higher RUAVs energy
consumption. In particular, when M = 10, RUAVs energy
consumption is about 9.0 × 104 J when I = 12 while this
value is approximately 1.1 × 105 J and 1.5 × 105 J when
I = 21 and 30, respectively. This is because each RUAV is
required to depart and fly back to RUAV base station at the
beginning and at the end of each service period; even though
the higher number of RUAVs can serve a higher number of
USVs simultaneously, RUAVs suffer considerably additional
energy consumption. One should note that the RUAV flight
speed v and fight power pRUAV should be jointly considered
to decrease RUAVs flight energy consumption, which can be
selected as future research direction.

V. CONCLUTION

In this paper, a novel RIS-assisted cooperative UAV-USV
MEC network architecture is proposed, where we coopera-
tively deploy RIS-mounted TUAV and RUAVs to serve USVs
computation and communication cooperation. The RUAVs
energy consumption minimization problem is formulated by
jointly considering TUAV hovering altitude, RIS phase shift
vector, RUAV service selection indicator and RUAVs turning
points. To solve the formulated problem, a heuristic solution is
proposed. First, we decouple the original problem into three
subproblems. Moreover, we propose the ADMM algorithm,
ESA algorithm and SCA-based algorithm, respectively to
tackle the joint optimization of RIS phase shift vector and
TUAV hovering altitude subproblem, RUAVs service selection
indicators subproblem and RUAVs turning points subproblem.
The results showed that the proposed solution can significantly
decrease RUAVs energy consumption and increase energy effi-
ciency compared with a list of selected benchmark algorithms.
Also, the performance of the proposed solution under different
typical ADMM penalty coefficients and the number of RIS
reflecting elements are explored.

Note that when designing UAV-mounted RIS-assisted wire-
less communication networks, the number of RIS reflecting
elements may have a considerable impact on UAVs propulsion
and hovering power consumption, especially for on-board
battery-empowered UAVs. However, the analysis of the RIS
deployment scheme is still an open issue in this emerging
research area [32]. Further research can be focused on optimiz-
ing the number of TUAV-mounted RIS elements since this is
the critical step to realizing multiple-RIS-assisted cooperative

UAV-USV MEC network, where fixed RISs coated on shore
building surfaces and flexible RISs carried by TUAVs/RUAVs
are cooperatively employed to serve resource-limited USVs.
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