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A B S T R A C T

Semantic segmentation is essential for ship navigation as it enables the identification and understanding
of semantic regions, thereby enhancing the navigational capabilities of smart ships. However, current deep
learning techniques encounter challenges in balancing model size and segmentation accuracy due to the
complexity of water surface features. In response, we propose a novel lightweight dual-branch semantic
segmentation network. The model initially utilizes a specially designed dual-branch backbone to independently
extract local details and global semantics from water surface images. The detail branch compresses and
reconstructs feature information to mitigate interference from water dynamics, while the semantic branch
efficiently expands the receptive field to capture global object relationships. Additionally, we introduce an
aggregation module that holistically guides the feature responses to facilitate the sufficient aggregation of dual-
branch information. Furthermore, a cascaded fusion approach is proposed to restore diminished localization
precision, while also ensuring fusion accuracy by leveraging the segmentation attributes of deep features.
Experimental results on visible light datasets from real navigation scenarios demonstrate that our network
achieves approximately a 10% improvement in obstacle detection precision compared to existing advanced
maritime models. Moreover, within the domain of the latest lightweight and real-time research, our network
attains an optimal balance among accuracy, parameter efficiency, and real-time performance. This contributes
to enhancing the navigation safety of intelligent vessels and promotes adaptability for onboard deployment.
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction

The shipping industry plays an indispensable role in facilitating 
international trade. With advancements in modern technologies such 
as communication, the Internet of Things, and autopilot systems, there 
is a growing research momentum on smart ships with intelligent and 
autonomous navigation (Guo et al., 2023; Liu et al., 2024; Yang et al., 
2023). To fulfill maritime market demands for safe and efficient naviga-
tion, smart ships require sensor systems to identify and evade obstacles 
while ensuring navigation within designated areas. Visual sensor-based 
obstacle segmentation systems are crucial for the safety of smart ships. 

Semantic segmentation aims to assign labels to each pixel in an 
image to distinguish various objects. The advancements in autonomous 
driving have spurred extensive research into semantic segmentation 
(Chen et al., 2017b, 2018; Gao, 2023). However, applying these models 
directly to navigation scenarios proves challenging (Bovcon et al., 
2019; Cane and Ferryman, 2018), as illustrated in Fig. 1. In more com-
plex scenarios, there is often an increase in false positive predictions

(FPs) and a failure to detect small waterborne targets, which poses a 
significant risk in real-world navigation.

Compared to traditional algorithms that rely on image grayscale
distribution characteristics (Jin et al., 2019; Kristan et al., 2015; Liu et
al., 2021; Lv et al., 2017), deep learning-based semantic segmen-tation
approaches automatically acquire knowledge of image features. They
demonstrate superior generalization performance and represent the
current research mainstream (Bovcon and Kristan, 2021; Chen et al.,
2021; Teršek et al., 2023). Moreover, the increasing prominence of
foundation models has sparked growing interest in established vision
foundation models for their ability to perform semantic segmenta-tion
across various common scenarios (Kirillov et al., 2023; Zhang et al.,
2023b). Nevertheless, applying existing deep learning models that solely
rely on visible light images faces challenges when perform-ing semantic
segmentation in navigation scenarios. On the one hand, models tailored
for navigation scenarios require high parameters to achieve accurate
segmentation, which presents deployment challenges

http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2024.108982&domain=pdf
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Fig. 1. Through comparison, it is evident that the water surface, serving as the navigational area for ships, is more irregular than fixed road surfaces, characterized by dynamic
and uneven features. Additionally, reflections and glare pose significant disturbances to water surface segmentation.
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on ship edge platforms, especially for foundation models that demand
ubstantial training and hardware resources (Zhang et al., 2024; Bom-
asani et al., 2021). On the other hand, in contrast to the autonomous

ehicle domain, semantic segmentation datasets collected in naviga-tion
cenarios are often limited in size (Bovcon et al., 2019; Lambert et al.,
022; Žust et al., 2023), hindering the generalization perfor-mance of
odels. Even with vision foundation models, maintaining high

egmentation accuracy in complex navigation scenarios remains a
hallenging task. Hence, developing a segmentation algorithm that
aintains lightweight characteristics while achieving high accuracy and
emonstrating superior generalization in navigation scenarios has
merged as a pressing issue to address.

To effectively address the challenges and application demands of
bstacle segmentation models in navigation scenarios, this study in-
roduces a novel model, AF-BiSeNet, based on a dual-branch architec-
ure (Yu et al., 2021), as shown in Fig. 2. The model extracts semantic
nd detail features from the input through dual branches, aggregates
hem using an aggregation module, and finally fuses the multi-scale
eatures for output. Unlike existing research, both the aggregation and
usion processes in AF-BiSeNet are lightweight. In the detail branch, our
roposed Embedded Feature Refinement Module (EFRM) compresses
eature vectors into n-dimensions instead of 1-dimension to better
itigate interference from high-frequency information in water surface

mages. Moreover, it employs asymmetric convolution processing to
acilitate interaction among non-compressed direction vectors. In the
emantic branch, the enhanced capability of a larger receptive field to
xtract feature semantics is utilized by employing dilated convolution
or selected channel features in the Dilated Gather and Expansion (DGE)
ayer. The Bilateral Refinement Aggregation (BRA) module is designed
o aggregate dual-branch features. It utilizes dual-branch information
o generate aggregation weights for each branch, thereby enhancing
he accuracy of aggregating both local details and global semantics.
inally, the proposed Cascading Top-down Enhanced Fusion (C-TEF)
ethod segments the features of each stage to reduce channel counts

nd utilizes semantic properties during segmentation to achieve en-
anced fusion of multi-scale information from top to bottom. The main
ontributions of this paper can be summarized as follows:

(1) The EFRM used for detail branch is capable of mitigating water
wave interference, while improving the branch’s capacity to
retain and encode important features. In addition, the semantic
branch’s DGE layer efficiently expands the receptive field to
better address issues related to water surface reflections and
glare, while also maintaining computational efficiency.

(2) We introduce a novel feature aggregation mechanism, BRA,
which comprehensively guides the response of dual-branch fea-
tures in both channel and spatial dimensions. It is designed
to provide more effective features for subsequent segmentation
heads.
(3) The proposed C-TEF employs channel reduction and enhanced
fusion to restore accurate positioning information of shallow
layers in a more lightweight manner, thereby improving segmen-
tation accuracy for boundaries and small targets.

(4) The experimental results demonstrate AF-BiSeNet’s superior pre-
cision and generalization performance on navigation scenario
datasets, with approximately 10% higher precision in obstacle
detection compared to existing advanced maritime models. It
also exhibits enhanced parameter efficiency, making it more
adaptable for practical applications.

The rest of this article is organized as follows. Section 2 presents a
urvey of existing works on water surface semantic segmentation, fea-
ure aggregation, and multi-scale fusion. Section 3 provides a detailed
ntroduction to the structural design and principles of AF-BiSeNet.
ection 4 provides experimental comparison and analysis of AF-BiSeNet
nd existing methods. In Section 5, we conclude the work on AF-
iSeNet and discuss future research directions. Our code, model, and
ata can be accessed on the following website: https://www.alipan.
om/s/Tx4phbHo792.

. Related work

.1. Semantic segmentation of navigation scenarios

Semantic segmentation serves not only to differentiate the contours
f obstacles on the water surface but also to partition navigable areas,
hereby enabling a global understanding of the navigation environ-
ent. This can provide strong support for local path planning of smart

hips (Hong et al., 2019; Ni et al., 2020), thus laying the necessary
oundation for achieving autonomous navigation.

Traditional water surface image segmentation algorithms can be
ategorized into two main groups: threshold-based and graph theory-
ased. Li et al. (2020) proposed a threshold segmentation method based
n uniformity measurement by combining the one-dimensional Otsu
ethod with a uniformity measurement strategy. Bovcon et al. (2018)

xtended the graphical model for probabilistic semantic segmentation
y converting ship attitude information from the Inertial Measurement
nit (IMU) into a prior horizon position.

In recent years, with the increasing emphasis on smart ships, there
as been a notable enhancement in the performance of deep learning
egmentation methods. To achieve higher accuracy, existing meth-ods
ften employ architectures with an encoder followed by a high-
arameter decoder, such as Water Segmentation and Refinement
WaSR) (Bovcon and Kristan, 2021), its variant eWaSR (Teršek et al.,
023), and Water Obstacle Detection Network Based on Image Seg-
entation (WODIS) (Chen et al., 2021). There are also architectures that
tilize a significant number of dilated convolutions (Xue et al.,

https://www.alipan.com/s/Tx4phbHo792
https://www.alipan.com/s/Tx4phbHo792
https://www.alipan.com/s/Tx4phbHo792
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Fig. 2. The overall network structure of AF-BiSeNet. Stages 0 through stage 2 all denote stacks of convolutions. ‘‘Seg Head’’ and ‘‘Aux Head’’ denotes the segmentation head,
which consists of multiple layers of convolutions. The structure of these heads, Stem layer and CE layer are consistent with BiSeNetV2 (Yu et al., 2021).
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2021). These models typically have significantly large sizes and require
xtensive resources for training and deployment. More recently, the
ision Transformer (Dosovitskiy et al., 2021), which excels at cap-

uring remote contextual information, has exhibited promising perfor-
ance (Zhang et al., 2023a). Nevertheless, its extensive computational
emands have constrained its practical utility. Furthermore, despite
onsiderable attention on foundational models (Kirillov et al., 2023;
hang et al., 2023b), their high deployment requirements, inadequacy
f navigation scenario datasets, and issues related to semantic gran-
larity levels (Li et al., 2023b) impede their direct applicability to
erception tasks in navigation scenarios.

In the realm of lightweight and real-time semantic segmentation
esearch, the Bilateral Segmentation Network (BiSeNet) series of mod-
ls (Yu et al., 2018, 2021; Tsai and Tseng, 2023) pioneered the dual-
ranch model by specifically designing semantic and detail branches
ased on channel and network depth considerations. Over recent years,
umerous variant models have been derived from the BiSeNet se-
ies. Short-Term Dense Concatenate (STDC) (Fan et al., 2021) has
ethought BiSeNet by incorporating a detailed guidance module that
everages edge information to direct shallow layers in learning spatial
nformation through a single-stream manner. However, irregular wa-
er surfaces in navigation scenarios may introduce detrimental effects
n detail guidance. Proportional-Integral-Derivative Net (PIDNet) (Xu
t al., 2023b) incorporates control theory into semantic segmenta-
ion by designing a three-branch network, but it also increases the
raining and inference burdens. Ranjbarzadeh et al. (2023) employs
ultiple encoding approaches to generate 11 distinct images, enabling

he proposed efficient cascade Convolutional Neural Network (CNN)
o analyze input textures more effectively, thus eliminating the need
or deep CNN models. With the increasing research, there have been
ecent real-time and lightweight semantic segmentation networks based
n Transformer (Wang et al., 2022; Xu et al., 2023a). Nonetheless,
chieving a satisfactory balance between parameter efficiency and
ccuracy remains challenging for these models.

Although lightweight architectures may reduce the training and
eployment requirements, their segmentation accuracy still has great
otential for improvement due to insufficient consideration of the
pecific characteristics of water surface images.

.2. Feature aggregation

For maritime navigation, accurate identification of obstacle posi-
tions is fundamental for safe sailing, while the effective extraction
f water surface boundaries serves as an indicator of a vessel’s nav-
gational status. Consequently, the precise aggregation of semantic
nd detailed feature information from images is crucial for semantic
egmentation in navigation scenarios.

Existing research has basically adopted adaptive weighting methods
o selectively integrate different information. The Bilateral Guided
ggregation (BGA) of BiSeNetV2 employed the output of the semantic
ranch as attention weights to amplify the responses of the detail
ranch. However, this approach somewhat reduced the contribution
f high-level semantic information contained in the semantic branch.
he Feature Fusion Module (FFM) (Bovcon and Kristan, 2021; Chen
t al., 2021; Yu et al., 2018) employed channel attention to automati-
ally learn aggregation strategies in the channel dimension. However,
his approach does not consider the differences in spatial information
mong various feature maps. The Bilateral Fusion module, proposed
y Zhang et al. (2021), employs spatial and channel attention mecha-
isms to enhance features within each branch. The enhancement within
 single branch has a limited effect on the aggregation of features across
ranches. Li et al. (2023) posited that targets of varying scales require
ifferent contextual information for accurate discrimination. Therefore,
 spatial selection mechanism is employed to enhance only the regions
n the feature map that are adapted to its receptive field, and finally
omplement different features’ target information through addition.

Efficient aggregation techniques must take into account the varia-
ions in information conveyed by different features. However, current
ethods, despite adaptively acquiring weights, do not comprehensively

ccount for both spatial and channel dimensions in aggregation.

.3. Multi-scale fusion

Excessive downsampling of the input may lead to diminished accu-
acy in locating sea-sky lines and shorelines in water surface images,
s well as result in the loss of feature information for small obstacles
t longer distances. To address these issues, it is essential to fuse
ulti-scale features to restore shallow details.

The existing multi-scale fusion methods basically maintain the high
hannel characteristics of features throughout the fusion process. For
nstance, the Joint Pyramid Upsampling (JPU) module (Wu et al., 2019)
rocesses the last three layers of the Fully Convolutional Network
FCN) (Long et al., 2015) features. It utilizes convolutions with varying
ilated ratios to capture feature information at different stages. Simi-
arly, Gao (2023) obtained a decoder structure with relatively optimal
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accuracy through extensive experiments. However, due to the high-
hannel nature, the fusion structure often contains a large number of

parameters. In contrast, Zha et al. (2021) initially conducted feature
segmentation and then fused the segmentation outcomes to reduce the
number of feature channels, a process termed segmentation fusion.
Nevertheless, the effectiveness of the channel attention employed in
this method is somewhat limited when dealing with a small number
of channels. Van Quyen and Kim (2023) leveraged the low confidence
of ambiguous regions and computed semantic attention by subtracting
the confidence from 1, aiming to direct the model’s focus towards these
regions.

The multi-scale fusion method for semantic segmentation models
often leads to an excessive number of parameters because of the high-
hannel nature of features. However, despite streamlining the fusion
rocess through the segmentation fusion mentioned above, the substan-

tial reduction in feature channels makes it challenging to effectively
integrate multi-scale information.

3. Proposed method

The overall structure of AF-BiSeNet is shown in Fig. 2. The seg-
mentation process for water surface images comprises three main steps.
Initially, the input water surface image undergoes dual-branch process-
ing to extract semantic and detail information separately. Subsequently,
the proposed BRA is applied across multiple stages of the model to
thoroughly aggregate the dual-branch information. Finally, a top-down 
multi-scale enhanced fusion is used to fuse the aggregated features and
obtain the final output.

The distinction between the AF-BiSeNet model and existing models 
lies in the design of its individual modules. In the feature extraction
section, the semantic branch extracts high-level semantics through the
DGE layer, which efficiently expands the receptive field, while the de-
tail branch incorporates the EFRM designed to acquire spatial attention,
iming to reduce high-frequency interference on the water surface.
n the aggregation section, the BRA module comprehensively directs
he response of dual-branch features and fully aggregates the feature
nformation from both branches. In the multi-scale fusion section, the
-TEF module compresses the channels of BRA output features and

everages the semantic properties of deep features to achieve enhanced
usion. It is noteworthy that both the aggregation and fusion modules
f AF-BiSeNet are highly lightweight. Further details about the model
an be found in the annotations in Fig. 2.

.1. Detail branch and semantic branch

Detailed image information is indispensable for semantic segmenta-
ion models. In addition, a global perception of the image is necessary 
o ensure comprehensive connectivity among regions belonging to the
ame category. Therefore, the backbone of AF-BiSeNet comprises the
etail branch, which is dedicated to extracting local details, and the
emantic branch, which focuses on extracting global semantics.
Detail branch. The design of the detail branch incorporates fewer

 × 3 convolution downsampling stages and wider channel dimensions
o focus more on the underlying details. In navigation situations, the
ynamic nature of the water surface often gives rise to noticeable
nterference, including clutter and flashes. This interference poses a
ignificant challenge for the current detail branch due to its small
eceptive fields. In response to this challenge, we propose the EFRM, as
hown in Fig. 4, which empowers the detail branch to filter out high-
requency interference and concentrate more on the principal objects.

The design of the EFRM module is inspired by word embedding in
atural language processing (Bengio et al., 2000). As depicted in Fig. 3,
ord embedding transforms the sparse vectors of one-hot encoding

nto dense vectors. This enables the representation of internal relation-
hips between word vectors while reducing dimensionality. Similarly,
we posit that the vector of the image along a single direction also
exhibits sparsity because of the similarity in pixel distribution within
areas such as the water surface and sky. The EFRM module initially
compresses these vectors into n-dimensions through maximum and
average pooling. Subsequently, asymmetric convolution processing is
employed to facilitate vector interactions in the uncompressed direction
during encoding. The process of handling feature vectors in EFRM
can be regarded as the extraction of vector principal components. By
compressing and encoding the vectors horizontally or vertically, it
tends to extract the invariant components while disregarding irregular
noise. Consequently, regardless of the intricate nature of water waves,
EFRM tends to overlook high-frequency dynamic disturbances in the
image, resulting in consistent outputs and a heightened emphasis on
the relatively stable visual characteristics of objects on the water sur-
face. Furthermore, the encoded vectors in both directions are used to
reconstruct spatial attention through matrix multiplication. The spatial
attention is then used to refine the detailed branch features, thereby
directing the branch’s focus towards the principal objects on the water
surface. In comparison to existing spatial attention mechanisms (Hou
et al., 2021; Tsai and Tseng, 2023), the proposed EFRM effectively
preserves spatial information while enhancing the module’s capacity to
represent crucial information. This is achieved by pooling features axi-
ally into n-dimensional vectors and utilizing asymmetric convolutional
encoding.

In addition, we incorporate convolutional reparameterization from
ACNet (Ding et al., 2019) into the convolution of the detail branch.
By integrating reparameterized convolutional blocks, we can increase
the number of parameters during model training without affecting the
inference speed, thereby effectively enhancing the performance of the
detail branch in extracting local details.

Semantic branch. The semantic branch efficiently captures global
emantic information through multiple network layers and narrower
hannel dimensions. In the context of water surface images, a larger re-
eptive field can capture the spatial and semantic relationships between
he water surface area and obstacles, thereby enhancing the network’s
verall understanding of the scene. The widely employed dilated con-

volution has been proven effective in increasing the receptive field.
However, due to its discontinuous memory access in contrast to regular
convolutions, the excessive use of dilated convolutions significantly
undermines the operational efficiency of the model (Gao, 2023). To
address this issue, we propose the DGE as an efficient approach to
expand the receptive field.

The structure of the DGE layer is shown in Fig. 4. Initially, the
grouped semantic branch features are processed separately using reg-
ular convolution and dilated convolution. This strategy is designed to
everage the high receptive field properties of dilated convolution while
itigating excessive memory access costs. Then, the feature channels

re expanded and reduced to extract information in a high-dimensional
pace (Sandler et al., 2018). Finally, considering the varied receptive
ields of the features across different channels, we incorporate the
fficient Channel Attention (ECA) (Wang et al., 2020) to enable the
odule to autonomously select the parts of features that are effective

or segmentation.
The DGE layer effectively enhances the receptive field of branches

y using dilated convolution on partial channels. Compared with exist-
ng research on expanding the receptive field of images (Chen et al.,
017a; Dosovitskiy et al., 2021; Gao, 2023), the DGE layer demon-
trates higher operational efficiency.

.2. Bilateral refined aggregation

The model in this paper employs a dual-branch architecture as its
ackbone, leading to significant distinctions in the output features. To

ensure that the segmentation head has access to features containing
both global semantics and local details, it is necessary to merge the
information from dual-branch features.
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Fig. 3. Word embedding and EFRM processing (taking horizontal calculation as an example).
Fig. 4. The Embedded Feature Refinement Module (EFRM) on the left and the Dilated Gather and Expansion (DGE) layer on the right. ‘‘C’’ denotes concatenation; ‘‘+’’ denotes
element-wise addition; ‘‘×’’ denotes element-wise multiplication; ‘‘@’’ denotes matrix multiplication, the same below.
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Current aggregation methods generate a solitary adaptive factor
to weigh multiple features, resulting in the inability to flexibly en-
ance complementary information and suppress redundant information

during aggregation. Furthermore, the aggregation of these methods is
imited to a single channel or spatial dimension. Considering these
actors, we propose the BRA module, as shown in Fig. 5, which fully
tilizes dual-branch information to generate multiple specific weights
or guiding feature responses and aggregation. Initially, this module

preprocesses the features from dual branches using depthwise sepa-
rable convolution (Howard et al., 2017), followed by concatenating
hem to generate attention weights for the channel and spatial dimen-
ions through convolutional and attention mechanisms. These attention
eights are then split and assigned to each corresponding branch.
inally, the dual-branch features are weighted to refine the features,
acilitating the selective aggregation of semantic and detail information
hrough element-wise addition.

The BRA module utilizes concatenated features to generate adaptive
weights instead of employing them directly as subsequent outputs,
5 
allowing for the simultaneous integration of dual-branch information
o generate attention. Furthermore, dividing the acquired attention
eights enables specialized refinement in different branches. The speci-

icity is manifested by the fact that, after the learning process, the
ttention dedicated to refining the semantic branch can better focus
n global features, such as water surface areas and shore regions.
imilarly, the attention devoted to refining the detail branch is directed
owards local details like water obstacles and segmentation boundaries.
he summation of weighted dual-branch features ultimately facilitates
he effective aggregation of localized texture details and global se-
antic information within each respective branch. In comparison to

xisting research on feature aggregation (Bovcon and Kristan, 2021; Yu
t al., 2021; Yu et al., 2018), the BRA module distinguishes itself by
aintaining efficiency while comprehensively considering features in

oth the channel and spatial dimensions.
Additionally, the segmentation loss of the output from the BRA

s computed by utilizing the ‘‘Aux Head’’ as mentioned in Fig. 2, to
rovide supervision for the module’s output during the training process.
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Fig. 5. The composition of Bilateral Refinement Aggregation (BRA) and its attention mechanisms pertaining to both channel and spatial aspects. ‘‘U’’ denotes upsampling operation,
the same below.
Fig. 6. Cascading Top-down Enhanced Fusion (C-TEF) involves cascading TEF modules. This module efficiently facilitates enhanced fusion of features from deep to shallow layers
in the network. Here, 𝐵𝑅𝐴𝑖 denotes the output of the 𝑖th BRA module in the model; 𝑆𝑒𝑔𝑖 represents the result of channel compression; ‘‘Softmax’’ denotes the normalization
calculation of inputs on each channel; ‘‘Max’’ represents obtaining the prediction result by taking the maximum value in the channel dimension; ‘‘1-Pred’’ signifies subtracting the
predicted result from 1 to obtain semantic weights for enhancing shallower features.
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These headers can be removed during inference, thereby improving 
segmentation accuracy without sacrificing inference speed.

3.3. Cascading top-down enhanced fusion

Excessive downsampling of images may result in reduced accuracy
when localizing water surface boundaries and lead to the loss of
small obstacles near the sea-sky line. Hence, it is essential to conduct
multi-scale fusion at various stages to recover position and feature
information embedded in shallow features.

Current multi-scale fusion methods inadvertently incorporate a
large number of parameters to accommodate the high-channel na-
ture of features. Conversely, lightweight fusion methods suffer from

 significant weakening of the representation capacity of multi-scale
features due to the substantial reduction in channels. To maintain the

odel’s lightweight design while fusing features from different scales,
e propose the C-TEF module, as shown in Fig. 6. Firstly, the module
fficiently condenses the channel dimensions of outputs 𝐵𝑅𝐴 from
𝑖 
multiple BRA modules, as shown in Fig. 2, by means of convolution to
align with the number of semantic categories. This process obtains 𝑆𝑒𝑔𝑖,
with a higher value of ’i’ denoting a deeper layer in the network. This
strategy significantly reduces computational complexity. Secondly, we
employ the computational procedure outlined in Eq. (1) to derive the
semantic weight 𝑊𝑖 by utilizing the feature 𝑆𝑒𝑔𝑖. 𝑊𝑖 is a single-channel
eature map with the identical shape as 𝑆𝑒𝑔𝑖−1. Following Eq. (2), 𝑊𝑖 is

used to perform element-wise multiplication with 𝑆𝑒𝑔𝑖−1. Afterwards,
the weighted 𝑆𝑒𝑔𝑖−1 is then fused by addition with the upsampled
𝑆𝑒𝑔𝑖, resulting in 𝑆𝑒𝑔𝑖

′
−1, which is utilized to calculate 𝑊𝑖−1 for the next

round of enhanced fusion. Ultimately, when the shallowest 𝑆𝑒𝑔0 is
involved in the cascading operation of the C-TEF module, the result is an
enhanced fusion of the model’s top-down features. This result will serve
as input to the ‘‘Seg Head’’ depicted in Fig. 2 to generate the final
segmentation output. A detailed explanation of the calculation of
semantic weights 𝑊𝑖 will be provided later.

(1)
𝑊𝑖 = 𝑈𝑝𝑖−1(1 −𝑀𝑎𝑥𝑐ℎ𝑎𝑛𝑛𝑒𝑙(sof tmax(𝑆𝑒𝑔𝑖)))



 
 
 
 

t  
i  

 

 

 
 
 
 
 

 
 

 
 

 

 
 

 

 
 

 
 
 

c

t
 
 
 
 

 
 
 

 
 
 

i  
r
t  
F
t
i
l  
o  
i  
H  
d  
a  
n  
r
n  
o

 
 

 
 

i  
 

𝑆𝑒𝑔′𝑖−1 = Conv3×3[𝑆𝑒𝑔𝑖−1 ⋅𝑊𝑖 + 𝑈𝑝𝑖−1(𝑆𝑒𝑔𝑖)] (2)

𝑆𝑒𝑔𝑖 represents the output after channel compression of 𝐵𝑅𝐴𝑖; 𝑈𝑝𝑖−1(⋅)
represents upsampling the feature size to match 𝑆𝑒𝑔𝑖−1 through bi-
linear interpolation; 𝐶𝑜𝑛𝑣3×3 represent 3 × 3 convolutions; 𝑀𝑎𝑥𝑐ℎ𝑎𝑛𝑛𝑒𝑙
represents taking the maximum value on the channel dimension. The
obtained 𝑆𝑒𝑔′𝑖−1 will be used for the calculation of new semantic
weights 𝑊𝑖−1 for the next enhancement fusion process.

In water surface images, the classification of regions like sea-sky
lines, water shorelines and adjacent small targets is often ambiguous,
resulting in low confidence in segmenting these areas. Thus, based
on this principle, Eq. (1) calculates semantic weights by subtracting
he segmentation’s confidence score from 1. Higher semantic weights
ndicate regions that are challenging to recognize, and incorporating

these weights into shallow features enables a more concentrated focus
on these areas during fusion. The process of enhanced fusion is sys-
tematically applied from the top of the network to the shallow layer,
facilitating the comprehensive fusion of multi-scale features.

4. Experimental results and analysis

4.1. Implementation details

In this paper, BiSeNetV2 (Yu et al., 2021) is used as a baseline to
carry out the study. To validate the effectiveness of the proposed
method, two classic datasets, MaSTr1478 (Bovcon et al., 2019; Zust and
Kristan, 2022) and LaRS (Žust et al., 2023), were carefully selected for
verification. The MaSTr1478 dataset is a collection of images depicting
coastal scenes and complex navigational scenes. 1034 images in the 
dataset were used for training, and the remaining 444 were used
for testing. Due to incomplete IMU information in the dataset and
to ensure fairness, the IMU information was not used in the model 
training process. The LaRS dataset aims to address the lack of diverse 
datasets in maritime obstacle detection to fully capture the complexity 
of typical maritime environments. In the dataset, 2102 images are used 
for training, while the remaining 701 images are used for testing. The
semantic categories for segmentation are defined as three types: water,
obstacle, and sky.

In this study, AF-BiSeNet is trained using an SGD optimizer with
a batch size of 8 and a learning rate of 0.05. The training process 
was conducted for a total of 200 epochs, and a learning rate decay 
strategy with a factor of 0.9 was used. In terms of the models selected
for comparison, their training parameters are chosen to match those
described in the respective papers as much as possible. All experiments 
were trained on a single NVIDIA A100 GPU and tested on a single
NVIDIA RTX 3060 Ti GPU. The image resolution in the experiments 
is 384 × 512. The loss function uses the commonly employed cross-
entropy loss. Meanwhile, the segmentation loss and the auxiliary loss 
weight coefficients are both set to 1 at each stage. This setting helps
the network generate accurate segmentation results to ensure fusion
accuracy.

4.2. Evaluation metric

For the multiclass semantic segmentation problem, the evaluation
metrics used to assess the performance of the model are Pixel Accuracy
(PA) and Mean Intersection over Union (MIoU) (Long et al., 2015). The
formulas are as follows:

𝑃𝐴 =
∑

𝑖 𝑛𝑖𝑖
∑

𝑖 𝑡𝑖
(3)

𝑚𝐼𝑜𝑈 = 1
𝑛𝑐𝑙𝑠

⋅
∑

𝑖
𝑛𝑖𝑖

𝑡𝑖+
∑

𝑗 𝑛𝑗𝑖−𝑛𝑖𝑖
(4)

In the formula, 𝑛𝑖𝑗 is the number of pixels that predict category i
as category j; 𝑛 indicates the number of target categories; 𝑡 =

∑

𝑛
𝑐𝑙𝑠 𝑖 𝑗 𝑖𝑗
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Table 1
Discussion of experiments on the detail branch. The term ‘‘Baseline’’ represents
BiSeNetV2. Group 1 represents the segmentation accuracy of EFRM using different
pooling dimensions, denoted as n. Group 2 represents ablation experiments on the
detail branch. (1) denotes the EFRM with pooling dimension 2, and (2) denotes the
addition of the convolutional reparameterization method.

Method IoU (%)

Obstacle Water

n

Group 1

1 90.16 97.91
2 90.44 98.09
3 90.14 98.00
4 90.01 97.95
8 89.92 97.93

Group 2

Baseline 89.79 97.85
Baseline +(1) 90.44 98.09
Baseline +(1)+(2) 90.55 98.10

represents the total number of pixels in the ground truth for the target 
ategory i.

PA and MIoU primarily evaluate the accuracy of image segmen-
ation. However, in the context of water surface scenes, achieving 

precise segmentation of obstacles may not significantly improve these
metrics due to their limited proportion within the image. Therefore,
this paper also employs the maritime obstacle detection benchmark
MODS (Bovcon et al., 2021) to evaluate the model’s performance.
The precision of water surface boundary lines evaluated through mean
square error, while obstacle detection is measured by precision (Pr) and
recall (Re), as well as the F1 score, which represents the harmonic mean
of the two.

4.3. Quantitative and qualitative results

In this section, a series of experiments is conducted on naviga-
tion scenario datasets to evaluate the effectiveness of the proposed
methodologies. The intricate appearance and diverse distribution of
obstacles, coupled with their relatively small proportion within water
surface images, make obstacle segmentation accuracy crucial in reflect-
ing the model’s performance. If not otherwise specified, the following 
experimental results are based on the MaSTr1478 dataset.

4.3.1. Discussion of experiments on the detail branch
In order to impress our EFRM, we demonstrate the effect of pool-

ng dimension n on model performance in Group 1 of Table 1. The
esults indicate that utilizing different pooling dimensions all leads 
o improved segmentation accuracy compared to the baseline model.
urthermore, it can be noted that as the pooling dimension n increases, 
he IoU accuracy of obstacle and water surface segmentation initially 
ncreases and then decreases. The rationale behind this phenomenon 
ies in the positive correlation between dimensionality and the capacity
f feature vectors to effectively represent crucial information, leading to
mprovements in segmentation accuracy with the integration of EFRM.
owever, as the dimension continues to increase, the optimization
ifficulty will also escalate because of the growing volume of data,
nd the compressed and encoded vectors become more susceptible to
oise. Consequently, the overall accuracy tends to exhibit an initial
ise followed by a decline. The experimental results indicate that in 
avigation scenarios, setting the pooling dimension n of EFRM to 2 can
ptimally capture the primary information of features in a single direc-

tion. Furthermore, as evidenced by the experimental results of different
attention modules in Table 2, our proposed EFRM demonstrates greater
competitiveness in enhancing segmentation accuracy.

The incorporation of the convolutional reparameterization method
contributes to an improvement in segmentation accuracy, as shown
n Group 2 of Table 1. This indicates that adding a higher number

of reparameterizable convolutions during training effectively enhances

the capability of the detail branch to extract local features.
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Fig. 7. The features are represented by calculating the average of multiple channels. Observing the features at different stages reveals that the detail branch extracts more
igh-frequency information, but fewer regions are activated. Conversely, the semantic branch exhibits a heightened feature response, yet its capacity for localization is limited, and
he extracted local features are sketchy. After the proposed BRA module aggregates the information, the features not only preserve the detailed information but also demonstrate
n enhanced overall feature response.
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Table 2
The comparative experimental results of integrating different modules independently
into the baseline, which represents BiSeNetV2. The attention module is applied to the
detail branch, the feature aggregation method is added to the final stage of the baseline,
and the multi-scale fusion method integrates features from three stages.

Method Module IoU (%)

Obstacle Water

Attention mechanism
89.89 97.94
89.84 97.87

CA (Hou et al., 2021) CFRM 
(Tsai and Tseng, 2023) 
Ours EFRM 90.44 98.09

Feature aggregation
89.79 97.85
89.79 97.87

BGA (Yu et al., 2021) 
FFM (Yu et al., 2018) 
Ours BRA 90.35 97.96

Multi-scale fusion 90.46 97.96RegSeg fusion (Chen et al., 2017b) 
Ours C-TEF 90.76 98.02

4.3.2. Comparative experiments of different aggregation and fusion meth-
ods

To demonstrate the effectiveness of the proposed BRA module and
C-TEF method, we conducted comparative experiments with existing

ethods on the baseline model. The IoU results of different feature
ggregation modules are presented in the ‘‘Feature aggregation’’ group
n Table 2, with FFM serving as a commonly used in contemporary
ater surface semantic segmentation models. The findings indicate that

he BRA module in this study outperforms other methods by 0.56%
in terms of obstacle IoU accuracy. This indicates that the aggregated
features of the BRA module contribute more effectively to the accuracy
f segmentation. Additionally, Fig. 7 illustrates the disparities before
nd after the aggregation of dual branch features in the BRA module 

at different network stages. In summary, the features generated by
the BRA module adeptly preserve local information, such as water
surface boundaries and obstacle textures, while utilizing the advanced
semantics of semantic branches to activate more regions.
The experimental results of the ‘‘Multi-scale fusion’’ group in Table 2
indicate that our proposed cascade-enhanced fusion method is more
effective in improving segmentation accuracy when utilizing features
with channels only equal to the number of categories, compared to
he RegSeg decoding method. Furthermore, the computed semantic
eights in Fig. 6 are visualized for further clarification. As shown in
ig. 8, the water-shore boundaries, sky-shore boundaries, and regions
f small targets in the input images are all marked. It is evident that the
eight maps exhibit brightness at these marked locations, indicating

hat semantic weights assign higher values to these areas, thereby
lacing greater emphasis on challenging boundaries and small target
egions during the fusion process.

.3.3. Ablation study of AF-BiSeNet
Table 3 presents the ablation study results for the proposed AF-

iSeNet, with BiSeNetV2 (Yu et al., 2021) as the baseline. The study
nvestigates three innovative research aspects: semantic branch de-
ign (1), detail branch design (2), and the proposed BRA and C-TEF
odules (3). Experimental findings indicate that, compared to the

aseline, the obstacle IoU accuracy improves by 0.73% and 0.88% after
ystematically incorporating the semantic and detail branch design.
hrough multiple experimental validations, we found that setting the
ilation rates of the three DGEs in the semantic branch to 4, 4, and
, respectively, achieves an optimal balance between model accuracy
nd real-time performance. The dilation rate for the last DGE stage
as set to 2 because increasing the dilation rate for deeper DGEs
id not significantly enhance accuracy. This could be attributed to
he fact that, at the same dilation rate, convolutional kernels capture
ore pronounced discrepancies in feature information across different
ositions for deeper and smaller-scale feature maps. Dilated convo-
utions encounter challenges in capturing pixel relationships across
istant spatial distances in navigation scenarios, resulting in minimal
mprovements or even potential declines in segmentation precision.
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Fig. 8. The visualization of navigation scenario images paired with their corresponding C-TEF semantic weight 𝑊1, as shown in Fig. 6. In this visualization, the red dots denote
boundaries with increased weight values, while red dashed lines delineate areas with small water surface targets. It is observed that, in various scenarios, elevated weights are
not only assigned to boundaries but also to regions with small water surface targets, demonstrating a heightened attention of the semantic weights on these challenging areas for
classification purposes.
Table 3
Baseline refers to BiSeNetV2 (Yu et al., 2021). (1) denotes the semantic branch design in 3.1 of this paper. Through 
experimental validation, setting the dilation rates of the three DGEs in the model to 4, 4, and 2, respectively, has proven to 
significantly enhance accuracy; (2) denotes the detail branching design; (3) denotes the experimental results with the addition 
of the BRA module of 3.2 and the C-TEF method of 3.3.
Method (1) (2) (3) IoU (%) MIoU (%) PA (%) Params (M)

Obstacle Water Sky

Baseline 89.79 97.85 98.64 95.42 98.53 2.16
Method 1

√

90.52 97.98 98.75 95.75 98.63 1.89
Method 2

√ √

90.67 98.01 98.75 95.81 98.65 2.18
AF-BiSeNet

√ √ √

91.14 98.13 98.79 96.02 98.72 2.13
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Upon implementing the BRA aggregation module and C-TEF method
roposed in this study, the obstacle IoU improves by 1.35%. Fur-
hermore, due to the adoption of group convolution in DGE, and the
djustment of the features in the first stage of the detail branch to
atch those of the corresponding features of the semantic branch in 

erms of channel dimensions, it can be observed that the improvements
ade to the detail and semantic branches do not introduce excessive
arameters. Importantly, due to the extremely lightweight nature of
oth the BRA and C-TEF modules, the parameter count of AF-BiSeNet 
s even reduced compared to the baseline model. In summary, our pro-
osed approach significantly improves obstacle segmentation accuracy

while maintaining high accuracy in water surface segmentation, and
also reduces the parameter count of the model.

4.3.4. Comparative experiments of different model
In this section, the proposed AF-BiSeNet will be compared on vari-

ous benchmarks with recent semantic segmentation models tailored for
navigation scenarios, as well as models designed for lightweight and 
real-time applications.

Evaluation on the MaSTr1478 and LaRS datasets. The training

details of the dataset are provided in Section 4.1. Table 4 demonstrates

9 
the comparison of the models on different datasets, with AF-BiSeNet
chieving the highest accuracy in segmentation metrics. Notably, in
erms of the crucial obstacle IoU metrics, AF-BiSeNet outperforms

ODIS and WaSR by 2.23% and 2.54% respectively on the MaSTr1478 
ataset. On the LaRS dataset, it exceeds WODIS and WaSR by margins 
f 2.57% and 1.69%, respectively. This indicates that the research
resented in this paper can achieve superior accuracy compared to
xisting advanced maritime segmentation models. Furthermore, a com-
arison with recent lightweight and real-time models demonstrates
hat AF-BiSeNet exhibits strong competitiveness on navigation scenario
atasets. The qualitative analysis of the segmentation results is shown
n Fig. 9.
Evaluation on the MODS dataset. The improvement in segmen-

ation metrics solely signifies a more accurate comprehension of the
ntire image, while the capability to precisely detect obstacles within
he navigable range is essential for the safe navigation of smart ships.
hus, to further demonstrate the superior precision in obstacle detec-
ion and generalization performance of the proposed AF-BiSeNet, we
ssessed multiple models using 2169 images from the MODS dataset. 

It is worth emphasizing that the models were exclusively trained on



Fig. 9. Qualitative comparison of segmentation results. Mis-segmented regions are marked by red dashed lines. The qualitative results demonstrate that AF-BiSeNet significantly
improves the segmentation of flashing and small targets, and the segmentation of water surface boundaries is more accurate compared to other models.
 

 

 
 
 

 

 

 

Table 4
The proposed AF-BiSeNet is compared with other models. Among them, WODIS, WaSR,
and eWaSR are all advanced water surface semantic segmentation models in recent
years. The remaining models represent the latest research in lightweight and real-time
semantic segmentation.

Model MaSTr1478 LaRS

IoU (%) MIoU (%) IoU (%) MIoU (%)

Obstacle Water Obstacle Water

WODIS 88.91 97.49 95.01 91.65 97.31 95.70
WaSR 88.60 97.25 94.88 92.53 97.48 96.10
eWaSR 88.18 97.16 94.66 91.76 97.10 95.74
RegSeg 86.98 96.78 94.12 92.20 97.33 95.98
STDC1 88.65 97.68 94.92 91.76 97.38 95.76
STDC2 88.11 97.49 94.66 91.37 97.17 95.56
LETNet 88.87 97.52 95.01 91.23 97.04 95.51
RTFormer 89.59 97.72 95.33 93.63 98.08 96.70
PIDNet 89.48 97.64 95.26 93.83 98.16 96.80
Ours 91.14 98.13 96.02 94.22 98.21 97.02

the MaSTr1478 dataset, and none of the images used for evaluation in
MODS were included in the training data.

According to the results presented in Table 5, our AF-BiSeNet
accomplishes the most accurate detection of water surface bound-
aries. Compared to maritime semantic segmentation models such as
WODIS, WaSR, and eWaSR, our AF-BiSeNet achieves approximately a
10% increase in global precision while maintaining a higher global
recall rate. Moreover, within a hazardous navigational range of 15 
m, our AF-BiSeNet attains a recall rate of 96.8%, significantly en-
hancing ship navigation safety. Besides, AF-BiSeNet strikes the optimal
balance between accuracy, parameter efficiency, and real-time perfor-
mance among recent studies on lightweight and real-time semantic
segmentation. For example, compared to STDC1 and STDC2, although 
they are close in precision and offer better real-time performance,
our AF-BiSeNet exhibits approximately 10% higher global recall rate. 

Compared to the lighter LETNet, our approach demonstrates significant
Table 5
The performance of AF-BiSeNet was compared with other models on the MODS dataset.
The performance within the hazardous zones (i.e., the water surface areas within 15
meters of the vessels) is presented in parentheses. 𝜇R denotes the water edge detection
robustness, which is calculated based on the water edge labels. Pr and Re denote the
precision and recall of obstacle detection, and F1 is the reconciled value of both.

Model 𝜇R (%) Pr (%) Re (%) F1 (%) Params (M) Times (s)

WODIS 94.1 81.7(74.1) 89.1(93.2) 85.3(82.6) 49.10 0.020
WaSR 95.3 81.4(46.2) 90.2(89.7) 85.6(60.9) 52.47 0.066
eWaSR 95.4 82.4(54.4) 90.0(89.8) 86.0(67.7) 60.24 0.013

RegSeg 92.8 85.8(69.4) 85.3(86.2) 85.5(76.9) 3.33 0.019
STDC1 94.5 88.9(78.1) 82.9(89.2) 85.8(83.3) 5.32 0.006
STDC2 94.4 90.9(80.5) 81.1(89.2) 85.7(84.6) 9.35 0.012
LETNet 95.6 87.5(71.2) 86.8(92.8) 87.1(80.6) 0.95 0.055
RTFormer 94.5 90.8(69.7) 86.6(93.1) 88.6(79.7) 18.69 0.012
PIDNet 95.5 90.0(68.9) 91.7(96.1) 90.8(80.3) 28.76 0.015
Ours 96.4 91.6(79.1) 91.8(96.8) 91.7(87.1) 2.13 0.016

advantages in both detection metrics and real-time performance. While
RTFormer and PIDNet are comparable to AF-BiSeNet in terms of global
F1 score, their accuracy within a 15-meter range is approximately 7%
lower. Additionally, their parameter counts are 8.77 and 13.50 times
higher than our approach, respectively. Therefore, it is evident that
our AF-BiSeNet outperforms other models in obstacle segmentation
accuracy and generalization capability across multiple navigation sce-
narios. Furthermore, it maintains high levels of lightweight design and
real-time inference performance.

5. Conclusion

In the realm of autonomous navigation for smart ships, effec-
tively detecting obstacles in the scene and delineating navigable areas
through deep learning semantic segmentation is an essential issue.
However, the intricate nature of water surfaces complicates feature
extraction, and excessive downsampling leads to the loss of essential
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features and reduces localization accuracy. Additionally, lightweight
design is a critical factor for deploying and applying models on ships.
In this paper, we propose a lightweight semantic segmentation network
to enhance water surface obstacle detection. Unlike previous studies,
we utilize a dual-branch architecture that incorporates lightweight
feature aggregation and multi-scale fusion methods to enhance ob-
stacle detection accuracy and generalization performance with fewer
parameters.

The core factor that enables the superiority of the AF-BiSeNet model
over existing models is the design of its novel modules. The EFRM,
utilized in the detail branch, has the capacity to preserve and encode
crucial information while filtering out high-frequency disturbances. The
DGE layer enhances the receptive field to enable the semantic branch
to more effectively capture relationships between objects on the water
surface. Additionally, the BRA module can comprehensively guide the
feature response of dual branches in both channel and spatial dimen-
sions, leading to a more accurate integration of detailed and semantic
information. Furthermore, the proposed C-TEF achieves lightweight
multi-scale fusion by reducing channels, and it also leverages semantic
properties in segmentation to ensure accurate fusion.

Experimental results demonstrate AF-BiSeNet’s exceptional preci-
sion and generalization capabilities compared to advanced maritime se-
mantic segmentation models, which can enhance the navigation safety
of smart ships. Furthermore, in the realm of lightweight and real-time
research, it strikes the optimal balance between accuracy, parameter
efficiency, and real-time performance, making it more accessible and
adaptable within the constraints of limited computing resources on
ships. Although experiments have demonstrated the comprehensive
competitiveness of our research, there is still potential for further
improvement in segmentation accuracy and real-time performance of
the model. Furthermore, the challenge of achieving high generalization
performance across a wider range of navigation scenarios persists due
to constraints in data availability, underscoring the need for continued
investigation in this area.
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