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Abstract: We prove that the probability of “A OR B”, where A and B are events or hypotheses that are 

recursively dependent (OR is the logico-probabilistic operator) is given by a “Hyperbolic Sum Rule” (HSR) 

relation isomorphic to the hyperbolic-tangent double-angle formula, and that this HSR is Maximum Entropy 

(MaxEnt).  The possibility of recursive probabilities is excluded by the “Conventional Sum Rule” (CSR) which 

we also prove MaxEnt (within its narrower domain of applicability).  The concatenation property of the HSR 

is exploited to enable analytical, consistent and scalable calculations for multiple recursive hypotheses: such 

calculations are not conveniently available for the CSR, and are also intrinsic to current artificial intelligence 

and machine learning architectures presently considered intractable to analytical study and methodological 

validation. We also show that it is as reasonable to state that “probability is physical” (it is not merely a 

mathematical construct) as it is to state that “information is physical” (now recognised as a truism of 

communications network engineering).  We relate this treatment to the physics of Quantitative Geometrical 

Thermodynamics which is defined in complex hyperbolic (Minkowski) spacetime, and show how the HSR is 

isomorphic to other physical quantities including certain components important for digital signal processing. 

Keywords: QGT; entropy; Venn diagram; Bayes’ Theorem; AI; ML; DSP 

 

1. Introduction  

1.1. Probability in Science 

Probability has always been extraordinarily difficult to tie down.  Edwin Jaynes made 

fundamental contributions to the subject, and in his magisterial monograph (published 

posthumously: “Probability Theory: The Logic of Science”i) spends two chapters on its principles and 

elementary applications, commenting on its ‘weird’ and ‘complicated’ history.  Indeed, Jaynes’ 

motivation was aimed at helping the interested reader who already has “a previous acquaintance with 

probability and statistics” to essentially “unlearn” much of what they may have previously learned!  

The ubiquity (and longevity) of fallacies in the use of statistics indicates its difficulty (on the 

misuse of the “p-value” see for example Goodman 2008ii and Halsey 2019iii;  on the persistence of 

fallacies see Smaldino & McElreath 2016iv).  A significant part of the problem may be related to the 

fact that the “probability” of an event is apparently not a property solely of “external reality”: since 

there must be someone assessing the probability, it must be a function of not only what information 

already exists about the event but also who knows.  The fact that our estimates of the probability of 

some event invariably involve our prior knowledge, combined with the fact that all knowledge 

ultimately involves the properties of recursive statements (by Gödel’s Theoremv; this point has 

recently been elaborated by Jeynes et al. vi) mean that some part of this difficulty must be due to the 

neglecting, in current (simplified) treatments, of recursive dependencies (such as the “Chicken and 

Egg” problem, on which see §2.3 below). 

In 1946 R.T.Cox observed,  acutely,  that the concept of probability mixes two separate concepts 

(“the idea of frequency in an ensemble and the idea of reasonable expectation”vii) which are now represented 
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by two schools usually called the “frequentists” and the “Bayesians”.  We point out that Enßlin et al. 

viii comment that, “The different views on probabilities of frequentists and Bayesians are addressed by … Allen 

Caldwellix [who] builds a bridge between these antagonistic camps by explaining frequentists’ constructions in 

a Bayesian language”, and we will assume that Caldwell is right and therefore that we can ignore the 

philosophical distinction between the frequentists and the Bayesians.  

Building on Cox’s fundamental work we will here derive a rigorous treatment of recursive 

probability which is of general applicability.  In particular, we will treat probability as a physical 

quantity grounded in hyperbolic Minkowski spacetime, and obeying all the appropriate physical 

laws.  The close relation of probability to the new Quantitative Geometrical Thermodynamicsx 

(QGT: this constructs the quantity info-entropy by treating information and entropy as Hodge duals) is 

due to the fact that the (hyperbolic) entropic velocity q′≡dq/dx in QGT is dimensionless and has 

properties akin to a probability (0≤q′≤1); noting that q′ is isomorphic to the more familiar kinematic 

velocity ẋ ≡ dx/dt (0≤ ẋ ≤c, where c is the speed of light) in hyperbolic (Minkowski) spacetime (see 

ref.[10]), and which also obeys the well-known velocity addition theorem of Special Relativity.   

The treatment of probability as a physical quantity (and obeying physical laws) is as fundamental 

a concept as the well-known statement by Rolf Landauer that “Information is Physical”xi.  

We are used to treating both probability and information anthropomorphically (that is, depending 

on what you or I might be expected to know): here we will establish an impersonal sense for 

probability, in the same way that Landauer insisted on the (impersonal) Shannon entropy sense of his 

Information.  Note that each of information and entropy both use and require probabilistic quantities 

in their fundamental definitions; and also note that the consequences of treating information as being 

a quantity as physical as is energy (for example) has led to important insights, and not only into basic 

engineering problems of the global internet (for an example of which see Parker et al. 2015xii).  We 

expect similar advances to follow from recognising probability as also being an equally physical 

quantity. 

The relationship between probability and the quantification of information using the Shannon 

entropy is well understood mathematically, but its interpretation as a physical theory has been 

convoluted.  Although the Shannon entropy was quickly recognised as important, Edwin Jaynes’ 

formulation of Maximum Entropy (MaxEnt) theory, where the Shannon metric plays a key role, was 

initially controversial and took some decades to achieve acceptance (see Jaynes’ 1978 summaryxiii).  

However, MaxEnt as a powerful scientific and engineering tool has helped considerably to underpin 

the physicality of information, and therefore also acts as a support to the underlying assertion of this 

paper (paraphrasing Landauer) that “Probability is Physical”.  We will also explore the implications 

of this assertion. 

Since the concept of MaxEnt will be centrally important in this work, it is worth adding Jaynes’ 

authoritative definition (1982)xiv: “The MAXENT principle, stated most briefly, is: when we make inferences 

based on incomplete information, we should draw them from that probability distribution that has the maximum 

entropy permitted by the information we do have”. 

1.2. Probability is Physical 

Torsten Enßlin’s treatmentxv of information as a field is interesting in this context:  he considers 

that a “physical field has an infinite number of degrees of freedom since it has a field value at each 

location of a continuous space” where he is specifically considering imaging problems of 

astrophysical datasets.  Enßlin et al. [ref.8] treat information informally as an anthropomorphic 

concept:  to the question, “What is information?” they answer “Anything that changes our minds 

and states of thinking!”  But here we will treat information (and probability) as physical quantities, 

not as anthropomorphic concepts; and especially noting that infinite quantities are inimical to 

physical phenomena.  In particular, in our QGT treatment, information is formally defined as a 

physical quantity (albeit in terms making full use of the properties of analytical continuation, which 

is itself closely related to fundamental physical precepts such as causalityxvi and square-integrability 

ensuring finite physical quantitiesxvii), so that the number of degrees of freedom are finite and may 

be very small, as is observed for the geometrical entropy of isotopes of the helium nucleusxviii.  Such 
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results for information were already pointed out by Parker & Walker (2004)xix who investigated the 

residues of a meromorphic function (that is, a function analytic nearly everywhere) due to the 

presence of isolated singularities in the complex plane (singularities which are entirely analogous to 

particles in their behaviour); and show that the information (entropy) of such a function is simply 

given by the sum of the residues.   

This is immediately applicable to the Schrödinger equation: it is interesting that we will conclude 

(Eq.7) that the appropriate Sum Rule for recursive probabilities has a hyperbolic form,  and we will 

draw out the relation of this to the (hyperbolic) entropic velocities in the QGT formalismxx,  in which 

the entropic Uncertainty Principle and entropic isomorphs of the Schrödinger equation may be derived 

from the entropic Liouville Theorem; all based on the Boltzmann constant as the relevant quantum of 

entropy.  Of course, QGT is constructed in a hyperbolic (complex) Minkowski 4-space (see §18.4 in 

Roger Penrose’s “Road to Reality”xxi; as another pertinent example, Maxwell’s electro-magnetic field 

is a hyperbolic version of the Cauchy-Riemann Equations: see Courant & Hilbertxxii vol.II ch.III §2 

Eq.8 passim). 

The ramifications of this are very wide.  Parker & Jeynes [ref.10] have already shown the 

relevance of QGT to the stability and structure of spiral galaxies (using the properties of black holes), 

and also that entropy production (dS/dt) is conserved even in relativistic Maximum Entropy systemsxxiii.   

These issues up to now have been treated as problems in quantum gravity,  and Matt Visserxxiv very 

helpfully reviews conservative entropic forces (in Euclidean space and non-relativistically, although 

he comments that representing general relativity entropically should be possible).  Note also that 

Visser suggests that the negative entropies that appear in his treatment can be regarded as information, 

citing Brillouin’s idea of “negentropy” which Parker & Jeynes [ref.10] have shown to be a subtle 

misapprehension of information and entropy (which are actually Hodge duals). 

We believe that much progress may be made by using the coherent formalism of QGT (defined 

in hyperbolic space) which has been shown to apply to both quantum mechanical and gravitational 

systems (that is,  at all scales from sub-atomic to cosmic:  see [refs.18,10]),  and since quantum 

mechanics is built on probabilities,  the demonstration here that the general recursive sum rule for 

probabilities is hyperbolic is a significant conceptual regularisation.  This conclusion is reinforced 

by Knuth’s demonstrationxxv that: “The sum and product rules, which are familiar from, but not unique to, 

probability theory, arise from the fact that logical statements form a distributive (Boolean) lattice, which exhibits 

the requisite symmetries”.  Moreover, Jaeger xxvi  reviews a variety of treatments,  some of which 

involve theories of generalized probability,  aimed at deriving quantum mechanics from 

information theory. 

The basic isomorphism for the hyperbolic sum rule for probabilities (that we will prove, see Eq.7) 

is the (purely mathematical) double-angle identity for the hyperbolic tangent function: 

  tanh(a+b) = {tanha + tanhb}/{1+ tanha·tanhb} (1a) 

Another interesting and very simple isomorphism is the well-known relativistic sum rule for 

velocities {u, v}, given by Jacksonxxvii in his well-known textbook (in the context of a discussion of 

aberration and the Fizeau experiment; §11.4, Eq.11.28):   

w ≡ Sum(u, v)  

w/c = {u/c + v/c}/{1 + uv/c2} (1b) 

where c is the speed of light.  Jackson comments that if u = c then also w = c,  which is an “explicit 

statement of Einstein’s second postulate” (c is a constant).   

This latter (Eq.1b) is clearly physical (since c is involved) where the former (Eq.1a) is a 

mathematical identity.  Note also that in optics the basic formula for the two-layer Fabry-Perot 

cavity (etalon) is well-knownxxviii:   

r3 = {r2 + r1}/{1 + r2r1 1c

 ≡ exp(-2ikz) 

where the overall scattering (reflectivity) coefficient r3 is due to a pair of sequential Fresnel reflections 

(r1, r2) separated by a distance z for a light ray of propagation constant k; and where we note that 

light is the physical phenomenon par excellence exhibiting the physics of Special Relativity within the 
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context of hyperbolic (Minkowski) spacetime.  Corzine et al.xxix demonstrate that this formula is 

closely related to the hyperbolic addition rule (Eq.1a) specifically by using a hyperbolic tangent 

substitution which dramatically simplifies the use of the formula in real (multilayer) cases – see 

Appendix F for additional and related discussion. 

This approach has recently been supported in an interesting way by Skilling & Knuthxxx, who 

conclude: “it must be acknowledged, quantum theory works.  So does probability.  And the two are entirely 

mutually consistent.”  Their argument shows logical reasons why probability should be regarded as 

physical. 

Skilling & Knuth claim not to be interested (for these purposes) in the distinction between 

ontology and epistemology.  They say (ibid. §3.5):   

The ontology–epistemology divide is, for quantitation at least, a distinction without a difference.  

A bit of information carries no flag to inform us whether it was assigned by a conscious agent or by 

a mechanical switch.  Our job in science is to make sense of our observations, not to indulge in empty 

disputation between isomorphic views.  Our goal here is derivation of a calculus fit for general 

purpose.  Ontology and epistemology share the same symmetries, the same rules, and the same 

assignments.  So they share a common calculus. 

which is suggestive of Karen Barad’s (2007xxxi) insistence that the distinction between ontology 

and epistemology is not a real one, and therefore speaking strictly we should refer to “onto-

epistemology” (ibid. p.43).  Skilling & Knuth also say (ibid. §1): 

But, if our object can perturb a partner object, then by symmetry the partner object can also 

perturb our object.  We could assign either role to either. 

Our calculus, whatever it is, must be capable of representing such interactions … This insight 

that interactions are basic is the source of “quantum-ness.” 

Again, this recalls Barad’s thesis that “the primary ontological unit is the phenomenon” (ibid. p.333).  

However, when Skilling & Knuth (ibid. §4) say, “We start with an identifiable object”,  this is directly 

contradicted by Barad,  who asserts that “objects” do not have “an inherent ontological separability” 

(ibid. p.340);  that is,  strictly speaking,  identifiable objects do not actually exist per se (since 

everything is entangled with everything else).  But Skilling & Knuth are not aiming at philosophical 

precision, only at a demonstrable computability; for these purposes such fine distinctions do not 

matter.  They are right to avoid metaphysical considerations in scientific work: although when wider 

social implications are important it may be necessary to consider the metaphysics (see for example 

[ref.6]).  

However, it turns out that the inescapable human dimension appears to be especially 

pronounced in probability, in the sense that the very idea of a probability entails one’s personal state 

of knowledge or ignorance (and Michael Polanyi insisted long ago that all knowledge is necessarily 

personal xxxii ).  Howson & Urbach xxxiii  have carefully explained why, although Bayesian (and 

Maximum Entropy) methods are fully (and helpfully) rational: “there seems to be no way of ‘objectively’ 

defining prior probabilities … this is really no weakness [since] it allows expert opinion due weight, and is a 

candid admission of the personal element which is there in all scientific work”.  Assessing probabilities 

necessarily entails assessing uncertainties, and this must always involve some value judgments: 

although we may do our best to speak rationally about such judgments, it cannot be excluded that 

different people will (rationally) come to different conclusions.   

Note that although scientists have a duty to argue rationally, non-scientists also normally behave 

rationally.  Rationality is a property of humans, and only a rather small subset of humans are 

scientists. 

1.3. Maximum Entropy 

It is necessary to make a few initial simple remarks about Maximum Entropy (MaxEnt) methods, 

to clarify the discussion.  Jaynes said in 1957xxxiv: “The guiding principle is that the probability distribution 

over microscopic states which has maximum entropy subject to whatever is known, provides the most unbiased 

representation of our knowledge of the state of the system.  The maximum-entropy distribution is the broadest 

one compatible with the given information; it assigns positive weight to every possibility that is not ruled out 
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by the initial data.” In our derivation here of the Hyperbolic Sum Rule we emphasise that the proper 

application of MaxEnt methods precludes the surreptitious introduction of tacit assumptions 

(“knowledge”).  That is, all the “priors” (prior knowledge that conditions the data) must be stated 

explicitly (and our ignorance implies that some priors must sometimes be estimated, which may 

involve personal value judgments). 

A fully Bayesian analysis requires that all prior knowledge is explicitly stated, including the 

“knowledge” that there is no knowledge available, in which case an “unbiassed” estimate is required.  

This is usually stated in terms of the “Principle of Indifference” (PI), but unfortunately there are a set 

of (“Bertrand”) paradoxes which appear to invalidate the PI.  But Parker & Jeynesxxxv have resolved 

these paradoxes using QGT methods by supplying the missing prior information (in the form of the 

scale invariance condition). 

It is essential to handle the “priors” correctly: our Eq.6 below (which is for the recursive case) 

asserts a hyperbolic relation for the compound “p(A OR B | C)”  where in general A may depend both 

on prior conditions C, and also on B (that is, involving the probabilities of A|BC and B|AC).  But if 

{A,B} are recursively dependent, then p(A|BC) simplifies to p(A|C)  (because, for recursive {A,B}, 

p(A|B)= p(A) since B is ultimately dependent on A; and similarly, p(B|A)= p(B) since A is ultimately 

dependent on B) giving the general relation describing the “Hyperbolic Sum Rule”, HSR (Eq.7).   

In the Appendices we explore the Maximum Entropy (MaxEnt) properties of the HSR, including 

a proof that it really is MaxEnt.  We first show how to impose the MaxEnt criterion (Appendix A) 

using the Partition Function description, and then show (Appendix B) how other simple sum rules 

may be “MaxEnt” but are otherwise inadmissible.  We prove explicitly that the HSR is MaxEnt 

(Appendix C) and also generalise it for multiple recursive hypotheses (Appendix D).  We show that 

the Conventional Sum Rule (CSR) is also MaxEnt (Appendix E) within its own domain of 

applicability, and we also generalise the CSR for multiple hypotheses.  Both are MaxEnt, that is, 

neither the HSR nor the CSR ‘smuggle’ in inadvertent or implicit assumptions within their specified 

contexts; yet, the HSR encompasses a wider domain of physical application that includes recursion 

between phenomena, whereas the CSR a priori excludes recursion (although there may still be various 

mutual dependencies).  The HSR must also be used where the properties of the recursion are 

unknown; that is to say, a set of phenomena are known to be correlated, but the mechanism (or 

ordering) of causation is not known.  

Finally in Appendix F, we show the immediate relevance of this treatment to digital signal 

processing; in particular the handling of “infinite impulse response” and “finite impulse response” 

filters. 

It is important here to point out that the fact that an entity is Maximum Entropy does not mean 

that the entity has no structure (even though MaxEnt necessarily implies “maximum ignorance”).  

The reality is more nuanced.  For example, we have shown that, at a certain scale, the alpha particle 

is a (MaxEnt) unitary entity (than which exists no simpler) [ref.18].  But of course, at a different scale 

we may see the alpha’s constituent four nucleons (protons and neutrons).   

Also, being MaxEnt does not preclude change:  for example, free neutrons decay (with a half-

life calculated ab initio from QGT by Parker & Jeynes 2023xxxvi).  The most extreme known entity that 

is MaxEnt is the black hole, and black holes necessarily grow (proved by Parker & Jeynes in 2021 

[ref.23] and confirmed in 2023xxxvii).  Nor does the fact that some entities are unconditionally stable 

mean that the Second Law doesn’t apply to them.  On the contrary!  The matter radius of the alpha 

is correctly calculated ab initio from QGT [ref.18]. 

The physical principle of Maximum Entropy embodies the (physical) Second Law of 

Thermodynamics.  Both the CSR and the HSR are MaxEnt, and therefore each also embodies 

important aspects of the Second Law.  Moreover, the probabilities calculated by either Rule (each with 

its own particular domain of applicability) refer to the probability either of the events themselves or 

of our reasonable expectations; these are both physical things since both we and they are physical.  

Either way, our conclusion is underlined that Probability is Physical. 

2. Analysis 
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2.1. The Conventional Sum Rule (I) 

Consider p(A) which is a representation either of “the probability of event A occurring” or, nearly 

equivalently (logically speaking), “the probability of hypothesis A being true”.  Of course, hypotheses 

and events are entirely different things, but for convenience we will here usually speak of “events” 

without any loss of generality (ignoring the philosophical frequentist/Bayesian distinction, see §1.1).  

The probability that A OR B will happen is conventionally given (by the “Conventional Sum 

Rule”, CSR) as the sum of the separate probabilities that A and B, respectively, will each happen, 

minus the probability that both of {A,B} will happen together (in general {A,B} are not independent):   

p(A OR B) = p(A) + p(B) – p(A AND B) (2a) 

This is simply extended to the conditional case treating the probability of A OR B given some 

conditionality C: 

p(A OR B | C) = p(A | C) + p(B | C) – p(AB | C) (2b) 

where A and B are two events, conditional either on each other or some other event(s); in other words, 

in this case C represents all the possible conditionalities, including p(A|B) etc.   Eq.2b represents the 

CSR.  But if {A,B} are recursively dependent (the “chicken and egg” scenario) Eq.2b is invalid since 

C either cannot be specified explicitly or cannot be specified at all. 

Intrinsic to Eqs.2a&b is also the corresponding “Product Rule”, more commonly known as 

Bayes’ Theorem: 

p(A AND B | C)   p(AB | C)  

  = p(A | BC) p(B | C)  

  = p(B | AC) p(A | C) (2c) 

Here, Bayes’ Theorem appears in the latter two expressions of Eq.2c, which yield the same result 

since Bayes’ Theorem is commutative: p(AB)= p(BA).  In particular, Bayes’ Theorem represents a 

choice as to which of the possible conditionalities should take priority.  The logical AND function can 

be calculated in different ways according to which of the conditionalities is considered to be prior.   

We emphasise: although we seek here an alternative form of the Sum Rule (Eq.2b) that takes 

recursion into account, Bayes’ Theorem (Eq.2c) remains valid. 

Such recursive issues arise when we start considering which of the conditionalities is prior (an 

issue of causation): there appears to be a temporal dependence between the two conditionalities since 

one must surely occur earlier in time than the other?  But note that Special Relativity teaches us that 

if two spatially-separated events are causally connected (that is, they lie within each other’s light cone) 

then temporal priority is always preserved whatever the frame of reference (FoR). However, if the 

events are not causally connected in spacetime then for any FoR where the event of A occurs before 

that of B, another FoR exists where event B occurs before A.  If causal connectedness cannot be 

determined, either due to the events being spacelike separated, or perhaps because no physical 

mechanism can be identified to causally connect the events, then there is an ambiguity as to which of 

the events is prior (and of course, correlation does not imply causation).  

An example of a recursive system is a multilayer etalon represented by Eq.1c. 

2.2. The Venn Diagram 

Jaynes showed that the derivation of the product rule (Eq.2c) from the basic laws of Boolean 

logic is straightforward [ref.1].  However, performing the same derivation for the “Sum Rule” of 

probability is less obvious.  In particular, it is worth noting that Jaynes specifically avoids the use of 

the Venn diagram as a means to justify Eq.2b, preferring to interpret propositions in terms not of sets 

but as probability distributions carrying incomplete information.  It is useful to note in this context 

that there is intense current interest in how to handle incomplete (or erroneous) “information” in a 

formal Bayesian analysis (see for example Zhang et al.xxxviii). 

Jaynes therefore calls the Venn diagram a ‘useful device’ but comments that it can ‘mislead’ [our 

emphasis].  The Venn diagram is good for representing binary logical operations (see Figure 1) but 

in general correctly represents neither temporality (including aspects of causality or recursiveness) 
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nor probability distributions.  We add that it is also not obvious how the Venn diagram (or the CSR 

of Eq.2b) could be extended to include multiple hypotheses and/or conditionalities. 

 

Figure 1. Classical Venn diagram showing the graphical relationship of logical quantities, with the 

overall enclosed (shaded) area representing the Conventional Sum Rule (CSR) for the probability of 

A OR B. 

Jaynes’ derivation [ref.1] of the “Product Rule” (Eq.2c) does not need to involve de Morgan’s 

theorems (which follow from the rules of Boolean logic).  But his derivation of the “Sum Rule” 

(Eq.2b) adopts the original schema of Cox [ref.7] to also define an auxiliary function S so that v ≡ S(u), 

where u ≡ p(A|C) such that v ≡ p(A ̅|C) and shows that: 

S[S(x)] = x  for 0 ≤ x ≤ 1  (3a) 

that is, the function S(x) is self-reciprocal: 

S(x) = S-1(x)   (3b) 

Using this reciprocal property of S to calculate inverse probabilities avoids the problem that 

there is no quotient operator in Boolean logic. 

2.3. Recursion:  Chicken & Egg 

Dependencies can be logical or temporal.  Causality (a temporal dependence) also implies the 

possibility of recursion:  this is clear from the “Chicken & Egg” conundrum, on which see Simmons 

et al.xxxix (who consider whether hummingbirds pollinate lots of species because there are lots of 

hummingbirds or whether there are lots of hummingbirds because there are lots of species to 

pollinate) or Harvey et al.xl (who consider two forms of recursive cyclic network to show how subtle 

recursion relations may be).  The chicken entails a prior egg, which entails a prior chicken …   

Formally:  recursion is present when p(A|B)>0 and p(B|A)>0 both together.  Conversely, 

recursion is not present when C (see Eq.2b) is independent of either A or B.  This is because 

expressions like p(A|C) imply that all dependencies are subsumed in C.  That is, if A depends on B 

then there exists a C that will say this with no loss of generality. 

Here we will informally derive the “Hyperbolic Sum Rule” that we will prove formally in §4.1. 

There is an apparent dilemma (when applying Bayes’ Theorem) of having to make what appears 

to be an arbitrary decision as to which conditionality is the prior.  Indeed, when considering the 

classic “Chicken and Egg” dilemma, having argued in one way, we undergo a Gestalt change and 

suddenly find ourselves equally arguing in the opposite manner!  The recursiveness of this dilemma 

is self-evident; a different prior may be appropriate depending on where the analysis commences.  

Curiously, the case of the two-layer Fabry-Perot cavity (Eq.1c) involves optical events that lie on each 

other’s light cone; that is to say, as a physical phenomenon it is directly on the boundary of being 

causally connected or disconnected.  In this case an intrinsic ambiguity of priority exists.  If either 
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may be prior then neither must be.  That is, for a recursive dependency of {A,B}, p(A|B)=p(A) and by 

symmetry we also must have p(B|A)=p(B). 

In any case, issues of the probability of events and their priority are frequently set within a 

spacetime context, with the associated physical implications. One of the aims of this paper is to 

establish a solution of this dilemma of choice conforming to Special Relativity but still recognisably 

consistent with conventional probability theory.  

Note that even though both expressions p(A OR B | C) and p(A AND B | C) commute for A and B, 

Bayes’ Theorem does distinguish the precedence of the conditionalities associated with the primary 

events. 

Eq.2b can be expressed in one of two ways, according to which of the primary events A and B is 

prior: substituting Eq.2c into Eq.2b we find two choices offering two possibilities for the logical OR 

function: 

p(A OR B) = p(A | C) + p(B | C) – p(A | BC) p(B | C)  

   = p(A | C) + p(B | C) – p(B | AC) p(A | C) (2d) 

Eq.2d may be simplified by noting that the component term of Bayes’ Theorem appearing at the 

end of each CSR expression (each such latter term representing a conditional possibility) can also be 

assigned a probability associated with the truth of that conditionality.  This allows us to informally 

re-write Eq.2d as a single statement, by expanding upon the products from Eq.2c: 

p(A OR B | C) = p(A | C) + p(B | C) – { [p(A | BC) p(B | C)]B + [p(B | AC) p(A | C)]A }        

(4a) 

where the subscripts {A, B} indicate the assumed prior, and the expression in each of the pair of square 

brackets represents the respective Bayes’ Theorem choice.  Eq.4a can be regularised by including the 

probability associated with the prior, that is, now explicitly including a recursive element.  Note, the 

probability p(A|BC) associated with the prior is not the same as the probability of the prior, which we 

may state informally as: p(“A is prior to B”).  Thus, we explicitly include the probabilities associated 

with the priors (removing the subscripts {A,B}).  In effect we now assume the possibility of a ‘prior 

prior’ and the (logical/temporal) ordering of the events {A,B} now also starts to be explicitly taken 

into account: 

p(A OR B | C) = p(A | C) + p(B | C) – { [p(A | BC) p(B | C)] p(B | AC) + [p(B | AC) p(A | C)] p(A | BC) }          

(4b) 

allowing a consistent (and symmetric) simplification which intrinsically includes the possibility 

of recursion: 

p(A OR B | C) = { p(A | C) + p(B | C) } {1– p(A | BC) p(B | AC) } (4c) 

In Eq.4c we have the probability of “A OR B given C“ being {[the probability of A given C] OR [the 

probability of B given C]} reduced by a cross-probability factor F,  where: 

F  – p(A | BC) p(B | AC)  (5a) 

which could be thought to represent a “first level” of dependency,  that is,  the dependence of 

A on B (and vice versa).  But what if we also consider a deeper dependence between these events?  

This would give: 

p(A OR B | C) = {p(A | C) + p(B | C) }{1+ F+ F2+…)} (5b) 

or, continuing to full recursion: 

          �(� OR �|�)

= {�(�|�) + �(�|�)} � {1 + [−�(�|��)�(�|��)]�}

�

���

                         (5c)   

Given that probabilities may not be greater than unity this infinite series can be compactly 

written as: 

�(� OR �|�) =
�(�|�) + �(�|�)

1 + �(�|��)�(�|��)
                                                                                       (6) 
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However, Eq.6 may be simplified since, given that it cannot be determined which of {A,B} is 

prior, we may take p(A|B)=p(A) and p(B|A)=p(B).  Hence:

 

 

�(� OR �|�) =
�(�|�) + �(�|�)

1 + �(�|�)�(�|�)
                                                                                       (7) 

Eq.7 (isomorphic to Eqs.1) states the “Hyperbolic Sum Rule” (HSR) theorem to be proved where 

{A,B} are recursively dependent.  In deriving the form of Eq.7, we asserted that p(A|BC)= p(A|C) and 

p(B|AC)= p(B|C); that is, due to the recursion between events {A, B}, the probability of A becomes 

essentially independent of B, and vice-versa. That is, Eq.6 can be re-expressed in the strictly hyperbolic 

form of Eq.7.  In effect, this assertion (p(A|B)= p(A), etc.) can be justified as the most likely (MaxEnt) 

relationships between the conditional probabilities for A and B when we know a priori that A and B 

have a recursive dependency, but we don’t know the precise (quantitative) relationship between A 

and B. In Appendix C we prove the MaxEnt character of Eq.7.  That is to say, these assertions can 

also be justified by recourse to the Principle of Indifference (PI) and the simplest non-informative prior 

in Bayesian probability (see [refs. 33, 35]). 

Eq.5b expresses the case where the relation between events {A, B} is not recursive but stops at a 

countable depth or iteration: the overt conditionality between them is therefore maintained such that 

p(A|B)≠p(A) and p(B|A)≠p(B).  For example, if one wanted to formalise the psychological aspects of 

Poker one might express a “bluff” as the F term in Eq.5a, a “double-bluff” as the F2 term, and a “triple-

bluff” as the F3 term etc.  But the HSR of Eq.7 expresses the recursion needed for the etalon of Eq.1c 

(for example).  In contrast, it is clear that the CSR of Eq.2b is the truncated HSR case of Eq.6, where 

the CSR a priori ignores recursion and its associated higher-order dependencies (either due to 

specified information, or because their existence is simply not taken into account) and excludes the 

higher-order (logical/temporal) ordering of propositions. In any case, Bayes’ Theorem (the Product 

Rule) remains valid.  

2.4. The Conventional Sum Rule (II) 

Both the HSR and the CSR are MaxEnt in each of their respective domains of applicability 

(proved respectively in Appendices C and E), and we need to know when to use the CSR and when 

the HSR (and why). In particular, the point of this paper is to emphasise the importance of the 

temporal (or logical) ordering of propositions, and therefore the possibility for recursion, which is 

what distinguishes between the CSR and HSR: the CSR doesn’t adequately take the temporal 

ordering of propositions into account, whereas the HSR does.  And, this is particularly evident in 

the Venn diagram of Figure 1 which cannot represent the temporal or logical ordering of the 

propositions. 

As an example, we consider the scenario of a fair coin being tossed twice.  We designate the 

event A as “the first toss gives a head”, and the event B as “the second toss gives a head”, and we 

wish to compute the probability of the first toss or the second toss giving a head.  Such a ‘fair’ coin 

does not have memory (each toss is independent of any others), so that we have p(A) = p(B) = ½.  

Here there is no recursion since p(C|A) = p(C) and p(C|B) = p(C): that is, C is independent of both of 

{A,B}, and therefore we may use the simple form of the CSR (Eq.2a): p(A OR B) = ½ + ½ – ¼ = ¾. 

Clearly, applying the HSR (Eq.7) to get p(A OR B|C) = 4/5 in this context is manifestly false, 

precisely because we already know that there is no recursion present. The difference between the 

hyperbolic (HSR, Eq.7) and conventional (CSR, Eq.2b) sum rules is specifically the prior information 

that must be taken into account to do the calculation. The decisive question is whether or not the 

mutual dependence of {A,B} is recursive. 

There are other simple cases where memory is involved, such that p(A|B) ≠ p(A).  One such case 

is Cox’s [ref.7] example of randomly drawing black or white balls from a bag.  The probability of a 

result is affected by the results of previous draws, but this is a memory effect, not a recursive one; and 

in this context, where the system only iterates based on the forward propagation of a previous state 

(i.e. no feedback), see Appendix F for a discussion of FIR (finite impulse response) filters.  In general, 

if p(A|B) and p(B|A) are expressed in non-recursive form the CSR should be used, but if not then the 

HSR should be used.  The CSR should be used only where recursion can be a priori excluded. 
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3. A general “Hyperbolic Sum Rule” (HSR) 

3.1. Proving the HSR Theorem 

Consider the function : 

Σ(�) =
1 − �

1 + �
                                                                                           (8a)                         

 Σ[Σ(�)] = �, that is:  is self-reciprocal, or Σ(�) = Σ��(�).  It is also doubly differentiable and a 

continuous, monotonically decreasing function: �Σ ��⁄ = −2 (1 + �)�⁄ .  The inspiration for Eq.8a 

comes from Cox’s original equation for S as another self-reciprocal function (see Eqs.3 above) which 

is also doubly differentiable [7]. In Cox’s case, he also considered the situation where S (and x) are 

raised by an integer power m, such that Sm  = 1 − xm for integer m. For even m>0 this can be factored 

into the geometric series: 

 (1 − xm) ≡ (1+x)(1−x+x2−x3+…−xm-1)    (8b) 
with the series in parentheses representing an infinite summation (as m→∞) of the quantity 

(1+x)−1. Note that this treatment is quite general, such that x may be complex.  However, for all m 

(with integer m≥1), we can also write: 

 (1 − xm) ≡ (1−x)(1+x+x2+x3+…+xm-1)   (8c) 
Recognizing that for even m the roots of Sm lie symmetrically around the four quadrants of the 

unit circle centred on zero in the complex plane, allows us to additionally exploit the associated 

symmetry relation for the nth root, xn= −xm/2+n.  It is important to realise that results from complex 

analysis underpin this analysis (as we also mention below following Eq.10c, and see Parker & Jeynes 

2023 [ref.37] for a fully complexified treatment). 

Therefore, substituting xn=−xm/2+n for the m−1 terms of the series summation in Eq.8c, we can 

write: 

(1 − xm) ≡ (1−x)(1−x+x2−x3+…−xm-1)    (8d) 
Applying this (counterintuitive) symmetry we see that Eq.8a is then simply the limit of Eq.8d as 

m→∞.  In this limit the distinction between even and odd m is insignificant.  In any case, it is clear 

that equivalent to Cox’s first solution (using m=1) the quantity S=1−x, represents an important term 

in the factorisation of , but is by no means the only available solution in the general case for the roots 

of the function .   

From de Morgan’s Theorem (� OR ��������� ≡ �̅�� , hence  � OR � ≡ �̅������): 

�(� OR �|�) = Σ�Σ��(�|���)�Σ��(�|�)��                      (9) 
where �� (the negation of B) is required in the conditioning probability of the first probability 

term in order to satisfy the appropriate application of the Product Rule in de Morgan’s Theorem. 

Substituting Cox’s first-order expression for  (that is,  = 1 − x) we recover the “Conventional Sum 

Rule” (CSR, Eq.2b), after some manipulation. However, substituting the full bilinear form for  

(Eq.8a) into Eq.9: 

         �(� OR �|�) = Σ �
�1 − �(�|���)��1 − �(�|�)�

�1 + �(�|���)��1 + �(�|�)�
� 

                                

= Σ �
1 − �(�|���) − �(�|�) + �(�|���)�(�|�)

�1 + �(�|���)��1 + �(�|�)�
�                                       (10a) 

and expanding the outer self-reciprocal  function: 
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            �(� OR �|�) =

1 − �
1 − �(�|���) − �(�|�) + �(�|���)�(�|�)

�1 + �(�|���)��1 + �(�|�)�
�

1 + �
1 − �(�|���) − �(�|�) + �(�|���)�(�|�)

�1 + �(�|���)��1 + �(�|�)�
�

 

                                   

=
2�(�|���) + 2�(�|�)

2 + 2�(�|���)�(�|�)
                                                                              (10b) 

In the recursive case (as we have previously discussed for Eq.7), the probability of A becomes, 

in effect, independent of B; �(�|���) = �(�|�), such that Eq.10b can be simplified to: 

�(� OR �|�) =
�(�|�) + �(�|�)

1 + �(�|�)�(�|�)
                                                                              (10c) 

which is Eq.7 as required. 

Note that although the intermediate Eqs.8b,c,d (and the implied complex analysis) are not used 

in the derivation of the HSR (Eq.7 or Eq.10c), analogous complex quantities make an appearance in 

the discussion of how the finite impulse response (FIR) filter offers a good exemplar of the CSR 

(sketched in Appendix F). The standard theory of such  filters (which are important for digital signal 

processing applications) fundamentally relies on the theorems of complex analysis. 

3.2. Some Analytical and Numerical Comparisons 

Having derived a “Hyperbolic Sum Rule” (HSR) expression, it is interesting to see how much it 

diverges from the “Conventional Sum Rule” (CSR) in a simplified scenario that considers the function 

p(A OR B) for two possible and equally probable events {A, B}, that is, p(A)=p(B). 

The HSR is well-behaved in that it yields the same results as the CSR in the limit that neither 

event occurs, that is, p(A)=0 and p(B)=0.  In this case, we have p(A|BC)= p(B|AC)=0 (that is, p(A AND 

B|C)=0 from Bayes’ Theorem). It is straightforward to see in this specific case that p(A OR B) = 0 for 

both sum rules.  

The HSR is also well-behaved where p(A)= p(B)=1.  In this case, the CSR reduces to p(A 

OR B)=p(A)+p(B)-p(B) =p(A)=p(B).  The HSR also reduces to the same result, but via the progression 

p(A OR B|C)=2p(A|C)/2 =2p(B|C)/2=p(A|C)=p(B|C). For the case where we might want to include the 

result p(A|B)=p(B|A)=1, then we employ these in the denominator of Eq.6 (we must include explicit 

knowledge – see §2.3) to get the same (correct) result again. 

For the simple system in which there are two equally probable events {A,B} the conventional and 

hyperbolic forms of the sum rule converge when the events are either impossible or certain.  It is for 

the intermediate probabilities 0<p(A)<1 that the two forms diverge. Figure 2 shows the behaviour of 

p(AORB); calculated for the simple case of p(A)=p(B) and also assuming p(A|B)=p(B|A)=p(A)=p(B) for 

HSR. For CSR the two events {A,B} are also assumed to be independent, that is, p(A|B)=p(A) and 

p(B|A)=p(B). 
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Figure 2. Comparing the HSR and CSR versions of p(A OR B) for of two equally probable 

hypotheses (A,B). (a) Hyperbolic Sum Rule (HSR: black) and Conventional Sum Rule (CSR: blue); 

(b) Difference between HSR and CSR. 

From a simplistic Maximum Entropy (MaxEnt) argument, one might expect that the greatest 

difference between the two sum rules would occur when the events have the most uncertainty, that 

is, p(A)=½.  For this situation, the CSR returns an overall probability of pCSR(AORB|C)=½+½−(½½)=¾ 

(75%).  In contrast, the HSR returns a slightly higher overall probability of 

pHSR(AORB|C)=(½+½)/(1+[½½])=⅘ (80%).  The presence of recursion (mutual dependence) increases 

the probability that both events will occur. 

Interestingly, however, Figure 2 shows that the maximum difference between the two sum rules 

is actually 5.09 percentage points, for p=45.35% in this simplified case.  (The asymmetry reflects the 

slight asymmetry of the hyperbolic sum rule.)  Thus we see that the difference between the 

conventional and hyperbolic sum rules may be quite minor: in most cases it would be hard to observe 

(less than 5 percentage points).  

Being MaxEnt, an application of the HSR of Eq.7 would be to calculate the sum probability for 

two events where the relationship between the two events is not known, yet some correlation 

(including recursion) is reasonably anticipated.  In contrast, the CSR (also MaxEnt) explicitly 

requires knowledge of the conditional probability relationship between the two events: this may be 

estimated or simply assumed not to exist (since independence is often a reasonable approximation).  

Note that the CSR explicitly excludes recursion, an assumption which should be justified.  Thus, the 

HSR of Eq.7 obviates the need for any unknown conditional probability, and also avoids any 

unjustified assumptions relating to recursion. 

For example, imagine a scenario of elections occurring in neighbouring countries “A” and “B”, 

with leading candidates “Alice” and “Bob” in each, respectively.  Opinion polls consistently suggest 

that both candidates each has a good chance of being elected: 45% in each case.  We pose the question 

(to which we would like a Bayesian answer, if possible): what is the probability that at least one of 

the two leading candidates will be elected?  

In order to apply the conventional sum rule we require the conditional probability that Alice 

will be elected given Bob is elected, or alternatively the probability that Bob is elected given Alice is 

successful (given by Bayes’ Theorem, Eq.2c).  In the CSR context (in the absence of any other 

information to the contrary) the best we can assume is these are essentially independent events such 

that: 

p(A)=p(B)=p(A|B)=p(B|A)=0.45 
The CSR can then be applied to offer the MaxEnt probability of either Alice or Bob being elected 

(given that the two events are mutually independent) as: 

p(A OR B)=p(A)+p(B)−p(A)p(B)=0.698 
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However, the HSR allows us to include the possibility of a mutual (recursive) relationship 

between these two events (without making any other assumptions which could skew the calculation), 

giving a MaxEnt (most likely) probability in the absence of any other information (or any implicit 

assumptions): 

p(A OR B)={p(A)+p(B)}/{1+p(A)p(B)}=0.748 
Thus, the HSR probability estimation of at least one of the candidates being successful is 

noticeably higher than that anticipated from the CSR.  This is because there are a variety of ways the 

two elections could potentially influence each other, and the HSR accounts for the possible existence 

of these mutual interactions, while (in the absence of specific information as given by the appropriate 

conditional probabilities) the CSR ignores such influences.   

It is perhaps surprising that such a difference between the two sum rules has not been noted up 

to now: surely empirical observation would have shown a discrepancy from the (wrong) current 

theoretical calculation based purely on the CSR?  That no-one has suspected that the CSR is faulty 

may be due to the fact that for most simple cases (e.g. card games, gambling etc.) recursion is 

generally absent (and the CSR is correct).  Of course, probability theory originated in the analysis of 

games of chance where recursion is excluded.  For more complex cases there is usually no possibility 

of re-running the observations (elections in this case) sufficiently to gain a statistically significant 

estimate of the associated empirical probabilities.  Most real cases have complex (and recursive) 

conditionalities and dependencies, and most are unrepeatable, meaning that the associated 

probabilities cannot be determined by conventional methods.  Thus, any systematic error in the 

underlying probability theory is probably unobservable, and it is hardly surprising that it has been 

unobserved and unsuspected until now. 

3.3. Concatenation Rules for Multiple Hypotheses 

In Appendix D we prove the following relations: 

A version of Bayes Theorem for multiple summed hypotheses {X}OR as the number of these 

hypotheses grows large: 

�(�)�({�}OR|�) = �({�}OR)�(�|{�}OR)        as  {�} → ∞ (see App. D Eq. D4b) 
We also exploit the hyperbolic tangent function to prove a Hyperbolic Sum Rule for multiple 

hypotheses with multiple conditionalities: 

�(� OR �|� OR �) =
�(�|� OR �) + �(�|� OR �)

1 + �(�|� OR � OR �)�(�|� OR � OR �)
(see App.D Eq.D6) 

Finally, a generalised Hyperbolic Sum Rule with N multiple hypotheses, which sorts odd-

ordered conjunctions into the numerator and even-ordered conjunctions into the denominator: 

�(�� OR �� OR …  OR ��) =
∑ ∑ ∏ �(��|{���, � − 1})�

���{�,�:�}

��
�!

�!(���)!
���

�
���,odd

∑ ∑ ∏ �(��|{���, � − 1})�
���{�,�:�}

��
�!

�!(���)!
���

�
���,even

          (see App. D Eq. D7)                     

This may also be written in a form such that the probability distributions are represented (as 

MaxEnt decaying exponentials probabilities, see Jaynes 1982 [ref.14]) by the appropriate Lagrange 

multiplier  (noting that different distributions are generated by different choices of , with an 

example of this given in a recent treatment of the Wine/Water paradox [ref.35]): 

�(�� OR �� OR …  OR ��) =
∑

�!
�! (� − �)!

��
1 − ���

1 − ����� ���
�

exp�−� ∑ ��
���{�,�:�} ��

���,odd

∑
�!

�! (� − �)!
��

1 − ���

1 − ����� ���
�

exp�−� ∑ ��
���{�,�:�} ��

���,even

(see App. D Eq. D9d) 

additionally showing that the Hyperbolic Sum Rule is well-behaved for multiple hypotheses as 

� → ∞.   

In Appendix E we prove the following relation for the Conventional Sum Rule for multiple 

hypotheses: 
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�(�� OR �� OR …  OR ��) = 

1 + � � � �(��|{���, � − 1})

�

���{�,�:�}

��
�!

�!(���)!

���

�

���,���

  − � � � �(��|{���, � − 1})

�

���{�,�:�}

��
�!

�!(���)!

���

�

���,����

      (see App. E Eq. E6)             

4. Discussion 

4.1. Probability is Physical 

In simple cases, the distinction between the Conventional Sum Rule (CSR) and the Hyperbolic 

Sum Rule (HSR) is probably unobservable, given the attainable empirical precision.  The case of the 

two parallel elections considered in §3.2 has 80% for the HSR compared to only 75% for the CSR, 

when the two election probabilities involved are both 50% (p(A)=p(B)=0.5).  But the CSR cannot 

model recursion. 

However, the derivation of the HSR uncovers a relation that is also observed in diverse physical 

settings.  In particular, the HSR is isomorphic not only to the hyperbolic tangent double-angle 

identity (Eq.1a) but also to Einstein’s famous velocity addition formula (Eq.1b) and to the reflectivity 

expression for an optical etalon (Eq.1c).  Thus, the general (hyperbolic) probability sum rule 

conforms to a ‘template’ seen in the physical world; that is to say, although being apparently a logical 

relation it behaves just as many physical phenomena do.  Therefore we can say that the etalon 

function (Eq.1c: intrinsically probabilistic in nature, being a wave scattering phenomenon) represents 

at least a physical embodiment of the HSR.  In particular, the physical structure of the etalon with its 

two scattering interfaces (A and B, say) suggests that the reflection coefficient calculated from the 

solution to Eq.1c can also be interpreted as representing the physico-logical answer to the question: 

what is the probability that a quantum-mechanical particle (that is, a photon) is reflected from 

interfaces “A OR B”?  It is clear that the basic two-faceted etalon physically expresses the logical OR 

operation. 

This raises the interesting philosophical question: is the hyperbolic nature of the HSR a result of 

the intrinsic hyperbolic character of the natural universe?  Affirming that it is implies that 

probability theory is firmly empirical (and not merely mathematical): both the theory of Special 

Relativity (Eq.1b) and the quantum-mechanical scattering probability (Eq.1c) are consistent with the 

hyperbolic nature of spacetime.  But denying it would imply that it is simply coincidental that the 

HSR shares fundamental characteristics of the natural universe.   

This question actually goes to the root of a deep philosophical debate as to the intrinsic nature 

of probability theory: is it purely an empirical construct where probabilistic variables only acquire 

meaning when a statistical measurement takes place?  This view is implied by the so called 

‘frequentist’ fraternity, who do not ascribe an independent reality to the “laws” of probability; rather 

they consider that the probability of a hypothesis depends solely upon the frequency of success over 

a given number of trials.  But Bayesians would say that the hyperbolic nature of the HSR implies 

that probability theory and the underlying theoretical equations form a component part of the full 

set of universal natural laws; that is to say, they are an intrinsic aspect of the (hyperbolic) universe 

with their own independent existence. 

We should add that the result that the MaxEnt nature of both the HSR of Eq.7 (recursive, see 

Appendix C) and the CSR (non-recursive, see Appendix E) indicates that the equilibrium state of such 

physical systems (corresponding to a stable and most-likely configuration) obeys both the kinematical 

Principle of Least Action as well as the entropic Principle of Least Exertion (ref.[10]).  These 

fundamental principles underly all known physical phenomena and therefore indicate that both the 

HSR and CSR are consistent with the requirements of the physical world.  The fact that the HSR is 

MaxEnt also implies that all the parts of such systems recursively condition all the other parts.  That 

is, in the general case everything is entangled with everything else just as Karen Barad implies 

[ref.31].  But here we wish to avoid metaphysical discussion (for which see [ref.6]). 

4.2. Recursion 
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Why has the issue of recursion apparently not previously been explicitly considered in 

probability theory?  This may simply be an accidental result of history, with probability theory 

having developed from the gaming scenarios associated with cards and dice, where events are 

discretely independent and are characterised with shallow conditionalities that do not reach far back 

into the past.  For example, the game of Poker has explicit calculable conditionalities based on cards 

revealed to the table, cards in your hand, and the hidden cards remaining; the calculable 

conditionalities do not involve the (fascinating) issues of bluffing, double bluffing, and multiple 

bluffing.  These could in principle be expressed logically (using the formalism sketched above), but 

are currently treated as psychology.  

However, it is interesting to note that Cox (1946 [7]) derives the general result Sm=1−xm for the 

self-reciprocal function S(x), stating that the value for m (assumed an integer) is “arbitrary” and 

“purely conventional”; indeed, Jaynes writes that the value of m is “actually irrelevant” [ref.1].  For 

“simplicity of notation” Cox arbitrarily chooses m = 1, which is both convenient and intuitive, since it 

immediately leads to the Conventional Sum Rule associated with the Venn diagram of Figure 1.  

Thus Cox’s analysis allows for recursion conceptually, although he apparently appreciated neither 

this nor the physical interpretation of his function Sm. 

But exploiting the hyperbolic insight described here, we can now understand m to represent the 

degree of mutual dependency leading to recursion; that is, it has both a logical and physical (spatio-

temporal) meaning, with real physical implications which are not at all “arbitrary”.  In particular, 

m=0 is a trivial case, m=1 is the simple CSR case, m-1=0 is the HSR case.  We consider this further in 

§4.3. 

Another reason for ignoring recursion is that the appropriate calculus of probabilities requires 

substantial computing power which has only become available in recent decades.  Up to the point 

of the emergence of artificial intelligence (AI) and machine learning (ML), approximately at the turn 

of the millennium, there hasn’t been a good reason to develop a theory of recursive probabilities, 

since before this time the necessary computations were practically intractable.  However, as large-

scale computing power has evolved over recent decades, this has also enabled the development of 

the sophisticated (Bayesian) algorithms underpinning AI and ML programming.  Such algorithms 

allow a dispassionate approach to making probabilistic inferences and decision-making in an 

environment of uncertainty, within a mathematical framework for updating beliefs and reasoning 

about uncertain events.  In addition, recursion provides AI with additional flexibility to handle 

complex and dynamic problems by recursively decomposing them, while leveraging self-referential 

architectures and utilizing iterative processes.  

Recursion can be exploited relatively simply in AI as a means to break down complex problems 

into smaller, more manageable subproblems.  Alternatively, the complexity and power of modern 

computing also enables the employment of recursive data structures that can be used to represent 

hierarchical or interconnected relationships.  Recursion can also be seen in the inductive reasoning 

aspect of AI, which involves inferring general rules or patterns from specific observations, so as to 

learn iteratively from data in order to improve the accuracy of predictions or classifications. 

In AI (and the associated field of neural networking) recursion has been employed empirically: 

the complexity associated with the algorithms and feed-back routines aren’t generally amenable to 

analytical (closed-form or tractable mathematical) analysis, such that currently only ‘simulations’ can 

be used to analyse AI behaviour.  It is in this context of recursive AI that the Hyperbolic Sum Rule 

described here allows the systematic, reliable and consistent handling of multiple recursive 

hypotheses (or events).  We therefore expect the HSR to enable a more analytic (closed-form and 

tractable) analysis of complex AI algorithms to give additional insights into their form of operation 

and anticipated outputs. 

4.3. Two Distinct Sum Rules 

We have shown that in different  situations different rules apply for summing the probabilities 

of events (or, nearly equivalently, the probabilities of certain hypotheses being true).  We wish to 
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find a relation that allows us to compute p(A OR B|C), that is, the probability of (A OR B) given C, 

where {A,B} are events (or hypotheses) and {C} are conditionalities.   

There are two distinct cases depending on whether or not {A,B} are recursively dependent.  If 

{A,B} are independent (such as coin flipping, see §2.4) then the “Conventional Sum Rule” (CSR) 

applies.  But if {A,B} are recursively dependent (such as reflection from a multilayer stack, see Eq.1c) 

then the “Hyperbolic Sum Rule” (HSR) applies.  Concatenation formulae for either or both of multiple 

events {A,B, …} or multiple conditionalities {C,D, …} are readily derived for both the HSR (Appendix 

D), and the CSR (Appendix E; also see the summary in §3.3 of important results for both HSR and 

CSR).  Therefore there is no loss of generality from treating only the simple cases. 

If p(A|B)>0 and p(B|A)>0, with both probabilities being valid independent of any temporal (that 

is, causal) or logical constraints, then {A,B} are recursively dependent and the HSR applies.  

Otherwise the CSR applies.    Conversely, the CSR applies if the probability relation {p(C|A)=p(C) 

OR p(C|B)=p(C)} holds. 

Note that in simple cases (see Figure 2) the difference between CSR and HSR is probably too 

small to be easily observed: even in the fair coin or election cases (§2.4, §3.2) the CSR gives 75% where 

the HSR gives 80%.   

It is clear that the CSR and HSR are formally related (see Eqs.8).  It also seems fairly clear that 

the “truncated expansion” of Eq.8d has properties related to (for example) the “finite impulse 

response” (“FIR”) filter that is important in digital signal processing (DSP) applications (further 

details in Appendix F).  The case represented by finite m where m>1 and m-1>0 (analogous to the FIR 

filter) offers an engineering approach to the probabilistic treatment and control of system noise within 

a finite (and specified) timeframe - an issue of practical importance for stochastic systems.  Such 

practical probabilistic cases, formally CSR (see Appendix E), blur the distinction between CSR and 

HSR, since it seems that such “FIR filtering” may be represented approximately as a “truncated HSR”, 

with a formalism that is also approximately MaxEnt in its own terms (see Appendix C).  However, 

the derivation of the HSR is directly from Eq.8a:  the discussion of finite values of m in Eqs.8b,c,d is 

presented only by way of comment.  

5. Conclusions 

We have shown how a Hyperbolic Sum Rule (HSR) for probability can be derived that is 

consistent with the mathematical and logical requirements as laid out by Cox [ref.7] and Jaynes [ref.1].  

In particular, we have proved that the HSR is Maximum Entropy (MaxEnt), and thereby is also 

consistent with the Second Law of Thermodynamics.   

For the simple case of only two equally probable hypotheses (or events) the conventional and 

hyperbolic versions of the sum rule yield similar (but not identical) results (see Figure 2).  However, 

when large numbers of hypotheses are being considered we have shown (Appendix E) that 

properties derived from the HSR are needed for an appropriate Conventional Sum Rule (CSR) to 

behave reasonably.  That is, although the CSR is applicable to certain simple cases, the HSR must be 

used where recursion cannot be ruled out (and where a MaxEnt solution is desirable).   

Apart from its mathematical consistency, we should also note empirically that numerous other 

physical phenomena involving probabilities also obey the HSR, as one might expect considering the 

(widely acknowledged) hyperbolic nature of the spacetime metric for the universe (see for example 

Penrose 2004 [ref.21]).  Therefore we conclude that the Hyperbolic Sum Rule implies that probability 

is physical (also supported by the fact that the HSR is MaxEnt).   

Probability is physical because probabilities always refer to phenomena (however idealised).  

Phenomena belong in the real world, and their value (including measurement) is necessarily assessed 

by people for their own purposes.  It is therefore satisfactory that the general MaxEnt case is 

represented by a formalism isomorphic to formalisms representing probabilities incorporated within 

general physical systems (such as the etalon, Eq.1c). 

In terms of application, we expect that these methods will make those calculations analytically 

tractable that involve many hypotheses featuring multiple dependencies (both spatial and temporal).  

For example, disentangling the highly complex interactions of the different genes within a single 
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genome represents an extremely difficult computational challenge, yet one with a glittering set of 

potential medicinal benefits. Another entirely different example regards the handling of certain 

important filters used in modern digital signal processing.  Doubtless, others will also emerge. 

Another application which exploits the handling of multiple hypotheses featuring highly 

interrelated, highly complex and recursive dependencies (currently thought either intractable or 

impracticable for explicit analytical evaluation) is in the emerging field of rule-based expert learning 

systems for inference. Such applications depend on the use of Bayesian reasoning, and exploit 

modern computational resources to handle a high degree of multi-modal inputs and outputs, each 

requiring a very high number of explicit (and implicit) variables (hypotheses) with associated 

conditional dependencies. However, issues of reliability, predictability and engineering-control of AI 

technology are becoming more salient, since these are a critical prerequisite for the systemic, safe, 

and validated use of AI technology as a powerful tool in modern society. We are confident that the 

Hyperbolic Sum Rule and the insights associated with the recognition that probability is physical will 

contribute towards encouraging AI’s development as a scalable and high-value technological asset 

working for the full benefit of humanity. 

Appendices:  MaxEnt Properties of the Sum Rules for Probabilities 

We investigate the Maximum Entropy (MaxEnt) properties of both the Hyperbolic Sum Rule 

(HSR) and the Conventional Sum Rule (CSR).  First (Appendix A) we establish a convenient criterion 

for proving that a probability function is MaxEnt, then (by way of example: Appendix B) we explore 

some simple functions.  We prove (Appendix C) that the hyperbolic tangent sum rule is MaxEnt and 

therefore that the (isomorphic) HSR is also.  In Appendix D we derive sum rules for multiple 

hypotheses together with multiple conditionalities: these cases are complicated and require use of 

the HSR, being intractable on the assumptions of the CSR. In Appendix E we show that the CSR is 

also MaxEnt for the limited cases where it applies, and show how the CSR should be concatenated to 

enable the handling of multiple hypotheses. 

Finally (Appendix F) we discuss how the HSR may find application in the engineering design 

of infinite impulse response (IIR) filters used in digital signal processing (DSP). 

Appendix A:  Maximum Entropy Criterion for the HSR 

The Hyperbolic Sum Rule (HSR) for probabilities is intended to express the most-likely 

(Maximum Entropy) sum of probabilities where the conditional probabilities associated with the 

conventional sum rule are not available and where the recursive properties are not explicitly known.  

That is to say, in the absence of the additional information (associated with the conditional 

probabilities as well as recursion) required to define the conventional sum rule, we can still define 

the most likely addition of the probabilities using Maximum Entropy.  

The following function (which is equivalent to the Partition Function in statistical mechanics) is 

known to be MaxEnt (see Appendix I of Jaynes 1982 [ref.14]).  We first discuss here why it is MaxEnt. 

The function f(z0, z1, z2 … zi … zN) consists of a series of N+1 terms, whose summation is given by the 

quantity Z: 

� = � ��

�

���

  �≡ � ����

�

���

� (A1a)  

or 

�
��

�

�

���

= 1 (A1b)  

The free parameter  is the essential controlling variable of the function f, expressing the ‘shape’ 

(or rate of exponential decay) of the function, while the index i is constrained to be an integer, with 

the maximum value N representing another free parameter of the function. The entropy H of the 

function f is given by term-by-term summation of the Shannon entropy of each ith component: 
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� = − �
��

�
ln

��

�

�

���

(A2)  

Each ith component zi is associated with an ith state of the system f; that is to say, the function f 

can also be thought of as describing the relative ‘probability’ (or propensity for existence) of each of 

the components comprising a system of N different (distinguishable) states. In which case, the ith 

component zi can also be considered to represent a measure of the ‘relative strength’ of the ith 

component of the system. The fact that the system may be characterised with a finite entropy H means 

that we can assume that the number of states of the system is finite and has a granularity (that is, it is 

discretised, or quantised).  

Consequently, this also means that there exists a quantised number E, representative of the 

overall system, where the discretisation (granularity) is represented by the quantum E, such that 

the overall total number of quanta Q existing within the system is � = � Δ�⁄ .  By inspection, it is 

also clear that � ≡ � .  How these Q quanta are distributed across the function f represents a 

constraint to the system as we maximise its entropy.  We therefore associate a quantity Ei with each 

of the component terms of f such that the product of zi and Ei for each component represents a 

measure of the strength of the ith state, and by summing across all the N+1 states we obtain the overall 

quantity E: 

� ����

�

���

= � (A3a)  

which can be re-written as: 

�
��

�
��

�

���

=
�

�
=

�

�
= Δ� (A3b)  

Following the standard treatment of Catichaxli we employ Lagrange multipliers  and , such 

that we set the independent equations to zero, we can use Eqs.A1b, A2 & A3b to consider the variation 

of the system entropy H with zi so as to find its maximum: 

�

���
�� −

��

�
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��

�

�

���

+ � �1 − �
��

�
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���

� + � �Δ� − �
��

�
��

�

���

�� = 0 (A4)  

We can swap the order of the summation and differentiation operations to evaluate the 

derivative of each of the i terms in Eq.A4: 

� �−
1

�
ln

��

�
−

1

�
−

�

�
−

�

�
���

�

���

= 0 (A5)  

To maximise the system entropy H the ith component zi of the function f must be simply given 

by: 

�� =
�

����
����� (A6) 

That is to say, a distribution f is Maximum Entropy if its constituent terms follow a decaying 

exponential profile (see Eq.A1a). 

Appendix B:  Inadmissible “MaxEnt” Sum Rules 

The most basic sum rule function S0(A,B)=A+B is Maximum Entropy (MaxEnt), since it is easy to 

demonstrate that the summation of any two terms can be made to follow the decaying exponential 

template of Eq.A6. For example: 
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��(�, �) = � + � = ��1 + �
�� � ≡

�

����
�1 + ���� (B1a) 

which is simply the two terms of a N=1 series, for i=0 and i=1. That is to say, we can express the 

ratio B/A as being equivalent to exp(−) for an appropriate value of , while A is equivalent to 

Z/exp(1+) for an appropriate value of . Of course, the converse is also true: 

��(�, �) = � + � = ��1 + �
�� � ≡

�

����
�1 + ��(��)� (B1b) 

where for consistency, we employ the same value for  as in Eq.B1a, but the values for  and Z 

are as appropriate. The simplest sum rule of Eqs.B1 is therefore easily found to be MaxEnt: are there 

any other sum rules that are also MaxEnt?  

Clearly, any such sum rule has to obey the template of Eq.A6 in order to be MaxEnt. The next 

obvious sum rule that could obey Eq.A6, and which only employs the two parameters A and B is 

given by the following geometric progression of N+1 terms: 

��(�, �) = � + � = � �1 +
�

�
+ �

�

�
�

�

+ �
�

�
�

�

+ ⋯ + �
�

�
�

�

� ≡
�

����
�1 + ��� + ���� + ���� + ⋯ + �����(B2a) 

There are two aspects to this sum rule that need to be noted: it only converges for B<A as N→∞, 

and it is clear that the overall summation can easily sum to greater than unity for various values of A 

and B. In particular, this latter aspect can be seen by re-writing Eq.B2a as: 

��(�, �) = � �1 +
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�
(B2b) 

That is to say, the first two terms of the series come from the most basic sum rule, and there then 

follow potentially an infinity of additional terms, such that the overall summation could well be 

greater than unity.  Thus as a general probabilistic sum rule, it would appear be inadmissible.  Of 

course, the case where A<B, requires the converse sum rule: 

��(�, �) = � �1 +
�

�
+ �

�

�
�

�

+ �
�

�
�

�

+ ⋯ + �
�

�
�

�

� ≡
�

����
�1 + ��� + ���� + ���� + ⋯ + ����� (B2c) 

These geometric progressions offer a closed form analytic solution: 

��(�, �) = �
1 − ��

�
�

�

1 − �
�

=
��

� − �
    as   � → ∞      for � > � (B3a) 

and  

��(�, �) = �
1 − ��

�
�

�

1 − �
�

=
��

� − �
    as   � → ∞      for � > � (B3b) 

Clearly, both forms for the sum rule have a pole (singularity) when A=B, such that the overall 

summation will be greater than unity.  These are indeed ‘acceptable’ MaxEnt solutions as per Eq.A6, 

but are clearly deficient as probabilistic sum rules, since the two rules each need to be judiciously 

selected (i.e., disjoint application of the two rules is required according to which of A and B is the 

greater), and they can also sum to greater than one. As such, we can exclude the sum rules S1 and S2 

as an appropriate general MaxEnt probabilistic sum rule.  Indeed, the initial sum rule S0(A,B) can 

also be excluded as an appropriate probabilistic sum rule for this same reason, since it will also 

frequently sum to greater than unity. 

It is interesting to note that the conventional probabilistic sum rule (employing conditional 

probabilities) always lies within the range of zero and one: 

����(�, �) = � + � − � × �|� = � + � − � × �|�                                                (B4) 

That is to say, the first two terms of the conventional sum rule (CSR) are equivalent to the basic 

sum rule function of Eqs.B1, but there is an additional third term to the rule, which ensures that the 

overall quantity behaves ‘correctly’ as a probabilistic quantity, such that it never exceeds unity. 

However, this is at the cost of introducing an additional term (indeed, additional information), 

alongside A and B: the conditional probabilities B|A or A|B (depending on which probability is 

considered prior). Such a conditional probability is essentially an additional (third) parameter to the 
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sum rule, such that the function in effect becomes a sum rule requiring three input arguments, rather 

than just the two parameters (A and B) that we have been discussing above. From this perspective, 

the conventional probabilistic sum rule of Eq.B4 cannot be MaxEnt (apart from the fact that it doesn’t 

follow the template of Eq.A6), because it requires additional information (based on the conditional 

probabilities); whereas the rationale for a Maximum Entropy sum rule is to sum (in the most likely 

manner) the two parameters A and B in such a way that the minimal assumptions as to how A and B 

might depend upon or be related to each other is made; that is say, the MaxEnt sum rule requires the 

least additional information over and above the values for A and B so as to provide their most likely 

sum value in the absence of any other information.  

In addition, it is worth noting that when the events A and B are mutually exclusive, then the 

conventional probabilistic sum rule of Eq.B4 degenerates to the basic sum rule of Eqs.B1. However, 

although the basic sum rule is MaxEnt (as we have previously discussed, Eqs.B1) the underlying 

reason for the degeneracy in this case of Eq.B4 means that we now know the exact (mutually exclusive) 

relationship between A and B. In general, the conventional sum rule of Eq.B4 is not MaxEnt (since it 

requires additional knowledge or a best-guess estimate of the (conditional) relationship between A 

and B); but the knowledge that A and B are mutually exclusive causes the conventional sum rule to 

degenerate to the basic sum rule (with its MaxEnt properties), but which is still inadmissible as a 

general probabilistic sum rule since it frequently leads to probabilities greater than one. However, 

Appendix E shows that in the limit where the conditional probabilities are assumed identical to the 

independent probabilities, then the CSR also becomes MaxEnt; however, this is a special case of the 

CSR where Bayes’ Theorem (as a form of the Product Rule) becomes trivial. 

Appendix C:  Hyperbolic Sum Rule is MaxEnt 

However, there still exists another potential probabilistic sum rule, which offers still better 

behaviour. This function emerges as the generalised expression arising from Cox’s treatment.  

Fortunately, the MaxEnt aspect now becomes apparent as we can show here that the Hyperbolic Sum 

Rule (HSR) is a well-behaved maximum entropy function.  We start by expressing it in its basic form: 

����(�, �) =
� + �

1 + ��
          (C1a) 

We first notice that the hyperbolic sum rule is isomorphic to the hyperbolic tangent double-angle 

identity: 

tanh(� + �) =
tanh � + tanh �

1 + tanh � tanh �
(C1b) 

Just for clarity, we remind ourselves that we use A and B here as shorthand for p(A) and p(B); 

that is to say, A and B each represent an event, and p(A) and p(B) each represent the respective 

probabilities for events A and B to occur. Thus, when we employ the symbols A and B in Eq.C1a, this 

is actually a shorthand for the probability functions p(A) and p(B) associated with each of the events 

A and B. Thus, when in Eq.C1b we explicitly employ the hyperbolic tangent (tanh) functions of a and 

b, we can immediately see the isomorphism between p(A) and tanh(a), as well as p(B) and tanh(b). 

This means that we can therefore also assume that SHSR(A,B) is isomorphic to the function tanh(a+b). 

This is a longwinded way of saying that the probabilistic hyperbolic sum rule SHSR we are seeking to 

analyse must be identical to the hyperbolic tangent (tanh) function. 

Using tanh � = sinh � cosh �⁄ , as well as sinh � = ½{exp� − exp(−�)} and cosh � = ½{exp� +

exp(−�)} then it is straightforward to re-write Eq.C1b as: 

tanh(� + �) =
exp(� + �) − exp�−(� + �)�

exp(� + �) + exp�−(� + �)�
=

1 − exp�−2(� + �)�

1 + exp�−2(� + �)�

=
1 − ���

1 + ���
               (C2) 
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where in this case � = 2(� + �). We can immediately see that the hyperbolic tangent sum rule 

identity is composed of the quotient of two functions, each of which conforms to the template of 

Eq.A6, so that each of the two functions composing the quotient is MaxEnt. However, this 

immediately poses the question, is the resulting (quotient) function therefore also MaxEnt? We can 

binomially expand the denominator function of Eq.C2 as an infinite series as follows: 

tanh(� + �) = �1 − �����1 + ����
��

= �1 − �����1 − ��� + ���� − ���� + ���� − ⋯ �        (C3) 
Multiplying out the brackets and grouping the terms: 

tanh(� + �) = 1 − 2��� + 2���� − 2���� + 2���� − 2���� + ⋯                          (C4) 
Eq.C4 closely resembles the template MaxEnt function of Eq.A6, except for its initial term, which 

is ‘wrong’ by the constant amount of one. That is to say, we can re-express Eq.C4 as: 

tanh(� + �) = − 1 + 2 � �−����
�

�

���

                                                                             (C5) 

It’s interesting to note that since the discrepancy is a constant (−1 in the case of Eq.C5) then all 

the results emerging by employing � ≡ tanh(� + �)  as a moment generating function (that is, to 

calculate quantities such as the mean and variance) are the same as if Z really were a MaxEnt function 

according to Eq.A6. This can be alternatively understood by approximating Eq.C5 to a finite series of 

N+1 terms, and dividing the constant overall ‘discrepancy’ of −1 amongst all the N+1 terms as follows: 

� = 2 � �−����
�

�

���

− 1

=  2 � ��−����
�

−
1

2�
�

�

���

                                                                  (C6) 

We then take the limit as N → ∞, such that Z → tanh(a + b),  where the limiting value for each 

term zm of the infinite series is: 

�� = 2�−����
�

−
1

�
→ 2�−����

�
   as   � → ∞                                                         (C7) 

This makes it clear that in the limit as N → ∞ the limiting value for each term zm does conform 

to the MaxEnt template of Eq.A6, hence tanh(a + b) is MaxEnt and the isomorphic HSR SHSR(A,B) is 

also MaxEnt.  

Thus we have proved that the Hyperbolic Sum Rule represents the MaxEnt (most likely) value 

of the probabilistic addition of two probabilities (i.e. the probabilistic OR function) in the absence of 

any additional information regarding the relationship between the two events A and B represented 

by the two probabilities to be summed. This HSR SHSR is well-behaved, since it always 

unconditionally yields results between zero and one for the sum of any conventional probability 

quantities (lying between zero and one). 

Appendix D:  MaxEnt Treatment of HSR Featuring Multiple Hypotheses 

D.1 ‘OR’ Treatment of Multiple Conditional Hypotheses 

Since the Hyperbolic Sum Rule is isomorphic to the hyperbolic tangent double-angle identity it 

immediately suggests how additional hypotheses can now be added to a given probabilistic scenario, 

while continuing to ensure a logical and consistent treatment (exploiting the method discussed by 

Cox in [ref.7]), and maintaining its intrinsically MaxEnt characteristic (see Appendix C).  In 

particular, considering an additional hypothesis D (with its own set of dependencies upon the 
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hypotheses A and B) being added to the present scenario, the following identity result can now be 

exploited: 

      tanh{(� + �) + �} ≡
tanh(� + �) + tanh(�)

1 + tanh(� + �) tanh(�)
 

                                 =
tanh � + tanh � + tanh � + tanh � tanh � tanh �

1 + tanh � tanh � + tanh � tanh � + tanh � tanh �
                      (D1)                        

Since the addition (OR) function is associative, it is clear that all the terms in Eq.D1 must be 

mutually symmetrical, such that any other pair could have been chosen as the first argument, with 

an equivalent result. Therefore, we can write the probability for a set of three hypotheses A, B and D 

as: 

�(� OR � OR �|�) =
�(�|�) + �(�|�) + �(�|�) + �(�|�)�(�|�)�(�|�)

1 + �(�|�)�(�|�) + �(�|�)�(�|�) + �(�|�)�(�|�)
(D2a) 

It should be noted that the conditionalities C associated with each probability are generic; but 

the probabilities employed in Eq.D2a for the explicit events A, B, and D are the independent 

probabilities for each of those events. That is to say, Eq.D2a is the MaxEnt expression for the HSR 

featuring three hypotheses, where no explicit knowledge about the dependencies between the three 

hypotheses is known.  

Considering the RHS of Eq.D2a, the first group of (single) terms in the numerator represent the 

independent probabilities {p(An)}, while from a logical perspective, it is clear that the final (3rd-order) 

term of the numerator represents the product of these independent probabilities. Likewise, in the 

denominator, the three 2nd-order product terms (i.e. the 2nd-order permutations of the three 

hypotheses) each represent the symmetric probability products, as previously discussed. Clearly, if 

the third hypothesis is null, i.e. p(D)=0, then from Bayes’ Theorem, all the terms containing D as a 

hypothesis also become zero, since p(D|H)=p(D)*p(H|D)/p(H), where H may represent any of the 

combinations of the hypotheses A and B etc.; in which case, Eq.D2a reverts back to the two-

hypotheses form of the equations Eqs.7 & 10c in the main text. 

It is noteworthy that Eq.D1 also shows that multiple conditional hypotheses are to be treated 

using the OR function. For example, keeping the logical pair (A OR B) distinct from D, and using the 

form of Eq.7, if we have explicit knowledge of the conditional probabilities, we can re-write Eq.D1 

as: 

��(� OR �) OR �� =
�(� OR �) + �(�)

1 + �(� OR �|�)���|(� OR �)�
(D3a) 

Expanding out the paired (A OR B) terms using the tanh identity of Eq.1a as template, we can 

further write: 

��(� OR �) OR �� =

�(�) + �(�)
1 + �(�|�)�(�|�)

+ �(�)

1 +
�(�|�) + �(�|�)

1 + ���|(� OR �)����|(� OR �)�
���|(� OR �)�

(D3b) 

In order to simplify the above equation we need the conditionalities of the product terms to be 

identical whenever they appear in Eq.D3b; this ensures that all the respective terms are 

interchangeable as required by considerations of symmetry and maximum entropy.  Therefore we 

re-write Eq.D3b: 

�(� OR � OR �) =

�(�) + �(�)
1 + �(�|� OR �)�(�|� OR �)

+ �(�)

1 +
�(�|�) + �(�|�)

1 + ���|(� OR �)����|(� OR �)�
���|(� OR �)�

(D3c) 

where the inclusion of the additional conditionalities is indicated in bold for clarity.  These 

additions here are reasonable, since clearly the hypothesis D is “in the vicinity” of the expression, 
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and it also symmetrically aligns the terms with similar terms in the rest of the equation.  We then 

simplify: 

�(� OR � OR �) =
�(�) + �(�) + �(�) + �(�)���|(� OR �)���|(� OR �)�

1 + ���|(� OR �)����|(� OR �)� + [�(�|�) + �(�|�)]���|(� OR �)�
(D3d)

 or, imposing the necessary symmetries: 

�(� OR � OR �)

=
�(�) + �(�) + �(�) + �(�|(� OR �))���|(� OR �)����|(� OR �)�

1 + ���|(� OR �)����|(� OR �)� + ����|(� OR �)� + ���|(� OR �)�����|(� OR �)�
 

 (D3e)

 
Clearly, if the conditional probabilities are not known, then the appropriate MaxEnt version of 

Eq.D3e (where no extraneous assumptions or inadvertent information is added) is required, whereby 

only the independent probabilities are employed as appropriate, and as seen in Eq.D2a. 

The probability of a hypothesis being true only requires at least one of the multiplicity of 

conditional hypotheses to be also true. This means that the more the number of conditional 

hypotheses, say the set {X}, that a given hypothesis A is conditional upon, then the higher is the 

conditional probability that A will be true.  Indeed, as the number of conditional hypotheses tends 

towards infinity, it’s clear that the conditional probability of A given the set {X} should tend to the 

intrinsic probability of A itself.  In this situation the independent probability of A should assert itself, 

since it’s almost certain that at least one of the many conditional hypotheses that are being summed 

(with the OR function) will be satisfied: �(�|{�}OR) → �(�)  as  {�} → ∞. The converse is also true: as 

the number of conditional hypotheses increases, they ‘crowd out’ the lone hypothesis A, and the 

probability of at least one of the conditional hypotheses {X} being true is increasingly independent of 

A: �({�}OR|�) → �({�}OR)  as  {�} → ∞. Interestingly, we see here the emergence of a form of Bayes’ 

Theorem, since we can write:  

�({�}OR|�)

�({�}OR)
→ 1       and      

�(�|{�}OR)

�(�)
→ 1     as  {�} → ∞ (D4a) 

Equating the two expressions offers us a type of Bayes’ Theorem, based upon multiple 

contingent hypotheses: 

�(�)�({�}OR|�) = �({�}OR)�(�|{�}OR)        as  {�} → ∞ (D4b) 
Unfortunately, it’s not intuitively obvious that the same is true for a low number of hypotheses 

{X}; however, in the case for just two hypotheses, A and X, it would indeed correspond to the 

conventional form of Bayes’ Theorem. 

D.2 Generalisation of the Concatenated ”Hyperbolic Sum Rule” for Multiple Hypotheses 

For a more convenient overview of the emerging ‘pattern’ as more hypotheses are concatenated, 

we re-write Eq.D2a using only the logical hypotheses (and making the conditional hypotheses {H} 

implicit) thus: 

�(� OR � OR �) =
� + � + � + ���

1 + �� + �� + ��
(D2b) 

Adding a fourth hypothesis, E, we once again employ the hyperbolic tangent identity thus: 

      tanh{(� + � + �) + �} ≡
tanh(� + � + �) + tanh(�)

1 + tanh(� + � + �) tanh(�)
                                  (D5a)                                

Again, only writing the symbol of the hypotheses for brevity and overview, we can therefore 

derive the associated hyperbolic sum rule for four such hypotheses as follows: 

�(� OR � OR � OR �) =

� + � + � + ���
1 + �� + �� + ��

+ �

1 +
� + � + � + ���

1 + �� + �� + ��
�

=
� + � + � + � + ��� + ��� + ��� + ���

1 + �� + �� + �� + �� + �� + �� + ����
    (D5b) 
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For clarity, we remind ourselves that the final term of the denominator of Eq.D5b is to be 

understood as:  ���� ≡ ���|(� OR � OR �)����|(� OR � OR �)����|(� OR � OR �)����|(� OR � OR �)�, 

where we assume here the conditional probabilities are known. If, however, the conditional 

probabilities are not known, then the independent probabilities need to be employed as per the 

MaxEnt requirements.  

D.3 Sum Rule for Multiple Hypotheses with Multiple Conditionalities 

We can also use the hyperbolic tangent function to analyse the issue of calculating the MaxEnt 

probability of a set of multiple hypotheses that are conditionally dependent on an additional set of 

hypotheses. For example, the simplest such ‘multiple’ scenario is given by the probability quantity 

�(� OR �|� OR �), which represents the probability of hypotheses A or B being correct, given that they 

are conditionally dependent on the hypotheses D or E. Using Eq.7 and the probability calculus of the 

section §D.1, this can be expressed as: 

�(� OR �|� OR �) =
�(�|� OR �) + �(�|� OR �)

1 + �(�|� OR � OR �)�(�|� OR � OR �)
(D6) 

Clearly, the complexity of the overall expression increases rapidly with increasing number of 

hypotheses and conditional dependencies, with the attendant multitude of dependency terms and 

cross-products. However, we have shown here that such a calculation is indeed analytically possible, 

and the MaxEnt method for analysing higher numbers of hypotheses with their conditionalities is 

clearly apparent. This simple and generalisable result is not available from the conventional sum rule.  

D.4 Generalised Hyperbolic Sum Rule for Multiple Hypotheses 

What is becoming apparent is that the hyperbolic sum rule sorts out all the odd and even 

combinations of the hypotheses, such that the odd-ordered conjunction products are located in the 

numerator, while the even-ordered products are in the denominator. It is also clear that each of the 

elements in the numerator and denominator corresponds to an element of the binomial expansion of 

the expression (a+b)N, where N represents the number of hypotheses; there being a total of 2N different 

and unique combinations of the various hypotheses, and there being ��
� ≡ �! �! (� − �)!⁄   

combinatorial elements associated with each order of conjunction. In which case, the general 

expression for the Hyperbolic Sum Rule involving N different hypotheses each with their various 

mutual Bayesian dependencies is given by: 

�(�� OR �� OR …  OR ��) =
∑ ∑ ∏ �(��|{���, � − 1})�

���{�,�:�}

��
�!

�!(���)!
���

�
���,odd

∑ ∑ ∏ �(��|{���, � − 1})�
���{�,�:�}

��
�!

�!(���)!
���

�
���,even

          (D7)                     

The term in the curly brackets {���, � − 1}  of Eq.D7, forms the conditionality part of the 

probability  �(��|{���, � − 1}), and indicates that there are l-1 conditional hypotheses (from the set 

{���}, where the prime in the subscript indicates that the hypothesis An is itself excluded from the set) 

associated with the probability of hypothesis An. These conditional hypotheses (which, of course, 

exclude the hypothesis under question An) must be selected in the appropriate permutations from the 

set of N-1 probabilities making up the rest of the set {�(���)}. It is also clear that as the number of 

conditional hypotheses l−1 becomes large, then it also reasonable to start making the simplifying 

approximation �(��|{���, � − 1}) ≈ �(��) as l→∞, as previously discussed (§D.1). 

We note that the case for l=0 (the first even term) in the denominator of Eq.D7 is simply the 

constant term of unity (‘1’) always found in the denominator of the HSR equation, as already seen in 

Eq.D3e & Eq.D6. In addition, the function P{l,1:N} associated with the product () terms in Eq.D7 

represents the selection of the complete set of all possible (and distinct) permutated product terms 

(of overall degree l), each consisting of the product of l distinct probability terms from the set of N 

probabilities {p(An)}.  
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We note the close functional isomorphism of Eq.D7 with the transfer function (defined by the Z-

transform) of an infinite impulse response (IIR) filter used in digital signal processing (see further in 

Appendix F), which is given by a quotient of summations in both the numerator and denominator: 

�(�) =
∑ ������

���

1 + ∑ ������
���

                                     (D8) 

The parameter z, is given by z≡exp(i), where  is a frequency in normalised units, such that z 

is therefore located on the unit circle in the complex plane (see the discussion in §3.1 for the self-

reciprocal function Sm, whose roots also lie on the unit circle.) Of particular interest is to note that the 

conventional IIR filter generally has the first co-efficient of the denominator as unity, just like the 

HSR of Eq.7. 

It is interesting to note that for each hypothesis being equally possible (a MaxEnt scenario), 

p(An)=1/N, and indeed, with the assumption that each conditional dependency is also equal and 

similarly given by p(An|{An’})=1/N, then we can see that the concatenated hyperbolic sum rule offers 

the following overall probability: 

�(�� OR �� OR …  OR ��) =
∑

�!
�! (� − �)!

�
���,odd ∏ �(��)�

���

∑
�!

�! (� − �)!
∏ �(��)�

���
�
���,even

=
∑

�!
�! (� − �)!

�
���,odd

1
��

∑
�!

�! (� − �)!
1

��
�
���,even

(D9a) 

We make use of the following binomial expansion identity to solve for Eq.D9a: 

�1 +
1

�
�

�

= �
�!

�! (� − �)!

�

���

1

��
                            (D9b)                                

In which case, the summations appearing in Eq.D9a, respectively consisting of the odd and even 

terms only, therefore each represent approximately half the amount on the LHS of Eq.D9b; this 

approximation being more accurate as N becomes large. In which case we can write: 

�
�!

�! (� − �)!

�

���,���

1

��
≈ �

�!

�! (� − �)!

�

�����,����

1

��
≈

1

2
�1 +

1

�
�

�

    for    � ≫ 1                         (D9c)                    

So that substituting Eq.D9c into Eq.D9a we find: 

�(�� OR �� OR …  OR ��) =

1
2 �1 +

1
��

�

1
2 �1 +

1
��

� = 1 (D9d) 

It’s also worth noting the identity (1 + 1 �⁄ )� → �  as  � → ∞, so that for large N we can see that 

we can re-write Eq.D9d as: 

�(�� OR �� OR …  OR ��) =
0.5�

0.5�
= 1    as  � → ∞ (D9e) 

Clearly, the hyperbolic sum rule is well-behaved as � → ∞, since the probability for at least one 

of the full set of N possible hypotheses being true is, as might be expected, unity.  

D.5 Maximum Entropy Analysis for “Hyperbolic Sum Rule” of Multiple Hypotheses 

In the previous paragraphs we showed that the Hyperbolic Sum Rule (HSR) is well-behaved for 

multiple hypotheses as � → ∞, assuming a uniform (equal) MaxEnt distribution for the probabilities 

of the set of N possible hypotheses.  However, we can also undertake a similar analysis for a finite 

temperature-based distribution of probabilities, also based on MaxEnt principles. In particular, we 

assume that we can arrange the probabilities of the hypotheses as a set of probabilities in a descending 

order of probability that conforms to a negative exponential distribution; this is the classic MaxEnt 

distribution of probabilities (see Jaynes 1982 [ref.14]).  

Thus we assume that the independent probability of the nth hypothesis p(An) is given by: 
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�(��) = ��� �
1 − ���

1 − ����
�� ����                                     (D10a)                                 

where  acts as the appropriate Lagrange multiplier for the MaxEnt distribution. In passing, we 

note that Eq.D10a therefore conforms to the following implicit results: 

� ����

�

���

= ��� �
1 − ����

1 − ���
�         such that       � �(��)

�

���

= 1                     (D10b)                                 

Substituting Eq.D10a into Eq.D9a, we obtain: 

�(�� OR �� OR …  OR ��) =
∑

�!
�! (� − �)!

�
���,odd ��

1 − ���

1 − ����� ���
�

∏ �����
���{�,�:�}

∑
�!

�! (� − �)!
1

��
�
���,even ��

1 − ���

1 − ����� ���
�

∏ �����
���{�,�:�}

(D10c) 

which can be re-written: 

�(�� OR �� OR …  OR ��) =
∑

�!
�! (� − �)!

��
1 − ���

1 − ����� ���

�

exp�−� ∑ ��
���{�,�:�} ��

���,odd

∑
�!

�! (� − �)!
��

1 − ���

1 − ����� ���
�

exp�−� ∑ ��
���{�,�:�} ��

���,even

(D10d) 

The key thing to point out here is that the final product term (now transformed into a 

summation) at the end of both the numerator and denominator, corresponds to the permutated 

choices of all the l probability terms being considered for the lth-order conjunction.  We can make an 

approximation for this by assuming that the average value of n for any given choice is simply N/2.  

In which case, choosing l such instances means that the average (expected) summation is then simply 

�� = �� 2⁄ . Thus we can approximate Eq.D10d as follows: 

�(�� OR �� OR …  OR ��) =
∑

�!
�! (� − �)!

��
1 − ���

1 − ����� ���
�

��
���

��
���,odd

∑
�!

�! (� − �)!
��

1 − ���

1 − ����� ���
�

��
���

��
���,even

          (D10e)                             

which can again be simplified as follows: 

�(�� OR �� OR …  OR ��) =
∑

�!
�! (� − �)!

��
1 − ���

1 − ����� �
���

�
�

���
�

�
�
���,odd

∑
�!

�! (� − �)!
��

1 − ���

1 − ����� �
���

�
�

���
�

�
�
���,even

          (D10f)                             

Using the approximation result of Eq.D9c for large N, we can approximate the numerator as: 

�
�!

�! (� − �)!

�

���,���

��
1 − ���

1 − ����
� �

���
�
�

���
�

�

≈
1

2
�1 + �

1 − ���

1 − ����
� �

���
�
�

���
�

�

≈
1

2
�1 +

��
�
�

��
��
�

�
�

�
� − ��

�
�

�
��
� − ��

��
�

� �
���

�
�

���
�

�

=
1

2
�1 + �

sinh � 2⁄

sinh �� 2⁄
� �

�
��

�

         (D10g)                               

 

Clearly for � = 0, we can assume that sinh(� 2⁄ ) sinh(�� 2⁄ )⁄ = 1 �⁄ , so that we revert to the 

initial uniform distribution of Eq.D9c. However, for � ≠ 0  and � → ∞ , but � ≪ �, then we can 

approximate Eq.D10g to: 

1

2
�1 + �

sinh � 2⁄

sinh �� 2⁄
� �� �⁄ �

�

≈
1

2
�1 +

�� �⁄

�
�

�

≈
1

2
exp��� �⁄ � (D10h) 
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We can assume the same for the even-ordered series of the denominator, such that substituting 

into Eq.D9a we have: 

         �(�� OR �� OR …  OR ��) ≈
0.5exp��� �⁄ �

0.5exp{�� �⁄ }
= 1   as    �

→ ∞                                       (D10i) 
Equation Eq.D10i represents the MaxEnt generalisation for the Hyperbolic Sum Rule (HSR) as 

N gets very large. It can be seen that the HSR still remains very well behaved as the Lagrange 

multiplier (inverse-temperature parameter)  is varied for the distributions of the set {p(An)}, with  

representing distributions associated with different effective temperatures.  

Appendix E:  Conventional Sum Rule is MaxEnt 

We explore here how the conventional sum rule (CSR) behaves as the number of hypotheses 

considered increases.  In particular, Eq.2b (together with the HSR formalism of Eq.D7) indicates a 

possible (but actually, naïve and erroneous, as we shall see) concatenation rule for the CSR: 

�(�� OR �� OR …  OR ��) = � �(��)

�

���

 − � � � �(��|{���, � − 1})

�

���{�,�:�}

��
�!

�!(���)!

���

�

���

          (E1)                     

where the final double-summation and product term is recognised to consist of all the possible 

combinations (at all orders) for two or more conjuncting terms (that is, for � ≥ 2).  

However, for the case when each hypothesis is equally possible and each conditional 

dependency is equal (p(An|{An’})=1/N; and p(An)=1/N) then: 

�(�� OR �� OR …  OR ��) = �
1

�

�

���

 − �
�!

�! (� − �)!

1

��

�

���

          (E2)                     

The second summation of Eq.E2 (which only starts at l=2) may be rewritten: 

�
�!

�! (� − �)!

1

��

�

���

  ≡  �
�!

�! (� − �)!

1

��

�

���

− �
1

�

�

���

− 1 = �
�!

�! (� − �)!

1

��

�

���

− 2       (E3)                     

and therefore: 

�(�� OR �� OR …  OR ��) = 1 − �
�!

�! (� − �)!

1

��

�

���

= 1 − ��
�!

�! (� − �)!

1

��

�

���

− 2�

=      3 − �
�!

�! (� − �)!

1

��

�

���

= 3 − �1 +
1

�
�

�

= 3 − �    as  � → ∞    (E4)                    

 

Eq.E4 is therefore not well behaved as a reliable probability quantity (and consequently Eq.E1 is 

also unsatisfactory), since Eq.E4 tends to a non-unity result (3−e=0.282) as N gets large.  In which 

case, it is clear that the ‘possible’ CSR concatenation rule of Eq.E1 is deficient. However, in the 

hyperbolic sum rule case (Eq.D7) the odd- and even-ordered conjunctions are treated differently, 

with the even terms all sorted into the denominator and the odd terms located in the numerator. (This 

is the reason why Jaynes suggested that the Venn diagram of Figure 1 can ‘mislead’ since such 

respective groupings of the odd- and even-ordered overlaps isn’t obvious.) Applying this alternative 

(HSR-inspired) model to Eq.E1, and then subsequently, to Eq.E4, such that the even-ordered terms 

are negative and the odd-ordered terms add positively, we have: 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2024                   doi:10.20944/preprints202407.1660.v1

https://doi.org/10.20944/preprints202407.1660.v1


 28 

 

�(�� OR �� OR …  OR ��) = 1 − �
�!

�! (� − �)!

1

��

�

���,����

   + �
�!

�! (� − �)!

1

��

�

���,���

                                          =      �
�!

�! (� − �)!

1

��

�

���,���

    − �
�!

�! (� − �)!

1

��

�

���,����

                                                        =
1

2
�1 +

1

�
�

�

− �
1

2
�1 +

1

�
�

�

− 1� = 1 − 0.5� + 0.5� = 1(E5)                    

 

Here, we recognise that the first term of the CSR (see the second line of Eq.E5) is equivalent to 

the l=1 term of the odd series of the first line: this term can be transferred to the odd series, extending 

its range. We also recognise that the even series is defined from l=2, that is to say, it omits the l=0 

component. However, in using the approximations of Eq.D9c to calculate a reasonable closed-form 

for the series, we use the even series summation, and take away 1 in order to appropriately observe 

the omission of the l=0 component. Note the subtle ambiguity for why ‘1’ in the first line of Eq.E5 (on 

the RHS) is present: is it due to the l=1 term of the odd series or is it an artefact of the l=0 term of the 

even series (as seen in the final line of Eq.D7)?  

In any case, the CSR is now well behaved as the number of hypotheses increases.  It seems that 

the general form of the CSR should be given by: 
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      (E6)               

But it is fascinating that, in order to make the CSR behave reasonably for multiple hypotheses, 

key results have had to be borrowed from the HSR (i.e. that the odd and even terms take different 

signs). The top line of Eq.E6 can therefore be considered to represent the arithmetic version of the HSR 

(Eq.D7, apart from the fact that the even summation only runs from l ≥ 2). Thus the {CSR, HSR} can 

be mutually considered as {arithmetic, geometric} analogues.  

The HSR of Eq.D7 is consistent with many other physical phenomena, and it has also allowed 

us to find Eq.E6. The HSR elegantly employs all the terms of the complete series summation without 

exception, whereas the CSR has to omit the first l = 0 term from the even series (unless the additional 

‘unity’ term is introduced) as seen in the last line of Eq.E6. In addition, the hyperbolic sum rule 

doesn’t require a change in sign of the conjunction terms, since they are all positive as they appear in 

Eq.D7; this is in contrast to Eq.E6 where a change of sign for the odd and even conjunction terms is 

necessary. Without the insights of the hyperbolic nature of Eq.D7, and in particular, the properties of 

the multi-angle hyperbolic tangent function, it would not be possible to derive the form of Eq.E6 so 

easily. Note also that the generalised CSR for multiple hypotheses (Eq.E6) still offers results relatively 

close to the HSR, e.g. as seen in Figure 2.  

Finally, a comment on whether the CSR of Eq.E6 is MaxEnt. To decide this, we exploit the fact 

that the CSR is an arithmetic version of the (MaxEnt) HSR, such that given the HSR of Eq.D7 is a 

quotient quantity (i.e. HSR≡K/L), then it is clear from Eq.E6 (when comparing it to Eq.D7 for the HSR)  

that the CSR is simply given by CSR≡K−L+1 for the same quantities K and L. However, in the previous 

Appendix C we assumed that HSR≡tanh(a+b) which is already an intrinsically quotient quantity, such 

that it is equally clear that we can write: K≡sinh(a+b) and L≡cosh(a+b). We already demonstrated in 

Appendix C that the HSR is MaxEnt, but now with CSR≡K−L+1, then using the same hyperbolic 

identities in the vicinity of equation Eq.C2, we can simply write: CSR=1−e−, where ≡2(a+b), which 

conforms to the MaxEnt template of Eq.A1a discussed in Appendix A.  

Thus it is clear that the Eq.E6 for the CSR is therefore also MaxEnt, albeit within its narrower 

domain of applicability. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2024                   doi:10.20944/preprints202407.1660.v1

https://doi.org/10.20944/preprints202407.1660.v1


 29 

 

Appendix F: A Sum Rule for Finite and Infinite Impulse Response Filters 

Filtering is an important aspect of most modern electronic processing systems, and is generally 

described using the theory of “digital signal processing” (DSP).  Such DSP filters are divided into 

two main classes, which may be considered either as an “infinite impulse response” (IIR) or a “finite 

impulse response” (FIR) filter. Photonic device technologies using in digital telecommunications 

have also borrowed heavily from the DSP theory which has been applied to develop important 

optical components used in optical fibre communicationsxlii.  In particular, Parker et al. state (citing 

[ref.42]): “it is known that the ‘Arrayed Waveguide Grating’ (AWG) is a FIR filter, in contrast to the ‘Fiber 

Bragg Grating’ (FBG) which is an IIR device”, and they also show that the AWG and FBG filters (both 

important photonic devices) can be shown to be isomorphic to each other in a particularly simple 

mathematical relationship xliii. 

Considering only the first summation of the CSR of Eq.E6, we can see that the CSR is isomorphic 

to the general equation for a “finite impulse response” (FIR) filter: 

�(�) = � �����
�

���
                                     (F1) 

where H is the transfer function: that is, the (complex-valued) frequency response of the filter. 

The mathematical form of Eq.F1 is equivalent to a discrete Fourier transform (DFT) since, as before 

for Eq.D8, the (complex) parameter z is given by z≡exp(i), in normalised frequency units, and the 

parameters bn (which subsume the other summation terms of Eq.E6) act as Fourier coefficients.  The 

transfer functions of FBG and AWG photonic devices are related through the hyperbolic tangent 

(tanh) function ([ref.43]): 

����(�) ≡ tanh[����(�)]                                   (F2) 
What this means is that the IIR response of a FBG can be generated by taking the hyperbolic 

tangent of the FIR response of an equivalent AWG.  In the case of a ‘weak’ IIR filter response (that 

is, a filter with little feedback) the small argument approximation (tanh x≃x as x→0) means that the 

IIR and FIR become indistinguishable.  This is analogous to the “First” (high energy) Born 

Approximation of quantum mechanics in which the spectral response of a scattering process is closely 

given by the Fourier transform of the spatial distribution describing a weak potential variation.   

It is interesting that the IIR function of Eq.F2 is described using a hyperbolic tangent function in 

the same way as seen in Appendix C, Eqs.C1.  This has the implication that there is an IIR filter sum 

rule consisting of the simple concatenation of different FIR filters within an overall hyperbolic tangent 

function, which is also of DSP engineering interest.  For example, consider two different FIR 

functions HFIR1 and HFIR2, each associated with a different IIR function via: 

����� = tanh(�����)                 for � = 1,2                                  (F3) 
For the concatenation of the two FIR functions it is clear that we can write: 

����(���) = tanh(����� + �����) =
tanh(�����) + tanh(�����)

1 + tanh(�����) tanh(�����)
                           (F4) 

����(���) =
����� + �����

1 + ����������
                                               (F5) 

Thus, the generic IIR filter (e.g. as similarly seen in Eq.D8) is seen to be also isomorphic to the 

HSR. 

The interpretation and application of Eq.F5 for DSP engineering and filter design remains the 

work of future research.  In the same way that the CSR is not a quotient function (in contradistinction 

to the HSR of Eq.7) the same applies to the generic mathematical form for a FIR Z-transform transfer 

function given by Eq.F1.  And while DSP design of complex yet stable filters will often employ 

concatenation of multiple FIR filters, as shown in Appendix E so also can the CSR be concatenated to 

enable multiple hypotheses to be successfully and analytically combined into a single, well-behaved 

probabilistic sum rule expression.  
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Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org. 
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